# ON EQUAL SUMS OF NINTH POWERS

#### A. BREMNER AND JEAN-JOËL DELORME

ABSTRACT. In this paper, we develop an elementary method to obtain infinitely many solutions of the Diophantine equation

$$x_1^9 + x_2^9 + x_3^9 + x_4^9 + x_5^9 + x_6^9 = y_1^9 + y_2^9 + y_3^9 + y_4^9 + y_5^9 + y_6^9$$

and we give some numerical results.

#### 1. Introduction

Weisstein [7] gives a comprehensive survey of known results concerning equal sums of ninth powers. Moessner [4] in considering the Prouhet-Tarry-Escott problem gives a parametrization that inter alia gives infinitely many solutions to the Diophantine equation  $\sum_{i=1}^{i=10} x_i^9 = \sum_{i=1}^{i=10} y_i^9$ . Only a few numerical solutions of the equation  $\sum_{i=1}^{i=6} x_i^9 = \sum_{i=1}^{i=6} y_i^9$  are known. Lander, Parkin, and Selfridge [2] give the single solution

$$(23, 18, 14, 13, 13, 1, 22, 21, 15, 10, 9, 5);$$

Ekl [1] lists eight other solutions, and Weisstein references nine more. A few additional solutions are listed in Piezas [5].

The solution in (1) satisfies the set of equalities:

$$\left\{ \begin{array}{l} 23 + 18 + 14 + 13 + 13 + 1 = 22 + 21 + 15 + 10 + 9 + 5, \\ 23^3 + 18^3 + 14^3 + 13^3 + 13^3 + 1^3 = 22^3 + 21^3 + 15^3 + 10^3 + 9^3 + 5^3, \\ 23^9 + 18^9 + 14^9 + 13^9 + 13^9 + 1^9 = 22^9 + 21^9 + 15^9 + 10^9 + 9^9 + 5^9. \end{array} \right.$$

Therefore this solution, as well as two other solutions on Ekl's list, satisfies the system  $\{(\mathcal{T}_1), (\mathcal{T}_3), (\mathcal{T}_9)\}$ , where  $(\mathcal{T}_p)$  is the equality:

$$\sum_{k=1}^{6} x_k^p = \sum_{k=1}^{6} y_k^p.$$

In this paper we actually prove that the system  $\{(\mathcal{T}_1), (\mathcal{T}_2), (\mathcal{T}_3), (\mathcal{T}_9)\}$  has infinitely many rational solutions.

## 2. A SIMPLER SYSTEM

For any rational numbers  $a_1, a_2, a_3, a'_1, a'_2, a'_3$ , we put

$$\begin{cases} \sigma_1 = a_1 + a_2 + a_3 \\ \sigma_2 = a_2 a_3 + a_3 a_1 + a_1 a_2 \\ \sigma_3 = a_1 a_2 a_3, \end{cases} \qquad \begin{cases} \sigma_1' = a_1' + a_2' + a_3' \\ \sigma_2' = a_2' a_3' + a_3' a_1' + a_1' a_2' \\ \sigma_3' = a_1' a_2' a_3'. \end{cases}$$

Received by the editor March 3, 2009.

2000 Mathematics Subject Classification. Primary 11D41, 11G05.

**Proposition 1.** If the rational numbers  $a_1, a_2, a_3, a'_1, a'_2, a'_3$  satisfy the following system:

(2) 
$$(S): \begin{cases} (S_1) : & \sigma_1 = \sigma_1' \\ (S_2) : & \sigma_2 = \sigma_2' \\ (S_3) : & 3 \sigma_1^3 - 3 \sigma_1 \sigma_2 + \sigma_3 + \sigma_3' = 0, \end{cases}$$

then the rational numbers  $x_k$  and  $y_k$ ,  $1 \le k \le 6$ , defined by the following set of equalities:

(3) 
$$\begin{cases} x_1 = a_1 + \sigma_1 & x_2 = a_2 + \sigma_1 & x_3 = a_3 + \sigma_1 \\ y_1 = a_1 - \sigma_1 & y_2 = a_2 - \sigma_1 & y_3 = a_3 - \sigma_1 \\ x_4 = a'_1 - \sigma'_1 & x_5 = a'_2 - \sigma'_1 & x_6 = a'_3 - \sigma'_1 \\ y_4 = a'_1 + \sigma'_1 & y_5 = a'_2 + \sigma'_1 & y_6 = a'_3 + \sigma'_1 \end{cases}$$

yield a solution of the following system:

$$(\mathcal{T}): \begin{cases} (\mathcal{T}_{1}) : x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6} = y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{6}, \\ (\mathcal{T}_{2}) : x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} + x_{6}^{2} = y_{1}^{2} + y_{2}^{2} + y_{3}^{2} + y_{4}^{2} + y_{5}^{2} + y_{6}^{2}, \\ (\mathcal{T}_{3}) : x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + x_{4}^{3} + x_{5}^{3} + x_{6}^{3} = y_{1}^{3} + y_{2}^{3} + y_{3}^{3} + y_{4}^{3} + y_{5}^{3} + y_{6}^{3}, \\ (\mathcal{T}_{9}) : x_{1}^{9} + x_{2}^{9} + x_{3}^{9} + x_{4}^{9} + x_{5}^{9} + x_{6}^{9} = y_{1}^{9} + y_{2}^{9} + y_{3}^{9} + y_{4}^{9} + y_{5}^{9} + y_{6}^{9}. \end{cases}$$

*Proof.* First, make the assumption  $(S_1)$ :  $\sigma_1 = \sigma'_1$ . Then the system (3) immediately implies  $(T_1)$  and  $(T_2)$ .

For any non-negative integer p, put  $d_p = \sum_{k=1}^{3} \left( a_k^p - a_k'^p \right)$ . Then

$$\sum_{k=1}^{6} \left( x_k^3 - y_k^3 \right) = 6\sigma_1 d_2$$

and

$$\sum_{k=1}^{6} (x_k^9 - y_k^9) = 6\sigma_1 (12d_2\sigma_1^6 + 42d_4\sigma_1^4 + 28d_6\sigma_1^2 + 3d_8).$$

The further assumption  $(S_2)$ :  $\sigma_2 = \sigma'_2$  implies  $d_2 = 0$ , hence  $(\mathcal{T}_3)$ . The assumptions  $(S_1)$ ,  $(S_2)$  also imply the following:

$$\begin{cases} d_4 = 4 \left(\sigma_3 - \sigma_3'\right) \, \sigma_1, \\ d_6 = 3 \left(\sigma_3 - \sigma_3'\right) \, \left(2 \, \sigma_1^3 - 4 \, \sigma_1 \sigma_2 + \sigma_3 + \sigma_3'\right), \\ d_8 = 4 \left(\sigma_3 - \sigma_3'\right) \, \left(2 \, \sigma_1 \, \left(\, \sigma_1^2 - \sigma_2\,\right) \, \left(\, \sigma_1^2 - 3 \, \sigma_2\,\right) + \left(\, \sigma_3 + \sigma_3'\,\right) \, \left(\, 3 \, \sigma_1^2 - 2 \, \sigma_2\right)\right). \end{cases}$$

From this we deduce:

(5) 
$$\sum_{k=1}^{6} (x_k^9 - y_k^9) = 144 \ \sigma_1 \ (\sigma_3 - \sigma_3') \ (5 \ \sigma_1^2 - \sigma_2) \ (3 \ \sigma_1^3 - 3 \ \sigma_1 \sigma_2 + \sigma_3 + \sigma_3').$$

Consequently, from the assumption  $(S_3)$ :  $3 \sigma_1^3 - 3 \sigma_1 \sigma_2 + \sigma_3 + \sigma_3' = 0$ , we obtain  $(\mathcal{T}_9)$ .

Remark 1. Equating to 0 other factors in (5) leads to trivial solutions.

For if  $\sigma_1 = 0$ , we obtain a trivial solution of  $(\mathcal{T})$  satisfying  $x_i = y_i$ ,  $i = 1, \ldots, 6$ . If  $\sigma_3 = \sigma_3'$ , then, taking into consideration the equalities  $\sigma_1 = \sigma_1'$  and  $\sigma_2 = \sigma_2'$ , we deduce  $a_i = a'_i$ , i = 1, 2, 3, which leads to a trivial solution of  $(\mathcal{T})$  satisfying

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (y_4, y_5, y_6, y_1, y_2, y_3).$$

If 5  $\sigma_1^2 - \sigma_2 = 0$ , then necessarily  $a_1$ ,  $a_2$ ,  $a_3$ , and  $a'_1$ ,  $a'_2$ ,  $a'_3$  are zero, which again gives a trivial solution of  $(\mathcal{T})$ .

Remark 2. The sextuple  $(a_1, a_2, a_3, a'_1, a'_2, a'_3) = (17, -18, 5, -19, 9, 14)$  is a solution of the system (S) at (2), with  $\sigma_1 = 4$ . The numbers  $x_k$  and  $y_k$  from (3) give the 13, 18). This permutation of the solution at (1) now satisfies the equation  $(\mathcal{T}_2)$ .

Henceforth we shall focus attention on the system (S). Observe that if  $\sigma_1 = 0$ , then  $\sigma'_1 = 0$ , and the system (3) shows that we obtain only trivial solutions of  $(\mathcal{T})$ , satisfying  $x_i = y_i$ , i = 1, ..., 6. We shall refer to solutions of (S) which satisfy  $\sigma_1 = 0$  as **trivial** solutions of the system (S).

Remark 3. The only solution of (S) such that  $a_1 = a_2 = a_3$  is the zero solution. For if in (S) we replace  $a_2$  and  $a_3$  by  $a_1$ , we obtain:

$$a'_1 + a'_2 + a'_3 = 3 \ a_1, \quad a'_2 a'_3 + a'_3 a'_1 + a'_1 a'_2 = 3 \ a_1^2, \quad a'_1 a'_2 a'_3 = -55 \ a_1^3,$$

so that the three numbers  $a'_1$ ,  $a'_2$  and  $a'_3$  are the solutions of the following equation:  $x^3 - 3 a_1 x^2 + 3 a_1^2 x + 55 a_1^3 = 0$ . This may also be written as  $(x - a_1)^3 = -7 (2a_1)^3$ . Since x and  $a_1$  are rational, we necessarily have  $x = a_1$  and  $a_1 = 0$ , which implies  $(a_1, a_2, a_3, a'_1, a'_2, a'_3) = (0, 0, 0, 0, 0, 0).$ 

## 3. An elliptic surface

We first parametrize the two equations  $(S_1)$ ,  $(S_2)$ , at (2).

**Proposition 2.** Let  $a = (a_1, a_2, a_3, a'_1, a'_2, a'_3)$  be a sextuple of rational numbers.

The following two statements are equivalent:

I: a satisfies the system:  $\begin{cases} a_1 + a_2 + a_3 = a'_1 + a'_2 + a'_3, \\ a_2 \ a_3 + a_3 \ a_1 + a_1 \ a_2 = a'_2 \ a'_3 + a'_3 \ a'_1 + a'_1 \ a'_2. \end{cases}$ II: There exist triples of rational numbers  $p = (p_1, p_2, p_3)$  and  $q = (q_1, q_2, q_3)$ 

such that

(6) 
$$p_1 + p_2 + p_3 = 0, q_1 + q_2 + q_3 = 0,$$

and

(7) 
$$\begin{cases} a_1 - a_1' = p_1 q_1 \\ a_2 - a_2' = p_2 q_1 \\ a_3 - a_3' = p_3 q_1, \end{cases} \begin{cases} a_2 - a_3' = p_1 q_2 \\ a_3 - a_1' = p_2 q_2 \\ a_1 - a_2' = p_3 q_2, \end{cases} \begin{cases} a_3 - a_2' = p_1 q_3 \\ a_1 - a_3' = p_2 q_3 \\ a_2 - a_1' = p_3 q_3. \end{cases}$$

*Proof.* It is easily verified that II implies I. Let us prove that I implies II. For this purpose observe first that if  $a_1 + a_2 + a_3 = a'_1 + a'_2 + a'_3$ , then each of the following six numbers:

$$(a_1 - a'_1) (a_3 - a'_1) - (a_2 - a'_2) (a_2 - a'_3)$$

$$(a_2 - a'_2) (a_1 - a'_2) - (a_3 - a'_3) (a_3 - a'_1)$$

$$(a_3 - a'_3) (a_2 - a'_3) - (a_1 - a'_1) (a_1 - a'_2)$$

$$-(a_1 - a'_1) (a_1 - a'_3) + (a_2 - a'_2) (a_3 - a'_2)$$

$$-(a_2 - a'_2) (a_2 - a'_1) + (a_3 - a'_3) (a_1 - a'_3)$$

$$-(a_3 - a'_3) (a_3 - a'_2) + (a_1 - a'_1) (a_2 - a'_1)$$

is equal to  $a_2 a_3 + a_3 a_1 + a_1 a_2 - (a'_2 a'_3 + a'_3 a'_1 + a'_1 a'_2)$ . Consequently, if a satisfies the two equalities in I, we obtain the six equalities:

$$(a_1 - a'_1) (a_3 - a'_1) = (a_2 - a'_2) (a_2 - a'_3)$$

$$(a_2 - a'_2) (a_1 - a'_2) = (a_3 - a'_3) (a_3 - a'_1)$$

$$(a_3 - a'_3) (a_2 - a'_3) = (a_1 - a'_1) (a_1 - a'_2)$$

$$(a_1 - a'_1) (a_1 - a'_3) = (a_2 - a'_2) (a_3 - a'_2)$$

$$(a_2 - a'_2) (a_2 - a'_1) = (a_3 - a'_3) (a_1 - a'_3)$$

$$(a_3 - a'_3) (a_3 - a'_2) = (a_1 - a'_1) (a_2 - a'_1).$$

Now consider the matrix:

$$M = \begin{bmatrix} a_1 - a'_1 & a_2 - a'_3 & a_3 - a'_2 \\ a_2 - a'_2 & a_3 - a'_1 & a_1 - a'_3 \\ a_3 - a'_3 & a_1 - a'_2 & a_2 - a'_1 \end{bmatrix}.$$

From the preceding six equalities, the rank of M is 0 or 1. As is well known, this implies the existence of two triples of rational numbers  $p = (p_1, p_2, p_3)$  and  $q = (q_1, q_2, q_3)$  such that

$$a_1 - a'_1 = p_1 q_1$$
  $a_2 - a'_3 = p_1 q_2$   $a_3 - a'_2 = p_1 q_3$   
 $a_2 - a'_2 = p_2 q_1$   $a_3 - a'_1 = p_2 q_2$   $a_1 - a'_3 = p_2 q_3$   
 $a_3 - a'_3 = p_3 q_1$   $a_1 - a'_2 = p_3 q_2$   $a_2 - a'_1 = p_3 q_3$ .

Since  $a_1 + a_2 + a_3 = a_1' + a_2' + a_3'$ , we obtain (6), (7), the equations defining II, as required.

Using the parametrization in (6), (7), of the equations  $(S_1)$ ,  $(S_2)$ , we make the following substitution into the equations (S):

$$a_1 = a_3' + p_2(-q_1 - q_2), a_2 = a_3' + p_1q_2, a_3 = a_3' + (-p_1 - p_2)q_1,$$
(8) 
$$a_1' = a_3' + p_2(-q_1 - q_2) - p_1q_1, a_2' = a_3' + p_1q_2 - p_2q_1,$$

where for the purpose of homogeneity we set  $a_3' = p_2q_4$ , say. The third equation  $(S_3)$  delivers a homogeneous cubic equation in  $\{q_1, q_2, q_4\}$ , with coefficients homogeneous of degree 3 in  $p_1, p_2$ . Writing

$$t = p_1/p_2,$$

this equation defines a curve of genus 1 over the function field  $\mathbb{Q}(t)$ , that is, an elliptic surface, and it is readily checked that the curve contains a point at

 $(q_1, q_2, q_4) = (1, 1, 1)$ , so that the curve is actually elliptic over  $\mathbb{Q}(t)$ . Specifically, its equation has the form

$$C_t := 3(2+t)(3+3t+t^2)q_1^3 + (-27-2t+16t^2+6t^3)q_1^2q_2 + 7(11+11t+3t^2)q_1^2q_4$$
$$- (15-16t+2t^2+6t^3)q_1q_2^2 - 7(-11+5t+5t^2)q_1q_2q_4 - 56(2+t)q_1q_4^2$$
$$+ 3(-1+t)(1-t+t^2)q_2^3 + 7(3-5t+3t^2)q_2^2q_4 + 56(-1+t)q_2q_4^2 + 56q_4^3 = 0.$$

Points on the curve  $C_t$  can be pulled back to solutions of the system  $(\mathcal{T})$  by means of (3) and (8), namely:

$$\begin{aligned} x_1: x_2: x_3: x_4: x_5: x_6: y_1: y_2: y_3: y_4: y_5: y_6 = \\ -(3+t)q_1 + (-2+t)q_2 + 4q_4: & -(2+t)q_1 + (-1+2t)q_2 + 4q_4: \\ -(3+2t)q_1 + (-1+t)q_2 + 4q_4: & q_1 - tq_2 - 2q_4: \\ & (1+t)q_1 + q_2 - 2q_4: & (2+t)q_1 + (1-t)q_2 - 2q_4: \\ & (1+t)q_1 - tq_2 - 2q_4: & (2+t)q_1 + q_2 - 2q_4: \\ & (1+t)q_1 - tq_2 - 2q_4: & (2+t)q_1 + q_2 - 2q_4: \\ & q_1 + (1-t)q_2 - 2q_4: & -(3+2t)q_1 + (-2+t)q_2 + 4q_4: \end{aligned}$$

Symmetries of the solutions of (S) under permutation of the  $a_i$ ,  $a'_i$  induce symmetries of the underlying curve  $C_t$ , and the effect is that the curves corresponding to the parameters

(10) 
$$t, -1 - \frac{1}{t}, -\frac{1}{1+t}, -\frac{t}{1+t}, -1 - t, \frac{1}{t}$$

are isomorphic. A Weierstrass form for the elliptic curve  $C_t$  is discovered to be the following:

$$E_t: Y^2 = X^3 + 1323(1 + t + t^2)(23 + 69t - 54t^2 - 223t^3 - 54t^4 + 69t^5 + 23t^6)X$$
$$-2646(947 + 5682t + 16143t^2 + 28630t^3 + 22734t^4 - 18342t^5 - 46761t^6)$$
$$-18342t^7 + 22734t^8 + 28630t^9 + 16143t^{10} + 5682t^{11} + 947t^{12}).$$

This latter curve has torsion group  $\mathbb{Z}/3\mathbb{Z}$  over  $\mathbb{Q}(t)$  with point of order 3 given by

$$(147(1+t+t^2)^2, 756(1-t+t^2)(3+3t+t^2)(1+3t+3t^2))$$

corresponding to the torsion point on  $C_t$ ,

$$T_0 = (1, -2, t)$$
 (and where  $-T_0 = (2, -1, 1 + t)$ ).

The condition that we derive a trivial solution of (S) has become

$$(t+2)q_1 - (t-1)q_2 - 3q_4 = 0,$$

and this line cuts  $C_t$  in precisely the three points of finite order. Thus only the torsion points of  $C_t$  return trivial solutions of (2).

### 4. Numerical results

We can use standard computer software to determine values of the parameter t for which the rational rank of the curve (11) is positive. The group of points on the associated curve  $C_t$  is then infinite, and we are able to deduce an infinity of solutions to the system ( $\mathcal{S}$ ) at (2), and hence an infinity of solutions to the system ( $\mathcal{T}$ ) at (4).

The effect of the symmetries is that it suffices to search with 1 < t, and in the range  $3 \le \text{numerator}(t) + \text{denominator}(t) \le 20$  we obtain Table 1, which lists the rational rank of (11) along with corresponding points  $(q_1, q_2, q_4)$  on  $C_t$ . All computations were performed with Magma [3].

**Example.** We compute solutions of the system  $(\mathcal{T})$  at (4) corresponding to t=3. The curve  $C_3$  has rank 1 with point of infinite order Q=(1,8,-5), so that a point on  $C_3$  is of type  $nQ+\epsilon T_0, n\in\mathbb{Z}, \epsilon=0,\pm 1$ . The pullbacks of the three points corresponding to  $\epsilon=0,\pm 1$  give the same solution of the system (4) up to permutation, and so it is only necessary to consider  $\epsilon=0$ . Furthermore, the points  $\pm nQ$  deliver the same solution up to permutation, and so we can further restrict ourselves to considering only the pullbacks of the points nQ, n>0. Table 2 lists the pullback points for  $n=1,\ldots,5$ .

A similar chain of solutions can be computed for each of the t corresponding to entries in Table 1, with a double infinity of solutions when the rank is 2, and a triple infinity of solutions at t=9/4. We list some "small" solutions arising in this latter instance. Write  $Q_1=(106,-282,279),\ Q_2=(124,-272,293),\ Q_3=(239,-181,396)$  for the points from Table 1.

Note that the assertion at (10) is equivalent to the fact that the curves  $C_{p_i/p_j}$ ,  $1 \le i \ne j \le 3$ , are isomorphic. The symmetry in the parametrization (7) interchanging  $a_2'$  and  $a_3'$  is equivalent to the symmetry interchanging  $p_i$  with  $q_i$  (i=1,2,3). Thus when  $C_{p_1/p_2}$  has positive rank with point  $(q_1,q_2,a_3'/p_2)$ , there is a corresponding point  $(p_1,p_2,a_2'/q_2)$  on  $C_{q_1/q_2}$ , and hence the isomorphic curves  $C_{q_i/q_j}$ ,  $1 \le i \ne j \le 3$  also have positive rank.

### 5. Parametrizations over $\mathbb{Q}(\omega)$

It would be useful to know the  $\mathbb{Q}(t)$  rank of the curve  $E_t$  at (11). If this were positive, then corresponding points on  $C_t$  would pull back to solutions of the system  $(\mathcal{T})$  that are polynomials in  $\mathbb{Z}[t]$ . Unfortunately, we are unable to determine whether or not  $E_t$  contains any non-torsion points over  $\mathbb{Q}(t)$ . The large points in Table 1 for t = 15/2, 12/7, 11/9, together with several specializations of  $E_t$  that have rank 0, would suggest that the parametrization of a point is unlikely, and therefore that the  $\mathbb{Q}(t)$ -rank is 0. The equation  $E_t$  is that of an elliptic K3-surface, and as such, methods of Shioda [6] allow us to compute an upper bound for the rank of  $E_t$  over  $\mathbb{C}(t)$ , and this turns out to be 3. We are able to spot two independent points  $P_1$ ,  $P_2$  of infinite order on  $C_t$  over  $\mathbb{C}(t)$ , but have not determined whether or not there is a third:

$$P_1 = (6, -4 - 2\omega, 3 + 3t), \qquad P_2 = (-\omega, 1, \frac{1}{2}(1 - \omega)),$$

where  $\omega = \frac{1}{2}(-1+\sqrt{-3})$  is a complex cube root of unity. Summing each point with its Galois conjugate:

$$P_1 + \bar{P}_1 = (1, -2, t), \qquad P_2 + \bar{P}_2 = (1, 1, 1),$$

we obtain points of finite order. Thus no non-trivial rational polynomial parametrization of  $(\mathcal{T})$  arises in this way. The two points  $P_1$ ,  $P_2$  do generate infinitely many polynomial parametrizations of  $(\mathcal{T})$ , but of course with coefficients over  $\mathbb{Q}(\omega)$ . For example, the pullbacks of  $P_1$  and  $P_2$  result in trivial solutions of the system (2);

Table 1. Values of t with  $C_t$  of positive rank

| t                  | independent point(s) on $C_t$                                                             | rank     |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------|----------|--|--|--|
| 3                  | (1,8,-5)                                                                                  |          |  |  |  |
| 4                  | (1,0,0) $(1446,14711,-15299)$                                                             |          |  |  |  |
| 5/2                | (356, 1882, -647)                                                                         | 1        |  |  |  |
| $\frac{3/2}{4/3}$  | (25, 278, -12)                                                                            | 1        |  |  |  |
| 7                  | (207, -52, 785)                                                                           | 1        |  |  |  |
| 8                  | (201, 02, 139)<br>(1, 3, -5)                                                              | 1        |  |  |  |
| 7/2                | (82, -664, 821)                                                                           | 1        |  |  |  |
| $\frac{1/2}{5/4}$  | (2648, 539468, -54847)                                                                    | 1        |  |  |  |
| $\frac{5/4}{7/3}$  | (543, 1656, -125), (9137158, 2514571, 13080130)                                           | 2        |  |  |  |
| 10                 | (59616, 83123, -33345)                                                                    | 1        |  |  |  |
| $\frac{10}{6/5}$   | $ \begin{array}{c} (6549648283004459, -22665359828265916, 8749022109376884) \end{array} $ | 1        |  |  |  |
| · ·                |                                                                                           | 2        |  |  |  |
| 11<br>12           | (479, -2916, 13421), (14033, -43851, 222497)                                              |          |  |  |  |
|                    | (19,64,-190)                                                                              | 1        |  |  |  |
| 11/2               | (-27783615238, -228089845712, 349090862393)                                               | 1        |  |  |  |
| $\frac{10/3}{0.4}$ | (94087753, 101830636, 85790044)                                                           | 1        |  |  |  |
| 9/4                | (106, -282, 279), (124, -272, 293), (239, -181, 396)                                      | 3        |  |  |  |
| 8/5                | (36194817, 128001892, 11175862)                                                           | 1        |  |  |  |
| 7/6                | (3049, -8401, 3738), (35004, -61398, 40157),                                              | 2        |  |  |  |
| 13                 | (4724, 1055987, -5026528)                                                                 | 1        |  |  |  |
| 9/5                | (121419260, -1377907645, 613796368)                                                       | 1        |  |  |  |
| 11/4               | (126758321, -30905647, 231572729)                                                         | 1        |  |  |  |
| 8/7                | (14818297849097, 12821985982426, 14953926106708)                                          | 1        |  |  |  |
| 13/3               | (150351, 100917, 224711), (13051968, -12150687, 37914218)                                 | 2        |  |  |  |
| 11/5               | (154090, 443445, -3052)                                                                   | 1        |  |  |  |
| 9/7                | (742, -2709, 1116), (2455971, 3614233, 2299483)                                           | 2        |  |  |  |
| 16                 | (18, 179, -963), (958, 6731, -34507)                                                      | 2        |  |  |  |
| 15/2               | (134207609048965376073388156958141987,                                                    |          |  |  |  |
|                    | 28950557364798896116286088178331879,                                                      | 1        |  |  |  |
|                    | 422719433838369207424332656027729381)                                                     |          |  |  |  |
| 14/3               | (359601, 464652, 185656), (12153, -8250, 35330)                                           | 2        |  |  |  |
| 13/4               | (25702, 74362, -22943)                                                                    | 1        |  |  |  |
| 11/6               | (1532, -16154, 7563)                                                                      | 1        |  |  |  |
| 9/8                | (27787, -37949, 30240), (21756703708, -959147282732, 73870303329)                         | 2        |  |  |  |
| 11/7               | (11754403807181, -239314804762243, 71755024964941)                                        | 1        |  |  |  |
| 18                 | (7901044, -22041517, 187889479)                                                           | 1        |  |  |  |
| 17/2               | (153, 599, -1262), (1874, 2748, -1015)                                                    | 2        |  |  |  |
| 15/4               | (4688, 8548, -97), (880834, -4824818, 6950465)                                            | 2        |  |  |  |
| 14/5               | (23, 108, -44), (1287580662737, 1391088002287, 1201351021327)                             | 2        |  |  |  |
| 13/6               | (4093367511, 4633565061, 3798630686)                                                      | 1        |  |  |  |
| 12/7               | (4607882348502503129769514,                                                               |          |  |  |  |
|                    | 7355497055510069300923039,                                                                | 1        |  |  |  |
|                    | 3688741999490895912106389)                                                                | <u> </u> |  |  |  |
| 11/8               | (2720488, 6913952, 1992365)                                                               | 1        |  |  |  |
| 10/9               | (343956623832196, -126385184284523, 362777970896793)                                      | 1        |  |  |  |
| 17/3               | (127, -596, 1405)                                                                         | 1        |  |  |  |
| 11/9               | (888221912602727881028999424599,                                                          |          |  |  |  |
| ·                  | -492896695539027689262279545737,                                                          | 1        |  |  |  |
|                    | 987459994593608883597631915735)                                                           |          |  |  |  |
|                    | 001 10000 10000000000 1001010100)                                                         | <u> </u> |  |  |  |

| n     | 1   | 2      | 3          | 4                | 5                        |
|-------|-----|--------|------------|------------------|--------------------------|
| $x_1$ | 18  | 13825  | -176607027 | -295503813128476 | 16781116061381923831545  |
| $x_2$ | -15 | -9157  | 154786818  | 163694336414557  | 7388891819632091442261   |
| $x_3$ | 13  | 1092   | 134510017  | 453392718089919  | -21580737831236008171454 |
| $x_4$ | 13  | 4495   | -22242470  | 129024868182881  | -17757024654750594094103 |
| $x_5$ | -22 | -14187 | 168678401  | 198009483059676  | -4986911769004750233739  |
| $x_6$ | 1   | 6812   | -202780835 | -487825971930557 | 21449301398866340776666  |
| $y_1$ | 10  | 10945  | -232951931 | -456295433816476 | 15486481036492920280369  |
| $y_2$ | -23 | -12037 | 98441914   | 2902715726557    | 6094256794743087891085   |
| $y_3$ | 5   | -1788  | 78165113   | 292601097401919  | -22875372856125011722630 |
| $y_4$ | 21  | 7375   | 34102434   | 289816488870881  | -16462389629861590542927 |
| $y_5$ | -14 | -11307 | 225023305  | 358801103747676  | -3692276744115746682563  |
| $y_6$ | 9   | 9692   | -146435931 | -327034351242557 | 22743936423755344327842  |

Table 2. Solutions to the system (4) arising from t=3

Table 3. Solutions to the system (4) arising from the rank 3 curve

|                    | $x_1$  | $x_2$   | $x_3$   | $x_4$   | $x_5$   | $x_6$  |
|--------------------|--------|---------|---------|---------|---------|--------|
| point on $C_{9/4}$ | $y_1$  | $y_2$   | $y_3$   | $y_4$   | $y_5$   | $y_6$  |
|                    | 453    | 150     | -307    | -455    | -98     | 281    |
| $Q_2$              | 429    | 174     | -331    | -431    | -122    | 305    |
|                    | 978    | 365     | -643    | -991    | -63     | 490    |
| $Q_1$              | 842    | 501     | -779    | -855    | -199    | 626    |
|                    | -1136  | 583     | 261     | 785     | 1739    | -1800  |
| $Q_3$              | -1568  | 1015    | -171    | 1217    | 1307    | -1368  |
|                    | -3147  | 2120    | 75      | 1927    | 4832    | -4927  |
| $Q_1 + Q_2$        | -4027  | 3000    | -805    | 2807    | 3952    | -4047  |
|                    | 6190   | -18943  | 17613   | 3265    | -12363  | 9958   |
| $Q_1 + Q_3$        | 470    | -13223  | 11893   | 8985    | -18083  | 15678  |
|                    | 159999 | 99268   | -117995 | -175511 | 67884   | 21299  |
| $Q_1 + Q_2 + Q_3$  | 105055 | 154212  | -172939 | -120567 | 12940   | 76243  |
|                    | 319333 | -455078 | 333993  | -72523  | -428926 | 415401 |
| $Q_2 - Q_3$        | 207133 | -342878 | 221793  | 39677   | -541126 | 527601 |
|                    |        |         |         |         |         |        |

however, the pullbacks of  $2P_1$  and  $2P_2$  result in the following cubic parametrizations, respectively:

$$x_1: x_2: x_3: x_4: x_5: x_6: \ y_1: y_2: y_3: y_4: y_5: y_6 = \\ (3\omega + 3)t^3 + (\omega + 4)t^2 + (-\omega + 3)t - 3\omega: \\ (-2\omega - 1)t^3 + (3\omega + 3)t^2 + (4\omega + 4)t + \omega + 2: \\ 3\omega t^3 + (2\omega - 1)t^2 + (-9\omega - 6)t - 2\omega - 1: \\ (-\omega - 2)t^3 + (-5\omega - 6)t^2 + (5\omega - 1)t + \omega - 1: \\ (2\omega + 1)t^3 + (9\omega + 3)t^2 + (-2\omega - 3)t - 3\omega - 3:$$

$$(-\omega+1)t^3 - 4\omega t^2 - 3\omega t + 2\omega + 1:$$

$$(-\omega+1)t^3 + (-5\omega+1)t^2 + (5\omega+6)t + \omega + 2:$$

$$(2\omega+1)t^3 + (9\omega+6)t^2 + (-2\omega+1)t - 3\omega:$$

$$(-\omega-2)t^3 + (-4\omega-4)t^2 + (-3\omega-3)t + 2\omega + 1:$$

$$3\omega t^3 + (\omega-3)t^2 + (-\omega-4)t - 3\omega - 3:$$

$$(-2\omega-1)t^3 + 3\omega t^2 + 4\omega t + \omega - 1:$$

$$(3\omega+3)t^3 + (2\omega+3)t^2 + (-9\omega-3)t - 2\omega - 1;$$

and

$$x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}: y_{1}: y_{2}: y_{3}: y_{4}: y_{5}: y_{6} =$$

$$(2\omega + 4)t^{3} + (4\omega + 6)t^{2} + (5\omega + 8)t + 3\omega + 3:$$

$$-2t^{3} + (3\omega + 2)t^{2} + (3\omega + 1)t + \omega - 1:$$

$$(-4\omega - 6)t^{3} + (-4\omega - 4)t^{2} + (\omega + 7)t + 3:$$

$$(-2\omega - 2)t^{3} + (-5\omega - 8)t^{2} + (-6\omega - 9)t - \omega - 2:$$

$$(-2\omega - 6)t^{3} + (-6\omega - 14)t^{2} - 3t + \omega + 2:$$

$$(4\omega + 8)t^{3} + (5\omega + 12)t^{2} + 2t - 2\omega - 1:$$

$$(4\omega + 8)t^{3} + (7\omega + 12)t^{2} + (2\omega + 2)t + \omega - 1:$$

$$(-2\omega - 6)t^{3} - 4t^{2} + (6\omega + 7)t + 3\omega + 3:$$

$$(-2\omega - 2)t^{3} + (-\omega + 2)t^{2} + (-2\omega + 1)t - 2\omega - 1:$$

$$(-4\omega - 6)t^{3} + (-8\omega - 14)t^{2} + (-3\omega - 3)t + \omega + 2:$$

$$-2t^{3} + (-3\omega - 8)t^{2} + (-3\omega - 9)t - \omega - 2:$$

$$(2\omega + 4)t^{3} + (2\omega + 6)t^{2} + (3\omega + 8)t + 3.$$

### Acknowledgements

The second author warmly thanks Dr. Simon J. Agou for his kindness and encouragement, and Dr. François Vellutini and Yves Mannheimer for reading an initial version of the manuscript.

### References

- R. EKL, New results in equal sums of like powers, Math. Comp. 67, no. 223 (1998), 1309–1315.
   MR1474650 (98m:11023)
- [2] L.J. LANDER, T.R. PARKIN, AND J.L. SELFRIDGE, A survey of equal sums of like powers, Math. Comp. 21 (1967), 446–459. MR0222008 (36:5060)
- [3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4): 235–265, 1997. MR1484478
- [4] A. MOESSNER, On Equal Sums of Like Powers, Math. Student 15 (1947), 83–88. MR0033840 (11:500a)
- [5] TITUS PIEZAS III, Timeline of Euler's Extended Conjecture, http://www.geocities.com/ titus\_piezas/Timeline1.htm.
- [6] T. SHIODA, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972) 20-59. MR0429918 (55:2927)

[7] E.W. WEISSTEIN, Diophantine Equation-9th Powers, http://mathworld.wolfram.com/DiophantineEquation9thPowers.html

Department of Mathematics, Arizona State University, Tempe, Arizona  $E\text{-}mail\ address:$  bremner@asu.edu

URL: http://math.asu.edu/~andrew/

6 RUE DES ÉMERAUDES, 69006 LYON, FRANCE E-mail address: jean.joel.delorme@wanadoo.fr