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THE NORM ESTIMATES FOR THE ¢-BERNSTEIN OPERATOR
IN THE CASE ¢ > 1

HEPING WANG AND SOFIYA OSTROVSKA

ABSTRACT. The ¢g-Bernstein basis with 0 < ¢ < 1 emerges as an extension of
the Bernstein basis corresponding to a stochastic process generalizing Bernoulli
trials forming a totally positive system on [0, 1]. In the case ¢ > 1, the behavior
of the g-Bernstein basic polynomials on [0, 1] combines the fast increase in
magnitude with sign oscillations. This seriously complicates the study of g¢-
Bernstein polynomials in the case of ¢ > 1.

The aim of this paper is to present norm estimates in C[0,1] for the g¢-
Bernstein basic polynomials and the g-Bernstein operator B g in the case
g > 1. While for 0 < ¢ < 1, ||Bn,gl| =1 for all n € N, in the case ¢ > 1,
the norm ||By ¢|| increases rather rapidly as n — oo. We prove here that
|Br,gll ~ Cqq"(*=1/2/n n — oo with Cy = 2(¢ 2;¢ 2)oo/e. Such a
fast growth of norms provides an explanation for the unpredictable behavior
of g-Bernstein polynomials (¢ > 1) with respect to convergence.

1. INTRODUCTION
Let ¢ > 0. For any nonnegative integer k, the g-integer [k], is defined by
klg:=1+q+ - +¢" 1 (k=12,...),[0],:=0,
and the g¢-factorial [k],! is defined by
(Elg! = [1q2]q-- - [Klg (k=1,2,...), [0]4! :==1.

For integers k,n with 0 < k < n, the g-binomial coefficient is defined by

m __ [nlg!
klg ™ [k]gln — k]!
We also use the following standard notation (see, e.g., [I], Ch. 10):

k—1 00
(@ao=1, (@ak=[[(1-ag), (aqm:=[[1-ag") (0<q<1).
s=0 s=0
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By C[0,1] we denote the space of continuous functions on [0, 1] equipped with
the uniform norm. By || - || we mean the norm in C[0, 1] or the operator norm on
o, 1].

Definition 1.1. Let f :[0,1] — C. The g¢-Bernstein polynomial of f is

Bug(fi2) = i f (%> k(g 2), n=1,2,...,

k=0 [nlq
where

n
(L.1) pus(z) =pue(2) =[] s =01 n

Note that for ¢ = 1, B,, 4(f; 2) is the classical Bernstein polynomial B, (f; z):

Bo(f,2) = gf (i) BECEEES

Definition 1.2. The g-Bernstein operator on C[0,1] is given by
Bug: [ Bnglf;)

A detailed review of the results on ¢-Bernstein polynomials along with an exten-
sive bibliography is given in [14]. The subject remains under intensive study, and
there are new papers constantly coming out (see, for example, papers [15], [21] and
[22], which appeared after [14]).

The g-Bernstein polynomials inherit some of the properties of the classical Bern-
stein polynomials, for example, the endpoint interpolation property, the shape-
preserving properties in the case 0 < ¢ < 1, and the representation via divided
differences. Like the classical Bernstein polynomials, the g-Bernstein polynomials
reproduce linear functions and are degree-reducing on the set of polynomials.

On the other hand, the convergence properties of the ¢-Bernstein polynomials
for g # 1 are essentially different from those of the classical ones. What is more, the
cases 0 < ¢ < 1 and ¢ > 1 are not similar to each other. This absence of similarity
is attributed to the fact that for 0 < ¢ < 1, B,, , are positive linear operators on
C'[0, 1], while for ¢ > 1, the positivity does not persist any longer.

The lack of positivity makes the investigation of convergence in the case ¢ > 1
substantially more difficult than that for 0 < ¢ < 1. As a result, the convergence
properties of the ¢-Bernstein polynomials in the case 0 < ¢ < 1 have been in-
vestigated in detail, including the Korovkin type theorem, the properties of the
limit operator, the rate of convergence and the saturation phenomenon (see, e.g.,
[8], [14], [T7]—[21]). In contrast, there are only two papers, [13] and [22], dealing
systematically with the convergence in the case ¢ > 1. The results of [I3] show nev-
ertheless that for ¢ > 1 the approximation with ¢-Bernstein polynomials in C10, 1]
may be faster than that with the classical ones. On the other hand, for some func-
tions analytic on [0, 1], their sequences of ¢-Bernstein polynomials (¢ > 1) may be
divergent, which is totally impossible for 0 < ¢ < 1. The problem to describe the
class of functions uniformly approximated by their ¢-Bernstein polynomials on [0, 1]
remains open; there are only a few results available on specific functions (see [15]).
The results of [15] reveal the following astonishing fact: if ¢-Bernstein polynomials
approximate the logarithmic function In(z + a), a > 0, on some interval in C, they
have to approximate it on all intervals that are closer to the origin.



NORM ESTIMATES FOR THE ¢-BERNSTEIN OPERATOR IN THE CASE ¢ > 1 355

One of the reasons for such an unusual behavior of g-Bernstein polynomials in
the case ¢ > 1 is a fast increase of basic polynomials (1.1) near z = 1. If we
take, for example, 7o € (1/y/7,1), then puo(g; o) = (w05 @)n and [po(g; 20)| =
@D |(1/3031/),] 2 "2 (1/0;1/0) | 3= Cyaya™ 2%, Simnilarly,
for any fixed k € Z, we have |pni(q; zo)| > C'k,q,g;oC]"(”_Q)/Q7 while Y7 puk(g; )
= 1. Unlike the situation for 0 < ¢ < 1, when a ¢-Bernstein basis is a totally
positive system of functions on [0,1], in the case ¢ > 1, polynomials (1.1) combine
fast increase in magnitude with sign oscillations (see Theorem 2.1). This creates
a serious obstacle for numerical experiments with g-Bernstein polynomials in the
case q > 1.

The polynomials (1.1) form the ¢-Bernstein basis, which is shown to be closely
related to the g-deformed binomial distribution (cf. [5]). The latter plays an im-
portant role in the g-boson theory giving a g-deformation of the quantum harmonic
formalism. In particular, it has been used to construct the binomial state for the
g-boson (cf. [9]). Furthermore, its limit form, called the g-deformed Poisson dis-
tribution, describes the distribution of energy in a g-analogue of the coherent state
(2, [9).

The g-analogue of the boson operator calculus has proved to be a powerful tool
in theoretical physics. It provides explicit expressions for the representations of
the quantum group SU,(2). Quantum groups set a common algebraic ground for
physical problems seemingly very different from each other, ranging from statisti-
cal mechanics to gauge theory and quantum gravity. As a result, these quantum
groups have been known to play a significant role in physics (e.g. [4]). Specifically,
in condensed-matter physics and quantum field theory, the technique of quantum
groups has been used extensively in lattice models, which are ideal to study by
the methods of computational physics. Therefore, the properties of the ¢g-deformed
binomial distribution and related g¢-Bernstein basis (1.1) are very important for
applications.

It has to be mentioned here that in the case 0 < ¢ < 1, various properties of
the g-Bernstein basis have been studied in [7] and [I0]. In the case 0 < ¢ < 1,
g-Bernstein basic polynomials (1.1) admit a probabilistic interpretation via the
stochastic process constructed by A. I'inskii in [7], in which p,r(g; z) equals the
probability of exactly k successes in n trials. For ¢ = 1, this reduces to the sequence
of Bernoulli trials, where the probability of k successes in n experiments is given
by the basic Bernstein polynomials. We notice that for ¢ < 1, in distinction from
the classical case, trials in this process are not independent and the probability
for a success or a failure depends on the history of the process in such a way
that each failure diminishes the probability of a success in the next trial. In the
case ¢ > 1, the role of the probability mass function is played by the sequence
Pok(q;47™), m € Z4; see [5].

Dealing with the case ¢ > 1 in this paper, we present new results related to the
g-Bernstein basis. Our study involves the norm estimates for the basic polynomials
(1.1) in the case ¢ > 1. The crux of the matter is Theorem 2.3 related to the
asymptotic behavior of the basic polynomials. Moreover, it shows that for n large
enough, |p,k(z)| attains its maximum on [0, 1] when = € [1/g, 1], that is, close to
the right endpoint of [0, 1].

The present paper brings out an asymptotic estimate for the norm || B, 4| as
n — oo in the case ¢ > 1. The norm of a linear operator characterizes its modulus
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of continuity. Our computation shows that for ¢ > 1 the continuity of ¢-Bernstein
operators deteriorates rapidly as n — oco. This fact reveals one of the ways to look
at a recently discovered phenomenon showing that ¢-Bernstein polynomials exhibit
a “chaotic” behavior mentioned above. The situations in which norms of finite di-
mensional operators grow rapidly with the dimension are also studied in the theory
of regularizability of inverse linear operators; see [I6]. A comprehensive review of
results on the approximation of continuous functions defined on compact metric
spaces by means of bounded linear operators is presented in [6]. We would like to
mention that I. Novikov in [I2] has studied asymptotic properties of a particular
sequence of Bernstein polynomials from a different point of view.

It is well known that Bernstein polynomials have been used extensively in Com-
puter Aided Geometric Design. In particular, they are crucial for the Bézier method
to generate curves and surfaces. Effective computations pertaining to this method
are performed with the de Casteljau algorithm and its various modifications. As an
example, reference can be made to [3], where a review on the history and the devel-
opments concerning this powerful tool has been presented. An extension of the de
Casteljau algorithm can be used for evaluating ¢-Bernstein polynomials iteratively
and for constructing generalized Bézier curves. The application of this algorithm
to the calculations of the g-Bernstein polynomials in the case ¢ > 1 requires in-
formation on either the stability of the computational procedure or the sources of
the potential instability. What is decisive in the study of the stability is the rate
of growth of the norms ||B,, 4||. For this reason, the precise growth estimates of
the norms obtained herein are important for the numerical study of g-Bernstein
polynomials.

Let us restate that for 0 < ¢ < 1, ||[Bp4ll = 1 for all n € N. In contrast to
this, our main Theorem 2.6 shows that || B, 4|| — oo as n — oo faster than any
geometric progression. To be specific, ||B,, 4| ~ Cy¢"" " Y/2/n, n — oo with
Cy=2(q7%q)/e.

2. STATEMENT OF RESULTS

From here on we assume that ¢ > 1 is fixed. We start with a rather simple
statement. However, it is useful to understand the asymptotic behavior of ba-
sic polynomials as n — oo. The formulae below show that the limit involves the
function (1/2;1/q)~ analytic in C\ {0} and possessing an essential singularity at
0.

Theorem 2.1. (i) For z # 0, we have
lim pnk(z) _ (_1)k (1/Z; 1/Q)oo
n—oo (=1)ngn(n=1/2zn  gk(k=1)/2(1/q;1/q),’

The convergence is uniform on any compact set K C C\ {0}.
(i4) For z # 0, we have

m pn,nfk(z) _ (_l)k(l/zal/q)k
n—s 00 anzn qk(k+1)/2(1/q’ 1/‘])1@7

The convergence is uniform on any compact set K C C\ {0}.

keZ,.

keZ,.

The following corollary shows that for any k € Z., the values of basic polyno-
mials (1.1) tend to infinity outside of the set J, := {0} U {g77}32,. These results
will be refined further.
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Corollary 2.2. The following equalities hold:

0, if ze J;\ {0},

0, if z=0,k#0,
1, if 2z=0, k=0,

oo,  otherwise.

lim pp(g; 2) =
n—o0

Theorem 2.1 suggests that it is interesting to investigate the behavior of poly-
nomials (1.1) in Banach spaces of analytic functions. As we know, sometimes
complexifications of natural problems lead to unexpected results; see [11].

Our next assertions are concerned with the norm estimates for p,x(z) as n — oo.

In the sequel, we denote A(n) < B(n) if there exists a positive constant C
independent of n so that A(n) < CB(n), while A(n) < B(n) means that both
A(n) < B(n) and B(n) < A(n).

Clearly, (1/q;1/q)r < 1 and therefore

(2.1)

[n] _ qn(n+1)/2 . (1/q;1/q)n qu(n—k)
klg gttt D2qn=Rn=kt D)2 (1/q:1/q)k(1/4:1/@)n—k '

For f € C[0,1], we set
1£lls = 1 fllcig-s-1.4-) = o X |f(z)], s€Zy.

€lg==1,q7*]

The following theorem provides a clue to understanding the asymptotic behavior
of basic polynomials (1.1).

n—k—1
Theorem 2.3. Let gy, = 2" H (1 - qj:c) . Then
§=0

gnnll = llgnnllo =1
and
lgnkll = lgnkllo < ¢ =k=D/2 )y gk =0,1,...,n—1.
Applying (2.1), we come up with this assertion:

Corollary 2.4. The following asymptotic formula holds:
1P (@) = Ik (@)l = T DB n k=0,1,...;n— 1.

The next statement is obtained as a by-product of these results. It gives a
weak asymptotic order for the norm of the ¢-Bernstein operator and it will be
strengthened further (see Theorem 2.6).

Corollary 2.5. The estimate below is true:
([ Brqll < qn(n—l)/2/n’ n — o0.

The precise rate of growth for || By, 4| as n — oo is given by Theorem 2.6, which
constitutes the main result of the present paper. It estimates the strong asymptotic
order of the norm ||B,, 4| as n — co.

Theorem 2.6. The following asymptotic equality holds:

2Wa—2: g—2) . gn(n—1)/2
| Bn.gll ~ (07554 oo as n — oo.
ne
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3. PROOFS OF THE THEOREMS

Proof of Theorem 2.1. (i) For z # 0, we have

n n n— n—k)(n—k— 11
Pnk(2) = [kLZ (—1)"Hgin R k2 (;75) :
n—k

Application of (2.1) yields

[”} =R n—k=1)/2 _ gnn-hz (1/q;1/q)n .
klq g*k=D2 (1 q;1/q)e(1/ g3 1/ @) n—r
Therefore, we obtain
(3.1) Puk(2) DMV 1/9)n(1/ 251/ @) nk

' (=L)mgnn=0/2zn gkE=D/2(1/q;1/q)e(1/q31/@)n—r
Clearly,
(3.2) Jim (1/g;1/q)n = lim (1/¢;1/q)n—r = (1/4;1/q) o0,

while (1/2;1/q)n—r — (1/2;1/q) as n — oo uniformly on any compact set K C
C\ {0}. The statement now follows from (3.1).
(#7) Using [,"x], = [Z]q, we write

nl n Kk k(k-1)/2 (1.1
punn(s) = [1] it (50
Taking into account (2.1), we derive
["] gFE=D/2 Z nk—k(k+1)/2 (1/q;1/q)n
klq (/g 1/ Ok(1/ g1/ @)’
and hence
Pon-k(2) __ (=D"1/21/q)(1/g:1/0)n
qrar D21/ 1/q)u(1/ a1/ @n—k
With the help of (3.2), we obtain the required statement. O

The following lemma is needed for the sequel.
Lemma 3.1. Let hy(z) := 2%(1 — x)(qx — 1), k € N. Then
1Pkl = llhllo = 1/k.
Proof. 1t is easy to see that

E\" k 1
. Fl—z) = — 1— = = 1/k.
33) e o(l-e) (1+k> ( k+1> R e Yk

Hence

Ihkllo < |lhell < 1/k.
On the other hand, we may suppose that k& > q%l. Then k/(k +1) € (1/¢,1) and

k 1 k(g—1)—-1 1 -1
hk( )‘:k( (4=1) >>—~q—>>1/k.

hill > hello >
IPxll = 11Axllo = k+1 T+ 1/ k+1 ke q+1

Thus
[xll =< [[hello < 1/, O
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Proof of Theorem 2.3. The equality ||gnn|| = ||gnnllo = 1 is obvious because g, =
™. The required asymptotic relations

Hgnn—l‘l = 1/”3 Hgnn—QH = ]./Tl
can be easily derived from (3.3) and Lemma 3.1.
We now consider the norm of g, for K =0,1,...,n — 3. Clearly
(34) ”gnkH = max{Hgnk”C[O,q—("—k—U]7 HgnkHsa s=0,1,....n—k— 2}

If z € [0, *=V], then |gnx ()| < 1, whence lgnkllcio,q--r-1y < 1.
Now, we take sg = n — k — 2. Then for z € (%0~ ¢=%°), we have

|gni (2 |—x Hl—qx sotly 1)§q50+1x—1§q—1<<1,

that is, ||gnk(x)||n,k,2 < 1.
To estimate ||gnk||o, that is, to consider the norm on the “small” interval on the
right, we take z € (1/¢,1) and write

n—k—1
lgni(@)| = 2* (1= 2)(qz - 1) ] (@2 -1)
j=2
n—k—1 1
— n—2 1— _ (n—k)(n—k—1)/2—1 )
"2 (1 —z)(qxr — 1)g H 1 i
j=2
Since
i 1 n—k-2 1 n—k—2 .
=1l <1_qTx>: 11 (1_ng_x>> [T t-a7)>/a1/0)x,
Jj=2 i—1 Jaie

J
we get, applying Lemma 3.1,

(n—k)(n—k—1)/2
g llo = gD/ pflg = T

For s = 1,...,n—k—3, we take x € (¢~°71,¢~%0) so that y := ¢°°z € (1/q,1).
Direct calculations yield

so—1 n—k—1
lgnk ()] = 2*(1 = ga) (¢ Tz —1) [T - ¢2) J] (@z-1)
s=0 s=s0+2
so—1 n—k—1
_ q(so+2)+-.,+(n7k7l)xnflcfsonxk(1_qsox)(qsoJrlx_1) H 1— (] .’L‘ H
s=0 s=s0+2
so—1 n—k—1
— q(n—k—l)(n—k)/Z—so(Qn—1—50)/2—1yn—so—2(1_y)(qy_1) H 1 q .’IJ H

s=0 s=s0+2

ﬁl

s=s0+2

so—1 n

_ q(nfkfl)(nfkr)/2780(21171730)/271hn_50_2( ) H 1 7q :C
s=0

Since

501

1>Hlqu H(l—q (¢*z)) Hlfq > (1/¢;1/q) oo

t=1
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and

n—k—1 1 n—k—so—2 1

1> [l a-=)= [l 0-¢'—=)
= s so+1
s=sp+2 qx t=1 q ’ x
n—k—so—2
> J] (-a"=0/31/0)
t=1
we get that
Hgnk:”so = q(n—k—1)(n—k)/Q—so(Zn—l—so)/Q/(n — 50 — 2)

Finally, taking into account (3.4), we arrive at
gnkll = gnrllo = ¢~ *= =072 /n,

as required. O
Proof of Corollary 2.5. Obviously,

1Bn.qll 2 IPno(q; )l
Applying Corollary 2.4, we conclude that

[Bn.gll > g™ D72 /n.
On the other hand,

n n—1
< llpar(@ ) < 1+ Y gt nm=R2

[ Bn.ql
k=0 k=0
n—1
< 14" D2 Z g RED/2,
k=0
00 n—1
Due to the fact that Z ¢ "= < 0, we infer that Z ¢ "1 « 1 and therefore
k=0 k=0
[ Brqll < qn(nil)ﬂ/n'
Thus
| Bn,qll < qn(n_l)/Z/n- U

At the final stage, we estimate the strong asymptotic order of the norm of || B,, 4||.

Proof of Theorem 2.6. First, for x € (1/¢;1) and k < n — 2, we have with the help
of (3.1):

—1)/2—k(k— - (1/q:1/@)n(1/q2;1/ Q) n—k—1
3.5 k()| = qn(n 1)/2—k(k 1)/2xn 1 1—2)-
B el 0 (g e (1051 )i
Therefore, in the case of n being large enough to satisfy 1 — 1/n € (1/gq,1), we
obtain for k <n —2:

n—1
o <1 _ l) ’ _ = /2k(1)/2 (1 - l) = (L; l)
n n nlklyq\qin—1)"q/,

1 ™ n 1
3.6 S gun—1)/2-k(k—1)/2  * L2
(3.6) = 4q en [k‘:|1/q qin—1)"¢q oo,
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since (1 —1/n)" " is a decreasing sequence tending to 1/e. We note that the latter
estimate remains true for k =n — 1 and k = n as well. Indeed, for k =n — 1,

Prn—1(1—1/n) = [n]y(1 - 1/n)n—1%

1 1 e 1 n 1
2q [n]l/q% >q [ ]1/qne m,a )
[ee]

which agrees with (3.6). For k =n, and n > 2,
Pan(l—1/n)=(1—=1/n)" > 1/e,

and (3.6) is also true.

Since
n n
[ Bnqll = e <Z Ipnk(m)l> > pae(1 = 1/n)]
k=0 k=0

by virtue of (3.6) it follows that

1 - n
—n(n=1)/2,,.11 B > n_ 1 E: —k(k—1)/2 )
q ne||Bpqll = (q(n —1)’ q> q |:ki|1/q

X k=0

Applying the Rothe identity (cf. [I], Ch. 10, p. 490, Corollary 10.2.2 (c)), we
derive
n 1

—n(n—1)/2 B >< > —1:
q nej|bngll 2 ; 14)n-
IBual > (i gy ) 1)

Since f(x) = (1/qx;1/q) oo is continuous at z = 1, the limit of the right-hand side
as n — oo exists and equals (1/¢;1/q)oo(—1;1/¢) 00 = 2(¢72%¢ ) o-
As a result, we obtain

(3.7) liminf ¢~ "D 2ne]| By gl > 2072 ¢7%) .

n—

Next, we are going to estimate ||B,, 4| from above. Representation (3.5) along
with Theorem 2.3 implies that for K < n — 2 and n large enough we have

n(n—1)/2—k(k—1)/2 (1/a:1/@)n(1/ g1/ @) n—k—1 ma ”_1(1 — )

DPn S q X X
(o] (/a:1/@)k(1/q: 1/ @)n—k  =€l1/a1]
n—1
(3.8) _ r(n=D/2—k(k-1)/2 (1/q;1/q)n (1 B l) . 1
(1/g;:1/q)k(1 = (1/q)"F) n n

In addition, we have |p,,|| =1 and ||ppn—1] < ¢"~*/n, which means

lim q*”("*l)/QnermH = lim q*”(”*l)mne”pnm_l” =0.

n—00 n—o00

Therefore, it suffices to estimate ¢~ ™("~1/2ne En;2 HpnkH Using (3.8), we obtain

- g k(k=1)/2

n—2 n—1
1
—n(n=1)/2 <el(l--— (1/¢;1 :
q ne ) Ipnkll_e( n) (1/q:1/q)n E 1/q’1/q A= /0D

Now, for k,n € Z, we set
—k(k—1)/2 .
{ q - if k<n-—2,
Cikn —

(1/a:1/q),,(1—(1/q)"=%)
0 otherwise.
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Clearly,
—k(k=1)/2

1/q,1/q ) (1= (1/q)" %) Zc’m

gl

and
g HE=1)/2

el < W1/, 1= W)

Since Z dy, < 0o, we may apply the Lebesgue Dominated Convergence Theorem:
k=0

=:dy for all k,n € Z,.

—k(k—1)/2

Jim Z@m -y (Jim,crn) = g Uaya. ~ Ll

k=0

by virtue of the Euler Identity (cf. [I], Ch. 10, p. 490, Corollary 10.2.2 (b)).
Thus, we obtain

(3.9)  limsupg """ 2ne| By gll < (1/0:1/0)o0(~1:1/0)00 = 200 %54 ) oo
Juxtaposing (3.7) and (3.9), we obtain the needed statement. O
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