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UNIFORM SUPERCONVERGENCE ANALYSIS

OF THE DISCONTINUOUS GALERKIN METHOD

FOR A SINGULARLY PERTURBED PROBLEM IN 1-D

ZIQING XIE AND ZHIMIN ZHANG

Abstract. It has been observed from the authors’ numerical experiments
(2007) that the Local Discontinuous Galerkin (LDG) method converges uni-
formly under the Shishkin mesh for singularly perturbed two-point boundary
problems of the convection-diffusion type. Especially when using a piecewise
polynomial space of degree k, the LDG solution achieves the optimal conver-
gence rate k+1 under the L2-norm, and a superconvergence rate 2k+1 for the
one-sided flux uniformly with respect to the singular perturbation parameter ε.
In this paper, we investigate the theoretical aspect of this phenomenon under
a simplified ODE model. In particular, we establish uniform convergence rates
√
ε
(
lnN
N

)k+1
for the L2-norm and

(
lnN
N

)2k+1
for the one-sided flux inside

the boundary layer region. Here N (even) is the number of elements.

1. Introduction and statement of the main result

It is common knowledge in the scientific computing community that discontin-
uous Galerkin (DG) methods, especially the local discontinuous Galerkin (LDG)
method [4], are effective for convection dominated convection-diffusion problems
[2]. Numerical experiments revealed some uniform superconvergence phenomena
of the LDG method for singularly perturbed problems. It has been observed that
(see, e.g., [14]) the LDG method converges uniformly under the Shishkin mesh for
singularly perturbed two-point boundary problems of the convection-diffusion type.
In particular, the rate of convergence for the one-sided flux was found to be of order
2k + 1 (comparing with the optimal global rate k + 1), which is uniformly valid
with respect to the singular perturbation parameter ε. Nevertheless, there is no
theoretical justification of this phenomenon so far. In this paper, we investigate the
uniform convergence/superconvergence properties of the LDG method under the
Shishkin type meshes for a simple one-dimensional model problem on Ω = (0, 1):

(1.1) −εq′ + bq = f, q(1) = 1.
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To fix the boundary layer at x = 1, we assume that b ≥ b0 > 0. If f(x) is not the

fundamental solution e
∫ x
1

b/ε, the exact solution of (1.1) is

(1.2) q(x) = q(1)e
∫ x
1

b/ε +

∫ 1

x

ε−1f(t)e
∫ x
t

b/εdt,

which can be decomposed into q = q̄ + qε, where

(1.3) |q̄|k+1 ≤ C, |q(s)ε (x)| ≤ Cε−se−b0(1−x)/ε.

Note that when f ∈ H1(0, 1), the solution can be written as

q(x) = [q(1)− f(1)

b(1)
]e

∫ x
1

b/ε +

∫ 1

x

f ′(t)

b(t)
e
∫ x
t

b/εdt.

Our model problem has all the essential properties of the following two-point bound-
ary value problem:

(1.4) −εu′′ + bu′ + cu = f, u(0) = 0, u′(1) = 1.

Note that when c = 0, (1.4) can be decomposed into (1.1) and

(1.5) u′ − q = 0, u(0) = 0.

When both b and c are constants, we may transfer (1.4) into

−εv′′ + b̃v′ = f̃ , b̃ = b− 2εt, f̃(x) = e−txf(x),

by the transformation u(x) = v(x)etx with t satisfying −εt2 + bt+ c = 0.
The existence of the boundary layer term qε causes difficulty in the numerical

approximation for ε � 1. It is well known that the standard continuous Galerkin
method results in non-physical oscillatory numerical solutions for small ε under
quasi-uniform grids. On the other hand, DG methods are able to avoid the oscilla-
tion. However, in order to capture the boundary layer behavior, mesh refinement
inside the boundary layer is needed. Towards this end, we first select a transition
number τ ∈ (0, 1/2), then we partition the interval (0, 1) into N(even) subintervals
with N/2 of length H = 2(1 − τ )/N in (0, 1 − τ ) and N/2 of length h = 2τ/N in
(1 − τ, 1). With the nodal points being 0 = x0 < x1 < · · · < xN = 1, we define
Ωj = (xj−1, xj), hj = xj − xj−1, and the DG space as

V ε,k
N = {v ∈ L2(0, 1) : v|Ωj

∈ Pk(Ωj), j = 1, 2, . . . , N},

where Pk is the space of polynomials of degree no more than k. In this paper, we
consider two different mesh refinement strategies by two different selections of the
transition number:

(1.6) τ = τε =
ε

b0
(k + 1) ln

1

ε
,

or

(1.7) τ = τN =
ε

b0
(2k + 1) lnN.

The first choice fixes the transition point for a fixed ε. It is well known that the
boundary layer width is O(ε ln ε−1). The second choice is the so-called Shishkin
mesh; the transition point changes with each different N .
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We use the standard notation Q+
j , Q

−
j , [Q]j = Q+

j − Q−
j to introduce the DG

scheme for (1.1): Find Q ∈ V ε,k
N with Q+

N = 1 such that for j = 1, 2, . . . , N ,

(1.8)

∫
Ωj

Q(v′ + bε−1v)−Q+
j v

−
j +Q+

j−1v
+
j−1 =

∫
Ωj

ε−1fv, ∀v ∈ V ε,k
N ;

or equivalently, via integration by parts on the above,

(1.9)

∫
Ωj

(−Q′ + bε−1Q)v − [Q]jv
−
j =

∫
Ωj

ε−1fv, ∀v ∈ V ε,k
N .

Summing up the last N − n+ 1 elements, we obtain for any v ∈ V ε,k
N ,

an(Q, v) =

∫ 1

xn−1

Q(v′ + bε−1v) +Q+
n−1v

+
n−1 −Q+

Nv−N +
N−1∑
j=n

Q+
j [v]j

(1.10)

=

∫ 1

xn−1

Q(v′ + bε−1v) +Q+
n−1v

+
n−1 −Q+

Nv+N +
N−1∑
j=n

Q+
j [v]j =

∫ 1

xn−1

ε−1fv;

an(Q, v) =

∫ 1

xn−1

(−Q′ + bε−1Q)v −
N−1∑
j=n

[Q]jv
−
j =

∫ 1

xn−1

ε−1fv.

(1.11)

Here we require Q−
N = Q+

N and v−N = v+N according to the boundary condition
at xN = 1. Due to the ODE nature, the solution can be obtained via backward
solving.

Remark. The LDG method [4], when applied to the full scale two-point boundary
problem (1.4), contains two important steps [2]: 1) transfer the original problem to
a first-order ODE system by introducing (1.5); and 2) choose numerical fluxes for
Q and u differently (one up-winding and another down-winding) according to the
location of the boundary layer.

Although numerical evidence indicates that the LDG method has the same con-
vergence and superconvergence rate for the full scale problem, the theoretical anal-
ysis for the ODE model does not carry over to the full scale case when b and c are
not constants.

It is worthy to point out that the LDG method, when applied to our simplified
ODE model (1.1), is equivalent to the DG time-stepping method introduced in [12,
Chapter 14].

Now we are ready to state our main result.

Theorem 1.1. Let q be the solution of (1.1). Assume that b ≥ b0 > 0 and f
are sufficiently smooth such that the solution q satisfies the regularity (1.3). Let

Q ∈ V ε,k
N be the numerical solution of (1.10) (or (1.11)). Then there is a constant

C(k), depending on k, but independent of N and ε, such that
1) If the transition point is given by (1.6), then

(1.12) ‖q −Q‖ ≤ C(k)(
√
ε

(
ln ε−1

N

)k

+
1

Nk+1
);
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furthermore, if q = qε and xn−1 ∈ [1− τ, 1), then

‖q −Q‖ ≤ C(k)
√
ε

(
ln ε−1

N

)k

,

(1.13) |(q −Q)+n−1| ≤ C(k)

(
ln ε−1

N

)2k+1

, n = 1, 2, . . . , N.

2) If the transition point is given by (1.7), then

(1.14) ‖q −Q‖ ≤ C(k)(
√
ε

(
lnN

N

)k

+
1

Nk+1
);

furthermore, if q = qε and xn−1 ∈ [1− τ, 1), then

‖q −Q‖ ≤ C(k)
√
ε

(
lnN

N

)k

,

|(q −Q)+n−1| ≤ C(k)

(
lnN

N

)2k+1

, n = 1, 2, . . . , N.(1.15)

Here we use the simplified notation ‖ · ‖ to denote the L2-norm on the whole
domain Ω = (0, 1). Later on, we will use an index to indicate the L2-norm on a
subdomain when necessary.

Prior to a formal proof (which will be postponed to the next two sections), we
will make some remarks on the literature.

First we compare the LDG with the standard finite element method (under the
Shishkin mesh), which has the following error bound (see [15]) for problem (1.4):

‖u− uN‖ε,N ≤ C[
1

Nk
+ (

lnN

N
)k+1].

Here

‖v‖2ε,N = |v|2ε,N + ‖v‖2, |v|2ε,N = ε

N∑
i=1

hi

k∑
j=1

wjv
′(xij)

2,

where xij are the Gaussian points in element (xj−1, xj). We see that the LDG does
a better job in approximating q = u′. Note the ε factor in defining the discrete
norm |v|ε,N .

To the best of our knowledge, (1.13) or (1.15) is the first such kind of theoretical
result for DG methods. We would like to emphasize that the central point here is
the ε independence. Otherwise, there are many results in the literature which have
norms of the solution appearing in the error bounds. Here we list a few.

In the early 1970’s, Douglas and Dupont proved that the continuous Galerkin
approximation for the two-point boundary value problem

−au′′ + bu′ + cu = f, u(0) = 0 = u(1),

superconverges at all nodal points for u ∈ Hr:

|(u− uh)(xj)| ≤ Chk+s‖u‖s+1, s = min(k, r − 1),

compared with the global optimal rate hs+1. This result is sharp [5]. Especially
when k = r − 1, the convergent rate is improved from hk+1 to h2k.
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Almost at the same time, Wheeler proposed the following flux approximation
for the continuous Galerkin approximation:

Γj = x−1
j [a(u′

h, 1)(0,xj) + (bu′
h + cuh + f, x)(0,xj)]

to obtain

|Γj − a(xj)u
′(xj)| ≤ Chk+s‖u‖s+1.

Especially when k = r − 1, the convergent rate is improved from hk to h2k [13].
With the higher regularity assumption u ∈ H3k+2, Thomée proved that a DG

approximation to the ODE system u′ + Au = f at nodes converges at rate h2k+1;
see [12, Theorem 12.3 (p.189)]. Here, the regularity assumption can be relaxed to
u ∈ Hk+1 [1, Theorem 7.3.1 (p.248)].

For the DG approximation of a class of transient hyperbolic equations, under
locally translation-invariant meshes, Cockburn et al. proved that a simple con-
volution post-processing improves the rate of convergence from hk+1/2 to h2k+1

[3].
More recently, Celiker and Cockburn proved that the numerical trace (including

flux) of the LDG approximation to problem −εu′′ + au′ = f converges at the rate
h2k+1 for ε = O(1) [2].

Of course, all these results are for regular problems and the term ‖u‖s+1 appears
in the error bounds. By the regularity, we would have ‖u‖s+1 ≈ ε−s−1/2, which
makes the error bounds meaningless for ε � 1. Nevertheless, our earlier numerical
experiments demonstrated 2k + 1 order uniform superconvergence for flux at the
nodal points under the Shishkin mesh for singularly perturbed problems in 1-D
[14], which sparked the motivation for our investigation in this direction.

To end this introduction, we would like to point out that there are vast amounts
of literature on numerical approximations for singularly perturbed problems; see,
e.g., [6, 7, 8, 9, 10, 11] and the references therein. A central theme is uniform
convergence.

2. Fundamental interpolation property for the singular term

When comparing singularly perturbed and non-singularly-perturbed problems,
the main difficulty for singularly perturbed problems is the uniform approximation
for the boundary layer term qε. In this section, we define projection type inter-
polants and establish their approximation property for each of the aforementioned
choices of τ .

1) For τ = τε, we define π±
ε : C

0 → V ε,k
N , such that

(2.1)

∫
Ωj

(qε − π±
ε qε)r = 0, ∀r ∈ Pk−1(Ωj);

(qε − π±
ε qε)

±
j−1 = 0, j = 1, . . . , N.

We call π−
ε (π+

ε ) the right (left) Radau interpolation operator.

2) For τ = τN , we define π±
N : C0 → V ε,1

N (0, 1− τN ) ∪ V ε,k
N (1− τN , 1), such that

outside the boundary layer region,

(2.2)

∫
Ωj

(qε − π±
Nqε) = 0, (qε − π±

Nqε)
±
j−1 = 0, j = 1, . . . , N/2,

and π±
N = π±

ε inside the boundary layer region.
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In order to simplify the notation, we discuss only πN = π+
N and πε = π+

ε and all
results are valid for π− as well.

First, we define

q̄ε,j =
1

|Ωj |

∫
Ωj

qε.

Then, we can write explicitly for x ∈ [xj−1, xj), j = 1, 2, . . . , N/2:

(2.3) πNqε(x) = qε(xj−1) +
2

H
(q̄ε,j − qε(xj−1))(x− xj−1).

It is straightforward to verify that for j = 1, 2, . . . , N/2,

‖πNqε‖2L2(Ωj)
=

5H

6
(qε(xj−1)− q̄ε,j)

2 +
H

2
(qε(xj−1)

2 + q̄2ε,j),(2.4)

‖πNqε‖L1(Ωj) = H|qε(xj−1)− 2q̄ε,j |.(2.5)

To estimate the approximation for the singular part, we note that

e−b0τ/ε =

{
εk+1, τ = τε,
N−2k−1, τ = τN .

A direct calculation yields, for r = 1, 2,

∫ 1−τ

0

e−rb0(1−x)/εdx ≤ ε

rb0

{
εr(k+1), τ = τε,
N−r(2k+1), τ = τN ,

(2.6)

∫ 1

1−τ

e−rb0(1−x)/εdx ≤ ε

rb0
.(2.7)

Then by the regularity assumption (1.3), we have

|qε|rWk+1
r (0,1−τε)

≤ Cε−r(k+1)

∫ 1−τε

0

e−rb0(1−x)/εdx ≤ Cε

rb0
,(2.8)

‖qε‖rLr(0,1−τN ) ≤ C

∫ 1−τN

0

e−rb0(1−x)/εdx ≤ Cε

rb0
N−r(2k+1),(2.9)

|qε|rWk+1
r (1−τ,1)

≤ Cε−r(k+1)

∫ 1

1−τ

e−rb0(1−x)/εdx ≤ C

rb0
ε−r(k+1)+1.(2.10)

Lemma 2.1. Let qε satisfy the regularity assumption (1.3) and let πN be defined
by (2.2). Then we have, for r = 1, 2,

(2.11) ‖πNqε‖rLr(0,1−τN ) �
ε

Nr(2k+1)
.

Proof. From (2.4), we have

(2.12) ‖πNqε‖rLr(0,1−τN ) ≈ H

N/2∑
j=1

(qrε (xj−1) + q̄rε,j).
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By the regularity assumption (1.3),

H

N/2∑
j=1

qrε (xj−1) < C

∫ 1−τN

0

e−rb0(1−x)/εdx <
Cε

rb0
N−r(2k+1);(2.13)

H

N/2∑
j=1

q̄rε,j < CH

N/2∑
j=1

(
1

H

∫ xj

xj−1

e−b0(1−x)/εdx

)r

< C

N/2∑
j=1

∫ xj

xj−1

e−rb0(1−x)/εdx

= C

∫ 1−τN

0

e−rb0(1−x)/εdx <
Cε

rb0
N−r(2k+1).(2.14)

Substituting (2.13) and (2.14) into (2.12), we obtain (2.11). �

Now we are ready to prove the main interpolation result.

Theorem 2.2. Let qε satisfy the regularity assumption (1.3), πε and πN be defined
by (2.1) and (2.2), respectively. Then we have, for r = 1, 2,

‖qε − πNqε‖Lr(0,1−τN ) �
ε1/r

N2k+1
;(2.15)

‖qε − πNqε‖Lr(1−τN ,1) � ε1/r
(
2k + 1

b0
· lnN

N

)k+1

;(2.16)

‖qε − πεqε‖Lr(0,1) � ε1/r
(
k + 1

b0
· ln ε

−1

N

)k+1

.(2.17)

Proof. First, (2.15) follows directly from the triangle inequality, (2.9), (2.10), and
Lemma 2.1.

Note that qε − πNqε = 0 if qε is a polynomial of degree no more than k. By the
Bramble-Hilbert Lemma and (2.10),

‖qε − πNqε‖Lr(1−τN ,1) ≤ Chk+1|qε|Wk+1
r (1−τN ,1) ≤ Cε1/r

(
h

ε

)k+1

.

Then (2.16) follows by using

h

ε
=

2k + 1

b0
· lnN

N
.

Next, applying (2.8) and (2.10),

‖qε − πεqε‖rLr(0,1) = ‖qε − πεqε‖rLr(0,1−τε)
+ ‖qε − πεqε‖rLr(1−τε,1)

≤ CHr(k+1)|qε|rWk+1
r (0,1−τε)

+ Chr(k+1)|qε|rWk+1
r (1−τε,1)

≤ Cε(N−r(k+1) + (
h

ε
)r(k+1))

≤ Cε(
k + 1

b0
· ln ε

−1

N
)r(k+1).(2.18)

Note that in this case,
h

ε
=

k + 1

b0
· ln ε

−1

N
.
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Finally, (2.17) follows by taking the r-roots of (2.18). �

3. Proof of the main result

We denote a(·, ·) = a1(·, ·). Note that the scheme is consistent, i.e., the exact
solution q satisfies (1.10) and (1.11), and we have the orthogonality property

(3.1) an(q −Q, v) = 0, ∀v ∈ V ε,k
N .

To establish the stability of the scheme, we set v = Q in both (1.10) and (1.11)
to obtain

an(Q,Q) =

∫ 1

xn−1

QQ′ + ε−1

∫ 1

xn−1

bQ2 + (Q+
n−1)

2 − (Q+
N )2 +

N−1∑
j=n

Q+
j [Q]j

=

∫ 1

xn−1

ε−1fQ;

(3.2)

an(Q,Q) = −
∫
xn−1

Q′Q+ ε−1

∫ 1

xn−1

bQ2 −
N−1∑
j=n

[Q]jQ
−
j =

∫ 1

xn−1

ε−1fQ.(3.3)

Combining (3.2) and (3.3), we have the following stability result:

(3.4) an(Q,Q) = ε−1

∫ 1

xn−1

bQ2+
1

2

N−1∑
j=n

[Q]2j+
1

2
[(Q+

n−1)
2−(Q+

N )2] =

∫ 1

xn−1

ε−1fQ.

By the orthogonality property, we have

an(Q− qI , Q− qI) = an(q − qI , Q− qI),

for any interpolant qI ∈ V ε,k
N .

Letting v = Q− qI satisfy (q − qI)
+
j = 0, we obtain, by (1.10),

(3.5) b0‖v‖2 ≤ εa(v, v) = εa(q − qI , v) = ε(

∫ 1−τ

0

+

∫ 1

1−τ

)(q − qI)(v
′ + bε−1v).

Recall that b ≥ b0 > 0.
Based on (1.3), we write

q − qI = q̄ − q̄I + qε − qε,I .

The estimate for the regular part is standard:

εa(q̄ − q̄I , v) ≤ C ′(εN−k +N−k−1)|q̄|k+1‖v‖ ≤ C(εN−k +N−k−1)‖v‖,(3.6)

‖q̄ − q̄I‖ ≤ CN−k−1.(3.7)

Proof of (1.12). For τ = τε, we set qε,I = π+
ε qε. By (3.5) and the inverse inequality,

‖v′‖(0,1−τ) ≤ CH−1‖v‖(0,1−τ), ‖v′‖(1−τ,1) ≤ Ch−1‖v‖(1−τ,1),

we have

εa(qε − qε,I , v) ≤ C(εHk +Hk+1)|qε|k+1,(0,1−τ)‖v‖(0,1−τ)

+ C(εhk + hk+1)|qε|k+1,(1−τ,1)‖v‖(1−τ,1)

≤ C
√
ε(
ln ε−1

N
)k‖v‖,(3.8)
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by (2.8) and (2.10). Applying (3.6) and (3.8) in (3.5) results in

b0‖v‖2 = b0‖Q− qI‖2 ≤ C(
√
ε(
ln ε−1

N
)k +

1

Nk+1
)‖v‖.

Canceling ‖v‖ on both ends, we obtain

‖Q− qI‖ ≤ C(
√
ε(
ln ε−1

N
)k +

1

Nk+1
).

Using (2.17) and (3.7), we obtain

�(3.9) ‖q −Q‖ ≤ ‖q − qI‖+ ‖qI −Q‖ ≤ C(
√
ε(
ln ε−1

N
)k +

1

Nk+1
).

Proof of (1.14). When τ = τN , we set qε,I = π+
Nqε. By Theorem 2.2 and the inverse

inequality,

(3.10)
ε

∫ 1−τ

0

(qε − qε,I)(v
′ + bε−1v) ≤ ‖qε − qε,I‖(0,1−τN )(ε‖v′‖+ ‖v‖)

≤ C
√
εN−2k−1(Nε+ 1)‖v‖.

On the other hand, with 2h = τ/N , we have, by the inverse estimate ‖v′‖ ≤
Ch−1‖v‖,
(3.11)

ε

∫ 1

1−τ

(qε − qε,I)(v
′ + bε−1v) ≤ C(εhk + hk+1)|qε|k+1,(1−τ,1)‖v‖ ≤ C

√
ε(
lnN

N
)k‖v‖.

Combining (3.10) and (3.11) yields (3.8) for this case. The rest is similar as in the
proof of (1.12). �

Proof of (1.15). Let uε = e
∫ xn−1
x

b/ε with xn−1 ∈ [1− τ, 1). Then uε satisfies

u′
ε + bε−1uε = 0, uε(xn−1) = 1.

Setting v = uε in

an(q −Q, v) =

∫ 1

xn−1

(q −Q)(v′ + bε−1v) + (q −Q)+n−1v
+
n−1 +

N−1∑
j=n

(q −Q)+j [v]j ,

we have, by the orthogonality property,

(3.12)

(q −Q)+n−1 = an(q −Q, uε) = an(q −Q, uε − π−
Nuε)

=

∫ 1

xn−1

[−(q − qI)
′ + bε−1(q −Q)](uε − π−

Nuε).

Here π−
N is the projection operator defined in Section 2, and we have used

an(q −Q, v) =

∫ 1

xn−1

[−(q −Q)′ + bε−1(q −Q)]v −
N−1∑
j=n

[q −Q]jv
−
j .

We already have, from a previous argument,

∣∣ ∫ 1

xn−1

[−(qε − qε,I)
′ + bε−1(qε −Q)]v

∣∣ ≤ C(k)ε−1/2(
lnN

N
)k‖v‖.
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By Theorem 2.2, we have

‖uε − π−
Nuε‖(xn−1,1) ≤ C(k)

√
ε

(
lnN

N

)k+1

.

Therefore,

(3.13) |
∫ 1

xn−1

[−(qε − qε,I)
′ + bε−1(qε −Q)](uε − π−

Nuε)| ≤ C(k)

(
lnN

N

)2k+1

.

When q = qε, we apply (3.13) to the right-hand side of (3.12) to obtain

|(q −Q)+n−1| ≤ C(k)

(
lnN

N

)2k+1

,

which is (1.15). The proof of (1.13) is similar. �
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