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FAST INTEGRATION OF HIGHLY OSCILLATORY INTEGRALS

WITH EXOTIC OSCILLATORS

SHUHUANG XIANG AND HAIYONG WANG

Abstract. In this paper, we present an efficient Filon-type method for the
integration of systems containing Bessel functions with exotic oscillators based
on a diffeomorphism transformation and give applications to Airy transforms.
Preliminary numerical results show the effectiveness and accuracy of the quad-
rature for large arguments of integral systems.

1. Introduction

In many areas of applied mathematics one encounters the problem of computing
rapidly oscillatory integrals of the type

(1.1) I[f ] =

∫ b

a

f(x)S(ωg(x))dx,

where S is an oscillatory function, f(x) and g(x) are sufficiently smooth functions,
ω is a large parameter and a and b are real and finite. In most of the cases, such
transforms cannot be calculated analytically and one has to resort to numerical
methods. When the integrand becomes highly oscillatory, it presents serious diffi-
culties in obtaining numerical convergence of the integration.

Many efficient methods for computing (1.1) when S(ωg(x)) = eiωg(x), where
g′(x) �= 0 for all x ∈ [a, b], have been devised. See, for example, the Filon method [2,
5, 6, 16], the Levin method [14], generalized quadrature rules [3, 4], the asymptotic
method [11], the Filon-type method [10, 11, 25], the Levin-type method [17] and the
steepest descent method [8]. When S is a Bessel function of the first kind Jv(ωx),
there are also a few methods available. For example, the modified Clenshaw-Curtis

method [20, 21] is efficient for computing
∫ 1

0
f(x)Jν(ωx)dx for nonnegative orders

ν; the Levin-type method [15, 18, 26, 27] and generalized quadrature rules [3, 4, 28]

are efficient for approximating
∫ b

a
f(x)Jν(ωx)dx for Re(ν) > −1 and 0 �∈ [a, b].

Moreover, the Levin-type method and generalized quadrature rules can be extended

to approximate the integral
∫ b

a
f(x)Jv(ωg(x))dx if g(x) �= 0 and g′(x) �= 0 for all

x ∈ [a, b].
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Once g′ vanishes at one or more points in [a, b], which are known as critical
points, the above numerical evaluation may be difficult. For treatment of critical

points for
∫ b

a
f(x)eiωg(x)dx, without loss of generality, assume ξ0 ∈ [a, b] is the

unique turning point of g and for an integer r ≥ 1,

g′(ξ0) = g′′(ξ0) = · · · = g(r)(ξ0) = 0, g(r+1)(ξ0) �= 0,

and g′(x) �= 0 for x �= ξ0, x ∈ [a, b].

From Stein ([22], p. 334), it is known from the classical method of the stationary
phase that for every smooth function f with compact support near ξ0, there exist
linear differential functionals Ak, k = 0, 1, . . . , such that

(1.2) I[f ] ∼ ω−1/(r+1)
∞∑
k=0

Ak[f ]ω
−k/(r+1), ω � 1.

The following asymptotic expansion developed by Iserles and Nørsett [11] provides
an invaluable tool for computing highly oscillatory integrals:

(1.3)

I[f ] ∼
r−1∑
j=0

1

j!
µj(ω, ξ0)

∞∑
k=0

1

(−iω)k
ρ
(j)
k [f ](ξ0)

−
∞∑
k=1

1

(−iω)k

(
eiωg(b)

g′(b)

⎧⎨⎩ρk−1[f ](b)−
r−1∑
j=0

ρk−1[f ]
(j)(ξ0)(b− ξ)j

j!

⎫⎬⎭
− eiωg(a)

g′(a)

⎧⎨⎩ρk−1[f ](a)−
r−1∑
j=0

ρk−1[f ]
(j)(ξ0)(a− ξ)j

j!

⎫⎬⎭
)
, ω � 1,

where µj(ω, ξ0) =
∫ b

a
(x− ξ0)

jeiωg(x)dx, j = 0, 1, . . . , r − 1, and
(1.4)

ρ0[f ](x) = f(x), ρk+1[f ](x) =
d

dx

ρk[f ](x)−
∑r−1

j=0
1
j!ρk[f ]

(j)(ξ0)(x− ξ0)
j

g′(x)
, k ≥ 0.

The generalized asymptotic method (the finite sums of the infinite series (1.3)) and
the generalized Filon-type method presented in [11] are efficient in dealing with
highly oscillatory integrals involving critical points under the condition that the
first few moments

µk(ω, ξ0) =

∫ b

a

(x− ξ0)
keiωg(x)dx, k = 0, 1, . . . , r − 1,

are in explicit forms. Unfortunately, the moments are often unknown. This situa-
tion is readily remedied by a Filon-type method recently developed by Olver [19],
where the generalized moments for the basis functions can be computed explicitly
by the solutions of the collocation differential equations

u′ + iωg′(x)u = xk, k = 0, 1, . . . .

However, it is difficult to extend this method to approximate Bessel or Airy trans-
forms since in these cases the corresponding collocation differential equations cannot
be solved exactly.

The critical case for S(ωg(x)) = eiωg(x) was also handled in Huybrechs and
Vandewalle [8] by going to the complex plane, and integrating along a path that
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approximated the path of steepest descent. Numerical steepest descent methods
for evaluating the integrals involving Hankel functions of the form

(1.5)

∫ b

a

f(x)H(1)
ν (ωg1(x))e

iωg2(x)dx

were proposed in [9]. Since the Bessel function is the real part of the Hankel
function and decays exponentially in the complex plane, then numerical steepest
descent methods can also be used to evaluate the integrals involving the Bessel
function. However, these methods require the functions f , g1 and g2 should be
analytic in the complex plane containing [a, b].

The purpose of this paper is to solve the open problems discussed in Iserles et
al. [12, 13] and Olver [18] regarding the efficient computation of the integrals

(1.6)

∫ 1

0

f(x)Jm(ωg(x))dx,

∫ 1

0

f(x)Ai(−ωg(x))dx,

with the exotic oscillator g(x) that satisfies for r ≥ 0,

(1.7) g(0) = g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) �= 0, g′(x) �= 0 for x ∈ (0, 1],

where Re(m) > − 1
r+1 . (For Re(m) ≤ − 1

r+1 , in general, the integral (1.7) is not

defined. Consider
∫ 1

0
sin(x)J−0.5(rx

2)dx as an example.) Without loss of gen-

erality, we assume ω > 0 and g(r+1)(0) > 0 (replacing g by −g if necessary).
From (1.7) we see that g(x) is strictly monotonic on [0, 1] and g(x) > 0 for
x ∈ (0, 1]. Following [25], we apply a diffeomorphism transformation tr+1 = g(x)

for the exotic oscillator of the integrand
∫ 1

0
f(x)S(ωg(x))dx such that the moments

I[tk] =
∫ r+1

√
g(1)

0
tkS(ωtr+1)dt can be calculated explicitly. Then we can compute

the resulting integrals efficiently.
The rest of the paper is organized as follows. In Section 2 we introduce a Filon-

type method for (1.6) and present explicit expressions for the moments of the
Bessel and Airy transforms. The details of the computation of Lommel functions
are also discussed there. In Section 3 we first present the asymptotic expansion for

the Bessel transform
∫ 1

0
f(x)Jm(ωx)dx, and then we give the error analysis of the

Filon-type method for
∫ b

a
f(x)Jm(ωg(x))dx. Preliminary numerical examples show

that the Filon-type method is efficient and accurate for approximating the integral
considered. Finally, we consider applications to Airy transforms in Section 4.

A word about our notation. (i) If f(x)/φ(x) tends to unity as x → x0, we write

f(x) ∼ φ(x) (x → x0).

In words, f is asymptotic to φ.
(ii) If f(x)/φ(x) → 0 as x → x0, we write

f(x) = o(φ(x)) (x → x0).

(iii) If f(x)/φ(x) is bounded as x → x0, we write

f(x) = O(φ(x)) (x → x0).
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2. Filon-type method and efficient evaluation of the moments

We investigate the following highly oscillatory integral:

(2.1) I[f ] =

∫ 1

0

f(x)S(ωg(x))dx,

where f(x) and g(x) are smooth functions and g(x) satisfies (1.7) with g(r+1)(0) > 0.
Let tr+1 = g(x). Then from Stein ([22], pp. 336-337), t is well defined in [0, 1]

and is a diffeomorphism in a small neighborhood of 0. Thus t is a diffeomorphism
in [0, 1] since g′(x) �= 0 for x ∈ (0, 1]. Therefore, x(t) is well defined and I[f ] can
be rewritten as

(2.2)
I[f ] =

∫ 1

0

f(x)S(ωg(x))dx = (r + 1)

∫ y0

0

f(x)g(x)r/(r+1)

g′(x)
S(ωtr+1)dt

= (r + 1)

∫ y0

0

f̃(t)S(ωtr+1)dt,

where f̃(t) = f(x)g(x)r/(r+1)

g′(x) and y0 = r+1
√
g(1).

Filon-type method. Let {cj}vj=1 be a set of node points such that 0 = c1 < c2 <
· · · < cv = 1 and denote

dj =
r+1

√
g(cj), j = 1, 2, . . . , v.

Assume that s is a nonnegative integer and {mk}v1 is a set of multiplicities associated
with the node points 0 = d1 < d2 < · · · < dv = y0 such that m1 = s(r + 1) + k0
(0 ≤ k0 ≤ r,m1 ≥ 1) and mv ≥ s. Suppose that p(t) =

∑n
k=0 akt

k, where
n =

∑v
k=1mk − 1 is the solution of the system of equations

(2.3) p(dk) = f̃(dk), p
′(dk) = f̃ ′(dk), . . . , p

(mk−1)(dk) = f̃ (mk−1)(dk),

for every integer 1 ≤ k ≤ v. Then the Filon-type method is defined as follows:

(2.4) QF
s [f ] = (r + 1)

∫ y0

0

p(t)S(ωtr+1)dt = (r + 1)

n∑
k=0

akI[t
k],

where I[tk] =
∫ y0

0
tkS(ωtr+1)dt. For dk ∈ [0, y0], k = 1, 2, . . . , v, we obtain f̃(dk) =

f(ck)g(ck)
r/(r+1)

g′(ck)
. The derivatives of f̃ (�)(t) can be computed by

d�
[
f(x)tr

g′(x)

]
dt�

,

where x is considered as a function of t and x′(t) =
(r + 1)tr

g′(x)
. In particular, for

d0 = 0, f̃(0) and f̃ (k)(0) are computed by their limits using the Taylor expansion
of g(x). In this paper we choose the quadrature points as the shifted Chebyshev

points ck =
1 + cos( (v−k)π

v−1 )

2
, k = 1, ..., v.
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• For S(ωtr+1) = Jm(ωtr+1): If ω > 0 and Re(µ + ν) > −1, then it follows
from Gradshteyn ([7], p. 707) that

(2.5)

∫ 1

0

xµJν(ωx)dx =
2µΓ(µ+ν+1

2 )

ωµ+1Γ( ν−µ+1
2 )

+ ω−µ{(µ+ ν − 1)Jν(ω)s
(2)
µ−1,ν−1(ω)

− Jν−1(ω)s
(2)
µ,ν(ω)},

where s
(2)
µ,ν(z) denotes the second kind of Lommel function. According to

the preceding conditions Re(m) > − 1
r+1 and y0 > 0, we can deduce that

Re(m) + k+1
r+1 − 1 > −1 and ωyr+1

0 > 0. Therefore, we can obtain the

moments for Jm(ωtr+1) immediately from (2.5):

(2.6)

I[tk] =

∫ y0

0

tkJm(ωtr+1)dt

=
yk+1
0

r + 1

∫ 1

0

x
k+1
r+1−1Jm(ωyr+1

0 x)dx

=
yk+1
0

r + 1

[ 2
k+1
r+1−1Γ(

m+ k+1
r+1

2 )

(ωyr+1
0 )

k+1
r+1 Γ(

m− k+1
r+1+2

2 )
+ (ωyr+1

0 )−
k+1
r+1+1·

{
(
k + 1

r + 1
+m− 2)Jm(ωyr+1

0 )s
(2)
k+1
r+1−2,m−1

(ωyr+1
0 )

−Jm−1(ωy
r+1
0 )s

(2)
k+1
r+1−1,m

(ωyr+1
0 )

}]
.

For large values of z, s
(2)
µ,ν(z) admits the following asymptotic expansion

([24], p. 351):

(2.7)

s
(2)
µ,ν(z)

= zµ−1

[
1− (µ− 1)2 − ν2

z2
+

{(µ− 1)2 − ν2}{(µ− 3)2 − ν2}
z4

− · · ·
]

= zµ−1

[
1− (µ− 1)2 − ν2

z2
+ · · ·

+(−1)p
{(µ− 1)2 − ν2} · · · {(µ− 2p+ 1)2 − ν2}

z2p

]
+O(zµ−2p−2).

Therefore, s
(2)
µ,ν(z) can be efficiently approximated by truncating (2.7) once

ω is large. Furthermore, if either of the numbers µ ± ν is an odd positive

integer, then the Lommel function s
(2)
µ,ν(z) has a finite representation of

(2.7) ([24], p. 347).
• For S(ωtr+1) = Ai(−ωtr+1): By

Ai(−x) =
1

3

√
x

[
J− 1

3

(
2

3
x

3
2

)
+ J 1

3

(
2

3
x

3
2

)]
([1], p. 447),

the moment I[tk] =
∫ 1

0
tkAi(−ωtr+1)dt can be represented by
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(2.8)

I[tk]=

∫ y0

0

tkAi(−ωtr+1)dt =
yr+1
0

r + 1

∫ 1

0

t
k−r
r+1 Ai(−ωyr+1

0 t)dt

=

√
ωy

k+1+ r+1
2

0

9(r + 1)

[
2

2k−2r
3r+3 Γ( k+1

3r+3)

( 23 (ωy
r+1
0 )

3
2 )

2k+r+3
3r+3 Γ( 2r−k+1

3r+3 )
+

2
2k−2r
3r+3 Γ(k+r+2

3r+3 )

( 23 (ωy
r+1
0 )

3
2 )

2k+r+3
3r+3 Γ( 3r−k+2

3r+3 )

+(
2

3
(ωyr+1

0 )
3
2 )−

2k−2r
3r+3

{
(
2k − 6r − 4

3r + 3
)J− 1

3
(
2

3
(ωyr+1

0 )
3
2 )s

(2)
2k−5r−3

3r+3 ,− 4
3

(
2

3
(ωyr+1

0 )
3
2 )

− J− 4
3
(
2

3
(ωyr+1

0 )
3
2 )s

(2)
2k−2r
3r+3 ,− 1

3

(
2

3
(ωyr+1

0 )
3
2 )

+ (
2k − 4r − 2

3r + 3
)J 1

3
(
2

3
(ωyr+1

0 )
3
2 )s

(2)
2k−5r−3

3r+3 ,− 2
3

(
2

3
(ωyr+1

0 )
3
2 )

− J− 2
3
(
2

3
(ωyr+1

0 )
3
2 )s

(2)
2k−2r
3r+3 , 13

(
2

3
(ωyr+1

0 )
3
2 )

}]
.

3. Numerical analysis for the Filon-type method

for the Bessel transform

In this section, we consider the Filon-type method (2.4) for

(3.1) I[f ] =

∫ 1

0

f(x)Jm(ωg(x))dx,

where f(x) and g(x) are smooth functions and g(x) satisfies (1.7) with g(r+1)(0) > 0.
In the case of g(r+1)(0) < 0, by using Jm(x) = e−imπJm(−x) ([1], p. 361]), the inte-

gral (3.1) can be transformed into e−imπ
∫ 1

0
f(x)Jm(−ωg(x))dx with −g(r+1)(0) >

0.

Lemma 3.1. Suppose that α is a real number with 0 ≤ α ≤ r. Then for every
function w(t) ∈ C1[0, y0], we have

(3.2) |
∫ y0

0

w(t)tαJm(ωtr+1)dt| ≤ C

ω(α+1)/(r+1)

(
|w(y0)|+

∫ y0

0

|w′(t)|dt
)

for some constants C independent of w(t) and ω.

Proof. We first show that for all x ∈ [0, y0],

(3.3) |
∫ x

0

tαJm(ωtr+1)dt| ≤ Cω−(α+1)/(r+1)

for some constant C independent of x, ω and w(t). Let u = ωtr+1. Then, the
integral in (3.3) is expressed by

(3.4)

∫ x

0

tαJm(ωtr+1)dt =
ω−(α+1)/(r+1)

r + 1

∫ ωxr+1

0

u
α−r
r+1 Jm(u)du.

Therefore, it is trivial to prove (3.3) if the integral in the right-hand side of (3.4) is

uniformly bounded on x and ω. Recalling from the asymptotic expansion of s
(2)
µ,ν(u)

in (2.7), for large u one can obtain

(3.5) s
(2)
α−r
r+1 −1,m−1

(u) = O(u
α−r
r+1 −2), s

(2)
α−r
r+1 ,m

(u) = O(u
α−r
r+1 −1).
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This, together with the following asymptotic expansion ([1], p. 364; [22], p. 338)

(3.6) Jν(u) = (
2

π
)

1
2 u− 1

2 cos(u− νπ

2
− π

4
) +O(u− 3

2 ), u � 1,

and with (2.6), deduces that

∫ +∞

0

u
α−r
r+1 Jm(u)du is convergent, and then the func-

tion G(z) =

∫ z

0

u
α−r
r+1 Jm(u)du is continuous and uniformly bounded in [0,+∞),

which implies that

∫ ωxr+1

0

u
α−r
r+1 Jm(u)du is uniformly bounded on [0, y0].

Expression (3.2) is proved by writing
∫ y0

0
w(t)tαJm(ωtr+1)dt as

∫ y0

0
w(t)F ′(t)dt,

with

F (t) =

∫ t

0

uαJm(ωur+1)du.

Integrating by parts one derives∫ y0

0

w(t)tαJm(ωtr+1)dt = w(y0)F (y0) +

∫ y0

0

w′(t)F (t)dt,

which together with (3.3) gives the desired result. �

Example 3.1. Let us consider the asymptotic behaviour of I[tk] =
∫ 1

0
tkJ0(ωt

3)dt
for large ω (see Figure 1).

Figure 1. The absolute values of the moment I[tk] =∫ 1

0
tkJ0(ωt

3)dt scaled by ω(k+1)/3 for k = 0, 1, 2 (the top, middle
and bottom, respectively) and 0 ≤ ω ≤ 100.

The asymptotic expansion (1.3) of the highly oscillatory integral
∫ 1

0
f(x)eiωg(x)dx

provides an invaluable tool in numerical analysis [11]. For the integral∫ y0

0
f(x)Jm(ωx)dx, the asymptotic expansion can be obtained from the following

lemma.



836 SHUHUANG XIANG AND HAIYONG WANG

Lemma 3.2. For every smooth f it is true that

(3.7)

∫ y0

0

f(x)Jm(ωx)dx ∼
+∞∑
k=0

(−1)k

ωk
σk[f ](0)

∫ y0

0

Jm+k(ωx)dx

−
+∞∑
k=1

(−1)k

ωk
{σk−1[f ](y0)− σk−1[f ](0)}Jm+k(ωy0),

where
∫ y0

0
Jm+k(ωx)dx can be computed explicitly by (2.6) and

σ0[f ](x) = f(x),

σk+1[f ](x) =
xσk[f ]

′(x)− (m+ k + 1)(σk[f ](x)− σk[f ](0))

x
, k ≥ 0.

Proof. Following Iserles and Nørsett [11], we prove by induction on s the identity

(3.8)

∫ y0

0

f(x)Jm(ωx)dx

=
s−1∑
k=0

(−1)k

ωk
σk[f ](0)

∫ y0

0

Jm+k(ωx)dx

−
s∑

k=1

(−1)k

ωk
{σk−1[f ](y0)− σk−1[f ](0)}Jm+k(ωy0)

+
(−1)s

ωs

∫ y0

0

σs[f ](x)Jm+s(ωx)dx.

Suppose that s = 1. From
d

dx

[
xm+1Jm+1(x)

]
= xm+1Jm(x) ([1], p. 361]), we have

∫ y0

0

f(x)Jm(ωx)dx

= σ0[f ](0)

∫ y0

0

Jm(ωx)dx+
1

ω

∫ y0

0

σ0[f ](x)− σ0[f ](0)

xm+1
d[xm+1Jm+1(ωx)]

= σ0[f ](0)

∫ y0

0

Jm(ωx)dx+
1

ω
(σ0[f ](y0)− σ0[f ](0))Jm+1(ωy0)

− 1

ω

∫ y0

0

xσ0[f ]
′(x)− (m+ 1)(σ0[f ](x)− σ0[f ](0))

x
Jm+1(ωx)dx

= σ0[f ](0)

∫ y0

0

Jm(ωx)dx+
1

ω
(σ0[f ](y0)− σ0[f ](0))Jm+1(ωy0)

− 1

ω

∫ y0

0

σ1[f ](x)Jm+1(ωx)dx.
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So it is true for s = 1. For s ≥ 2, integration by parts on the right yields

(−1)s

ωs

∫ y0

0

σs[f ](x)Jm+s(ωx)dx

=
(−1)sσs[f ](0)

ωs

∫ y0

0

Jm+s(ωx)dx

+
(−1)s

ωs+1

∫ y0

0

σs[f ](x)− σs[f ](0)

xm+s+1
d[xm+s+1Jm+s+1(ωx)]

=
(−1)sσs[f ](0)

ωs

∫ y0

0

Jm+s(ωx)dx

+
(−1)s(σs[f ](x)− σs[f ](0))

ωs+1
Jm+s+1(ωx)|y0

0

+
(−1)s+1

ωs+1

∫ y0

0

σs+1[f ](x)Jm+s+1(ωx)dx.

This proves (3.8). Letting s → ∞ yields the asymptotic expansion (3.7). �

The following asymptotic quadrature for
∫ y0

0
f(x)Jm(ωx)dx, defined by

(3.9)

QA
s [f ] =

s−1∑
k=0

(−1)k

ωk
σk[f ](0)

∫ y0

0

Jm+k(ωx)dx

−
s∑

k=1

(−1)k

ωk
{σk−1[f ](y0)− σk−1[f ](0)}Jm+k(ωy0),

a truncation of the asymptotic expansion (3.7), is efficient for large values of ω.

Theorem 3.1. For every smooth f it is true that

QA
s [f ]−

∫ y0

0

f(x)Jm(ωx)dx = O

(
1

ωs+1

)
, ω � 1.

Proof. This follows directly from Lemma 3.1 and (3.8). �

Throughout the rest of the paper, we evaluate s
(2)
µ,ν(z) by truncating after the

first 10 terms of (2.7). The exact values of the integrals in the numerical examples
are computed by Maple 11 with 100-digit arithmetic; they are also tested by using
the code of Clenshaw-Curtis methods presented by Trefethen in [23] with 32-digit
or 64-digit arithmetic, respectively.

Example 3.2. Let us consider the asymptotic quadrature (3.9) for approximating

∫ 1

0

cos(x)J0(ωx)dx (see Figure 2).
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Figure 2. The absolute error for QA
1 [cos(x)] (the left) and

QA
2 [cos(x)] (the right) scaled by ω2 and ω3, respectively, for∫ 1

0
cos(x)J0(ωx)dx and 100 ≤ ω ≤ 200.

Applying the asymptotic expansion (3.7), we give the error analysis of the Filon-
type method (2.4) for the Bessel transform in (1.6).

Theorem 3.2. The Filon-type method defined by (2.4) for

I[f ] =

∫ 1

0

f(x)Jm(ωg(x))dx

satisfies

(3.10) I[f ]−QF
s [f ] = O

(
1

ωs+(k0+1)/(r+1)

)
.

Proof. Let h(t) = f̃(t) − p(t) and x = tr+1. Then from (2.2) and (2.4) the error
can be written as

(3.11)

I[f ]−QF
s [f ] = (r + 1)

∫ y0

0

h(t)Jm(ωtr+1)dt

=

∫ yr+1
0

0

h(x1/(r+1))

xr/(r+1)
Jm(ωx)dx

=

∫ yr+1
0

0

ψ(x)Jm(ωx)dx,

where ψ(x) = h(x1/(r+1))
xr/(r+1) . From Maclaurin’s expansion of

h(t) =
f̃ (s(r+1)+k0)(ξ)− p(s(r+1)+k0)(ξ)

(s(r + 1) + k0)!
ts(r+1)+k0 for some ξ ∈ [0, t],

we have

(3.12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(x) =

f̃ (s(r+1)+k0)(ξ)− p(s(r+1)+k0)(ξ)

(s(r + 1) + k0)!
xs+

k0−r
r+1

ψ(0) = ψ′(0) = · · · = ψ(s−1)(0)=0, ψ(yr+1
0 )

= ψ′(yr+1
0 ) = · · · = ψ(s−1)(yr+1

0 )=0.



FAST INTEGRATION OF HIGHLY OSCILLATORY INTEGRALS 839

It is not difficult from (3.12) and the definitions of σk[ψ](x) to verify that

σ1[ψ](x) = O
(
xs−1+

k0−r
r+1

)
, . . . , σs[ψ](x) = O

(
x

k0−r
r+1

)
and

σk[ψ](0) = σk[ψ](y
r+1
0 ) = 0, k = 0, . . . , s− 1.

Therefore

σ1[ψ](t
r+1) = O

(
t(s−1)(r+1)+k0−r

)
, . . . , σs[ψ](t

r+1) = O
(
tk0−r

)
,

σs[ψ](t
r+1)tr = O

(
tk0

)
.

This, together with (3.8) and Lemma 3.1, implies

I[f ]−QF
s [f ] =

(−1)s

ωs

∫ yr+1
0

0

σs[ψ](x)Jm+s(ωx)dx

=
(−1)s(r + 1)

ωs

∫ y0

0

σs[ψ](t
r+1)trJm+s(ωt

r+1)dt

= O

(
1

ωs+(k0+1)/(r+1)

)
. �

Example 3.3. We now demonstrate the application of the Filon-type method

to several numerical examples. The first is the computation of
∫ 1

0
exJ0(ω(1 −

cos(x)))dx. It is evident that the Filon-type method is applicable. We compare two
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1exJ0(ω(1−cos(x)))dx

0 20 40 60 80 100 120 140 160 180 200
10−4

10−2

100

A
bs

ol
ut

e 
er

ro
r 

sc
al

ed
 b

y 
ω

0 20 40 60 80 100 120 140 160 180 200
10−6

10−4

10−2

A
bs

ol
ut

e 
er

ro
r

0 20 40 60 80 100 120 140 160 180 200
10−5

100

105

A
bs

ol
ut

e 
er

ro
r 

sc
al

ed
 b

y 
ω

1.
5

ω from 1 to 200

m
1
=m

2
=m

3
=1 

m1=m3=2, m2=1 

Figure 3. The error (the top), error scaled by ω (the second), the
error (the third), and error scaled by ω1.5 (bottom) with the same

nodes {xj =
(cos( (n−j)π

2 )+1)

2 , j = 1, 2, 3}, and multiplicities all one

and {2, 1, 2}, respectively, for
∫ 1

0
exJ0(ω(1− cos(x)))dx.
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Filon-type methods with the same three nodes and multiplicities all 1 and {2, 1, 2},
respectively. As seen in Figure 3, the first two figures illustrate the errors (the top)

and errors scaled by ω (the second) with nodes {xj =
(cos( (3−j)π

2 )+1)

2 , j = 1, 2, 3}
and multiplicities all 1. The bottom two figures illustrate the errors and errors
scaled by ω1.5 with the same nodes and multiplicities {2, 1, 2}, respectively.

The other two examples are I[ 1
1+x ] =

∫ 1

0
1

1+xJ1(ω(e
x − x − 1))dx and I[ex] =∫ 1

0
exJ2(ω(x − sin(x)))dx, which seem more complicated to handle. Tables 1 and

2 illustrate the relative errors in v-points approximation with multiplicities all 1.
From these two tables, we can see that the Filon-type method exhibits the fast
convergence as v increases. Tables 3 and 4 illustrate that as the multiplicities
increase at the end points, the approximate accuracy can be enhanced.

Table 1. Relative errors in v-points approximation to I[ 1
1+x ] =∫ 1

0
1

1+xJ1(ω(e
x − x− 1))dx with multiplicities all one.

ω v = 4 v = 8 v = 12

200 0.0046263225 0.0000085084 1.427796502E − 8

500 0.0039959151 0.0000036176 2.983185440E − 9

1000 0.0032365958 2.200974762E − 7 8.707204300E − 9

2000 0.0025035221 0.0000023876 6.252544276E − 9

Table 2. Relative errors in v-points approximation to I[ex] =∫ 1

0
exJ2(ω(x− sin(x)))dx with multiplicities all one.

ω v = 4 v = 8 v = 12

200 0.001656537 4.586916397E − 8 7.026658595E − 14

500 0.0005901539 1.574877810E − 7 3.537131115E − 12

1000 0.0002677535 1.160995982E − 7 9.436098047E − 12

2000 0.0009114874 7.731021307E − 9 4.422931661E − 12

Table 3. Relative errors in v-points approximation to I[ 1
1+x ] =∫ 1

0
1

1+xJ1(ω(e
x−x−1))dx with m1,mv = 2 and the others all one.

ω v = 4 v = 8 v = 12

200 0.0003147118 6.597628622E − 7 1.309191824E − 9

500 0.0001758496 1.734538903E − 7 1.591356020E − 10

1000 0.0001015467 9.101387022E − 9 3.248618020E − 10

2000 0.0000558027 5.724619643E − 8 1.581881723E − 10
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Table 4. Relative errors in v-points approximation to I[ex] =∫ 1

0
exJ2(ω(x− sin(x)))dx with m1,mv = 2 and the others all one.

ω v = 4 v = 8 v = 12

200 0.0000618306 1.673703661E − 9 2.112253035E − 14

500 0.0000196664 4.445163366E − 9 1.098853818E − 13

1000 0.0000067988 2.896855435E − 9 2.289120828E − 13

2000 0.0000208972 9.401439940E − 11 9.561286297E − 14

4. An application to the Airy transform

In this section, we consider the Filon-type method for the integral

(4.1) I[f ] =

∫ 1

0

f(x)Ai(−ωg(x))dx,

where f(x) and g(x) are smooth functions and g(x) satisfies (1.7) with g(r+1)(0) > 0.
Using the transformation tr+1 = g(x), (4.1) can be transformed into

(4.2) I[f ] = (r + 1)

∫ y0

0

f̃(t)Ai(−ωtr+1)dt,

where f̃(t) is a smooth function.
Assume that s is a positive integer and that {mk}v1 is a set of multiplicities

associated with the node points 0 = d1 < d2 < · · · < dv = y0 such that m1 ≥
floor

(
(3s− 1)(r + 1) + k0

2

)
(0 ≤ k0 < 3r+3) and mv ≥ s, where floor(x) rounds

the elements of x to the nearest integers towards minus infinity. Suppose that p(t)

is the Hermite interpolating polynomial defined by (2.3) and h(t) = f̃(t)− p(t).
Based on

Ai(−x) =
1

3

√
x

[
J− 1

3

(
2

3
x

3
2

)
+ J 1

3

(
2

3
x

3
2

)]
,

the error can be rewritten by t = u2 as

I[f ]−QF
s [f ] =

2(r + 1)
√
ω

3

∫ √
y0

0

h(u2)ur+2

[
J− 1

3

(
2

3
ω

3
2 u3r+3

)
+J 1

3

(
2

3
ω

3
2 u3r+3

)]
du.

(4.3)

Theorem 4.1. The Filon-type method defined by (2.4) with

m1 ≥ floor

(
(3s− 1)(r + 1) + k0

2

)
, mv ≥ s,

for I[f ] =
∫ 1

0
f(x)Ai(−ωg(x))dx satisfies

(4.4) I[f ]−QF
s [f ] = O

(
1

ω
3s−1

2 +
k0+1
2(r+1)

)
.

Proof. From (4.3), we see that u = 0 and u =
√
y0 are two roots of h(u2)ur+2 = 0

with multiplicities m̃1 ≥ 3s(r + 1) + k0 and m̃v ≥ s, respectively. Therefore, from
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Theorem 3.2, we have

I[f ]−QF
s [f ] = O

⎛⎜⎜⎝ ω
1
2(

ω
3
2

) 3s(r+1)+k0+1
3(r+1)

⎞⎟⎟⎠ = O

(
1

ω
3s−1

2 +
k0+1
2(r+1)

)
. �

Example 4.1. As an illustration of the effectiveness of the Filon-type method,

we consider the Filon-type method QF
s [

1

1 + x
] (s = 1, 2) in the case r = 0 for

approximating

I[
1

1 + x
] =

∫ 1

0

1

1 + x
Ai(−ωx)dx (see Figure 4).
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Figure 4. The absolute error and the absolute error scaled by ω2

and ω3, respectively, for the Filon-type method with m1 = · · · =
m8 = 1 (the first row), and m1 = m8 = 2, m2 = · · · = m7 = 1 (the

second row) at shifted Chebyshev points {xj =
(cos( (8−j)π

7 )+1)

2 , j =

1, 2, . . . , 8}, for I[f ] =
∫ 1

0
1

1+xAi(−ωx)dx.

Remark 1. The asymptotic order on ω of the error bound (4.4) of the Filon-type
method (2.4) for the Airy transform is sharp. For example, let us consider∫ 1

0

(x3 + 2x+ 1 + x2(1 + cos(πx)))Ai(−ωx)dx.

The polynomial x3+2x+1 is the Hermite interpolating polynomial of x3+2x+1+
x2(1 + cos(πx)) at 0 and 1 with multiplicities all 2. So the error for the Filon-type
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method can be written as

I[f ]−QF
2 [f ] =

∫ 1

0

x2(1 + cos(πx))Ai(−ωx)dx.

Since [Ai(x)]′′ = xAi(x) ([1], p. 446), it follows that ω3xAi(−ωx) = −[Ai(−ωx)]′′.
Integrating by parts twice we get for ω � 1,

I[f ]−QF
2 [f ] = − 1

ω3

∫ 1

0

x(1 + cos(πx))[Ai(−ωx)]′′dx

= − 2

ω3
Ai(0) +

π

ω3

∫ 1

0

(2 sin(πx) + πx cos(πx))Ai(−ωx)dx

= O

(
1

ω3

)
since Ai(0) = 3−2/3/Γ

(
2
3

)
�= 0 and

π

ω3

∫ 1

0

(2 sin(πx) + πx cos(πx))Ai(−ωx)dx

=
π

3ω3

∫ 1

0

(2 sin(πx) + πx cos(πx))
√
x

[
J− 1

3

(
2

3
x

3
2

)
+ J 1

3

(
2

3
x

3
2

)]
= O

(
1

ω4

)
(Lemma 3.1).
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