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ON EQUAL SUMS OF NINTH POWERS

A. BREMNER AND JEAN-JOEL DELORME

ABSTRACT. In this paper, we develop an elementary method to obtain infin-
itely many solutions of the Diophantine equation

2 + o + 25 + 2+ 2 +2d =y +v3 + ]+l +vd+ud

and we give some numerical results.

1. INTRODUCTION

Weisstein [7] gives a comprehensive survey of known results concerning equal
sums of ninth powers. Moessner [4] in considering the Prouhet-Tarry-Escott prob-
lem gives a parametrization that inter alia gives infinitely many solutions to the

Diophantine equation Zijo z) = Zzio y?. Only a few numerical solutions of the
equation 312929 = 57'=%¢9 are known. Lander, Parkin, and Selfridge [2] give the

single solution
(1) (23, 18, 14, 13, 13, 1, 22, 21, 15, 10, 9, 5);

Ekl1 [1] lists eight other solutions, and Weisstein references nine more. A few addi-
tional solutions are listed in Piezas [5].
The solution in (I)) satisfies the set of equalities:

23 +18 +14 +13 +13 +1 =22 421 415 +10 +9 + 5,
233 +18% 4+ 143 + 133 +13% 4+ 1% = 223 + 213 + 15% 4+ 103 + 93 + 53,
239 +18% + 149 4+ 13% +13% + 1% = 229 4 219 + 15% + 109 + 99 + 5°.
Therefore this solution, as well as two other solutions on Ekl’s list, satisfies the
system {(71), (73), (7o)}, where (7,) is the equality:

6 6
p_ p

E T, = E Yy

k=1 k=1

In this paper we actually prove that the system {(71), (72), (73), (7o)} has infinitely
many rational solutions.

2. A SIMPLER SYSTEM

For any rational numbers a1, az, ag, a}, ab, as, we put

o1 =a1+az+as 0’1=a'1+a’2+a’3

09 = asgas + aza; + ajas ol = abaly + asal + alal
! !

g3 = aja2a3, 03 = G710503.
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Proposition 1. If the rational numbers ay,az,as,ay,ay,al satisfy the following
system:

(81) ¢ o1=o0]
(2) (S) : (S2) : o9 =0
(S3) : 303 -3 0100+03+05=0,

then the rational numbers x and yr, 1 < k < 6, defined by the following set of
equalities:

Ty =a1+0; Tg = az + 01 T3 =az+ 01

Y1 =a1 — 01 Yo =az — 01 Y3 =az — 01
(3)

x4 =ay — o} x5 = ab — o Te = ah — o

ys = ay + oy Ys = ay + 0y ye = a3 + 0y

yield a solution of the following system:

(4)

() + zi+aet+as+ratas+26=y1+Y2+Ys+ya+ys+ Ve
(T2) + @i+ a3 +af + 28 + 23 +af = y? +y3 + 93 +vi + 93 + 45,

(T3) : at+ a3 +af +ad +ad+ad =} + 5 +y3 + vl +v3 + 08,

(To) : 2+ ad+ a2+ + 22 +22 =y) + 99 + 93 + vy +v2 + .

Proof. First, make the assumption (S1) : 01 = 0. Then the system (8] immediately
implies (771) and (73).

3
For any non-negative integer p, put d, = Z ( al —ad v ) Then

and

6
> (27 — ud) = 601 (12da0Y + 42d407 + 28dso7 + 3ds).
k=1

The further assumption (Sz) : 09 = o implies dy = 0, hence (73).
The assumptions (S7), (Sz2) also imply the following:

d4=4(0’3—0’é) a1,
de =3 (03 —0%) (203 —4 0109+ 03+ 0% ),
ds=4(o3—0%) (201 (0% —02) (07 =302 )+ (0o3+0%) (307 —202)).
From this we deduce:
6
(5) (xz —yz) =144 o4 (Ug—cré) (5 o? —02) (3 o3 -3 0102—|—03—|—0§,).
k=1

Consequently, from the assumption (S3) : 3 03 — 3 102 + 03 + 0 = 0, we obtain

(To)- O
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Remark 1. Equating to 0 other factors in (B]) leads to trivial solutions.
For if o1 = 0, we obtain a trivial solution of (7) satisfying «; = y;, i = 1,...,6.
If o3 = o}, then, taking into consideration the equalities o1 = of and oo = 0%,
we deduce a; = af, i = 1,2,3, which leads to a trivial solution of (7) satisfying

(.’Ifl, T2, T3, T4, T5, -/Ijﬁ) = (y4a Ys, Y6, Y1, Y2, 93)

If 5 02 — 03 = 0, then necessarily a1, az, a3, and af, a}, a} are zero, which again
gives a trivial solution of (7).

Remark 2. The sextuple (a1, as,as,a},ab, ay) = (17, —18,5,—19,9, 14) is a solution
of the system (S) at ([2)), with o7 = 4. The numbers z;, and y; from (@) give the
following solution of the system (7)) at ({@): (21,—14,9,-23,5,10,13,—22,1, —15,
13,18). This permutation of the solution at ({l) now satisfies the equation (7z).

Henceforth we shall focus attention on the system (S). Observe that if oy = 0,
then o7 = 0, and the system (B]) shows that we obtain only trivial solutions of (7),
satisfying ©; = y;, ¢ = 1,...,6. We shall refer to solutions of (S) which satisfy
o1 = 0 as trivial solutions of the system (S).

Remark 3. The only solution of (S) such that a; = as = ag is the zero solution.
For if in (S) we replace as and a3 by a;, we obtain:

/ / / ! ’o ! 2 [/ 3
ay +ag+asg =3 a1, ayaz+asza;+ajay,=3ay, ajayaz= —95 ay,

so that the three numbers a, af, and a4 are the solutions of the following equation:
23 —3 a12? +3 a?x +55 a3 = 0. This may also be written as (v —a1)3 = —7 (2a;)3.
Since = and a; are rational, we necessarily have x = a1 and a; = 0, which implies
(a’lv az,as, allv a/27 ag) = (Oa 0,0,0,0, 0)

3. AN ELLIPTIC SURFACE

We first parametrize the two equations (S1), (Sz2), at [@).

Proposition 2. Let a = (a1, a9, as,al,ah, as) be a sextuple of rational numbers.
The following two statements are equivalent:
_ . | a1 +az+ a3 =al + a5+ as,
I: a satisfies the system: { G5 a3 +ag a1+ a1 az — dy a + al @+, ab.
II: There exist triples of rational numbers p = (p1,p2,p3) and ¢ = (q1,92,q3)
such that

(6) p1+p2+p3 =0, q1+qg2 +q3 =0,
and
a1 —a) =piqa as — a3 = pige asz — ay = piqs
(7) a2 — a/2 = p2q1 as — all = P292 a; — aé, = P2g3
as — as = paqi, a; — ay = paq, as — a) = pags.

Proof. 1t is easily verified that IT implies I. Let us prove that I implies II. For this
purpose observe first that if a; 4+ as + a3 = a) + a} + af, then each of the following
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six numbers:

(a1 — a}) (a3 — a}) — (a2 — a3) (a2 — a3)
(az — a3) (a1 — a3) — (a3 — a3) (a3 — ay)
(a3 — a3) (a2 — a3) — (a1 — ay) (a1 — a3)
—(a1 —a}) (a1 — a3) + (a2 — ay) (a3 — a3)
—(az — a3) (az — a}) + (a3 — a3) (a1 — a3)
—(a3 — a3) (a3 — ay) + (a1 — a}) (a2 —a})

is equal to ag as + as a1 + a1 az — (af as + af af +af dfy).
Consequently, if a satisfies the two equalities in I, we obtain the six equalities:

(a1 —a}) (a3 —ay) = (a2 — a3) (a2 —aj3)
(a2 —ay) (a1 — a3) = (a3 — a3) (a3 — a})
(az —a3) (a2 —a3) = (a1 — al) (a1 —a3)
(a1 —ay) (a1 —a3) = (a2 —ay) (a3 — as)
(az — a3) (a2 —ay) = (a3 — a3) (a1 — aj)
(a3 — a3) (a3 — a3) = (a1 — a}) (a2 — a}).

! !/ !
M= a2—ay az—a) a1 —aj
as —ah a;—ah ax—aj
From the preceding six equalities, the rank of M is 0 or 1. As is well known,

this implies the existence of two triples of rational numbers p = (p1,p2,ps) and
q = (q1,92,q3) such that

/ / i

a1 — a3 =piqa a2 — a3 = P14G2 az — a9 = P143
/ / I

a2 — Q9 = P2q1 a3z — a7 = P2g2 a1 — a3z = P2g3
/ / /

a3 — a3z = p3qi a1 — A9 = P3q2 a2 — a1 = P3qs.

Since a1 + as + ag = a} + a + af, we obtain (@), (), the equations defining II, as
required. (I

Using the parametrization in (@), (@), of the equations (S1), (S2), we make the
following substitution into the equations (S):
ay = a5+ p2(—q1 — q2), az = az + p1gz, as = a5+ (—p1 — p2)q1,
(8) ay = a3 +p2(—q1 — ¢2) — P, ay = az + p1ga — P2q1,
where for the purpose of homogeneity we set a5 = paqa, say. The third equation (Ss)

delivers a homogeneous cubic equation in {q1, g2, g4 }, with coefficients homogeneous
of degree 3 in p1, ps. Writing

t = p1/pa2,

this equation defines a curve of genus 1 over the function field Q(¢), that is,
an elliptic surface, and it is readily checked that the curve contains a point at
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(q1,92,94) = (1,1,1), so that the curve is actually elliptic over Q(¢). Specifically,
its equation has the form
Cr:i— 32+ 1) (343t +t3)q} + (=27 — 2t + 16t + 6t)qiqo + T(11 + 11t + 3t*) g7 qu

— (15 — 16t 4 2t2 + 6t%)q1q5 — T(—11 + 5t + 5t2)q1gaqs — 56(2 + t)q1¢>

+3(=14+8)(1 —t+1%)g5 + T(3 — 5t + 3t°)g5qs + 56(—1 + t)gaqi + 5645 = 0.

Points on the curve C; can be pulled back to solutions of the system (7) by means
of (B) and (8), namely:

L1121 X3:T4:T5:T6 Y1 Y2:Y3:Ys:Ys5:Ys =

—B+tq + (—2+t)g2 +4gs —(2+t)q + (=14 2t)g2 + 4y :
~B+2)q+ (-1 +t)ge+4q: @ —tga —2qs:
(1+t)q1 + g2 — 2q4 : 2+t)a + (1 —1t)g2 —2qa:
T+t —tg2 —2qa: (24 8)q1+q2 — 24
a1+ (1—1)g2 —2q4 : —(B+2t)q1 + (-2 +1t)g2 +4qa :
9 —B+t)a + (—1+2t)g2 +4qa : —2+t)q + (-1 +1)g2 + 4qa.

Symmetries of the solutions of (S) under permutation of the a;, a; induce symme-
tries of the underlying curve C, and the effect is that the curves corresponding to
the parameters

1 1 t
(10) A 1+t 1+t
are isomorphic. A Weierstrass form for the elliptic curve Cj is discovered to be the
following:

Ep:Y? = X3 4 1323(1 + t +t2)(23 + 69t — 541> — 223t% — 54t* 4 69¢° + 23t%) X
—2646(947 + 5682t + 16143t* + 28630t + 22734¢* — 18342t° — 46761°
(11) —18342t" + 22734¢% + 28630t + 16143t + 56821 + 947¢'2).

1
1—t, -
t

This latter curve has torsion group Z/3Z over Q(t) with point of order 3 given by
(147(1 4+t + %)%, 756(1 — t + t*)(3 4 3t + ¢*) (1 + 3t + 3t%)),
corresponding to the torsion point on Cf,
To = (1,-2,1) (and where — Ty = (2,—1,1+1)).
The condition that we derive a trivial solution of (S) has become
(t+2)q1 — (t —1)g2 — 34 = 0,

and this line cuts C; in precisely the three points of finite order. Thus only the
torsion points of C; return trivial solutions of (2.

4. NUMERICAL RESULTS

We can use standard computer software to determine values of the parameter ¢
for which the rational rank of the curve (Il is positive. The group of points on
the associated curve CY is then infinite, and we are able to deduce an infinity of
solutions to the system (S) at (2)), and hence an infinity of solutions to the system

(T) at @).
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The effect of the symmetries is that it suffices to search with 1 < ¢, and in
the range 3 < numerator(t) + denominator(¢) < 20 we obtain Table 1, which lists
the rational rank of (I along with corresponding points (¢1,¢2,q4) on C;. All
computations were performed with Magma [3].

Example. We compute solutions of the system (7) at ) corresponding to t = 3.

The curve C3 has rank 1 with point of infinite order @ = (1,8,—5), so that a
point on Cj is of type n@Q + €Ty, n € Z, ¢ = 0,£1. The pullbacks of the three
points corresponding to € = 0,+1 give the same solution of the system () up to
permutation, and so it is only necessary to consider e = 0. Furthermore, the points
+n@ deliver the same solution up to permutation, and so we can further restrict
ourselves to considering only the pullbacks of the points n@, n > 0. Table 2 lists
the pullback points for n =1,...,5.

A similar chain of solutions can be computed for each of the ¢ corresponding
to entries in Table 1, with a double infinity of solutions when the rank is 2, and
a triple infinity of solutions at ¢ = 9/4. We list some “small” solutions arising in
this latter instance. Write Q1 = (106, —282,279), Q2 = (124, —-272,293), Q3 =
(239, —181,396) for the points from Table 1.

Note that the assertion at (L) is equivalent to the fact that the curves Cp, /.., 1 <
i # j < 3, are isomorphic. The symmetry in the parametrization () interchanging
ah and aj is equivalent to the symmetry interchanging p; with ¢; (¢ = 1,2,3). Thus
when C,, p,, has positive rank with point (qi, g2, a3/p2), there is a corresponding
point (p1,p2,ay/q2) on Cy, /4,, and hence the isomorphic curves Corgp 1<i#j<
3 also have positive rank.

5. PARAMETRIZATIONS OVER Q(w)

It would be useful to know the Q(t) rank of the curve E; at (). If this were
positive, then corresponding points on C; would pull back to solutions of the system
(T) that are polynomials in Z[t]. Unfortunately, we are unable to determine whether
or not F; contains any non-torsion points over Q(¢). The large points in Table 1
for ¢t =15/2, 12/7, 11/9, together with several specializations of E; that have rank
0, would suggest that the parametrization of a point is unlikely, and therefore that
the Q(¢)-rank is 0. The equation E; is that of an elliptic K 3-surface, and as such,
methods of Shioda [6] allow us to compute an upper bound for the rank of E; over
C(t), and this turns out to be 3. We are able to spot two independent points P,
P, of infinite order on C; over C(t), but have not determined whether or not there
is a third:

1
P, = (6,—4 — 2w, 3 + 3t), P = (—w,l,E(l—w)),
where w = %(71 ++/—3) is a complex cube root of unity. Summing each point with
its Galois conjugate:
P1+P1:(1,—2,t), PQ-I-PQ:(LL].),

we obtain points of finite order. Thus no non-trivial rational polynomial parametri-
zation of (7)) arises in this way. The two points P;, P» do generate infinitely many
polynomial parametrizations of (7), but of course with coefficients over Q(w). For
example, the pullbacks of P; and P» result in trivial solutions of the system (2I);
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TABLE 1. Values of ¢t with C; of positive rank

t independent point(s) on Cy rank
3 (1,8,-5) 1
4 (1446, 14711, —15299) 1
5/2 (356, 1882, —647) 1
4/3 (25,278, —12) 1
7 (207, —52,785) 1
8 (1,3,-5) 1
772 (82, —664, 821) 1
5/4 (2648, 539468, —54847) 1
7/3 (543,1656,—125), (9137158, 2514571, 13080130) 2
10 (59616, 83123, —33345) 1
6/5 (6549648283004459, —22665359828265916, 8749022109376884) 1
11 (479, —2916,13421), (14033, —43851,222497) 2
12 (19, 64, —190) 1
11/2 (—27783615238, —228089845712, 349090862393) 1
10/3 (94087753, 101830636, 85790044) 1
9/4 (106, —282, 279), (124, —272, 203), (239, —181, 396) 3
8/5 (36194817,128001892,11175862) 1
7/6 (3049, —8401, 3738), (35004, —61398,40157), 2
13 (4724, 1055987, —5026528) 1
9/5 (121419260, —1377907645, 613796368) 1
11/4 (126758321, —30905647, 231572729) 1
8/7 (14818297849097, 12821985982426, 14953926106708) 1
13/3 (150351, 100917,224711), (13051968, —12150687,37914218) 2
11/5 (154090, 443445, —3052) 1
9/7 (742, —2709, 1116), (2455971, 3614233, 2209483) 2
16 (18,179, —-963), (958,6731, —34507) 2
15/2 (134207609048965376073388156958141987,
28950557364798896116286088178331879, 1
422719433838369207424332656027729381)
14/3 (359601, 464652, 185656), (12153, —8250, 35330) 2
13/4 (25702, 74362, —22943) 1
11/6 (1532, —16154, 7563) 1
9/8 || (27787, —-37949,30240), (21756703708, —959147282732, 73870303329) 2
11/7 (11754403807181, —239314804762243, 71755024964941) 1
18 (7901044, —22041517,187889479) 1
17/2 (153,599, —1262), (1874,2748,—1015) 2
15/4 (4688, 8548, —97), (880834, —4824818, 6950465) 2
14/5 (23,108, —44), (1287580662737,1391088002287,1201351021327) 2
13/6 (4093367511, 4633565061, 3798630686) 1
12/7 (4607882348502503129769514,
7355497055510069300923039, 1
3688741999490895912106389)
11/8 (2720488, 6913952, 1992365) 1
10/9 (343956623832196, —126385184284523, 362777970896793) 1
17/3 (127, —-596, 1405) 1
11/9 (888221912602727881028999424599,
—492896695539027689262279545737, 1
987459994593608883597631915735)
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TABLE 2. Solutions to the system () arising from ¢t = 3

n 1 2 3 4 )

1 || 18 | 13825 | -176607027 | -295503813128476 | 16781116061381923831545
T2 || -15 | -9157 | 154786818 | 163694336414557 | 7388891819632091442261
r3 || 13 | 1092 | 134510017 | 453392718089919 | -21580737831236008171454
zq || 13 | 4495 | -22242470 | 129024868182881 | -17757024654750594094103
5 || -22 | -14187 | 168678401 | 198009483059676 | -4986911769004750233739
ze || 1 6812 | -202780835 | -487825971930557 | 21449301398866340776666
y1 || 10 | 10945 | -232951931 | -456295433816476 | 15486481036492920280369
Y2 || -23 | -12037 | 98441914 2902715726557 6094256794743087891085
ys || 5 | -1788 | 78165113 | 292601097401919 | -22875372856125011722630
ya || 21 | 7375 34102434 | 289816488870881 | -16462389629861590542927
ys || -14 | -11307 | 225023305 | 358801103747676 | -3692276744115746682563
Ys || 9 9692 | -146435931 | -327034351242557 | 22743936423755344327842

TABLE 3. Solutions to the system (@) arising from the rank 3 curve

Iy ) I3 T4 Is5 T
point on Cy/y4 Y1 Yo Y3 Ya Ys Yo
453 150 -307 -455 -98 281
Q2 429 174 -331 -431 -122 305
978 365 -643 -991 -63 490
Q1 842 501 =779 -855 -199 626
-1136 583 261 785 1739 -1800
Q3 -1568 1015 -171 1217 1307 -1368
-3147 2120 75 1927 4832 -4927
@1+ Q2 -4027 3000 -805 2807 3952 -4047
6190 -18943 17613 3265 -12363 9958
@1+ Qs 470 -13223 11893 8985 -18083 | 15678
159999 | 99268 | -117995 | -175511 | 67884 21299
Q1+ Q2+ Q3 || 105055 | 154212 | -172939 | -120567 | 12940 76243
319333 | -455078 | 333993 | -72523 | -428926 | 415401
Q2 — Q3 207133 | -342878 | 221793 | 39677 | -541126 | 527601

however, the pullbacks of 2P; and 2P, result in the following cubic parametrizations,

respectively:

X1 T2 X3 T4 x5 Tg -

Y1:-Y2 Y3 Y4

Y5 tYe =

(Bw +3)t3 + (w+4)t? + (—w + 3)t — 3w :

(—2w — D)3 + Bw 4+ 3)t* 4 (4w +4)t +w +2:
3wt® + (2w — )% + (—9w — 6)t — 2w — 1 :

(—w —2)t 4 (=5w — 6)t2 + (hw — )t +w —1:
(2w + D)% + (9w + 3)t? + (—2w — 3)t — 3w — 3 :
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(—w+ 1)t3 — 4wt® — 3wt + 2w + 1

(—w4+ D+ (=sw+ D)t2 + (bw+6)t +w + 2

(2w + D)t* 4+ (9w + 6)t? + (—2w + 1)t — 3w :

(~w —2)t% + (—4w — 4)t* + (—3w — 3)t + 2w + 1 :

3wt + (w— 3t + (—w — 4)t — 3w —3:

(—2w — 1)t + 3wt? + 4wt +w — 1

(3w + 3)t3 + (2w + 3)t* + (—9w — 3)t — 2w — 1;

and

L1 T2 T3 T4 5T Y1:Y2:Y3:Ys:Ys5:Ye =

(2w + 4)t3 + (4w + 6)t* + (5w + 8)t + 3w + 3 :

=263 4+ (Bw+2)t + Bw+ )t +w—1:

(—4w — 6)t3 + (—dw — D> + (w+ Tt + 3 :

(—2w — 2)t3 + (—5w — 8)t? + (—bw — It —w — 2

(—2w — 6)t3 + (—6w — 14)t> =3t +w +2:

(4w + 8)t% + (bw + 12)t2 + 2t — 2w — 1 :

(4w + 8)t3 + (Tw + 12)t% + (2w + 2)t +w — 1 :

(—2w — 6)t% — 4% + (6w + T)t + 3w + 3 :

(—2w—2)t3 + (~w+2)t* + (2w + 1)t — 2w — 1

(—4w — 6)t> + (—8w — 14)t2 + (—3w — )t +w + 2 :

—2t* 4+ (3w — 8)t* + (—3w — Nt —w — 2:

(2w + 4)t3 + (2w + 6)t* + (3w + 8)t + 3.
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