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OPTIMIZING THE DOUBLE DESCRIPTION METHOD

FOR NORMAL SURFACE ENUMERATION

BENJAMIN A. BURTON

Abstract. Many key algorithms in 3-manifold topology involve the enumer-
ation of normal surfaces, which is based upon the double description method
for finding the vertices of a convex polytope. Typically we are only interested
in a small subset of these vertices, thus opening the way for substantial op-
timization. Here we give an account of the vertex enumeration problem as
it applies to normal surfaces and present new optimizations that yield strong
improvements in both running time and memory consumption. The resulting
algorithms are tested using the freely available software package Regina.

1. Introduction

Some of the most fundamental problems in 3-manifold topology are algorithmic,
such as determining the structure of a given space or deciding whether two spaces
are topologically equivalent. Much progress has been made on these problems; no-
table examples include the unknot recognition algorithm of Haken [13], the 3-sphere
recognition algorithm of Rubinstein and Thompson [29, 30, 31], the connected sum
and JSJ decomposition algorithms of Jaco and Tollefson [22], and the solution to
the homeomorphism problem for Haken manifolds, developed by Haken [14] and
completed by Jaco and Oertel [19] and Hemion [16].

Several recurring themes are found in these and many other topological algo-
rithms: (i) they are extremely slow, (ii) they are extremely difficult to implement,
and (iii) they are all based on normal surface theory.

The reason normal surface theory is so prevalent is because it allows topological
existence problems to be converted into vertex enumeration problems on polytopes,
which (being numerical and discrete) are far simpler to work with algorithmically.

Unfortunately this very technique that makes these problems approachable also
makes the resulting algorithms impractically slow for all but the smallest 3-mani-
folds. This is because vertex enumeration can grow exponentially slow in the di-
mension of the polytope [11], which equates to exponentially slow in the complexity
of the 3-manifold.

Any practical implementation therefore requires a highly optimized vertex enu-
meration algorithm. Vertex enumeration algorithms fall into two broad categories:
those based on the double description method of Motzkin et al. [28], and those
based on pivoting, as described for example by Dyer [11]. Both classes of algo-
rithms have been analyzed and optimized in the literature; see for instance the
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optimized double description methods of Fukuda and Prodon [12], or the recent
lexicographic pivoting method of Avis [1].

If we restrict our focus to topological problems, there are further gains to be
had. Essentially, we can exploit the fact that normal surface algorithms typically
require only a small number of polytope vertices, namely those that correspond to
embedded surfaces in the underlying 3-manifold. We therefore have permission to
ignore “most” of the vertices of the polytope, which opens the door to substantial
improvements in efficiency.

The purpose of this paper is twofold. First we give a full description of the stan-
dard normal surface enumeration algorithm, which combines the double description
method with the filtering method of Letscher; although well known, there is no ac-
count of this algorithm in the present literature. We then improve this algorithm
by combining techniques from the literature with new ideas, cutting both running
time and memory usage by orders of magnitude as a result.

We focus only on the double description method in this paper. Pivoting algo-
rithms are certainly appealing, particularly because of their extremely low memory
footprint [1, 3]. However, it is difficult to exploit the embedded surface constraints
with these algorithms. We discuss this in more detail in Section 3.

On a practical note, there are two well-known implementations for the enumer-
ation of normal surfaces: FXrays [9], by Culler and Dunfield, and Regina [4, 5],
by the author. Both are freely available under the GNU General Public License.
David Letscher wrote a proof-of-concept program Normal in 1999 that preceded
both implementations, but his software is no longer available.

Each implementation has different design goals. FXrays uses highly streamlined
code and data structures and is very fast for the problems that it is designed
for. Regina on the other hand is more failsafe and applicable to a wider range
of problems, but pays a penalty in both time and memory usage. As an example,
FXrays uses native integers where Regina uses arbitrary precision arithmetic, which
makes FXrays faster and smaller but also at risk of integer overflow (which it
detects but cannot overcome). Regina also uses slower filtering methods, but these
generalize well to the sister problem of almost normal surface enumeration, which
appears in some of the high-level topological algorithms mentioned earlier.

Since our concern here is the underlying algorithms, we focus on a single imple-
mentation (in this case, Regina). All of the improvements described here have been
built into Regina version 4.5.1, released in October 2008, and it is pleasing to see
that this new code enjoys significantly better time and memory performance than
has been seen in either software package in the past.

The remainder of this paper is structured as follows. Section 2 begins with an
outline of normal surface theory, focusing on its connections to polytope vertex
enumeration. In Section 3 we describe the double description method and explain
how the filtering method of Letscher allows us to concentrate only on embedded
surfaces. Section 4 presents a series of implementation techniques and algorithmic
improvements that further optimize these core algorithms. These optimizations are
put to the test in Section 5 with experimental measurements of running time and
memory consumption, and Section 6 concludes with a summary of our findings.

The author is indebted to Bernard Blackham for his helpful suggestions regarding
micro-optimization, and for highlighting the excellent references [10, 34] on this
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Figure 1. A two-tetrahedron triangulation of S2 × S1

topic. Thanks must also go to the University of Melbourne for their continued
support of the development of Regina.

2. Normal surface theory

Normal surfaces were introduced by Kneser [25], and further developed by Haken
[13, 14] for use with the unknot recognition problem and the homeomorphism prob-
lem. They are now commonplace in recognition and decomposition algorithms and
more recently have found applications in simplification algorithms [20].

From a practical perspective, many of these algorithms are extremely messy and
difficult to implement, due to the complex geometric operations involved and the
myriad of problematic cases. Some have only recently been implemented in practice,
such as the 3-sphere recognition and connected sum decomposition algorithms in
Regina; others, such as JSJ decomposition or Haken’s homeomorphism algorithm,
have never been implemented at all. Recent techniques have been developed to
reduce both the difficulty and inefficiency of these algorithms; examples include
Tollefson’s quadrilateral space [33], the crushing method of Jaco and Rubinstein
[20], and the “guts” analysis of Jaco et al. [18].

Since the focus of this paper is on the double description method, we offer very
little topological background, concentrating instead on the linear programming as-
pects of normal surface theory. For a more extensive review of normal surfaces, the
reader is referred to [15] or [16].

2.1. Triangulations and normal surfaces. The key topological structures that
we work with in this paper are triangulations and normal surfaces. We proceed to
define each of these in turn.

Triangulations are representations of 3-manifolds that are ideal for computa-
tion. They are discrete structures, and they are very general in that it is usually
a simple matter to convert some other description of a 3-manifold (such as a Hee-
gaard splitting or a Dehn filling) into a triangulation, whereas the other direction
is often more difficult. Each of the high-level topological algorithms listed in the
introduction takes a 3-manifold triangulation as input.

Definition 2.1 (Triangulation). A 3-manifold triangulation of size n is a finite
collection of n tetrahedra, where some or all of the 4n tetrahedron faces are affinely
identified in pairs, and where the resulting topological space forms a 3-manifold. We
allow identifications between different faces of the same tetrahedron, and likewise
with edges and vertices. By a face, edge or vertex of the triangulation, we refer to an
equivalence class of tetrahedron faces, edges or vertices under these identifications.
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Figure 2. Normal discs inside a tetrahedron

Figure 3. The seven different types of normal disc in a tetrahedron

As an example, Figure 1 shows a size two triangulation of the product space
S2 × S1. In each tetrahedron the two rear faces are identified with a twist, and
the two front faces of one tetrahedron are identified with the two front faces of the
other. The triangulation has only one vertex (since all eight tetrahedron vertices
are identified) and it has three distinct edges, indicated in the diagram by three
different styles of arrowhead.

Normal surfaces are two-dimensional surfaces within a triangulation that inter-
sect individual tetrahedra in a well-controlled fashion. These well-controlled inter-
sections, defined in terms of normal discs, make it easier to analyze and search for
surfaces that tell us about the topology of the underlying manifold.

Definition 2.2 (Normal Disc). Let ∆ be a tetrahedron in a 3-manifold triangula-
tion. A normal disc in ∆ is a topological disc embedded in ∆ which does not touch
any vertices of ∆, whose interior lies in the interior of ∆, and whose boundary
consists of either (i) three arcs, running across the three faces surrounding some
vertex, or (ii) four arcs, running across all four faces of the tetrahedron. Discs
with three or four boundary arcs are called triangles or quadrilaterals, respectively.
Several normal discs are illustrated in Figure 2.

There are seven different types of normal disc within a tetrahedron, defined by
the choice of tetrahedron edges that a disc intersects. In particular, there are
four triangle types (each meeting three edges) and three quadrilateral types (each
meeting four edges), as illustrated in Figure 3.

Definition 2.3 (Normal Surface). Let T be a 3-manifold triangulation. An em-
bedded normal surface in T is a properly embedded surface in T that meets each
tetrahedron in a collection of disjoint normal discs. Here we also allow disconnected
surfaces (i.e., disjoint unions of smaller surfaces).

To illustrate, Figure 4 shows an embedded normal surface inside the triangulation
of S2×S1 that was discussed earlier. The identifications of tetrahedron faces cause
the six normal discs to join together to form a 2-sphere (which turns out to be a
2-sphere at one “level” of the product S2 × S1).
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Figure 4. An embedded normal surface inside the triangulation
of S2 × S1

2.2. The projective solution space. A key strength of normal surfaces is their
ability to bridge the worlds of 3-manifold topology and linear algebra. We do this
through the vector representation of a normal surface, which is defined below.

Throughout this section, we assume that T is a triangulation with n tetrahedra,
labelled ∆1, . . . ,∆n. For each tetrahedron, we arbitrarily number its triangular
normal disc types 1, 2, 3, 4 and its quadrilateral normal disc types 1, 2, 3.

Definition 2.4 (Vector Representation). Let S be an embedded normal surface
within the triangulation T . For each tetrahedron ∆i, let ti,j be the number of
triangular discs of the jth type contained in S (j = 1, 2, 3, 4), and let qi,k be the
number of quadrilateral discs of the kth type contained in S (k = 1, 2, 3). Then the
vector representation of the surface S is the 7n-dimensional vector

( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ; . . . , qn,3 ).

Essentially the vector representation merely counts the number of normal discs
of each type in each tetrahedron. As shown by Haken [13], this gives enough
information to uniquely identify the surface, since there is only one way to glue the
normal discs together without causing the surface to intersect itself:

Lemma 2.5. Let S1 and S2 be embedded normal surfaces in triangulation T . If
the vector representations of S1 and S2 are identical, then the surfaces S1 and S2

are ambient isotopic.

While every normal surface has a vector representation, there are of course 7n-
dimensional vectors that do not correspond to any embedded normal surface at all.
It is therefore useful to pin down necessary and sufficient conditions on the vector
representation.

Definition 2.6 (Admissible Vector). Let v = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; . . . ,
qn,3 ) be a 7n-dimensional vector of integers. This vector is admissible if it satisfies
the following constraints:

• Non-negativity: Every coordinate of v is non-negative.
• Matching equations: Consider any two tetrahedron faces that are identified
in the triangulation; suppose that the relevant tetrahedra are ∆i and ∆j

(where i = j is allowed). Let F denote the resulting face of the triangula-
tion, and let e be any one of the three edges surrounding face F . We obtain
an equation from F and e as follows.

Precisely one of the four triangle types and one of the three quadrilateral
types in each of ∆i and ∆j meets F in arcs parallel to e. Let ti,a, qi,b,
tj,c and qj,d be the corresponding coordinates of v. Then it is true that
ti,a + qi,b = tj,c + qj,d.
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Figure 5. The matching equations at work

• Quadrilateral constraints: For each i ∈ {1, . . . , n}, at most one of the coor-
dinates qi,1, qi,2 and qi,3 is non-zero.

It is straightforward to see that the vector representation of any embedded nor-
mal surface must be admissible:

• Non-negativity is clear because the vector representation counts discs.
• The matching equations express the fact that we must be able to glue
together discs from adjacent tetrahedra. This is illustrated in Figure 5,
where we see one triangle and one quadrilateral from ∆i meeting two tri-
angles from ∆j . The corresponding matching equation, derived from face
F and edge e, states that ti,a + qi,b (1 + 1) equals tj,c + qj,d (2 + 0).

• The quadrilateral constraints arise because any two quadrilaterals of dif-
ferent types in the same tetrahedron must intersect; this would make the
resulting surface non-embedded.

A more interesting result of Haken [13] is that this implication works both ways:

Theorem 2.7. Let v be a 7n-dimensional integer vector that is not the zero vec-
tor. Then v is the vector representation of an embedded normal surface in the
triangulation T if and only if v is admissible.

It follows that, if we can characterize the non-negative solutions to the matching
equations and the quadrilateral constraints, then we can completely characterize the
space of embedded normal surfaces. That is, we can effectively convert topological
questions into algebraic questions, granting us access to a wealth of knowledge in
linear algebra and linear programming.

Definition 2.8 (Projective Solution Space). Let N ⊆ R
7n be the set of vectors

whose coordinates are non-negative and which satisfy the matching equations of
Definition 2.6. Since the matching equations define a linear subspace of R7n, it
follows that N is a convex polyhedral cone with the origin as its vertex.

Let P ⊆ N be the set of vectors in N whose coordinates sum to one, that is,
the intersection of the cone N with the hyperplane

∑
ti,j +

∑
qi,k = 1. Then P is

a (bounded) convex polytope in R
7n and is called the projective solution space for

the original triangulation T .

The importance of the projective solution space comes from the following ob-
servation: For many of the definitions of “interesting”, it can be shown that if a
3-manifold contains an interesting surface, then (with some rescaling) such a surface
must appear at a vertex of the projective solution space. For instance, this is true of
essential discs and spheres [22], and of two-sided incompressible surfaces [19]. This
immediately yields an algorithm for testing whether an “interesting” surface exists:
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• Enumerate the (finitely many) vertices of the projective solution space.
• For each vertex that satisfies the quadrilateral constraints, reconstruct the
corresponding normal surface1 and test whether it is interesting.

This fundamental process sits at the core of every high-level topological algorithm
described in the introduction, and many more besides.

As an implementation note, Tollefson [33] shows that in many scenarios the much
smaller space R3n can be used, where we define vectors that have only quadrilateral
coordinates. The matching equations look different, but the overall procedure is
much the same. The results presented in this paper apply equally well to both
Tollefson’s quadrilateral space and the standard framework described above, and
so we direct the reader to papers such as [20] or [33] for further details.

3. The double description method

As described in the previous section, many high-level topological algorithms have
at their core a polytope vertex enumeration procedure. Specifically, we must enu-
merate the vertices of the projective solution space. If we let d denote the dimension
of the surrounding vector space (so d = 7n in the framework of the previous sec-
tion, or 3n in Tollefson’s quadrilateral space), then the projective solution space is
a convex polytope formed by the intersection of:

• the non-negative orthant in R
d, defined as O = {x ∈ R

d |xi ≥ 0 for all i};
• the projective hyperplane, defined as J = {x ∈ R

d |
∑

xi = 1};
• the matching hyperplanes H1, . . . , Hg, where each hyperplane Hi contains
all solutions to the ith matching equation. We write the ith matching
equation as m(i) · x = 0 for some coefficient vector m(i) ∈ R

d, and we
assume there are g matching equations in total.

Here we have replaced the triangle and quadrilateral coordinates ti,j and qi,k
of the previous section with generic coordinates x = (x1, . . . , xd). This becomes
convenient from here onwards, reflecting the fact that we have stepped out of the
world of topology and into the world of linear programming.

The one glaring omission from the above list is the quadrilateral constraints.
They do not feature in the definition of the projective solution space because they
break desirable properties such as convexity and even connectedness. Nonetheless,
they play a critical role in the enumeration algorithm; we return to this shortly.

This section is structured as follows. We begin in Section 3.1 with an overview
of the classical double description method as it applies to the projective solution
space. In Section 3.2 we incorporate the quadrilateral constraints using the filter-
ing method of Letscher, and Section 3.3 follows with a discussion of how bad the
performance can become and why we do not consider alternative pivoting methods
instead.

3.1. A simple implementation. The double description method, devised in the
1950s by Motzkin et al. [28] and refined by many authors since, is an incremental
vertex enumeration algorithm. The input is a polytope described as an intersection
of half-spaces and/or hyperplanes, and the output is this same polytope described
as the convex hull of its vertices. It takes on many guises; the flavour we describe
here is the one most convenient for the problem at hand.

1Of course many integer vectors scale down to the same vertex; however, we can usually restrict
our attention to the smallest such vector and possibly its double cover.
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Figure 6. The inductive step of the double description method

Algorithm 3.1 (Double Description Method). Recall that the projective solution
space is defined to be the intersection P = O ∩ J ∩H1 ∩H2 ∩ . . . ∩Hg, where O is
the non-negative orthant in R

d, J is the projective hyperplane
∑

xi = 1, and each
Hi is a matching hyperplane.

Define a series of “working polytopes” P0, P1, . . . , Pg, where P0 = O ∩ J and
Pi = O ∩ J ∩H1 ∩H2 ∩ . . . ∩Hi for each i > 0. The following inductive algorithm
computes the vertices of each polytope Pi in turn:

1. Fill the set V0 with the d unit vectors in R
d. Note that V0 is the vertex set for

the polytope P0 = O ∩ J , which is merely the unit simplex in R
d.

2. For each i = 1, 2, . . . , g in turn, construct a new set Vi containing the vertices
of the polytope Pi as follows:
(a) Note that Vi−1 already contains the vertices of the previous polytope Pi−1.

Partition these old vertices into three temporary sets S0, S+ and S−, con-
taining those v ∈ Vi−1 for which m(i) · v = 0, m(i) · v > 0 and m(i) · v < 0,
respectively. In other words, S0, S+ and S− contain those vertices in Vi−1

that lie in, above and below the hyperplane Hi, respectively.
(b) Put the contents of S0 directly into the new vertex set Vi.
(c) For each pair u ∈ S+ and w ∈ S−, if u and w are adjacent in the old

polytope Pi−1, then add the intersection point uw∩Hi to the new vertex set
Vi.

Once steps (a)–(c) are complete, Vi is the vertex set for the polytope Pi as
required. Increment i and proceed to the next iteration of the loop.

Upon completion of this algorithm, the vertices of the projective solution space P =
Pg can be found in the final set Vg.

The double description method is so named because at each stage it creates a
“double description” of the working polytope Pi, both as the intersection O ∩ J ∩
H1 ∩ . . .∩Hi and as the convex hull of the vertex set Vi. The key inductive process
of step 2 is depicted graphically in Figure 6.

There is one critical detail missing from this algorithm: we need some way of
deciding whether two vertices u,w ∈ Vi are adjacent in the working polytope
Pi. There are two primary methods, one algebraic and one combinatorial. Both
methods are described by Fukuda and Prodon [12, Proposition 7]; we translate
them here into the language of the projective solution space.

Definition 3.2 (Zero Set). Consider any point x ∈ R
d. The zero set of x, denoted

Z(x), is the set of indices at which x has zero coordinates. That is,

Z(x) = {k |xk = 0}.
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Zero sets are important because the non-negative orthant is bounded by the
hyperplanes xk = 0. Thus Z(x) indicates which facets of the non-negative orthant
the point x belongs to.

Lemma 3.3 (Algebraic Adjacency). Consider some polytope Pi with vertices u,w
in Algorithm 3.1. Then u and w are adjacent in Pi if and only if the intersection
of H1 ∩ . . .∩Hi with the hyperplanes {xk = 0 | k ∈ Z(u)∩Z(w)} forms a subspace
of dimension two.

Lemma 3.4 (Combinatorial Adjacency). Consider some polytope Pi with vertices
u,w in Algorithm 3.1. Then u and w are adjacent in Pi if and only if there is no
other vertex z of Pi for which Z(z) ⊇ Z(u) ∩ Z(w).

Neither condition is fast to test; the algebraic condition requires the rank of
a matrix, and the combinatorial condition requires yet another loop through the
vertices in Vi. The algebraic test is appealing, since it is not sensitive to the size
of Vi (which can grow very large). On the other hand, Fukuda and Prodon report
better results with the combinatorial test and argue that it should terminate early
much of the time [12]. With regards to existing software, FXrays and Regina use
the algebraic and combinatorial tests, respectively.

We finish with a final implementation note. Although we define the problem in
terms of vertices of the projective solution space, it is easier to work with extremal
rays of the polyhedral cone N = O ∩ H1 ∩ . . . ∩ Hg, as defined in Definition 2.8.
Abandoning the projective hyperplane allows us to use integer arithmetic instead
of rational arithmetic, which is both faster and easier to implement. Both FXrays
and Regina exploit this technique.

3.2. Filtering for embedded surfaces. One critical problem with polytope ver-
tex enumeration is that the number of vertices can grow extremely large (this is
quantified more precisely in Section 3.3). It is therefore in our interests to avoid
generating “uninteresting” vertices if at all possible. The constraints of normal sur-
face theory allow us to do just this, yielding spectacular improvements in running
time.

Recall from Section 2 that we are only interested in vertices that represent em-
bedded normal surfaces, and that every such vertex must satisfy the quadrilateral
constraints (Definition 2.6). Each of these constraints identifies three coordinates
xi, xj , xk (representing the three quadrilateral types in some tetrahedron) and in-
sists that at most one of these coordinates is non-zero.

A näıve implementation might generate all vertices of the projective solution
space and then discard those that do not satisfy the quadrilateral constraints. How-
ever, this does not make vertex enumeration any faster. Here we describe a filtering
technique that discards such vertices at every intermediate stage of the double de-
scription method, thereby reducing the size of each set Vi and speeding up the
subsequent stages of the algorithm.

This filtering method is due to David Letscher and was used in his proof-of-
concept program Normal in 1999. It does not appear in the current literature, and
so we describe it in detail here.

Definition 3.5 (Compatibility). Two vectors u,w ∈ R
d are said to be compatible

if their sum u+w satisfies the quadrilateral constraints.
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It is useful to characterize compatibility and the quadrilateral constraints in
terms of zero sets. The following results are both immediate consequences of Defi-
nitions 2.6 and 3.2:

Lemma 3.6. A vector v ∈ R
d satisfies the quadrilateral constraints if and only if,

for each tetrahedron of the underlying 3-manifold triangulation, Z(v) is missing at
most one quadrilateral coordinate for that tetrahedron.

Lemma 3.7. If vectors u,w ∈ R
d contain only non-negative elements, then for

any α, β > 0 we have Z(αu + βw) = Z(u) ∩ Z(w). In particular, u and w
are compatible if and only if, for each tetrahedron of the underlying 3-manifold
triangulation, Z(u)∩Z(w) is missing at most one quadrilateral coordinate for that
tetrahedron.

It should be observed that all intermediate vertices obtained throughout the
double description method are non-negative, since each intermediate polytope Pi

lies inside the non-negative orthant. Therefore Lemma 3.7 can be used in practice
as a fast compatibility test. We return to this implementation detail in Section 4;
in the meantime we proceed with the main filtering algorithm.

Algorithm 3.8 (Vertex Filtering). Consider the double description method as out-
lined in Algorithm 3.1. Suppose we alter step 2(c), so that a pair u ∈ S+, w ∈ S−
is considered only if vectors u and w are compatible.

Then, in the resulting algorithm, each intermediate set Vi will contain only those
vertices of polytope Pi that satisfy the quadrilateral constraints. In particular, the
final set Vg will contain only those vertices of the projective solution space P = Pg

that satisfy the quadrilateral constraints.

This algorithm is mostly easy to implement, though there is one important diffi-
culty. Step 2(c) of the double description method requires us to determine whether
two vectors are adjacent in the polytope Pi−1; however, since we have filtered out
some vertices, we no longer have access to a complete description of Pi−1. Happily
this turns out not to be a problem—we return to this adjacency issue after proving
the main algorithm to be correct.

Proof. Algorithm 3.8 is simple to prove by induction. To avoid confusion, let V D
i

denote the vertex sets obtained using the original double description method, and
let V F

i denote the new sets obtained using vertex filtering. Our claim is that V F
i

contains precisely those vectors v ∈ V D
i that satisfy the quadrilateral constraints.

To begin, we can observe that V F
i ⊆ V D

i for each i, since filtering cannot create
new vertices that were not there originally. It suffices therefore to consider the fate
of each original vertex v ∈ V D

i . We proceed now with the main induction.
Our claim is certainly true for V F

0 = V D
0 , since these initial sets contain only unit

vectors. Suppose the claim is true at stage i− 1, and consider some original vertex
v ∈ V D

i . There are two possible ways in which the original double description
method could insert v into V D

i :

(i) Vector v is inserted during step 2(b). That is, v comes from the previous
vertex set V D

i−1 and is found to belong to the matching hyperplane Hi.
Since vertex filtering does not affect step 2(b) of the double description

method, the filtering algorithm inserts v into V F
i if and only if v is found in

V F
i−1. By our inductive hypothesis, this is true if and only if v satisfies the

quadrilateral constraints.
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(ii) Vector v is inserted during step 2(c). That is, v does not belong to the
previous set V D

i−1, but is instead created as the intersection uw ∩ Hi, where

u,w ∈ V D
i−1 lie on opposite sides of the hyperplane Hi.

We begin by noting that v = αu + βw for some α, β > 0. There are two
cases to consider:

• If either u or w does not satisfy the quadrilateral constraints, then the
combination v = αu + βw cannot satisfy the quadrilateral constraints.
By our inductive hypothesis, the pair u,w is not found in V F

i−1 and so v

is (correctly) not added to the new set V F
i .

• If both u andw satisfy the quadrilateral constraints, then, by Lemmas 3.6
and 3.7, the new vertex v satisfies the quadrilateral constraints if and
only if u and w are compatible. Here the filtering algorithm also acts
correctly: the inductive hypothesis ensures that both u,w ∈ V F

i−1, and so

the filtering algorithm adds v to V F
i if and only if u andw are compatible.

In each case we find that v is inserted into V F
i if and only if it satisfies the quadri-

lateral constraints, and so the induction is complete. �

We finish with a discussion of the different adjacency tests. The algebraic ad-
jacency test (Lemma 3.3) does not rely on the vertex set Vi, and so we can use it
unchanged with the filtering algorithm.

The combinatorial test (Lemma 3.4) is more of a problem, since it requires us to
examine every vertex of the intermediate polytope Pi. This is impossible with the
filtering method, where we deliberately throw away uninteresting vertices of Pi to
make the algorithm faster. Happily this does not matter, as seen in the following
result.

Lemma 3.9 (Filtered Combinatorial Adjacency). Consider some intermediate
polytope Pi in the vertex filtering algorithm, and let Vi contain those vertices of
Pi that satisfy the quadrilateral constraints. If vertices u,w ∈ Vi are compatible,
then they are adjacent in the polytope Pi if and only if there is no other z ∈ Vi for
which Z(z) ⊇ Z(u) ∩ Z(w).

Proof. Suppose u and w are adjacent in Pi. By Lemma 3.4 there is no vertex z of
Pi for which Z(z) ⊇ Z(u) ∩ Z(w), and in particular there is no such z ∈ Vi.

Alternatively, suppose u and w are not adjacent. By Lemma 3.4 there is some
other vertex z of Pi for which Z(z) ⊇ Z(u)∩Z(w). Because u andw are compatible,
each tetrahedron has at most one quadrilateral coordinate missing from the set
Z(u)∩Z(w) (Lemma 3.7). The same thing can therefore be said about the superset
Z(z), and so z satisfies the quadrilateral constraints (Lemma 3.6). Thus z ∈ Vi,
and the proof is complete. �

Vertex filtering is essential for any serious implementation of normal surface
enumeration (and is used by all of the implementations discussed earlier). The only
cost is the new compatibility test in step 2(c) of the double description method. On
the other hand, vertex filtering can dramatically reduce the size of the vertex sets
Vi, which cuts down both running time and memory usage as the double description
method loops through these vertex sets.

As a final note, vertex filtering can also be applied to the sister problem of
almost normal surface enumeration, where we introduce new “disc” types such as
octagons and tubes. Embedded almost normal surfaces have additional rules, such
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as at most one quadrilateral or octagonal disc type per tetrahedron, and at most
one octagon or tube in the entire surface. These rules yield new constraints of
the form “at most one of the following coordinates may be non-zero”, whereupon
similar filtering methods can be applied. The reader is referred to [20] for further
discussion of almost normal surfaces.

3.3. Worst cases and pivoting algorithms. Although the double description
method is simple and elegant, it is unfortunately also very slow and very memory-
hungry. We finish this overview with a discussion of just how bad things can get.

In many ways the double description method is not at fault; the difficulties are
rooted in the problem it aims to solve. Dyer shows that counting the vertices
of an arbitrary polytope is NP-hard [11], and Khachiyan et al. show that vertex
enumeration over a polyhedron is NP-hard [24]; these results do not bode well.

At the very least, the running time is bounded below by the number of vertices
(i.e., the size of the output), which for bounded polytopes can grow exponentially
large in the polytope dimension. Specifically, for a polytope of dimension p with f
facets, the upper bound theorem of McMullen [27] shows the worst case to be

number of vertices ≤
(
f − � 1

2p�
	 1
2p


)
+

(
f − 	 1

2p
 − 1

� 1
2p� − 1

)
.

As an exercise, we can estimate this upper bound in the context of normal surface
enumeration. Consider a one-vertex triangulation of a closed 3-manifold containing
n tetrahedra. Extending a result of Kang and Rubinstein [23], Tillmann [32] shows
that the matching equations have a solution space of dimension 2n+1. Taking the
intersection with the projective hyperplane and the non-negative orthant in R

d,
it follows that the projective solution space is at worst a 2n-dimensional polytope
with d facets. In the standard framework of Section 2 where d = 7n, McMullen’s
upper bound becomes 7

6

(
6n
n

)
; in Tollefson’s quadrilateral space where d = 3n this

bound becomes 3
2

(
2n
n

)
. Using Stirling’s approximation, these bounds simplify to:

number of vertices in standard space � 7

2
√
15πn

·
(
66

55

)n

� 7

2
√
15πn

· 15n,

number of vertices in quadrilateral space � 3

2
√
πn

· 4n.

Thus even in quadrilateral space, the number of vertices can potentially grow as 4n.
One critical weakness of the double description method is its memory consump-

tion: since it involves looping through vertices of the intermediate polytopes Pi, its
memory usage is linear in the number of such vertices (we return to this in detail
in Section 4.4). Pivoting methods for polytope vertex enumeration are superior in
this respect. In particular, Avis and Fukuda describe a pivoting algorithm that
requires virtually no additional memory beyond storage of the input data [3]; this
algorithm is further refined by Avis [1].

Although pivoting methods are appealing for the general vertex enumeration
problem, they make it difficult to exploit the quadrilateral constraints. Pivoting
methods essentially map out the vertices of a polytope by tracing out the simplex
algorithm in reverse, moving from vertex to vertex using different styles of pivot.
The difficulty is in finding a pivot that can “avoid” uninteresting vertices but still
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map out the remainder of the polytope. Indeed, there is no guarantee that the
region of the polytope that satisfies the quadrilateral constraints is even connected,
and in quadrilateral space it is easy to build examples where this is not the case.

Since even the fastest pivoting method remains bounded by the size of the output,
it is essential that the quadrilateral constraints can be woven directly into the
algorithm; one cannot afford to construct up to 4n vertices in the worst case if the
quadrilateral constraints are able to make this number orders of magnitude smaller.
For this reason we focus on the double description method with vertex filtering and
leave pivoting methods for future work.

4. Optimizations

The algorithms of Section 3 describe a “vanilla” implementation of normal sur-
face enumeration, as implemented for instance by older versions of the software
package Regina. In this section we describe a series of optimizations that, as ob-
served experimentally, yield substantial improvements in both running time and
memory consumption. The relevant experiments and their results are summarized
in Section 5.

The improvements presented here are offered as a guide for researchers seeking
to codify their own implementations. Section 4.1 begins with a discussion of well-
known but important implementation techniques, including bitmasks and cache
optimization. Section 4.2 focuses on ordering the matching hyperplanes in a way
that exploits the structure of the matching equations and quadrilateral constraints.
In Section 4.3 we extend a technique of Fukuda and Prodon [12] that combines fea-
tures of both the algebraic and combinatorial adjacency tests. Finally, Section 4.4
presents a technique in which we store and manipulate only “essential” properties
of the intermediate vertices rather than the vertices themselves.

Memory consumption deserves a particular mention here. As noted in Sec-
tion 3.3, both the running time and memory usage for the double description
method are exponential in the worst case. Whilst running time is in theory an
unbounded resource (as long as you are patient enough), memory is not: a typical
personal computer has only a couple of gigabytes of fast memory. Once this is
exhausted (which has happened to the author many times during normal surface
enumeration), the computer borrows additional “virtual memory” from the hard
drive. This virtual memory is much, much slower, and can have a severe impact not
only on the performance of the algorithm but also on the entire operating system.

It is prudent therefore to give memory consumption just as high a priority as
running time when working on the double description method. We address memory
indirectly in Section 4.2 and focus on it explicitly with the techniques of Section 4.4.

4.1. Implementation techniques. We begin our catalogue of optimizations with
some simple implementation tricks. Though they are well known, we include them
here for reference because they have been found to improve the running time sig-
nificantly.

• Bitmasks:
Several components of the double description method work with zero sets
of vectors. These include:
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– the combinatorial adjacency test (Lemmas 3.4 and 3.9), where we only
consider a pair u,w ∈ Vi if there is no other z ∈ Vi for which Z(z) ⊇
Z(u) ∩ Z(w);

– the compatibility test (Lemma 3.7), where we only consider a pair
u,w ∈ Vi if the set Z(u) ∩ Z(w) is missing at most one quadrilateral
coordinate for each tetrahedron.

It is therefore convenient to store the zero set alongside each vector as
we run through the double description algorithm. This can be done with
almost no memory overhead using bitmasks. For instance, in dimension
d ≤ 64, an entire zero set S can be stored using a single 64-bit integer
(where the ith bit is set if and only if i ∈ S). For d ≤ 128 this can be done
using two 64-bit integers, and so on.

Bitmasks are advantageous because they make set operations extremely
fast; by using bitwise arithmetic on integers, the computer can effectively
work on all elements of a set in parallel. For instance, if d ≤ 64, then
set intersection can be computed using the single C/C++ instruction ans =

x & y, and subset relationships can be tested using the single C/C++ test
if (x & y == y). Computing the size of a set (as required by the com-
patibility test) is a little more complex, but still fast; Warren [34] describes
several clever methods that are far more efficient than looping through and
testing each individual bit.2

Finally, bitmasks are not only cheap to store but also fast to construct.
As the double description algorithm progresses, new vectors v ∈ Vi are
created from old vectors u,w ∈ Vi−1 by forming intersections of the form
uw ∩ Hi. Lemma 3.7 shows that Z(v) = Z(u) ∩ Z(w), which can be
computed using the fast set operations described above.

It should be noted that the highly streamlined software FXrays has used
bitmasks for compatibility testing for many years (though it optimizes their
application for some coordinate systems at the expense of others).

• Cache optimization:
In his article on optimizing memory access [10], Drepper offers program-
mers advice on how to best utilize the CPU caches. One simple rule is that
data that is accessed sequentially should be stored sequentially; this allows
the CPU to prefetch large chunks of data from memory and work with the
(much faster) caches instead. To illustrate, Drepper makes a näıve imple-
mentation of the matrix product A×B run over four times as fast simply
by storing A and B in row major and column major order respectively;
this works because the data storage follows the sequential order in which
elements must be accessed to compute the term (A×B)i,j =

∑
k Ai,kBk,j .

In the double description method, where the vertex sets Vi can grow ex-
tremely large, there is a temptation to use techniques that avoid large-scale
allocations and deallocations of memory. For instance, we might partition
vertices into the sets S0, S+ and S− in place, without allocating additional
temporary memory for these sets. However, because Algorithm 3.1 repeat-
edly iterates through these sets, Drepper’s article suggests that we should

2One can avoid this operation entirely by replacing each quadrilateral constraint with three
“illegal supersets” of Z(v). However, this does not scale well to almost normal surfaces since the
number of illegal supersets is quadratic in the size of each constraint.
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allocate new blocks of memory to store these sets sequentially as simple
arrays (or, in C++, contiguous std::vector types). Likewise, we should
avoid storing vertices in linked list structures; although vector data types
require occasional large reallocations of memory, they maintain sequential
data storage where linked lists do not.

In theory the benefits of sequential data access should be well worth the
cost of the extra memory allocation and deallocation, and the experimental
evidence of Section 5 agrees.

4.2. Hyperplane sorting. It is well known that the performance of the double
description method is highly sensitive to the order in which the hyperplanes are
processed. This is because the ordering of hyperplanes affects the size of each inter-
mediate vertex set Vi, which in turn directly affects both running time and memory
consumption: running time because step 2(c) of the double description method in-
volves two nested loops over subsets S+, S− ⊆ Vi−1, and memory consumption
because the entire vertex set Vi must be computed and stored at each stage, ready
for use in the subsequent iteration of the main loop.

Avis et al. [2] present a series of heuristic options for this ordering and proceed
to manufacture cases in which each of them performs poorly; Fukuda and Prodon
[12] also experiment with different heuristic orderings and obtain best results with
a lexicographic ordering (in which hyperplanes are sorted lexicographically accord-
ing to their coefficient vectors). However, Avis et al. highlight the fact that no
one heuristic is “universally good”, and that any additional knowledge about the
problem at hand should be exploited if this is possible.

In the context of normal surface enumeration, we can exploit the following facts:

(i) Each hyperplane comes from a single matching equation of the form m(i) ·x =
0. These matching equations are sparse; we can see from Definition 2.6 that
each coefficient vector m(i) has at most four non-zero coordinates.

(ii) The vertex filtering method strips out any vertices with “incompatible” non-
zero quadrilateral coordinates. If we can use the matching equations to relate
different quadrilateral coordinates within the same tetrahedron (in particular,
force them to be non-zero), we can thereby hope that many vertices will be
filtered out (thus keeping the vertex sets Vi as small as possible).

We use observation (ii) to define a new ordering of hyperplanes. Essentially we
start with matching equations that only involve the final few tetrahedra; gradually
we incorporate more and more tetrahedra into our equations until the entire trian-
gulation is covered. Since the matching equations are sparse, we expect this to be
feasible. The result is as follows:

Algorithm 4.1 (Ordering of Matching Hyperplanes). Consider some hyperplane
H in R

d, defined by the matching equation m ·x = 0. We define the position vector
p(H) to be a (0, 1)-vector of length d, where the kth element of p(H) is 0 or 1
according to whether the kth element of m is zero or non-zero, respectively.

We now insert an extra step at the beginning of the double description method,
which is to reorder the hyperplanes so that p(H1) ≤ p(H2) ≤ . . . ≤ p(Hg). Here
we treat ≤ as a lexicographic ordering of position vectors (so in dimension d = 3
for instance, we have (0, 1, 0) < (0, 1, 1) < (1, 0, 0) and so on).
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Table 1. Ordering the matching hyperplanes for the Gieseking manifold

Order Matching equation Coefficient vector m(i) Position vector p(Hi)

1 q1,3 = q1,2 0, 0, 0, 0, 0,−1, 1 0, 0, 0, 0, 0, 1, 1
2 t1,2 + q1,2 = t1,4 + q1,1 0, 1, 0,−1,−1, 1, 0 0, 1, 0, 1, 1, 1, 0
3 t1,3 + q1,1 = t1,2 + q1,3 0,−1, 1, 0, 1, 0,−1 0, 1, 1, 0, 1, 0, 1
4 t1,3 + q1,3 = t1,2 + q1,1 0,−1, 1, 0,−1, 0, 1 0, 1, 1, 0, 1, 0, 1
5 t1,1 + q1,1 = t1,3 + q1,2 1, 0,−1, 0, 1,−1, 0 1, 0, 1, 0, 1, 1, 0

This ordering is illustrated in Table 1 for the one-tetrahedron triangulation of the
Gieseking manifold; it can be seen that the position vectors (though not the coeffi-
cient vectors) are indeed sorted lexicographically. The original matching equations
are also included in the table, using the notation of Definition 2.6.

In general, the reason we use position vectors is so that equations involving only
the final few tetrahedra will be processed relatively early, since their position vectors
will begin with long strings of zeroes. Likewise, equations that involve the first
coordinate of the first tetrahedron will be processed very late because their position
vectors will begin with a one. We are therefore able to exploit observation (ii) as
outlined above.

Like any other hyperplane ordering, Algorithm 4.1 is merely a heuristic. How-
ever, experimentation shows that it performs very well. This is seen in Section 5.3,
where we compare it against several standard heuristics from the literature.

4.3. Filtering pairs by dimension. Recall from Section 3 that we have two op-
tions for testing whether vertices u,w ∈ Vi are adjacent in the intermediate poly-
tope Pi. These are the algebraic adjacency test (Lemma 3.3) and the combinatorial
adjacency test (Lemmas 3.4 and 3.9).

Fukuda and Prodon compare these tests experimentally and find in their ex-
amples that the combinatorial test yields better results [12]. However, recall that
the combinatorial test declares vertices u,w ∈ Vi adjacent if and only if there is no
other z ∈ Vi for which Z(z) ⊇ Z(u)∩Z(w). This means that, in the worst case, the
combinatorial test requires looping through the entire (possibly very large) vertex
set Vi in search for such a z.

Fortunately we can break out of this loop early when u and w are non-adjacent
(which is expected in the majority of cases); we simply exit the loop when such
a z is found. However, Fukuda and Prodon take this further and identify cases
in which there is no need to loop at all. Their idea is to use properties of the
algebraic test that only rely upon combinatorial data. Their result, translated into
our formulation of the double description method, is as follows:

Lemma 4.2 (Dimensional Filtering). Consider some intermediate polytope Pi ⊆
R

d in the double description method (Algorithm 3.1), formed as the intersection
Pi = O ∩ J ∩H1 ∩H2 ∩ . . . ∩Hi. If u and w are adjacent vertices of Pi, then

(4.1) |Z(u) ∩ Z(w)|+ i ≥ d− 2.

This is an immediate consequence of the algebraic test (Lemma 3.3), which
describes the intersection of |Z(u)∩Z(w)|+ i hyperplanes as a subspace of dimen-
sion two. The real strength of Lemma 4.2 is that it only requires knowledge of the
set Z(u) ∩ Z(w). Therefore we can use it as a fast prefilter for adjacency testing;
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Vk−1Vk−1

Pseudo-separating hyperplanes Hk Non-pseudo-separating hyperplanes Hk

Figure 7. Illustrating pseudo-separating hyperplanes for a vertex
set Vk−1

for any pair of vertices u,w ∈ Vi we first check (4.1), and we only run the full
combinatorial test if the inequality holds.

We proceed now to strengthen the original result of Fukuda and Prodon. Our aim
is to replace i with a smaller number in the inequality (4.1), thus filtering out even
more non-adjacent pairs u,w. A trivial way to do this is to not count redundant
hyperplanes; we can easily change the inequality to |Z(u)∩Z(w)|+rank(i) ≥ d−2,
where rank(i) is the number of independent hyperplanes in the collectionH1, . . . , Hi.

What is perhaps less obvious is that we can also avoid counting any hyperplane
Hj that does not slice between vertices of the previous set Vj−1 (even if this hyper-
plane is linearly independent of the others) and that this works even if Vj−1 is a
filtered vertex set. The full result is as follows:

Lemma 4.3 (Extended Dimensional Filtering). Consider the double description
method (Algorithm 3.1), with or without vertex filtering (Algorithm 3.8). Let Hk

be some matching hyperplane, defined by the matching equation m(k) · x = 0. We
say that Hk is pseudo-separating if there exist vertices v′,v′′ ∈ Vk−1 for which
m(k) · v′ < 0 < m(k) · v′′ (in other words, there are vertices of the old set Vk−1 on
both sides of the hyperplane Hk). This definition is illustrated in Figure 7.

Now consider some intermediate polytope Pi ⊆ R
d, with two compatible vertices

u,w ∈ Vi. If u and w are adjacent vertices of Pi, then

(4.2) |Z(u) ∩ Z(w)|+ sep(i) ≥ d− 2,

where sep(i) is the number of pseudo-separating hyperplanes in the list H1, H2, . . . ,
Hi.

Before proving this result, we pause to make some observations. Not only is this
result stronger than Lemma 4.2 (since it is clear that sep(i) ≤ i), but it is just as fast
to test: we know when a hyperplane is pseudo-separating because the corresponding
sets S+ and S− are both non-empty in step 2(a) of the double description method.

It is again worth noting that Lemma 4.3 remains true even if we use vertex
filtering. Because each filtered vertex set Vi is potentially much smaller than the
number of vertices of Pi, we can hope to see fewer pseudo-separating hyperplanes as
a result (and thereby strengthen our dimensional filtering). Indeed, this behaviour
is observed for many ideal triangulations in the cusped census of Callahan et al. [8].

We proceed with a proof of Lemma 4.3.
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Proof. The following argument assumes the double description method is used with
vertex filtering. For the non-filtered case, simply remove all references to filtering
in this proof.

Consider the polytope Pi = O∩J ∩H1∩ . . .∩Hi as described in the statement of
Lemma 4.3, and let Vi be the filtered vertex set of Pi. In the list H1, . . . , Hi, denote
the pseudo-separating hyperplanes by K1, . . . ,Kp and the non-pseudo-separating
hyperplanes by L1, . . . , Lq (so that p+ q = i). It is important that the hyperplanes
in each new list be kept in the same order as in the original list H1, . . . , Hi.

Define the new polytope P ′
i to be the intersection O ∩ J ∩ K1 ∩ . . . ∩ Kp (i.e.,

the intersection of the unit simplex with only the pseudo-separating hyperplanes),
and let V ′

i be the filtered vertex set of P ′
i . Then the original polytope Pi can be

expressed as Pi = P ′
i ∩ L1 ∩ . . . ∩ Lq.

We can recover the original filtered vertices Vi from V ′
i using a “reordered”

double description method. We begin with P ′
i and its filtered vertices V ′

i , and
then intersect each hyperplane L1, . . . , Lq in turn, as described by Algorithms 3.1
and 3.8.

In this reordered double description method, let Qj denote the intermediate
polytope Qj = P ′

i ∩L1∩ . . .∩Lj , and let Wj denote the filtered vertex set of Qj (in
particular, W0 = V ′

i and Wq = Vi). Then we can make the following observations:

(i) Consider the stage of this new double description method where we intersect
Qj−1 with the hyperplane Lj to form the polytope Qj . Then one of the sets
S+ and S− as described in step 2(a) of Algorithm 3.1 is empty. That is, all of
the vertices in the previous set Wj−1 lie on Lj and/or to the same side of Lj .

This can be seen as follows. Suppose Lj appears as Hj′ in the original list
H1, . . . , Hi. Then Qj−1 = H1 ∩ . . . ∩Hj′−1 ∩K1 ∩ . . . ∩Kp (note that some
hyperplanes might be repeated in this list). Therefore the filtered vertices of
Qj−1 are all convex combinations of the filtered vertices of Pj′−1 = H1 ∩ . . .∩
Hj′−1, and since Hj′ = Lj is not pseudo-separating, these vertices all lie on
and/or to the same side of Lj .

(ii) From observation (i) above, the filtered vertex set Wj of the intermediate
polytope Qj is precisely Wj = Wj−1 ∩ Lj . That is, when we create Wj in
our reordered double description method, we simply keep those vertices of
Wj−1 that lie in the hyperplane Lj and throw the others away. In particular,
because one of S+ and S− is empty, no new vertices can be created.

(iii) Following observation (ii) to its conclusion, the vertex sets satisfy

V ′
i = W0 ⊇ W1 ⊇ . . . ⊇ Wq = Vi.

As a side note, although V ′
i ⊇ Vi, it is not necessarily true that all unfiltered

vertices of Pi are also vertices of P ′
i . This is because pseudo-separation is

defined only in terms of filtered vertices.

Now consider two compatible vertices u,w ∈ Vi. Observation (iii) shows that u
and w are vertices of each polytope Qj . Let Fj be the (unique) minimal-dimen-
sional face of Qj containing both u and w. We can make the following observations
about each face Fj :

(iv) Every vertex of Fj is in the filtered set Wj .
This can be shown using zero sets. Let X ⊆ R

d be the subspace formed by
setting every coordinate in Z(u) ∩ Z(w) equal to zero. That is,

X = {x |xi = 0 for all i ∈ Z(u) ∩ Z(w)}.
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Because Qj is a polytope in the non-negative orthant, each equation xi = 0
is a supporting hyperplane for Qj . Therefore X ∩ Qj is a face of Qj and
moreover contains both u and w. By minimality, Fj is a subface of X ∩Qj ,
and so every vertex of Fj lies in X.

Because u and w are compatible, Lemma 3.7 shows that Z(u) ∩ Z(w) is
missing at most one quadrilateral coordinate per tetrahedron. This means
that every point in X satisfies the quadrilateral constraints, and in particular,
so do the vertices of Fj . Thus the vertices of Fj (which are also vertices of
the enclosing polytope Qj) belong to the filtered set Wj .

(v) For each j, the faces Fj−1 and Fj are identical.
This follows from our earlier observations. From (iv) and (i) we see that

Lj is a supporting hyperplane for Fj−1, and so Fj−1 ∩Lj is a subface of Fj−1

containing u and w; by minimality it follows that Fj−1 ∩ Lj = Fj−1.
On the other hand, since Fj−1 is a face of the polytope Qj−1, we see that

Fj−1 ∩Lj is a face of Qj−1 ∩Lj = Qj , again containing both u and w. Thus
Fj is a subface of Fj−1 ∩ Lj = Fj−1, and by minimality again it follows that
Fj = Fj−1.

(vi) Carrying observation (v) to its conclusion, we have F0 = F1 = . . . = Fq.

We are finally ready to examine the problem of adjacency. Vertices u and w are
adjacent in the polytope Qj if and only if the face Fj is an edge. From observa-
tion (vi) it follows that u and w are adjacent in P ′

i = Q0 if and only if they are
adjacent in Pi = Qq.

Our main result (Lemma 4.3) now follows immediately by applying the earlier
Lemma 4.2 to the polytope P ′

i . �

We conclude with a note regarding further generalizations of Lemma 4.3. A key
property of non-pseudo-separating hyperplanes is that, in the double description
method, they do not create any new vertices (though they can remove old ones).

We might hope therefore to extend Lemma 4.3 to “avoid counting” all hyper-
planes with this property; for instance, we might hope to avoid hyperplanes that
are pseudo-separating but that do not produce any compatible pairs of vertices on
either side. It turns out that this cannot be done; although counterexamples are
extremely rare,3 they can be found.

4.4. Inner product representation. Recall from the opening notes of Section 4
that memory (unlike time) is often a resource with hard limits, and that the worst
cases for the double description method are exponential in memory as well as time.
In our final improvement to the double description method, we take aim directly
at memory consumption.

The high memory usage of the double description method comes almost entirely
from storing the intermediate vertex sets Vi. Traditionally each vertex is stored as
a sequence of coordinates in R

d, though in Section 4.1 we extend this marginally
by adding a bitmask for the zero set. Therefore, if we are to reduce memory usage,
we have one of two options:

• Find a way to reduce the sizes of the vertex sets Vi, which is the approach
taken in Section 4.2.

3Only one counterexample was found in the entire 10-tetrahedron census of closed orientable
and non-orientable manifolds [6].
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• Find a way to avoid storing the full coordinates of each vertex, which is the
approach that we take here.

Our strategy therefore is to discard the individual coordinates of each vertex
v ∈ Vi, and instead to store only “essential information” from which we can recover
the full coordinates if we need to. In fact we already have this essential information;
it is all contained in the zero set Z(v).

Lemma 4.4. At any stage of the double description method, the zero set Z(v)
contains sufficient information to recover the entire vertex v ∈ Vi. More precisely,
the full coordinates of v can be recovered by solving the following simultaneous
equations:

• the matching equations m(k) · v = 0 for k = 1, . . . , i;
• the projective equation

∑
vj = 1;

• the facet equations vj = 0 for each j ∈ Z(v).

Proof. This is an immediate consequence of the fact that a vertex of a polytope is
the intersection of the facets that it belongs to. For each intermediate polytope Pi,
the facets of Pi are described by inequalities of the form xj ≥ 0 (deriving from the
non-negative orthant).4 The facets that a vertex v belongs to are those for which
vj = 0, that is, those corresponding to coordinate positions j ∈ Z(v). �

What Lemma 4.4 shows is that we could store only the zero sets of our vertices,
with no coordinates whatsoever. Because zero sets are stored as bitmasks that
take very little space (Section 4.1), this would be a magnificent improvement in
memory consumption. However, it could slow down our algorithm terribly, since
we would need to solve the equations of Lemma 4.4 each time we wanted to analyze
or manipulate any vertex v ∈ Vi.

If we analyze the algorithms and improvements of Sections 3 and 4, we find that
the only operations we need to perform on vertices are the following:

(i) Creating d unit vectors for the initial set V0;
(ii) Testing the sign of m(i) · v for v ∈ Vi−1;
(iii) Creating a new vertex v = uw ∩Hi from two old vertices u,w ∈ Vi−1, which

is done by computing

v =
(m(i) · u)w − (m(i) ·w)u

(m(i) · u)− (m(i) ·w)
;

(iv) Manipulations involving zero sets (such as compatibility testing, the combi-
natorial adjacency test, or extended dimensional filtering);

(v) Outputting the final solutions, as stored in the final vertex set Vg.

The only non-trivial operation in this list is the inner product m(i) · v, which
suggests storing vectors using the following representation:

Definition 4.5 (Inner Product Representation). Consider some vertex v ∈ Vi

in the double description method (Algorithm 3.1). We define the inner product
representation I(v) to be the (g − i)-dimensional vector(

m(i+1) · v, m(i+2) · v, . . . , m(g) · v
)
,

recalling that there are g matching equations in total.

4Some of these inequalities may be redundant, describing lower-dimensional or empty faces.
Nevertheless, every facet is described by an inequality of this form.
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We use the inner product representation by storing I(v) instead of the full co-
ordinates for each intermediate vertex v ∈ Vi. We continue to store the zero sets
Z(v) as bitmasks so that (by Lemma 4.4) no information is lost.

In general, the inner product representation is cheaper to store than the full
coordinates of a vertex, and grows significantly cheaper still as the algorithm pro-
gresses. In the standard coordinate system of Section 2, we work in dimension
d = 7n but have at most g ≤ 6n matching equations. In Tollefson’s quadrilateral
coordinates we work in dimension d = 3n but (assuming a closed one-vertex trian-
gulation) have a mere n+ 1 matching equations. As a result, our algorithm starts
out using a modest 6/7 or 1/3 of the original storage, respectively, and as i → g in
the later stages of the algorithm our memory consumption shrinks almost to zero.
By the time we reach i = g the only storage remaining is the (very cheap) bitmasks
for our zero sets.

It is important that the greatest benefits of the inner product representation
arise in the later stages of the algorithm. Anecdotal evidence (observed time and
time again) suggests that the worst explosions of vertex sets Vi tend to occur in
later stages of the algorithm. This means that our new representation focuses its
optimizations where they are needed the most.

While the inner product representation gives a significant improvement in mem-
ory consumption, it is important to understand how it affects running time. We
therefore consider each of the five vertex operations listed earlier:

(i) Creating d unit vectors for the initial set V0 is easy. If vj is the jth unit
vector, then the elements of I(vj) are the jth coordinates of the matching

equations m(1), . . . ,m(g).
(ii) Testing the sign of m(i) · v for v ∈ Vi−1 is very easy; we simply look at the

first element of I(v).
(iii) Computing the intersection v = uw ∩Hi for u,w ∈ Vi−1 and v ∈ Vi is much

the same as in the standard algorithm. Using

v =
(m(i) · u)w − (m(i) ·w)u

(m(i) · u)− (m(i) ·w)
,

it is easy to show that

I(v) = trunc

[
head[I(u)] I(w)− head[I(w)] I(u)

head[I(u)]− head[I(w)]

]
,

where head[. . .] denotes the first element of a vector, and where trunc[. . .]
indicates removing the first element from a vector.

(iv) Manipulations involving zero sets are all done using bitmasks and are not
affected at all by the change in vector representation.

(v) Outputting the final solutions requires us to solve the equations of Lemma 4.4
for each vertex in the final set Vg.

The running times for these operations under both old and new vertex represen-
tations are listed in Table 2 (excluding zero set manipulations, which are irrelevant
here). Since g < d in general, we find that most of these operations are in fact
faster using the inner product representation.
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Table 2. Time complexities for various vertex operations

Operation Full coordinate rep. Inner product rep.

Creating d unit vectors O(d2) O(gd)

Testing sign of m(i) · v O(d) O(1)
Computing uw ∩ Hi O(d) O(g)
Outputting final solutions O(|Vg|) O(g2d · |Vg|)

There is only one operation for which the inner product representation is slower,
which is outputting the final solutions. Here we must solve a full system of equa-
tions for each vertex in Vg (the complexity estimate in Table 2 assumes a simple
implementation using matrix row operations). However:

• The output operation does not happen often. We only output solutions at
the very end of the algorithm, unlike operations such as m(i) ·v or uw∩Hi,
which we perform many times at every stage of the double description
method.

• The number of systems of equations we must solve is |Vg|, which is not large.
Experimental evidence suggests that the final solution set Vg is typically
small, often orders of magnitude smaller than the worst intermediate vertex
sets Vi (see for instance Table 3 in the following section). This is likely due
to the quadrilateral constraints; as we enforce more matching equations,
we are forced to make more quadrilateral coordinates non-zero, and we can
filter out more vertices as a result.

We hope therefore that this extra cost in outputting the final solutions is in-
significant, and indeed this is seen experimentally in Section 5.1. The losses in the
output operation are far outweighed by the other gains described above, and the
inner product representation yields better performance in both memory usage and
running time.

5. Experimentation

Having developed several improvements to the normal surface enumeration al-
gorithm, we now road-test these improvements using a collection of real examples,
measuring both running time and memory consumption.

In the following tests, we enumerate surfaces in both the standard coordinate
system of Section 2 and the quadrilateral coordinates of Tollefson [33]. We include
both systems because they have some interesting differences:

• The matching equations in standard coordinates are all sparse, whereas in
quadrilateral coordinates they are only sparse on average (in particular,
dense equations are infrequent but possible).

• The quadrilateral constraints (and hence vertex filtering) involve all coordi-
nate positions in quadrilateral coordinates, but only 3/7 of the coordinate
positions in standard coordinates.

• Quadrilateral coordinates work in a smaller dimension than standard coor-
dinates (3n < 7n), allowing us to run tests on larger and more interesting
triangulations.

For further information on quadrilateral coordinates and the corresponding match-
ing equations, the reader is again referred to [33].
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Table 3. Statistics for the “ordinary” closed hyperbolic triangulations

Tetrahedra Hyp. volume Final set |Vg| Max of any |Vi| Dimension d

Standard coordinates

9 0.94270736 19 899 63
10 1.75712603 30 873 70
11 2.10863613 45 2 221 77
12(a) 2.93565190 64 3 477 84
12(b) 3.02631753 54 941 84
13 3.08076667 59 1 891 91

Quadrilateral coordinates

16 4.27796055 48 6 655 48
17 4.30972819 33 4 025 51
18 4.40945629 68 3 335 54
19 4.58232390 95 15 988 57
20 4.68714601 156 47 317 60

We use 19 different triangulations for our tests: eleven closed hyperbolic trian-
gulations are used as “ordinary” cases, and eight twisted layered loops are used for
extreme “stress testing”. In detail:

• The closed hyperbolic triangulations are drawn arbitrarily from the Hodg-
son-Weeks census of small-volume closed hyperbolic 3-manifolds [17]. These
include six smaller cases (9 ≤ n ≤ 13) for use with standard coordinates
and five larger cases (16 ≤ n ≤ 20) for use with quadrilateral coordinates.

• An n-tetrahedron twisted layered loop is an extremely well-structured tri-
angulation of the quotient space S3/Q4n. Twisted layered loops are con-
jectured by Matveev to have minimal complexity [26], and a proof of this
claim has recently been announced by Jaco, Rubinstein and Tillmann [21].
Here we include four smaller cases (9 ≤ n ≤ 18) for standard coordinates,
and four larger cases (30 ≤ n ≤ 75) for quadrilateral coordinates.

The following properties make twisted layered loops ideal for stress test-
ing:

– The tight structure of these triangulations makes vertex filtering ex-
tremely powerful, allowing us to run tests on very large triangulations
(up to 75 tetrahedra for quadrilateral coordinates).

– In standard coordinates, the final solution set Vg contains an exponen-
tial number of vertices (specifically Fn−1 + 2Fn−2 + 1, where F0 = 1,
F1 = 1, . . . are the Fibonacci numbers). Moreover, this is observed to
be much larger than the final solution set for most census triangula-
tions5 of similar size.

– In contrast, in quadrilateral coordinates the final solution set contains
a linear number of vertices (specifically n+1), which is observed to be
very small amongst census triangulations of similar size.

The reader is referred to [7] for details on the final two points, and in
particular for proofs of the formulae |Vg| = Fn−1 + 2Fn−2 + 1 and |Vg| =
n+ 1.

5Here we refer to censuses of closed compact 3-manifold triangulations, such as those described
in [6] and [17].
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Table 4. Statistics for the “extreme case” twisted layered loops

Tetrahedra Quotient space Final set |Vg| Max of any |Vi| Dimension d

Standard coordinates

9 S3/Q36 77 375 63
12 S3/Q48 323 1 585 84
15 S3/Q60 1 365 6 711 105
18 S3/Q72 5 779 28 425 126

Quadrilateral coordinates

30 S3/Q120 31 171 90
45 S3/Q180 46 261 135
60 S3/Q240 61 351 180
75 S3/Q300 76 441 225

Tables 3 and 4 give an overview of the 19 triangulations chosen for testing;
the two tables cover the hyperbolic triangulations and the twisted layered loops,
respectively. The columns in each table include:

(i) The number of tetrahedra n. The hyperbolic set includes two 12-tetrahedron
triangulations; these are labelled 12(a) and 12(b) for later reference.

(ii) The hyperbolic volume in Table 3, and the quotient space in Table 4. This
information, combined with the tables from the Hodgson-Weeks census [17],
uniquely identifies each 3-manifold.

(iii) The size of the final solution set Vg.
(iv) The maximum size of any intermediate vertex set Vi, under an algorithm that

uses all of the improvements of Section 4.
(v) The dimension of the underlying vertex enumeration problem, which is 7n or

3n for standard or quadrilateral coordinates, respectively.

The maximum |Vi| figures are particularly interesting. In Table 3 they highlight
the observation that, for “ordinary” triangulations, the intermediate sets Vi can
grow orders of magnitude larger than the final set Vg. In Table 4 they highlight the
strength of vertex filtering in the highly structured twisted layered loops, where the
vertex sets Vi are kept small from start to finish.

The remainder of this section is structured as follows. In Section 5.1 we consider
the various improvements presented in this paper and examine their effect on run-
ning time for each of our 19 triangulations. Likewise, Section 5.2 offers a similar
analysis of memory consumption. In Section 5.3 we evaluate our heuristic ordering
of hyperplanes in more detail, comparing it against other standard orderings from
the literature. All experiments are conducted on a 2.4GHz Intel Core 2 machine
using the software package Regina [4, 5].

5.1. Improvements in running time. We begin our series of experiments with
an analysis of running time. Our aim here is to measure the strength of each
individual improvement presented in Section 4.

As a starting point, we begin with the standard double description method
with vertex filtering, as described in Algorithms 3.1 and 3.8. We then refine the
algorithm, adding one improvement at a time, until we arrive at a final algorithm
that incorporates all of the optimizations described in this paper.

A summary of results is presented in Figure 8, which compares the following
variants:
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Figure 8. Improvements in running time for major optimizations

(i) The standard algorithm, as outlined above.
(ii) The standard algorithm with bitmasks and cache optimization (Section 4.1)

and dimensional filtering (Section 4.3). Because each of these optimizations
yields only a minor improvement on its own, they are bundled together to
simplify the graphs.

(iii) All of the previous improvements plus hyperplane sorting (Section 4.2).
(iv) All of the previous improvements plus the inner product representation (Sec-

tion 4.4).

It should be noted that Figure 8 is plotted on a log scale, which means that each
horizontal bar represents a factor of ten improvement. Given this, the results are
extremely pleasing: the final algorithm (iv) is often 100 or 1000 times faster than
the original (i), and for one case it runs over 50000 times faster.

The weakest improvement is seen with the twisted layered loops using standard
coordinates, where the size of the final solution set is known to be exponential;
here the bitmasks and cache optimization provide most of the gains. Nevertheless,
even in these extreme scenarios, both hyperplane sorting and the inner product
representation independently double the speed for the large case n = 18, and the
final algorithm is still � 50 times as fast as the original.



478 BENJAMIN A. BURTON

Figure 9. Details for bitmasks, cache optimization and dimen-
sional filtering

Because bitmasks, cache optimization and dimensional filtering are bundled to-
gether in the main summary of results, we separate them out in Figure 9 to show
their individual effects. Once more we see the extreme nature of the twisted lay-
ered loops—although all three improvements are effective on the hyperbolic spaces,
some improvements (particularly dimensional filtering) have very little effect on the
twisted layered loops.

It is worth noting that in the best cases, such as where the final algorithm
is > 1000 times or even > 10000 times faster, the bulk of the gains are due to
hyperplane sorting. We return to hyperplane sorting in greater detail in Section 5.3.

5.2. Improvements in memory usage. We continue our series of experiments
by measuring the memory consumption of different variants of our algorithm. The
results are plotted in Figure 10, where again we bundle together bitmasks, cache
optimization and dimensional filtering for simplicity.

To be precise, Figure 10 measures peak memory usage, which is defined to be the
maximum memory usage at any stage of the algorithm minus the memory usage
at the beginning of the algorithm. This means that we only count memory that is
genuinely used by the vertex enumeration algorithm, and not unrelated overhead
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Figure 10. Improvements in memory usage for major optimizations

such as system libraries or the storage of the program itself. We measure memory
in megabytes, which we take to mean 106 bytes (not 220 bytes, which is sometimes
used instead).

Once more, the results are plotted on a log scale; here every two horizontal bars
represent a factor of ten improvement (with a single bar representing approximately
a factor of three). Again the results are extremely pleasing—for the large cases we
are able to reduce memory consumption by factors of around 15 to 85, and in one
hyperbolic case by a factor of 175.

It is particularly interesting to examine memory consumption for the twisted
layered loops. These cases are extreme in both senses: in standard coordinates
we see our weakest improvements (a factor of 14 for n = 18), and in quadrilateral
coordinates we see some of our strongest improvements (a factor of 84 for n =
75). This is not entirely surprising, since we know that twisted layered loops have
extremely large and extremely small solution sets in standard and quadrilateral
coordinates, respectively.

5.3. Comparison of hyperplane orderings. It is noted by Fukuda and Prodon
[12] that the ordering of hyperplanes is critically important for a fast implementa-
tion of the double description method. This matches our experimental observations;
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whereas most optimizations are consistent in the way they reduce running time and
memory consumption, hyperplane ordering is much more variable. Sometimes we
only achieve mild improvements through ordering the hyperplanes, and other times
we achieve spectacular results.

The reason that hyperplane ordering has such power is because, unlike any of
our other optimizations, it affects the sizes of the intermediate vertex sets Vi. By
keeping these sets small and taming the exponential explosion, we can achieve
magnificent improvements in both running time and memory usage; on the other
hand, if we inadvertently encourage the exponential explosion, then the results can
be disastrous.

It is therefore prudent to compare our ordering by position vectors (Algorithm
4.1) against other standard orderings from the literature. The other orderings we
consider are:

• No ordering:
We do not order the hyperplanes at all, but merely process them in the order
in which they are constructed. Note that this is not a “random” ordering;
in the case of Regina, the hyperplanes are constructed in an order that (in
a rough sense) moves the non-zero coefficients from the first tetrahedron
to the last. This is because each matching equation involves a face of the
triangulation, and Regina happens to number faces internally in a similar
manner.

• Dynamic ordering:
Here we reorder the hyperplanes on the fly. Recall from Algorithm 3.1 that
each hyperplane Hi is used to divide the vertices of Vi−1 into sets S0, S+

and S−, whereupon we embark upon the slow task of examining all pairs
u ∈ S+ and v ∈ S−. With a dynamic ordering, we choose the hyperplane
Hi so that the number of pairs |S+| × |S−| is as small as possible.

This is essentially the dynamic mixcutoff ordering defined by Avis et
al. [2], adapted to make better use of the set S0 (whose vertices do not need
processing).6 Other dynamic orderings appear in the literature, notably
mincutoff and maxcutoff [2, 12], but these are defined for intersections of
half-spaces and are less relevant for intersections of hyperplanes.

• Lexicographic ordering:
With lexicographic ordering we simply sort the hyperplanes by their coef-
ficient vectors, possibly after performing some normalization. Fukuda and
Prodon report good results using this method [12].

Lexicographic orderings are typically defined for intersections of half-
spaces, where the sign of each vector is well-defined. Since we are dealing
with intersections of hyperplanes, sign does not matter (so the coefficient
vector −m is just as good as m).

We consider two ways of choosing the sign of each vector:
– Positive first, where we ensure that the first non-zero entry in each

coefficient vector is positive;
– Random signs, where the sign of each vector is selected at random.

6Strictly speaking, mixcutoff chooses the hyperplane that makes S+ and S− the most
unbalanced.
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Figure 11. Running times for various hyperplane orderings (set 1/2)

The running times for various hyperplane orderings are presented in Figures 11
and 12. Figure 11 compares our Algorithm 4.1 against no ordering and dynamic
ordering, and Figure 12 compares Algorithm 4.1 against both variants of the lex-
icographic ordering. Both figures again use a log scale (with each horizontal bar
representing a factor of ten), and the algorithms incorporate all of our other im-
provements (bitmasks, cache optimization, dimensional filtering and inner product
representation).

It is pleasing to see that our Algorithm 4.1 performs better than the others in
most cases and is the only ordering that performs consistently well. The only serious
competitor is the dynamic ordering, which performs a little better in some cases;
however, for some of the hyperbolic spaces the dynamic ordering runs 10000 times
slower.

As a final note, Figure 12 is missing a data point. This is because the random
first lexicographic ordering for the n = 18 twisted layered loop was stopped manu-
ally after two days; extrapolation suggests that it could have run for weeks before
finishing.
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Figure 12. Running times for various hyperplane orderings (set 2/2)

6. Conclusion

In this paper we outline the standard algorithm for enumerating normal sur-
faces in a 3-manifold triangulation, by combining the double description method
of Motzkin et al. with the vertex filtering method of Letscher. Following this we
describe four optimizations:

• Bitmasks and cache optimization, which are well-known implementation
techniques that can be applied to the double description method;

• Hyperplane sorting, where we order the matching hyperplanes according to
their position vectors;

• Dimensional filtering, where we extend a result of Fukuda and Prodon to
avoid processing certain pairs of vertices;

• The inner product representation, where we store only essential properties
of the vertices instead of the full vertex coordinates.

We find that all of these techniques are successful in reducing running time,
with dimensional filtering the weakest (though still effective in most cases) and
hyperplane sorting the strongest (sometimes cutting running time by several or-
ders of magnitude). The optimizations that focus on memory are also successful in
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reducing memory consumption by significant factors (though not as large as run-
ning time). Furthermore, the hyperplane ordering that we define here performs
consistently well against other orderings from the literature.

Whilst these results are extremely promising, readers are encouraged to try these
techniques for themselves—as other authors have noted, the performance of the
double description method is highly variable, and different examples can reward
or penalise different optimizations [2, 12]. Nevertheless, the techniques presented
here are found to perform consistently well and are offered as a basis for further
optimizations.
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