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ON THE EXISTENCE AND NON-EXISTENCE

OF ELLIPTIC PSEUDOPRIMES

SIGUNA MÜLLER

Abstract. In a series of papers, D. Gordon and C. Pomerance demonstrated
that pseudoprimes on elliptic curves behave in many ways very similar to
pseudoprimes related to Lucas sequences. In this paper we give an answer
to a challenge that was posted by D. Gordon in 1989. The challenge was
to either prove that a certain composite N ≡ 1 mod 4 did not exist, or to
explicitly calculate such a number. In this paper, we both present such a
specific composite (for Gordon’s curve with CM by Q(

√
−7)), as well as a proof

of the non-existence (for curves with CM by Q(
√
−3)). We derive some criteria

for the group structure of CM curves that allow testing for all composites,
including N ≡ 3 mod 4 which had been excluded by Gordon. This gives rise
to another type of examples of composites where strong elliptic pseudoprimes
are not Euler elliptic pseudoprimes.

1. Motivation

1.1. The challenge. For a field k of characteristic > 3, an elliptic curve over k
may be represented as

(1) E(k) = {(x, y) ∈ k2 : y2 = x3 + ax+ b} ∪ O,

where a, b,∈ k and O is the point at infinity. E is nonsingular if the discriminant
is nonzero. In this case, E(k) can be naturally made into an additive group with
O being the identity element.

In [4], [5], Gordon defined a necessary but not sufficient test for primality using
elliptic curves. Let E be an elliptic curve over Q with complex multiplication (CM)
by an order in K = Q(

√
−d) for d ∈ Z+, and suppose E has a rational point P on

E of infinite order. Then, if N is a prime which is inert in K and does not divide
the discriminant of E,

(2) (N + 1)P ≡ O mod N.

That is, when we view E as an elliptic curve over the finite field Z/NZ, the image
of the point P has order dividing N+1. A composite number N is called an elliptic
pseudoprime if

(−d
N

)
= −1, N is coprime to the discriminant of E and N satisfies

(2). (The concept of the evaluation modulo N for composite N will be made precise
in sect. 3.2.)
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These pseudoprimes are analogous to Fermat pseudoprimes, which are compos-
ites N for which

aN−1 ≡ 1 mod N

for a given a. They are also analogous to pseudoprimes for the Lucas-Lehmer test:
let D,P,Q be integers such that D = P 2 − 4Q �= 0 and P > 0. Then a composite
integer N is a Lucas pseudoprime if

UN−(D
N ) ≡ 0 mod N,

where U = Uk is the Lucas U -sequence.
A more profitable view of Lucas pseudoprimes was developed by Grantham in

[7] using the field Fp2 (see also [11], [2]), and for the more general case in [8]. He
puts the Frobenius automorphism into the center stage of his test. If P and Q are
as above, then a composite number N is a Frobenius pseudoprime with respect to
f(x) = x2 − Px+Q if

xN ≡
{
P − x mod (f(x), N), if

(
D
N

)
= −1,

x mod (f(x), N), if
(
D
N

)
= 1.

This also shows that elliptic pseudoprimes are analogous to Grantham’s (quadratic)
Frobenius test.

The Lucas-Lehmer test is a degenerate of the elliptic test, and the Fermat test
is a special case of the Lucas test. For this reason, it seems plausible that elliptic
pseudoprimes share properties very similar to Fermat and Lucas pseudoprimes. In
a series of papers [4, 5, 6], Gordon and Pomerance describe similarities regarding
distribution estimates.

This paper deals with an interesting question stated by Gordon in 1989, [4,
p. 244]. It is a fundamental and well-known fact that the Fermat test can be
strengthened by the ‘strong version’, resp. the Miller-Rabin test. Similarly, a
strong version’ of the Lucas test can be formulated.

Gordon defines Euler elliptic pseudoprimes analogously to the regular case. N
is an Euler elliptic pseudoprime if

(3)

{(
N+1
2

)
P ≡ O mod N, if P = 2Q for some Q on E(ZN ),(

N+1
2

)
P ≡ a 2-torsion point mod N, otherwise.

Gordon also required that N ≡ 1 mod 4, but we will show below that this is not
necessary (but see Remark 4).

If p is a prime, for elliptic curves given by (1) the 2-torsion points in E(Fp) (points
P such that 2P = O) are of the form (X, 0), where X is a root of X3 +AX +B ≡
0 mod p.

Analogously, strong elliptic pseudoprimes are defined as follows [4, 5]:

Definition 1. If N is an elliptic pseudoprime and N + 1 = 2s · t, where t is odd,
call N a strong elliptic pseudoprime if

(t)P ≡ O mod N, or

(t · 2r)P ≡ a 2-torsion point, for some r with 0 ≤ r < s.

For Fermat and Lucas pseudoprimes, all strong pseudoprimes fulfill the corre-
sponding Euler criteria, i.e., are Euler pseudoprimes.
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Table 1. Gordon’s Curves with Points

Gordon’s CM curves in Fp for
(

−d
p

)
= −1

curve P K = Q(
√
−d)

(i) y2 = x3 − 5x (5, 10) Q(
√
−1)

(ii) y2 = x3 − 120x− 448 (64, 504) Q(
√
−2)

(iii) y2 = x3 + 3 (1, 2) Q(
√
−3)

(iv) y2 = x3 − 3500x− 98000 (84, 884) Q(
√
−7)

(v) y2 = x3 − 1056x+ 13552 (33, 121) Q(
√
−11)

(vi) y2 = x3 − 2432x− 46208 (57, 19) Q(
√
−19)

(vii) y2 = x3 − 495360x− 134193024 (817, 2537) Q(
√
−43)

(viii) y2 = x3 − 117920x+ 15585808 (201, 67) Q(
√
−67)

(ix) y2 = x3 = −34790720x+ 78984748304 (3400, 548) Q(
√
−163)

Gordon first asked the surprising question whether this would be true for elliptic
pseudoprimes. He poses the challenge, ‘The proof does not carry over to elliptic
pseudoprimes, and it would be interesting to find a strong elliptic pseudoprime
N ≡ 1 mod 4 which does not pass (3), or prove that none exist.’

1.2. Our result. The main result of this paper is an answer to Gordon’s challenge.
Before stating the result, we need to address a few issues.

Gordon’s original definition for pseudoprimes on elliptic curves [4, p. 233] incor-
porated an explicit addition chain for N + 1 (resp. (N + 1)/2i). However, he also
notes that, ‘the dependence on the addition chain may be eliminated by using a
parametrization for which the addition law has no divisions.’

Later [6], the definition was given in terms of the division polynomials. However,
our approach will be based on calculations using the addition law, for reasons that
will be made clear in sect. 3.2.

As for Fermat pseudoprimes, it is always easier to find a pseudoprime N for some
point on a given curve. It is much harder to find N where both the curve and the
point are specified; see sect. 3.2.

Gordon gives an explicit list of suitable curves, along with an integral point, for
each field of CM with class number 1; see Table 1. For the most part of the paper
we concentrate on finding N for this (more challenging setting) where both the
curve and the point are specified.

Our main contributions are as follows:

• We show that for Gordon’s curve (iv), E : y2 = x3 − 3500x − 98000 along
with its (given) integral point (84, 884), there is a composite number that
is a counterexample to the classical result. Specifically, let

N = 676258600736819377469073681570025709

= 47737 · 275183 · 1212119 · 2489759 · 3178891 · 5366089.

Then N ≡ 1 mod 4,
(−7

N

)
= −1 and

(N + 1)P ≡ O mod N,(
N+1
2

)
P ≡ (654609963152984637027391710649598749, 0) mod N,

2(654609963152984637027391710649598749, 0) ≡ O mod N.
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Therefore, N is a strong elliptic pseudoprime. However, there exists a point

Q = (427631894156657698513741722706642740,

349223536492541846798816891095072158)

on E(Z/NZ) with

2Q ≡ P mod N.

Hence, P ‘does not look like a double, but is’, contradicting the Euler con-
dition. Here, the computations are done utilizing the modified projective
algorithm [3, p. 293] via a left-to-right scan.

• The opposite is also true. For the curve (iii) we give an explicit proof that
for E : y2 = x3+B and any integral point on E, every strong elliptic pseu-
doprime N ≡ 1 mod 4 is also an Euler elliptic pseudoprime. We conjecture
that the same is true for all the other applicable curves (v)-(ix) (those which
allow N ≡ 1 mod 4).

• By drawing from results in [13] for supersingular curves, Gordon observed
that E(Fp) might not be cyclic when p is a prime ≡ 3 mod 4. This led
him to require N ≡ 1 mod 4. However, we demonstrate that any CM curve
by an order in Q(

√
−d) for d > 2 is always cyclic. Hence, the above can

be generalized to integers N ≡ 3 mod 4. In that case, 2s|N + 1 for s > 1
and one conceivably obtains stronger tests for larger s. We show that even
for s > 1, counterexamples analogous to the above exist. Moreover, the
case s > 1 gives rise to yet another type of counterexamples. We exhibit
examples of composites N with points that ‘look like a double, but aren’t’.
While the underlying criteria are fairly restrictive we were able to compute
counter-examples for each type of curve in Gordon’s table.

2. Some ideas and observations

2.1. Recognizing doubles. Unless stated otherwise, primes will be denoted by
p, P, or Q, etc., and composite numbers by N .

As in the traditional setting, we require some (hopefully simple) mechanism to
check whether P is twice another point. For a proof of the following well-known
result, see e.g. [9].

Lemma 1. Let E be an elliptic curve over a field k of characteristic not equal to
2 or 3. Suppose E is given by

y2 = (x− α)(x− β)(x− γ) = x3 + rx2 + sx+ t

with α, β, γ in k. For (x2, y2) in E(k), there exists (x1, y1) in E(k) with 2(x1, y1) =
(x2, y2) iff x2 − α, x2 − β and x2 − γ are squares in k.

When k is a finite field, E(k) is a torsion group; that is, every point on the curve
has finite order. For a non-negative integer n, the set of n-torsion points is

(4) E[n] = {P ∈ E(k) |nP = O}.

We stress that here the points can have coordinates in the algebraic closure k, not
just k. If char(k) �= 2, E can be put into the form y2 = (x− α)(x− β)(x− γ) with
α, β, γ ∈ k. One can easily show [14] that

(5) E[2] = {O, (α, 0), (β, 0), (γ, 0)} � Z2 ⊕ Z2.
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Hence, the condition of the lemma requires that all 2-torsion points are in k (and
not only in k). This means that E(k) has a subgroup isomorphic to Z2⊕Z2. Hence,
this approach cannot be used for the challenge curves defined over k = E(Fp) as
they are all cyclic when p is prime. In this situation the problem of recognizing
whether a point is a double of something seems to be much more difficult.

The classical analog is furnished by the Jacobi symbol, which however has the
well-known practical but unpleasant property: if

(
a
N

)
= 1 for some composite N ,

then a is not necessarily a square modulo N . Being a square would require being
such modulo each factor of N . However, we have the following special case, which
we shall prove in section 2.4 below.

Lemma 2. Let N ≡ 3 mod 4 be a composite integer. If N is an Euler pseudoprime
for the base a, i.e., if a(N−1)/2 ≡

(
a
N

)
mod N , then this implies that{

a(N−1)/2 ≡ 1 mod N, iff a is a square modulo N,

a(N−1)/2 ≡ −1 mod N, iff a is not a square modulo N.

For N ≡ 1 mod 4 (as required) the analogous condition for CM curves reads

(6)

{(
N+1
2

)
P ≡ O mod N, iff P is a double in E(ZN),(

N+1
2

)
P ≡ a 2-torsion point mod N, iff P is not a double in E(ZN).

Note that this condition bypasses any Jacobi-like symbols. Also note that since
(N + 1)/2 is odd, (6) in fact constitutes the strong Euler test. Hence, for con-
structing Gordon’s challenge number, the condition is to exhibit a composite that
violates (6).

We note that (6) is indeed fulfilled when N = p is a prime. This is Corollary 1
below. The next section shows that we can partially recover a Jacobi-like symbol.

2.2. Restoring the symbol. We rely on the well-known fact that E(Fp) is either
cyclic or isomorphic to a sum of two cyclic groups; see e.g. [3].

Lemma 3. Let E be an elliptic curve over Fp. Then

E(Fp) � Zn or Zn1
⊕ Zn2

for some integer n ≥ 1, or for some integers n1, n2 ≥ 1 with n1 dividing n2.

We recall that the exponent of a finite abelian group is the largest possible order
of an element. In view of the above, the exponent exp(E(Fp)) of E(Fp) is n or n1,
according to the above.

We define an analog of the Jacobi symbol for the case that 2| exp(E(Fp)).

Definition 2. Let E be an elliptic curve over Fp such that

E(Fp) � Zd2
⊕ Zd1

,

where d1|d2 and we include the case d1 = 1. Suppose that d2 = 2k. Let[
P
p

]
≡ kP mod p.

Observe that the exponent exp(E(Fp)) of E(Fp) is d2 = 2k. The definition allows
either cyclic groups (with d2 = p+1 and d1 = 1), or a product of two cyclic groups.
In the following, E has no points of order (a multiple of) 4 in Fp.
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Lemma 4. Suppose 2 |/ k. Then

(7)

⎧⎨
⎩
[
P
p

]
≡ O mod p, iff P is a double modulo p,[

P
p

]
≡ a 2-torsion point mod p, iff P is not a double modulo p.

Proof. By the structure property, Lemma 3, for p a prime, the values of
[
P
p

]
can

only be either O, or one of the 2-torsion points.
Consider the first assertion in (7). We need to show that points P that are

doubles (of some points in E(Fp)) are exactly those with
[
P
p

]
≡ O mod p. Necessity

is clear. Recall that each of Zd2
= Z2k and Zd1

are cyclic. This means that the
doubles are the evens in Zd2

. If 2 |/ d1, every element is a double in Zd1
. Otherwise,

we again have that the doubles are the evens. So, if
[
P
p

]
≡ kP ≡ O mod p, then

since k is odd, the previous paragraph implies that P is a double in E(Fp).

For the second assertion, again necessity is easy. If
[
P
p

]
≡ a 2-torsion point

modulo p but P = 2Q, then kP ≡ (2k)Q ≡ O mod p, a contradiction. Finally, the
converse follows from what has already been proved. �

Since for CM curves, 2k = exp(E(Fp)) = p + 1, and k is odd for p ≡ 1 mod 4,
we have

Corollary 1. Eq. (6) is true if N ≡ 1 mod 4 is prime.

2.3. Euler vs. doubles. Schoof [13] showed that for primes p, if |E(Fp)| = p+ 1,
then either E(Fp) � Z/(p+1)Z or E(Fp) � Z/((p+1)/2)Z⊕Z/2Z. In the latter case,

which can only happen if p ≡ 3 mod 4, any point will satisfy
(
p+1
2

)
P ≡ O mod p,

since exp(E(Fp)) = (p+1)/2 in this case. So Gordon’s restriction for the challenge
number to be N ≡ 1 mod 4 is to ensure that the curve is cyclic if N is a prime (but
see section 4.2).

Cyclic groups are convenient to work with since doubles are easily recognizable
via Euler’s criterion. The situation is more complicated for the second case of
Lemma 3. As an example, consider the group G � Z2k ⊕Z2. Then, if 2|k, we have
k(x, 1) = (0, 0), but (x, 1) is not a double.

At first glance, this property seems promising. Unfortunately the first part of
the challenge problem (6) cannot be attacked using this approach.

Lemma 5. Suppose N ≡ 1 mod 4 is a strong elliptic pseudoprime for the point P.
Then

(
N+1
2

)
P ≡ O mod N iff P is a double of a point mod N .

Proof. This follows since (N + 1)/2 is odd. �

2.4. 3 · 1 = 3 mod 4, but 3 · 3 = 1 mod 4. As described above, in the general case,(
a
N

)
= 1 does not necessarily imply that a is a square modulo N . However, for

N ≡ 3 mod 4, the Euler, resp. strong, test, implies that the symbol conveys the
‘correct’ information, as stated in Lemma 2. It turns out that congruence conditions
modulo 4 play a crucial role.

Proof of Lemma 2. Suppose a(N−1)/2 ≡
(

a
N

)
mod N . By assumption, (N − 1)/2

is odd. So, if a(N−1)/2 ≡ 1 mod N , then also
(
a
P

)
≡ a(P−1)/2 ≡ 1 mod P for any

prime P |N . Hence, a is a square modulo N .
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Suppose a(N−1)/2 ≡ −1 mod N . Observe that this implies ν2(P−1) ≥ ν2(N−1)
for all P |N . Here ν2(k) denotes the largest factor of 2 dividing k. We claim that

(8)
( a

P

)
≡ a(P−1)/2 ≡

{
−1, if ν2(P − 1) = ν2(N − 1) = 1,

1, if ν2(P − 1) > ν2(N − 1) = 1.

This can be seen as follows. Let N − 1 = 2st with 2 |/ t. By hypothesis, ordP (a)
divides 21t, but ordP (a) does not divide t. So, ν2(ordP (a)) = 1. On the other
hand,

(
a
P

)
= −1 iff ν2(P − 1) = ν2(ordP (a)). This establishes the claim.

The important point is that since N ≡ 3 mod 4, there is some prime P |N with
P ≡ 3 mod 4. By (8),

(
a
P

)
= −1, so a is not a square modulo N .

Now, the converse follows from the above, since a(N−1)/2 ≡ ±1 mod N by hy-
pothesis.

Remark 1. (1) The elliptic analog requires N ≡ 1 mod 4 and one can indeed
have N divisible by a product of an even number of P with all of them
equivalent to 3 modulo 4. Moreover, congruence conditions modulo 4 for
the elliptic curve setting become less stringent. In general, the group orders
are of the form P + 1 − a, and not of the fixed form P − 1, as for the
Fermat test. It is this simple phenomenon that will be crucial to construct
a challenge number.

(2) For the general case, i.e., if N ≡ 1 mod 4 is a strong pseudoprime, one
still has property (8), but with the right side replaced by ν2(N − 1) = s
(above, s = 1). Specifically [3], if N is a strong pseudoprime and P |N ,

where P − 1 = 2s
′
t′, 2 |/ t′, then

(9) a2
s′−1t ≡

( a

P

)
mod P.

In that case the multiplicative property of the Jacobi symbol is funda-
mental for the proof that the strong test implies the Euler test.

3. Construction of a challenge number

By Lemma 5 we are aiming at the second case in (6). That is, we try to construct
a point P that looks like a non-double via (6), but which is a double in E(ZN).

In terms of the Euler condition this would mean a(N−1)/2 ≡ −1 mod N , but
a is indeed a square modulo N . The proof of Lemma 2 reveals the following.
For the case that a(N−1)/2 ≡ −1 mod N one has

(
a
P

)
= 1 for P |N , provided

ν2(P − 1) > ν2(N − 1). We would need this condition for all P |N , which by the
congruence property modulo 4 does not happen. However, group orders of CM
curves behave differently.

3.1. Necessary conditions. In the following, let E have complex multiplication
by the field Q(

√
−d). Specifically, let E and P be one of the curves together with

a point P on it, as given in Gordon’s table, Table 1. In this section we will assume
that N is squarefree. This will make it easier to construct a challenge number. Let
eP (P) denote the order of P on E(FP ). Suppose we have a composite N with the
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following properties:

P is a double in E(FP ) for all primes P dividing N,(10)

ν2(eP (P)) = 1 for all P dividing N,(11)

for all P |N , there is a point of order 4 in E(FP ),(12) (
−d

P

)
= 1 and P ≡ 3 mod 4 for at least one P |N.(13)

This is enough for finding a counterexample to the classical result.

Theorem 1. Let N ≡ 1 mod 4 be an elliptic pseudoprime. Under the conditions
described above, N fulfills Gordon’s challenge: N is a strong elliptic pseudoprime
which does not pass the Euler analogue. Specifically,
(14)(

N + 1

2

)
P ≡ a 2-torsion point modN , but P = 2Q for some Q in E(ZN).

Proof. Clearly, P needs to be a double in E(FP ) for all P |N . This is (10). The-
orem 2 below shows that a necessary condition for the latter is (12). Given that
(N + 1)P ≡ O mod N , eq. (11) is necessary and sufficient to obtain

(
N+1
2

)
P ≡

a 2-torsion point modulo N . Condition (13) will be shown in Lemma 9. �

We would like to stress that conditions (10), (11), and (12) are usually mutually
exclusive. Experimentally we observe that requiring a point of order 4 ‘typically’
leads to high factors of 2, in both |E(FP )|, as well as eP (P). It is quite fortunate
that we found enough primes for which all the above conditions are fulfilled.

3.2. Implementation. Recall that the curve discriminant is ∆ = −16(27b2+4a3)
and the discriminant of the cubic is D = −(27b2 + 4a3). Hence, if p is coprime to
D, then

(15)

(
∆

p

)
=

(
D

p

)
.

Recall that E has CM by an order in K = Q(
√
−d). In [4, Table 1], Gordon

lists the respective j-invariants of each curve. For our purposes, the relationships
involving D are more revealing. We see by inspection that

Proposition 1. For d ≥ 3,

(16)

(
−d

p

)
=

(
D

p

)
.

For d = 1,
(

−d
p

)
=

(
−1
p

)
, but

(
D
p

)
=

(
5
p

)
, and for d = 2,

(
−d
p

)
=

(
−2
p

)
, but(

D
p

)
=

(
2
p

)
.

3.2.1. The algorithm. In the following, we consider the particular curve E and point
P from Gordon’s Table 1, [4]:

(17) y2 = x3 − 3500x− 98000, P = (84, 448).

E has complex multiplication by Q(
√
−7) and hence,

(
−7
p

)
= −1 for primes p ≡

3, 5, 6 mod 7. We wish to find a composite N such that
(−7

N

)
= −1, N ≡ 1 mod 4,

and N fulfills (14).
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We adapted Erdös’ construction mechanism (see, e.g., [1]) by incorporating the
conditions above. Erdös’ idea was to construct an integer L for which there are a
very large number of primes P such that P −1 divides L. Suppose that the product
of some of these primes is, say, C = P1 · · · · · Pk ≡ 1 mod L. Then each Pj − 1
divides L, which divides C − 1, and hence C is a Carmichael number by Korselt’s
criterion [3, p.122].

In our case, for L = 17272710 = 2 · 33 · 5 · 7 · 13 · 19 · 37, we generated a set S of
primes q for which

eq(P) divides L,(18)

q satisfies all 4 conditions (10)-(13).(19)

The goal is to get S large enough to contain a subset T ⊂ S with

N =
∏
P∈T

≡ −1 mod L,

(
−7

N

)
= −1, N ≡ 1 mod 4.

Any such N will be an elliptic pseudoprime, since eP (P)|L|N + 1 for all P |N .
Moreover, by Theorem 1, N will in fact be a challenge number.

The choice of L is based on the heuristics given for Carmichael numbers N , [1],
which guarantee to find N as a product of primes of some set. The difference to
the above is that for Carmichael numbers, S is the set of primes with P − 1|L,
and N ≡ 1 mod L. This condition is much easier than the one above. If λ(L) is
the Carmichael function which is the largest order of any number modulo L, it
is suggested that a size of |S| > λ(L) should be sufficient to find a Carmichael
number N . For Carmichael numbers, this bound can be improved but we used it
as a starting point for our case.

3.2.2. Underlying theory. The conditions (10)-(13) are very restrictive. The first
few primes q that we found via brute-force are: 617, 1723, 2731, 3191, 6547,
11087, 13103, 21683, 21839, 47737, 49727, 49739, 51679, 52361, 60679, 63719 and
then there is a jump and the next ones are 117721, 133169, 145531, 232681, 275183,
281353, 306431, 341879, 373463. Then it seemed that the primes died out. In fact,
the next one is not until 607319.

At this point, we only collected 26 primes q, but λ(L) = 36. Clearly, this required
speeding up the algorithm. The approach we took is as follows:

(1) Let De(L) be the set of even divisors of L. Sort De(L).
(2) Let q be a prime. For each o ∈ De(L) test, if oP ≡ O mod q, but

(
o
2

)
P �≡

O mod q. The first o that fulfills this secures (18) and (11) since 2||L. If
there is no such o ∈ De(L), discard q. Since there are only 128 elements
in De(L), this step is quite fast, but eliminates a lot of unsuccessful prime
candidates q.

(3) Testing condition (12) can easily be done for CM curves; see Theorem 3
and its corollary. A necessary and sufficient condition for the existence of
a point of order 4 in E(Fp) is that p ≡ 3 mod 4. This settles the case(

−d
p

)
= −1.

Moreover, step (12) can be simplified for any curve E of the form (1)
over Fp, when x3 + ax + b ≡ 0 mod p has three roots in Fp. This can be
seen as follows.
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Recall that E(Fp) is a torsion group where Fp is the algebraic closure of
Fp. Here we are interested in points that contain coordinates in Fp itself

(and not only in Fp).

Lemma 6. Let d > 2. Suppose that the cubic x3 + ax + b has three roots
α, β, γ in Fp. Then there is a point of order 4 in E(Fp) if and only if one
of the following is true:(

α−β
p

)
=

(
α−γ
p

)
= 1, or(20) (

β−α
p

)
=

(
β−γ
p

)
= 1, or(21) (

γ−α
p

)
=

(
γ−β
p

)
= 1.(22)

Proof. The hypothesis implies that all the 2-torsion points are in E(Fp). A
necessary condition to get a point of order 4 is that (at least) one of these
is a double of some point in E(Fp). That is, one of (α, 0), (β, 0), (γ, 0) must
be the double of another point. The rest follows from Lemma 1 since 0 is
trivially a square. �

Since the cubic has three roots in Fp, this implies that E(Fp) has a
subgroup isomorphic to Z2⊕Z2, and hence is not cyclic. Then, by Theorem

3, necessarily
(

−d
p

)
= 1 (and not −1).

Note that generally for
(

−d
p

)
= 1 one could theoretically obtain points

of order 4 when Z2 is a subgroup of E(Fp), but Z2 ⊕Z2 is not. This would
require additional methods for recognizing whether or not 4| exp(E(Fp)).
From Theorem 3 and Corollary 3 below this cannot happen. Hence, Lemma

6 covers the remaining open case
(

−d
p

)
= 1.

(4) As mentioned, testing whether P is a double of something is difficult when
Lemma 1 cannot be applied. Essentially, Koblitz showed in [10, eq.(9.3)]
that Q = (0, y0) ∈ E(Fp) is a double of some point in E(Fp) iff

(23) (A−m2)2 − 4(B + 2my0) ≡ 0 mod p.

Here, A,B,C are determined by

y2 = x3 +Ax2 +Bx+ C.

Koblitz considers the special case that y2 ≡ (x− α)(x− β)(x− γ) with
(essentially) α, β, γ ∈ Fp. This explains the occurrence of the x

2 term above
and then leads to a proof of Lemma 1.

From the proof in [10, p. 49] it is clear that (23) holds for the more
general setting that the three roots of the cubic don’t all have to be in Fp.

Lemma 7. Let E be any curve with equation y2 = x3 + Ax2 + Bx + C.
Then P = (x0, y0) ∈ E(Fp) is a double of a point in E(Fp) iff

m4 − 2A′m2 − 8y0m− 4B′ + A′2 = 0

has a solution in Fp, where A′, B′ are given below.

Proof. Let e1, e2, e3 be the roots of x3+Ax2+Bx+C = x3+ax+b, where
we allow ei ∈ E(Fp). Then P = (x0, y0) ∈ 2E(Fp) \ O iff the point with
x-coordinate 0, P ′ = (0, y0) ∈ 2E′(Fp) \ O. Here, (0, y0) is a point on the
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curve E′ with equation y2 =
(
x− (e1−x0)

)
(x− (e2−x0)

)
(x− (e3−x0)

)
=

x3 +A′x2 +B′x+ C ′. We get

A′ = −(e1 − x0)− (e2 − x0)− (e3 − x0) = −e1 − e2 − e3 + 3x0 = 3x0 +A,

B′ = (e1 − x0)(e2 − x0) + (e1 − x0)(e3 − x0) + (e2 − x0)(e3 − x0)

= 3x2
0 + 2Ax0 +B.

Since x0 = 0 for P ′ = (0, y0) ∈ E′(Fp) we can apply condition (23) for the
curve E′. This gives the above statement. �

In particular, for L = 17272710, we have λ(L) = 36. The counterexamples
(p. 1173 and Example 1) were obtained from the set S = {617, 1723, 2731, 3191,
6547, 11087, 13103, . . . , 3178891, 3277387, 3815891, 5366089} with |S| = 45.

The computations were done on a Dell D610 laptop during several weeks of the
summer of 2008. We never optimized the implementation but only used infrequent
access to the UW license server to (periodically) run Maple 11.

3.3. Implementational issues.

3.3.1. Given P. To find our counterexample we apply the elliptic curve arithmetic
to construct E(ZN), something that is not a true elliptic curve, when N is a com-
posite number. Generally, when the nature of N is not known, it is customary to
deal with pseudocurves (see e.g. [3] and the remarks given there).

Definition 3. For a, b ∈ ZN with (N, 6) = 1 and (4a3 + 27b2, N) = 1, an elliptic
pseudocurve over ZN is a set

(24) E(ZN) = {(x, y) ∈ ZN × ZN : y2 = x3 + ax+ b} ∪ {O}.

For composite N , the group law operations might fail due to non-invertible
elements modulo N . This is the basis for Lenstra’s factorization algorithm. In our
case, this complicates the construction of counterexamples. Clearly, the concept of
elliptic multiplication on a pseudocurve depends on the addition chain used.

Gordon [5] distinguished between two methods.

• ‘Method A’ uses the standard left-to-right addition chain. The interesting
feature about this is that this is really analogous to a strong pseudoprimality
test. In fact, the left-to-right (LTR) algorithm calculates all points of the
form

(
N+1
2j

)
P, and if one of these points is a 2-torsion point modulo P

for some P |N , but is not such modulo another prime factor, then the y-
coordinate of the point is divisible by P , and so N will be partially factored
during the inversion step in the next doubling. A similar situation arises for
the side-steps if one uses the right-to-left (RTL) doubling and multiplication
algorithm, but this would result in twice as many pseudoprimes.

We have not been able to construct counterexamples that allow compu-
tation of both

(
N+1
2

)
P mod N and (N + 1)P mod N without exposing a

factor of N . Instead, we used the following.
• ‘Method B’ [5, p. 296] is a test that does not use inversions. We used the
group operations, but for projective coordinates, to avoid inversions. More
precisely, for most of the paper we have applied the Modified Projective
(MP ) Algorithm [3, p. 293], which also avoids inversions but has a lower
operation count than projective coordinates.
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For the Modified Projective (MP ) Algorithm we present P in
projective coordinates as (84, 448, 1). The algorithm first computes
MP ((84, 448, 1),m), which gives mP mod N in the modified projective
presentation. If the output is (m1,m2,m3), then the affine representa-
tion requires computing the one inverse m−1

3 mod N . If this inverse does
not exist, we discard N .

3.3.2. Free choice of P. The factors of N while computing
(
N+1
2j

)
P arise from the

fact that the orders of P modulo different P |N might be different. E.g.,

Example 1. For N = 1229936500643254199225219789=
∏6

i=1 Pi and P=(84, 884)
we get

[
N + 1

2

]
P ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[34, 0], for P1 = 617,

[70, 0], for P2 = 13103, P3 = 21839, and P5 = 60679,

[3802, 0], for P4 = 49739,

[2277701, 0], for P6 = 2308121.

Using the Chinese Remainder Theorem, this gives rise to the non-trivial 2-torsion
point modulo N ,[

N + 1

2

]
P ≡ [1013798926331362228028033508, 0] mod N.

This would be a counterexample to the Euler test, since

2(867839202842227778545409802, 359719680740619525660418872) ≡ P mod N.

Example 2 illustrates a 2-torsion point that is the same modulo each Pi|N .
Hence, any of the above evaluation methods are successful and don’t expose a
factor of N . The key is that the order of Q is the same (= 6) for each P |N .

Example 2. As above, let E : y2 = x3−3500x−98000 which has CM by Q(
√
−7).

We choose the point Q = (4216, 194) and N = 4661 = 59 · 79. Then
(−7

N

)
= −1,

N ≡ 1 mod 4, and

(4661 + 1)Q ≡ O mod 4661,(
4661 + 1

2

)
Q ≡

{
(11, 0) mod 59,

(11, 0) mod 79,
≡ (11, 0) mod 4661,

2(11, 0) ≡ O mod N.

However,
2R ≡ Q mod N for R = (199, 1112).

Again, while Q looks like a non-double via the Euler analog, it actually is a double
of R.

4. Proof of non-existence

4.1. Doubles and points of order 4. Recall Definition 2 and Lemma 4. We
explore a connection between doubles and points of order 4.

Clearly, for every k with 2k = exp(E(Fp)),

(25)

⎧⎨
⎩
[
P
p

]
≡ O mod p, iff ν2(ep(P)) < ν2(exp(E(Fp))),[

P
p

]
≡ a 2-torsion point mod p iff ν2(ep(P)) = ν2(exp(E(Fp))).
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Theorem 2. Suppose
(
N+1
2

)
P ≡ 2-torsion mod N for some integer N ≡ 1 mod 4.

If 4 |/ exp(E(FP )) for P |N , then P be cannot be a double in E(FP ).

Proof. The hypothesis is that 2 |/ k, where k is as above. From Lemma 4 and (25),
P is a double iff[

P
P

]
≡ O mod P iff ν2(eP (P)) < ν2(exp(E(FP ))).

However, ν2(eP (P)) = 1 since
(
N+1
2

)
P ≡ 2-torsion mod P , and ν2(exp(E(FP ))) ≤

1 by hypothesis, a contradiction. �

4.2. CM curves and group structure. This section deals with the existence of
points of order 4 in E(Fp). We will be investigating the number of zeros of the
cubic

(26) x3 + ax+ b = 0

in Fp.

Proposition 2. Let DC = −24 · 33 ·D, where D is the discriminant of (26).

(1) If p ≡ −
(

DC

p

)
mod 3, then there is only one root of this cubic. In partic-

ular, Z2 ⊕ Z2 is not a subgroup of E(Fp).

(2) If p ≡
(

DC

p

)
mod 3, then (26) has either 0 or 3 solutions. In the former

case, Z2 ⊕ Z2 is not a subgroup of E(Fp); in the latter case it is.

Proof. The statements concerning the number of solutions of (26) were shown by
Callier (see [15]). Clearly, by (5), Z2⊕Z2 is a subgroup iff the cubic has three roots
in Fp. �

In [13], Schoof essentially showed the following result for supersingular curves:

Lemma 8. Consider any supersingular curve over Fp. Then,

• for p ≡ 1 mod 4, E(Fp) is always cyclic;
• for p ≡ 3 mod 4, there are two cases:{

E(Fp) � Z(p+1)/2 ⊕ Z2 when E(Fp)[2] � Z2 ⊕ Z2,

E(Fp) is cyclic otherwise.

For p ≡ 3 mod 4 the condition is whether or not all the 2-torsion points are in
Fp. Equivalently, E(Fp) is not cyclic iff the cubic (26) has 3 solutions in Fp. In

this case, any point will satisfy
(
p+1
2

)
P ≡ 0 mod p. This was Gordon’s motivation

for requiring the challenge number to be congruent to 1 mod 4. However, this
restriction is for d > 2 not necessary, as Theorem 3 below shows.

Theorem 3. (1) Let E have CM by Q(
√
−d) where d ≥ 3. Then E(Fp) �

Zp+1 and hence is cyclic.

(2) If
(

−d
p

)
= 1, then (26) has either 0 or 3 solutions. Moreover, Z2 ⊕Z2 is a

subgroup of E(Fp) iff (26) has 3 solutions.

Proof. (1) We show that p ≡ −
(

DC

p

)
mod 3. Then the result will follow from

Proposition 2 and Lemma 8.
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Since E has CM,
(

−d
p

)
= −1. Then

(
−3
p

)
= −

(
−d
p

)(
−3
p

)
=

−
(

D
p

)(
−3
p

)
= −

(
DC

p

)
, where we used (16). Hence,

−
(
DC

p

)
=

{
1, for p ≡ 1 mod 3,

−1, for p ≡ −1 mod 3,

which gives the desired result.

(2) This follows analogously, since
(

−d
p

)
= 1 gives p ≡

(
DC

p

)
mod 3. �

Corollary 2. Suppose
(

−d
p

)
= −1. A necessary and sufficient condition for the

existence of a point of order 4 in E(Fp) is that p ≡ 3 mod 4.

Proof. This follows immediately from Theorem 3. �

Corollary 3. Suppose
(

−d
p

)
= 1. A necessary condition for the existence of a

point of order 4 in E(Fp) is that (26) has 3 solutions. If we denote these by α, β, γ,
respectively, then there is a point of order 4 iff one of the three conditions (20)-(22)
is fulfilled.

Proof. By Theorem 3, (26) can only have 0 or 3 solutions. Clearly, if it has no
solutions, then there are no (non-trivial) 2-torsion points in E(Fp). Hence, there
are no points of order 4. The rest follows from Lemma 6. �

Lemma 9. Suppose there is a composite N ≡ 1 mod 4 with
(−d

N

)
= −1. A neces-

sary condition for the existence of a point of order 4 in E(FP ) for all primes P |N
is that for at least one of these,

(−d
P

)
= 1 and P ≡ 3 mod 4.

Proof. On the one hand we need an odd number of (not necessarily different) primes
with

(−d
P

)
= −1. By Corollary 2, for each of these, P ≡ 3 mod 4. If all primes

P |N are of this form, then N ≡ 3 mod 4 as well. Hence, we need at least one P as
stated. �

Remark 2. We investigated all types of curves in Gordon’s table, Table 1 (which
allow N ≡ 1 mod 4). For each of the curves with d ∈ {2, 11, 19, 43, 163} it seems

that points of order 4 in E(Fp) for p prime with
(

−d
p

)
= 1 can only occur for

p ≡ 1 mod 4. We used Corollary 3 to test all primes up to 106. The conditions that(
−d
p

)
= 1 and p ≡ 3 mod 4 seem to be conflicting conditions for points of order 4.

However, we observe that the curve (iv) does satisfy these conditions.

4.3. The special case of CM by −3. Throughout the remainder of this section
we consider the curve

(27) y2 = x3 +B.

Then ∆ = −16 · 27 ·B2 and
(

−d
p

)
=

(
∆
p

)
=

(
−3
p

)
= −1 for p ≡ 2 mod 3.

Necessary properties pertaining to points of order 4 will show that this curve
does not lead to any counterexamples, as above.

For the case
(

−d
p

)
= 1, all we know is that |E(Fp)| = p+1−a for some a. Given

a specific prime p, Schoof’s algorithm [12] works well in practice. Alternatively, for
CM curves, |E(Fp)| can be determined even more efficiently. However, Theorem
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3 implies that possibly exp(E(Fp)) �= |E(Fp)|. Hence, we need another method to
decide whether or not there is a point of order 4 in E(Fp).

We give a different condition for the existence of points of order 4, which includes

Corollary 2 as a special case. It reveals a relationship between
(

−d
p

)
and p mod 4

for both
(

−d
p

)
= 1 and −1.

Proposition 3. Let E be given by (27). A necessary condition for the existence
of a point of order 4 in E(Fp) is that p mod 3 equals p mod 4. In particular, for(

−d
p

)
= 1, necessarily p ≡ 1 mod 4, and for

(
−d
p

)
= −1, necessarily p ≡ −1 mod 4.

Proof. Clearly, a necessary condition for the existence of a point of order 4 is that
one of the 2-torsion points is a double of something in Fp. We may assume that at
least one of the 2-torsion points is in Fp, because otherwise we are done. Then this
point is of the form (x0, 0) where x0 is a solution of x3 +B = 0 in Fp.

Hence, there has to be a point (x, y) ∈ Fp such that

2(x, y) = (x0, 0).

In particular, the y-coordinate of 2(x, y) has to be 0.
If the curve is given in the form (1), the standard doubling formulas yield the

y-coordinate of 2(x, y) as the degree 6 polynomial

(28)
x6 + 5x4a+ 20x3b− 5x2a2 − 4axb− a3 − 8b2

8y(x3 + ax+ b)
,

and we ask when this has a root in Fp. For the curve y2 = x3 + B, the condition
simplifies to solving

x6 + 20x3B − 8B2 ≡ 0 mod p,

which again reduces to solving the quadratic equation

y2 + 20By − 8B2 ≡ 0 mod p.

This is equivalent to solving

(2y + 20B)2 ≡ (202 + 32)B2 mod 4p.

After changing notation, this reduces to

y2 ≡ (2b)2108 mod 4p.

Since 108 = 22 · 33, we conclude that a necessary condition for the existence of a
point of order 4 is that (

3

p

)
= 1.

Recall that d = 3. If, firstly
(

−d
p

)
=

(
−3
p

)
= 1, then what we just showed

implies
(

−3
p

)
=

(
3
p

)
= 1 and necessarily p ≡ 1 mod 4 (actually, p ≡ 1 mod 12).

Analogously, if
(

−d
p

)
=

(
−3
p

)
= −1, then necessarily p ≡ −1 mod 4 (or, more

precisely, p ≡ −1 mod 12). �

Theorem 4. For d = 3 there is no composite integer N ≡ 1 mod 4 that is a strong
elliptic pseudoprime but violates the Euler condition (14).
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Proof. Again, by Lemma 5, it suffices to consider the second assertion in (14). So
we need to show there cannot be a point P that doesn’t looks like a double but
is. As above, the condition

(
N+1
2

)
P = 2− torsion mod N implies ν2(eP (P)) = 1

and exp(FP ) = 2k for all P |N . From Theorem 2, a necessary condition for P to be
a double in E(FP ) is that 4| exp(E(FP )). Hence, there needs to be a point of order
4 in each E(FP ).

By Proposition 3, if
(−d

N

)
= −1, then N ≡ −1 mod 4. This is a contradiction to

the challenge N ≡ 1 mod 4. �

4.4. Other CM curves. We described necessary conditions for the existence of
points of order 4. Remark 2 seems to indicate that Proposition 3 generalizes to the
other curves (v)-(ix) (those that are by Theorem 3 cyclic). We formulate this as

Conjecture 1. Let E be any of the curves of type (v)-(ix). Then points of order 4

in E(Fp) for
(

−d
p

)
= 1 are only possible for p ≡ 1 mod 4.

This is true for all primes up to 106. If this is true in general, the exact same
reasoning as above would give the following.

Consequence. For any of the curves of type (iii), as well as (v)-(ix), it follows that
any strong elliptic pseudoprime N ≡ 1 mod 4 is also an Euler elliptic pseudoprime.

5. The general case

5.1. On an observation of Gordon for N ≡ 3 mod 4. Recall that Gordon ob-
served that if exp(E(FN)) is N+1

2 , when N is a prime, then always
(
N+1
2

)
P ≡

O mod N . He noted that, ‘this can only happen for N ≡ 3 mod 4’.
However, the strong version of an elliptic pseudoprime test is only ‘stronger’

than the Euler version when 4|N + 1. The ‘stronger’ condition for the Fermat

test utilizes the celebrated fact that whenever a2
i+1t ≡ 1 mod N for some prime

N = 2s · t+ 1 with t odd, then necessarily a2
it ≡ ±1 mod N . However, this poses

strong restrictions on the primes P |N . For the case that at ≡ 1 mod N , we see

that ν2(ordP (a)) = 0, while for the case a2
it ≡ −1 mod N , ν2(ordP (a)) = i + 1,

and this is the same constant value for all P |N . This property distinguishes Fermat
pseudoprimes from strong pseudoprimes.

Hence, we expect that the strong elliptic version would be equally stronger. By
Theorem 3, Gordon’s restriction that N ≡ 1 mod 4 is not necessary for d > 2.

5.2. P doesn’t look like a double, but is. The question arises whether the
above approach for N ≡ 1 mod 4 would yield similar results for N ≡ 3 mod 4. As
above, we aim at

(29)

(
N + 1

2

)
≡ 2-torsion mod N, but P is a double.

The following incorporates the case 2||N + 1, but is more stringent for 2s|N + 1
for larger s, where N + 1 = 2s · t with t odd.
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Lemma 10. Let N + 1 = 2s · t with 2 |/ t an elliptic pseudoprime. If

P is a double in E(FP ) for all primes P dividing N,(30)

ν2(eP (P)) = s for all P dividing N,(31)

for all P |N , there is a point of order 2s+1 in E(FP ),(32) (
−d

P

)
= 1 and P ≡ 2s + 1 mod 2s+1 for at least one P |N,(33)

then N fulfills (29).

Proof. The proof is analogous to the one for Theorem 1. The condition P ≡
2s + 1 mod 2s+1 ensures that 2s||N + 1, i.e., that 2 |/ t. �

These conditions are very restrictive. By Conjecture 1, we can only expect to
find such numbers for the curve (iv). In the following, we give an example for s = 2
(the easiest case for N ≡ 3 mod 4), but for a point P of our choosing. We have not
been able to find a counterexample for Gordon’s point (84, 448).

Example 3. Consider Gordon’s curve E : y2 = x3 − 3500x − 98000 with CM by
Q(

√
−7). Let P = (172472, 139758) and

N = 245699 = 277 · 887.
Here,

(−7
N

)
= −1 and 22||N + 1. Then

(N + 1)P ≡ O mod N,(
N + 1

2

)
P ≡ (152634, 0) mod N.

So N is a strong elliptic pseudoprime and P appears to be a non-double. However,

2(190103, 153439) ≡ P mod N

for (190103, 153439) ∈ E(ZN ).

In this example, P has order 12 modulo each factor, and hence moduloN . Hence,
any addition chain can be used to compute the above result.

We have the following refinement of Conjecture 1, which we verified for all primes
up to 105.

Conjecture 2. Let s ≥ 1 and E be any curve of type (iii), resp. (v)-(ix). Then

points of order 2s+1 in E(Fp) for
(

−d
p

)
= 1 can only occur for p ≡ 1 mod 2s+1.

By Lemma 10, this would lead to the general result, which includes the above
for N ≡ 1 mod 4.

Consequence. Under Conjecture 2 there are no points that ‘don’t look like a
double but are’, for any of the curves of type (iii), as well as (v)-(ix).

5.3. P looks like a double, but isn’t. In the following we are interested in a
point P that looks like a double via (6), but isn’t.

Remark 3. This concept may seem to be analogous to ‘pseudosquares’ [16, p.412].
However, these are integers that ‘behave’ like a square modulo certain primes. In
our case we rely on properties of composites to ensure the required conditions.

According to Lemma 5 this cannot occur for N ≡ 1 mod 4.
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Lemma 11. Suppose N ≡ 3 mod 4 is an elliptic pseudoprime such that for all
P |N ,

(34) ν2(eP (P)) = ν2

(
N + 1

2l

)

for some l ≥ 1. Then N is a strong elliptic pseudoprime. Specifically,(
N + 1

2

)
P ≡ O mod N,(

N + 1

2l+1

)
P ≡ some 2-torsion point mod N.

Proof. This follows directly from the hypothesis. �

Any such point P looks like a double. However, it does not have to be a double,
as the following example shows.

Example 4. Consider Gordon’s curve (iii), y2 = x3 + 3 with point P = (1, 2) and
d = 3. For N = 83139622019 = 41·83·4177·5849 we have

(−3
N

)
= −1, N ≡ 7 mod 8

and (
N + 1

2

)
P ≡ O mod N,(

N + 1

4

)
P ≡ (10491607602, 0) mod N.

However, P is not a double in E(FP ) for the prime factors P |N , 41, 4177, 5849,
so it is not a double modulo N . Specifically, E(F41) has generator (17, 18). But
(1, 2) = 15(17, 18) and since 15 is odd, we see that (1, 2) is not a double in E(F41).

Note that we have shown in Theorem 4 that for this type of curve there are no
composites that lead to the situation ‘P doesn’t look like a double, but is’.

Remark 4. It seems to be easier to construct counterexamples for a point of the
form, ‘looks like a double, but isn’t’. In fact, P only needs to be a non-double for
(at least one) prime factor of N . Note that Gordon’s initial challenge N ≡ 1 mod 4
(while based on a different argument) would not allow this.

Remark 5. In this section, any 2-torsion point is nontrivial in the sense that it is not
the same in each E(FP ). Here, the computations utilize the Chinese Remainder
Theorem and the fact that E(Zn1n2

) � E(Zn1
) ⊕ E(Zn2

) for odd integers with
n1, n2 with (n1, n2) = 1. As in Example 2 and Example 4, this can be avoided by
constructing a point that has the same order in each E(FP ) for all P |N . This can
be done via a simple modification of the algorithm described above (but this would
result in points different from those given by Gordon).

Table 2 gives such counterexamples for each of Gordon’s curves, along with the
respective given point on it. In all cases,

(−d
N

)
= −1,

(
N+1
2

)
P ≡ O mod N , but

there is no point Q with P ≡ 2Q mod N .
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Table 2

strong but not Euler: non-doubles appear to be doubles

curve P N
(

N+1
2l+1

)
P mod N

(i) (5,10) 9090870127122419 = (4036547764918982, 0)
61 · 997 · 1289 · 3851 · 30113 (l = 1)

(ii) (64,504) 120917159 = (6959692, 0)
11 · 19 · 41 · 103 · 137 (l = 2)

(iii) (1,2) 83139622019 = (10491607602, 0)

41 · 83 · 4177 · 5849 (l = 1)

(iv) (84,884) 32759 = (2345, 0)
17 · 41 · 47 (l = 2)

(v) (33,121) 16142173358219 = (15389548052101, 0)
17 · 257 · 991 · 1429 · 2609 (l = 1)

(vi) (57,19) 26583876053828615339 = (6809858105401582053, 0)
23 · 41 · 1213 · ... · 3407 (l = 1)

(vii) (817, 2537) 5470919= (4589876, 0)
89 · 61471 (l = 2)

(viii) (201, 67) 5195208058490291534636579= (360409994672782852676169, 0)
53 · 83 · ... · 218651 (l = 1)

(iv) (3400,548) 41153384804755859 = (29011658891746501, 0)
17 · 137 · 389 · 147629 · 307691 (l = 1)

Summary

This paper gives an answer to a question about certain types of elliptic pseudo-
primes, showing that they do exist in certain cases and not in others. While we
were able to generalize Gordon’s original challenge to any composite integers N ,
we were not able to provide a proof of the nonexistence of certain composites to all
types of curves.
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