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STIFFLY ACCURATE RUNGE–KUTTA METHODS

FOR NONLINEAR EVOLUTION PROBLEMS

GOVERNED BY A MONOTONE OPERATOR

ETIENNE EMMRICH AND MECHTHILD THALHAMMER

Abstract. Stiffly accurate implicit Runge–Kutta methods are studied for the
time discretisation of nonlinear first-order evolution equations. The equation
is supposed to be governed by a time-dependent hemicontinuous operator that
is (up to a shift) monotone and coercive, and fulfills a certain growth condi-
tion. It is proven that the piecewise constant as well as the piecewise linear
interpolant of the time-discrete solution converges towards the exact weak so-
lution, provided the Runge–Kutta method is consistent and satisfies a stability
criterion that implies algebraic stability; examples are the Radau IIA and Lo-
batto IIIC methods. The convergence analysis is also extended to problems
involving a strongly continuous perturbation of the monotone main part.

1. Introduction

In this paper, we are concerned with implicit Runge–Kutta methods for the time
integration of the initial value problem for a nonlinear evolution equation

(1.1) u′ +Au = f in (0, T ) , u(0) = u0 .

The operator A is supposed to be the Nemytskii operator corresponding to a family
of hemicontinuous operators A(t) : V → V ∗ (t ∈ [0, T ]) acting on a Gelfand triple
V ⊆ H ⊆ V ∗. Our main assumptions are that A(t) + κI : V → V ∗ (with I being
the identity) is coercive and monotone for some κ ≥ 0, uniformly in t ∈ [0, T ], and
that A(t) : V → V ∗ fulfills a certain growth condition. In addition, we consider the
evolution problem

(1.2) u′ +Au+Bu = f in (0, T ) , u(0) = u0 ,

where B is the Nemytskii operator corresponding to a family of strongly continuous
operators B(t) : V → V ∗ (t ∈ [0, T ]).

For the time integration of (1.1) and (1.2), respectively, we apply an s-stage
implicit Runge–Kutta method (s ≥ 2) on the equidistant time grid

(1.3) Iτ : 0 = t0 < t1 < · · · < tN = T , tn = nτ (n = 0, 1, . . . , N ∈ N) , τ = T/N ,

with coefficients given by the Butcher tableau

(1.4)
c A

bT
, A = [aij ] ∈ R

s×s , b = [bi] , c = [ci] ∈ R
s ,
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yielding approximations un ≈ u(tn) (n = 1, 2, . . . , N). To emphasise the depen-
dence of a quantity g on the time grid Iτ , we write g(Iτ ). Henceforth, we denote by
un = [un,1, . . . , un,s]T the vector of stage values; the vector dn = [dn,1, . . . , dn,s]T,
defined by dn = (un − un1)/τ (where 1 = [1, . . . , 1]T), is related to the slope
values. Moreover, we set An = diag[A(tn + c1τ ), . . . , A(tn + csτ )] and denote by
fn = [fn,1, . . . , fn,s]T the vector of approximations fn,i ≈ f(tn + ciτ ) of the right-
hand side. The Runge–Kutta time discretisation of (1.1) can then be written as

(1.5) dn + AAnun = Afn , n = 0, 1, . . . , N − 1,

where u0 ≈ u0 is a given approximation of the initial value. The numerical approx-
imation of (1.2) reads as

(1.6) dn + AAnun + ABnun = Afn , n = 0, 1, . . . , N − 1 ,

where Bn = diag[B(tn + c1τ ), . . . , B(tn + csτ )]. We always assume that (1.4) is
stiffly accurate, i.e. bT = eTsA (where ek ∈ Rs is the k-th unit vector) and thus
un+1 = un,s.

We shall prove convergence, in a weak sense, of the piecewise constant and
piecewise linear interpolants of the discrete numerical solution towards the weak
solution without requiring any additional (and in general not known) regularity of
the exact solution.

Already in the linear case, higher regularity is equivalent to compatibility con-
ditions on the problem data, which might hardly be satisfiable as is the case for
the incompressible Stokes problem, where the solenoidality constraint leads to an
overdetermined Neumann problem. At least in the linear case, it is possible to
circumvent these compatibility conditions by employing the parabolic smoothing
property that carries over to A(ϑ)-stable time discretisation methods (including the
Runge–Kutta methods considered here).

On the other hand, in the nonlinear case, regularity results suited for the anal-
ysis of numerical methods are rare and often restricted to special situations. For
instance, under additional assumptions on the initial data and for a homogeneous
right-hand side, u ∈ C 1([0, T ];Hw) (where Hw means H equipped with the weak
topology) can be proven; the same regularity can be shown on any time interval
(δ, T ] for δ > 0 without additional assumptions on the initial data if the evolu-
tion equation is governed by a potential operator (see [20, VI §2] and also [40,
Thm. 8.16]). Even this would not be enough to prove optimal order error esti-
mates. It is clear, however, that our convergence result cannot provide any order
of convergence. Nevertheless, we also prove error estimates for sufficiently smooth
solutions.

An essential prerequisite for our convergence analysis is a priori estimates that
rely upon a stability criterion which implies algebraic stability. More precisely, we
suppose that the stiffly accurate method (1.4) is such that bT1 = 1 (consistency),
A is invertible, bi > 0 (i = 1, . . . , s), and the matrix

(1.7) G = BA+ AT
B− bb

T − dd
T , B = diag b , d = A

T
BA

−11

is positive semi-definite. In fact, we show G = 0 for a class of Runge–Kutta
methods including the Radau IIA and Lobatto IIIC methods. The aforementioned
assumptions imply B- and L-stability. Our proof of convergence is further based
upon the theory of monotone operators and compactness arguments. We note that
no linearisation is employed and thus no differentiability of the underlying nonlinear
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operator is required. Moreover, our assumptions imply global existence of solutions
to the original problem, which is different from the approach in e.g. [21, 38, 39].
Besides convergence, we also study solvability of the discrete problem as well as
stability with respect to a perturbation of the data. The corresponding estimates
then allow us to derive a priori error estimates for sufficiently regular solutions.

Results similar to those obtained here have recently been proven in [18] for the
ϑ-scheme on a variable time grid, in [16] for the two-step backward differentiation
formula (BDF) on an equidistant grid, in [19] for the two-step BDF on a variable
time grid if the operator is the derivative of a potential, and can be found in e.g. [40,
Ch. 8.2] for the backward Euler (or Rothe) method. All the results of this paper
apply to e.g. the fluid flow of a porous medium as described in [30, pp. 191 ff.]
and [20, pp. 72 ff.]. Also an application, although not directly, to incompressible
fluid flow problems described by the Navier-Stokes equations or the equations for
generalised Newtonian fluids is possible (see [17] for corresponding results for the
two-step BDF).

In many applications, time-dependent processes can be described by nonlinear
evolution problems of the type studied here, and there is an extensive literature
on their analysis (see e.g. the monographs [8, 10, 20, 30, 34, 40, 46] and the refer-
ences cited therein). The study of their numerical solution, however, is still rather
incomplete. A standard reference for the time discretisation of linear evolution
problems is [44]. An early reference for the analysis of time discretisation meth-
ods for linear problems under minimal regularity requirements is [6]; see also [5]
for the interplay of stability and convergence of the method. Strongly A-stable
Runge–Kutta methods for linear problems with a time-independent operator have
been studied, e.g., in [12]. For the approximation of linear problems with a time-
dependent operator by means of variable step size Runge–Kutta methods, we refer
to [7]. The approximation of semilinear evolution equations has been considered
e.g. in [1, 2, 3, 11, 13, 15, 28, 33, 42, 43]. Multistep methods for a class of quasi-
linear evolution problems have been studied e.g. in [27, 29, 47]. An analysis of
Runge–Kutta methods can be found in [22, 31]. Stability and error estimates for
linearly implicit one-step methods applied to nonlinear evolution equations posed in
a Gelfand triple are proven in [32] relying on a linearisation. The backward Euler,
strongly A(ϑ)-stable Runge–Kutta discretisations, and linear multistep methods
for fully nonlinear problems, which are governed by a densely defined nonlinear
mapping in a Banach space whose first Fréchet derivative is sectorial, have been
dealt with, again by linearisation, in [21, 38, 39]. Evolution equations governed by
maximal monotone operators and their time discretisation by Runge–Kutta and
multistep methods have been studied in [24, 25, 26, 41]. The focus in all this work
is on error estimates (thus requiring smoothness of the exact solution) rather than
on convergence only. A posteriori error estimates for the time discretisation of
nonlinear evolution problems have been studied in [4, 35, 36, 37].

The present paper is organised as follows: The analytical framework for studying
(1.1) is described in Section 2. Section 3 collects results corresponding to the
required stability of the Runge–Kutta method under consideration. Existence,
uniqueness, and a priori estimates are shown in Section 4 for the time-discrete
problem (1.5). The main convergence result is then proven in Section 5. Stability
and a priori error estimates in the case of a sufficiently smooth exact solution are
derived in Section 6. Finally, the results are extended to the perturbed problem
(1.2) in Section 7.
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2. Time continuous problem and notation

Let V ⊆ H ⊆ V ∗ be a Gelfand triple with a reflexive, separable, real Ba-
nach space (V, ‖ · ‖) that is dense and continuously embedded in the Hilbert space
(H, (·, ·), | · |). The dual V ∗ of V is equipped with the standard dual norm ‖ · ‖∗,
and 〈·, ·〉 denotes the duality pairing (sometimes, we emphasise the spaces through
a subscript as in 〈·, ·〉V ∗×V ). The space of Bochner integrable (for r = ∞ Bochner
measurable and essentially bounded) abstract functions mapping [0, T ] into a Ba-
nach space X is denoted by Lr(0, T ;X) (r ∈ [1,∞]) and equipped with the standard
norm ‖·‖Lr(0,T ;X). Moreover, we denote by C r([0, T ];X) (r ∈ N, C 0 ≡ C ) the space
of uniformly continuous functions mapping [0, T ] into X with uniformly continuous
time derivatives up to order r.

In the sequel, we always assume p ∈ (1,∞) and set p∗ = p/(p− 1). The duality
pairing between Lp(0, T ;V ) and Lp∗

(0, T ;V ∗) = (Lp(0, T ;V ))
∗
is given by

〈f, v〉Lp∗ (0,T ;V ∗)×Lp(0,T ;V ) =

∫ T

0

〈f(t), v(t)〉V ∗×V dt .

Moreover, we have
(
L1(0, T ;H)

)∗
= L∞(0, T ;H) with

〈f, v〉L∞(0,T ;H)×L1(0,T ;H) =

∫ T

0

(f(t), v(t))dt .

The inner product in L2(0, T ;H) is denoted by (·, ·)L2(0,T ;H).
The solutions to (1.1) and (1.2), respectively, will be sought in the Banach space

W = {v ∈ X : v′ ∈ X ∗} , ‖v‖W = ‖v‖X + ‖v′‖X ∗ ,

with v′ being the distributional time derivative and where

X = Lp(0, T ;V ) ∩ L2(0, T ;H) , ‖v‖X = ‖v‖Lp(0,T ;V ) + ‖v‖L2(0,T ;H) ,

is a reflexive, separable Banach space. Its dual X ∗ can be identified with the sum
Lp∗

(0, T ;V ∗) + L2(0, T ;H), equipped with the norm

‖f‖X ∗ = inf
f1∈Lp∗ (0,T ;V ∗), f2∈L2(0,T ;H)

f=f1+f2

max
(
‖f1‖Lp∗ (0,T ;V ∗), ‖f2‖L2(0,T ;H)

)
.

The duality pairing between f = f1 + f2 ∈ Lp∗
(0, T ;V ∗) + L2(0, T ;H) and v ∈ X

is given by

(2.1) 〈f, v〉X ∗×X =

∫ T

0

(〈f1, v〉V ∗×V + (f2, v)) dt =

∫ T

0

〈f, v〉V ∗×V dt ;

see e.g. [20] for more details. Note that X ⊆ L2(0, T ;H) ⊆ X ∗ forms a Gelfand
triple and that W is continuously embedded in C ([0, T ];H). If p ≥ 2, then we can
just take X = Lp(0, T ;V ), X ∗ = Lp∗

(0, T ;V ∗).
The structural properties we always assume for A read as follows:

Assumption A. {A(t)}t∈[0,T ] is a family of hemicontinuous operators A(t) : V →
V ∗ such that for all v ∈ V the mapping t �→ A(t)v : [0, T ] → V ∗ is continuous for
almost all t ∈ [0, T ]. There is a constant κ ≥ 0 such that A(t) + κI : V → V ∗

is monotone for all t ∈ [0, T ]. For a suitable p ∈ (1,∞), there are constants
µ, c > 0, λ ≥ 0 such that for all t ∈ [0, T ] and v ∈ V ,

〈(A(t) + κI)v, v〉 ≥ µ‖v‖p − λ , ‖A(t)v‖∗ ≤ c
(
1 + ‖v‖p−1

)
.
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With {A(t)}t∈[0,T ], we associate the Nemytskii operator A that is defined by
(Av)(t) := A(t)v(t) (t ∈ [0, T ]) for a function v : [0, T ] → V . Under Assumption A,
the Nemytskii operator A maps Lp(0, T ;V ) (and thus X ↪→ Lp(0, T ;V )) into
(Lp(0, T ;V ))

∗
= Lp∗

(0, T ;V ∗) and is hemicontinuous and bounded. Moreover,
A+κI : X ↪→ Lp(0, T ;V ) → Lp∗

(0, T ;V ∗) ↪→ X ∗ is monotone and for all v ∈ X ,

〈(A+ κI)v, v〉 ≥ µ‖v‖pLp(0,T ;V ) − λT .

Problem (1.1) then possesses for any u0 ∈ H and f ∈ X ∗ a unique solution
u ∈ W such that the evolution equation holds in X ∗ (see [40, Thm. 8.28], [8, Thm.
4.2 on p. 167], [20, Satz 1.1 on p. 201, Bem. 1.5 on p. 210, Satz 1.3 on p. 211], [46,
Thm. 30.A] for more details). Note that u′ ∈ Lp∗

(0, T ;V ∗) if f ∈ Lp∗
(0, T ;V ∗).

Examples for operators possessing the above properties can be found e.g. in [20,
pp. 68 ff., 215 ff.], [30], [40, pp. 232 ff.], and [46, pp. 567 ff., 590 ff., 779 ff.]).
A standard example is the p-Laplacian in a bounded domain supplemented by
homogeneous Dirichlet boundary conditions. Another example is the fluid flow
through a porous medium when working with the Sobolev space H−1 as the pivot
space H in the underlying Gelfand triple (see [30, pp. 191 ff.], [20, pp. 72 ff.]).

In what follows, we focus on the case κ = 0. This is justified by [18, Remark 1]
(see also [20, Satz 1.3 on p. 211]) as we can always transform a problem with κ �= 0
into an equivalent problem with κ = 0, even in the nonlinear case.

3. Stability of the Runge–Kutta method

Throughout this paper, we rely upon the following assumptions on the Runge–
Kutta method (1.4):

Assumption RK. The method (1.4) is stiffly accurate, i.e. bT = eTsA. The matrix
A is invertible. The method is consistent in the sense that bT1 = 1. The entries of
b are positive and the matrix G (see (1.7)) is positive semi-definite.

Note that the consistency condition A1 = c is not needed for the convergence
result (but surely for the error estimates in Section 6). The following theorem
provides sufficient conditions for a Runge–Kutta method to be stable in the sense
of Assumption RK.

Theorem 3.1. Let (1.4) be stiffly accurate with invertible A, and let the entries
of b be positive and the entries of c be pairwise distinct. If the method satisfies the
simplifying conditions B(2s− 2), C(s− 1), D(s− 1) (see [23, p. 75]), then G = 0.

Proof. We commence by recalling the simplifying conditions on the coefficients of
the Runge–Kutta method (1.4):

B(2s− 2)

s∑
i=1

bic
q−1
i =

1

q
, q = 1, . . . , 2s− 2 ,

C(s− 1)

s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s , q = 1, . . . , s− 1 ,

D(s− 1)

s∑
i=1

bic
q−1
i aij =

bj
q

(
1− cqj

)
, j = 1, . . . , s , q = 1, . . . , s− 1 .
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The proof follows essentially the idea in [23, Thm. 12.8 on p. 195] and employs
the W-transform. A simple calculation shows that for V = A−1B−1ATB,

V
T
GV = M− d̂d̂

T with M = BA+ A
T
B− bb

T , d̂ = V
T
b = BAB

−1
es ;

it is thus sufficient to show M = d̂d̂T. Let W = [wij ] ∈ R
s×s be given by

wij = pj−1(ci) , wis = α−1ps−1(ci) , i = 1, . . . , s , j = 1, . . . , s− 1 ,

where for k = 0, 1, . . . , s− 1,

pk(x) =

√
2k + 1

k!

dk

dxk

(
xk(x− 1)k

)
=

√
2k + 1

k∑
l=0

(−1)k+l

(
k

l

)(
k + l

l

)
xl

and

α =

(
s∑

i=1

bips−1(ci)
2

)1/2

.

It is known (see [23, p. 195]) that W is nonsingular and that WTB = W−1, WTb =
e1. Moreover, we find

(3.1) W
T
MW = X+ X

T − e1e
T
1 = 2βese

T
s , W

T
d̂ = XW

T
es ,

where X = W−1AW reads as

X =

⎡
⎢⎢⎢⎢⎢⎣

1
2 −ξ1 0
ξ1 0 −ξ2

. . .
. . . −ξs−2

ξs−2 0 −αξs−1

0 αξs−1 β

⎤
⎥⎥⎥⎥⎥⎦

with

ξk =
1

2
√
4k2 − 1

, k = 1, 2, . . . , s− 1 .

The quantity β can be calculated invoking again that the method is stiffly accurate.
From the representation of X, we obtain in particular

s∑
j=1

asjwjs = −αwss−1ξs−1 + wssβ

and thus

β =
1

wss

⎛
⎝ s∑

j=1

asjwjs + αwss−1ξs−1

⎞
⎠

=
α

ps−1(cs)

⎛
⎝ 1

α

s∑
j=1

asjps−1(cj) + αps−2(cs)ξs−1

⎞
⎠ .

Since the simplifying assumption B(2s−2) implies that the quadrature with weights
b1, . . . , bs and abscissae c1, . . . , cs is on [0, 1] exact for polynomials up to degree 2s−3
and since s− 1 ≤ 2s− 3 for s ≥ 2, we have

s∑
j=1

asjps−1(cj) =
s∑

j=1

bjps−1(cj) =

∫ 1

0

ps−1(x)dx = 0 .
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It follows that

β =
α2

ps−1(cs)
ps−2(cs)ξs−1 .

Because of the consistency of the method, which follows from the simplifying as-
sumptions B(1) and C(1), we further have

(3.2) cs = e
T
s c = e

T
sA1 = b

T1 = 1 ,

and with pk(1) =
√
2k + 1 (k = 0, 1, . . . , s− 1), we finally come up with

(3.3) β =
α2

ps−1(1)
ps−2(1)ξs−1 =

α2
√
2(s− 2) + 1

2
√
2(s− 1) + 1

√
4(s− 1)2 − 1

=
α2

2(2s− 1)
.

Because of (3.1), we have to show that 2βeses
T = XWTes(XW

Tes)
T. The last

column of XWT is given by

XW
T
es =

[
1

2
p0(1)− ξ1p1(1), ξ1p0(1)− ξ2p2(1), . . . ,

. . . , ξs−2ps−3(1)− ξs−1ps−1(1), αξs−1ps−2(1) +
β

α
ps−1(1)

]T
.

The first entry vanishes because of

1

2
p0(1)− ξ1p1(1) =

1

2
− 1

2
√
3

√
3 = 0 ;

for the remaining entries, we get

ξlpl−1(1)−ξl+1pl+1(1) =

√
2(l − 1) + 1

2
√
4l2 − 1

−
√
2(l + 1) + 1

2
√
4(l + 1)2 − 1

= 0 , l = 1, 2, . . . , s−2 .

After all, it remains to prove

2β =

(
αξs−1ps−2(1) +

β

α
ps−1(1)

)2

= α2

( √
2(s− 2) + 1

2
√
4(s− 1)2 − 1

+
β

α2

√
2(s− 1) + 1

)2

.

This, however, holds true because of (3.3). �

Remark 3.2. The Radau IIA and Lobatto IIIC methods fulfill the assumptions of
the preceding theorem and thus also Assumption RK.

Remark 3.3. For a stiffly accurate method fulfilling the consistency condition bT1 =
1, the simplifying condition C(r) (r ≥ 1) implies the simplifying condition B(r).

A priori estimates for (1.5), which will be carried out in the next section, essen-
tially rely upon the following stability result.

Lemma 3.4. Let Assumption RK be fulfilled. Then

x
T
BA

−1(x− x01) ≥
1

2
(x2

s − x2
0)

holds true for all x0 ∈ R, x = [x1, . . . , xs]
T ∈ R

s.
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Proof. A straightforward calculation shows that

2xTBA
−1(x− x01) = x

T(BA
−1 + A

−T
B− ese

T
s )x+ x2

s − 2x0x
T
BA

−11

= [x0, x
T]A[x0, x

T]T + x2
s − x2

0 ,

where

A =

[
1 hT

h E

]
∈ R

(s+1)×(s+1) with E = BA
−1 + A

−T
B− ese

T
s , h = −BA

−11 .

Because of

[x0, x
T]A[x0, x

T]T = x
T(E− hh

T)x+ (x0 + x
T
h)2 ,

the matrix A is positive semi-definite if and only if

E− hh
T = A

−T(AT
B+BA− A

T
ese

T
sA− A

T
BA

−11(AT
BA

−11)T)A−1

= (with b
T = e

T
sA) = A

−T
GA

−1

is positive semi-definite. This is true since, by assumption, G is positive semi-
definite. This, finally, proves the assertion. �

4. Time discrete problem and a priori estimates

The starting point for our analysis is the relation

(4.1) BA
−1dn +BAnun = Bfn , n = 1, 2, . . . , N,

which follows from multiplying (1.5) from the left by BA−1.
In order to write the stages of the Runge–Kutta method in a compact way, we

work with the s-times product of function spaces denoted by bold letters (e.g. V =
V ×V ×· · ·×V ) without changing the notation for norm, inner product, and duality
pairing. The algebraic structure is then taken from the usual algebraic structure in
Rs and Rs×s. In particular, for g = [g1, . . . , gs]T ∈ V ∗ and v = [v1, . . . , vs]T ∈ V ,
we have

〈g,v〉 =
s∑

i=1

〈gi, vi〉 , ‖g‖p∗

∗ =
s∑

i=1

‖gi‖p∗

∗ , ‖v‖p =
s∑

i=1

‖vi‖p .

For n = 1, 2, . . . , N , the operator An = diag[A(tn + c1τ ), . . . , A(tn + csτ )] acts
between V and V ∗ via

Anv =
[
A(tn + c1τ )v

1, . . . , A(tn + csτ )v
s
]T

.

Theorem 4.1 (Existence and uniqueness). Let Assumption A and Assumption RK

be fulfilled, and let u0 ∈ H and {fn}N−1
n=0 ⊂ V ∗ be given. Then there is a unique

solution {un}N−1
n=0 ⊂ V to (1.5).

Proof. Existence follows step-by-step from the famous Browder-Minty theorem (see
e.g. [46, Thm. 26.A]): In each step (n = 0, 1, . . . , N − 1), the scheme (1.5) is equiv-
alent to the operator equation

1

τ
BA−1un +BAnun = Bfn +

1

τ
BA−11un

with given right-hand side in V ∗ (note that V ↪→ H ↪→ V ∗) and an operator

(4.2)
1

τ
BA

−1I +BAn : V → V ∗ ,
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with I : V → V ∗ denoting the identity, which is hemicontinuous, monotone, and
coercive. This is easily shown by Assumption A and Lemma 3.4 with x0 = 0 (note
that Lemma 3.4 together with its proof carries over to the Hilbert space H).

Uniqueness follows by contradiction since the operator (4.2) is indeed strictly
monotone. This is seen from the positive definiteness of the matrix BA−1. �

In what follows, let c > 0 be a generic constant that only depends on problem
data but is, in particular, independent of the time grid.

Theorem 4.2 (A priori estimates). Let Assumption A and Assumption RK be

fulfilled and let u0 ∈ H and {fn}N−1
n=0 ⊂ V ∗ be given. Any solution {un}N−1

n=0 ⊂ V
to (1.5) then satisfies the following a priori estimates:

max
n=0,1,...,N−1

|un+1|2 + µτ
N−1∑
n=0

s∑
i=1

bi‖un,i‖p ≤ M(u0, {fn}) ,

τ

N−1∑
n=0

s∑
i=1

‖dn,i‖p
∗

∗ ≤ cM(u0, {fn}) + cT ,

M(u0, {fn}) := |u0|2 + c
N−1∑
n=0

s∑
i=1

bi‖fn,i‖p∗

∗ + cλT .

Proof. We test (4.1) by un. Lemma 3.4 (which carries over to the Hilbert space
H) yields

(BA
−1dn,un) =

1

τ
(BA

−1(un − un1),un) ≥ 1

2τ
(|un+1|2 − |un|2) .

Because of the uniform coercivity of A(t) (t ∈ [0, T ]), we also have

〈BAnun,un〉 ≥
s∑

i=1

bi(µ‖un,i‖p − λ) ,

and thus

1

2τ
(|un+1|2 − |un|2) + µ

s∑
i=1

bi‖un,i‖p ≤
s∑

i=1

bi‖fn,i‖∗‖un,i‖+ λ .

Young’s inequality and summing up now prove the first a priori estimate.
From (1.5), we obtain for n = 0, 1, . . . , N − 1,

‖dn‖∗ ≤ c‖fn −Anun‖∗ ,
where c depends here in particular on the matrix norm of A ∈ Rs×s induced by the
p∗-vector norm. The growth condition for A(t) (t ∈ [0, T ]) now yields

‖Anun‖p
∗

∗ =

s∑
i=1

‖A(tn + ciτ )u
n,i‖p

∗

∗ ≤ c

s∑
i=1

(1 + ‖un,i‖p) .

This together with the first a priori estimate proves the second one. �

Note that we are not able to derive a priori estimates for the stage values
un,1, . . . , un,s−1 in the time-discrete counterpart of L∞(0, T ;H). So, we are also
not able to deal, in the case p < 2, with a right-hand side given in the time-discrete
counterpart of X ∗ = Lp∗

(0, T ;V ∗) + L2(0, T ;H) as is done in [16, 18] for other
time discretisation methods (terms with |un,i| arising on the right-hand side from
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the application of Young’s inequality cannot be absorbed within the left-hand side).
Moreover, we are not able to relax the growth condition on A to subsets of elements
of V that are bounded in H as is again done in [16, 18].

5. Convergence

For a time grid (1.3) with step size τ , let uτ = [u1
τ , . . . , u

s
τ ]

T, with ui
τ (i =

1, . . . , s) being the piecewise constant interpolant of the stage values {un,i}N−1
n=0 , i.e.

ui
τ (t) = un,i for t ∈ (tn, tn+1] (n = 0, 1, . . . , N − 1, i = 1, . . . , s) with ui(0) := u0,i.

The functions ui
τ map [0, T ] into V . Note that uτ := us

τ is the piecewise constant
interpolant of the time-discrete solution and shall thus be an approximation of the
exact solution u. We also make use of the piecewise constant interpolant ûτ with
ûτ (t) = un for t ∈ (tn, tn+1] (n = 0, 1, . . . , N − 1) and ûτ (0) = u0 that takes the
values from the left.

Moreover, let vτ = [v1τ , . . . , v
s
τ ]

T, with viτ (i = 1, . . . , s) being the piecewise linear
function that is continuous on [0, T ], has slope dn,i = (un,i − un)/τ in each time
interval (tn, tn+1) (n = 0, 1, . . . , N − 1), and fulfills vτ (0) = u01. Again, vτ := vsτ ,
which is the piecewise linear interpolant of {un}Nn=0, shall be an approximation
of the exact solution u. Note that vτ maps [τ, T ] into V but v(0) ∈ H only.
Furthermore, vτ possesses a weak derivative on (0, T ) that is the piecewise constant

interpolant of {dn}N−1
n=0 , i.e. v

′
τ = (uτ − ûτ1)/τ .

In the sequel, for simplicity only, we restrict our considerations to the case where
the right-hand side {fn}N−1

n=0 in (1.5) is given by the natural restriction of the right-

hand side f ∈ Lp∗
(0, T ;V ∗) in (1.1), i.e.

(5.1) fn,i =
1

τ

∫ tn+1

tn

f(t)dt , n = 0, 1, . . . , N − 1 , i = 1, 2, . . . , s .

If f possesses somewhat more regularity, then also other approximations are pos-
sible. In particular, if f ∈ C ([0, T ];V ∗), then fn,i = f(tn + ciτ ) could be taken.

With {fn}N−1
n=0 , we associate the piecewise constant interpolant f τ : [0, T ] → V ∗.

Note that fτ = fτ1 with fτ being the piecewise constant interpolant with respect
to the values in (5.1). It is straightforward to show with Hölder’s inequality that

‖fτ‖Lp∗ (0,T ;V ∗) =

(
τ

N−1∑
n=0

‖fn,i‖p∗

∗

)1/p∗

≤ ‖f‖Lp∗ (0,T ;V ∗) , i = 1, . . . , s .

The main result of the paper reads as follows.

Theorem 5.1 (Convergence). Consider the time discretisation (1.5) of (1.1) on a
sequence {Iτ�}�∈N of time grids (1.3) with step size τ� = T/N�, N� → ∞ as 	 → ∞,
and let Assumption A and Assumption RK be fulfilled. For given u0 ∈ H and
f ∈ Lp∗

(0, T ;V ∗), suppose that the initial values in (1.5) are given by

{u0(Iτ�)}�∈N ⊂ H , u0(Iτ�) → u0 in H as 	 → ∞ ,

and that the right-hand sides are given by the natural restriction (5.1).
The corresponding sequence {uτ�}�∈N of piecewise constant interpolants of the

time-discrete solutions to (1.5) as well as the sequence {vτ�}�∈N of piecewise lin-
ear interpolants then converge weak* in L∞(0, T ;H) towards the exact solution
u ∈ W to the initial value problem (1.1). Moreover, {uτ�}�∈N converges weakly in
Lp(0, T ;V ) towards u, and the sequence {v′τ�}�∈N of weak time derivatives converges

weakly in Lp∗
(0, T ;V ∗) towards u′ ∈ Lp∗

(0, T ;V ∗).
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The proof relies upon the following auxiliary result.

Lemma 5.2. Under the assumptions of Theorem 5.1, there is a subsequence, de-
noted by 	′, an element u ∈ L∞(0, T ;H) ∩Lp(0, T ;V ) with u′ ∈ Lp∗

(0, T ;V ∗), and
an element d = [d1, . . . , ds]T ∈ Lp∗

(0, T ;V ∗) with ds = u′ such that

uτ�′
∗
⇀ u in L∞(0, T ;H) , uτ�′ ⇀ u1 in Lp(0, T ;V ) ,

vτ�′
∗
⇀ u in L∞(0, T ;H) , v′

τ�′
⇀ d in Lp∗

(0, T ;V ∗) as 	′ → ∞ .

Proof. The main ingredients are the a priori estimates from Theorem 4.2 and
the theorems of Eberlein-Šmulyan and Banach-Alaoglu (see e.g. [9, Cor. III.26,
Thm. III.27]) together with density arguments. For readability, we omit the sub-
scripts 	 and 	′ in what follows.

An immediate consequence of Theorem 4.2 is the boundedness of {uτ} and {vτ}
in L∞(0, T ;H), of {uτ} in Lp(0, T ;V ), and of {v′

τ} in Lp∗
(0, T ;V ∗). We thus

have a common subsequence, still denoted by τ , and elements u, v ∈ L∞(0, T ;H),
ũ = [ũ1, . . . , ũs]T ∈ Lp(0, T ;V ), d = [d1, . . . , ds]T ∈ Lp∗

(0, T ;V ∗) such that

uτ
∗
⇀ u in L∞(0, T ;H) , uτ ⇀ ũ in Lp(0, T ;V ) ,

vτ
∗
⇀ v in L∞(0, T ;H) , v′

τ ⇀ d in Lp∗
(0, T ;V ∗) .

By standard density arguments and the definition of the weak time derivative, we
find ũs = u in L∞(0, T ;H) ∩ Lp(0, T ;V ) as well as ds = v′ in Lp∗

(0, T ;V ∗).
Since by construction

(5.2) vτ (t)− uτ (t) = −(tn+1 − t)v′τ (t) , t ∈ (tn, tn+1] , n = 0, 1, . . . , N − 1 ,

we immediately obtain from the boundedness of {v′τ} in Lp∗
(0, T ;V ∗) that

(5.3) vτ − uτ → 0 in Lp∗
(0, T ;V ∗) .

This shows u = v in Lp∗
(0, T ;V ∗) and, by density, in L∞(0, T ;H) ∩ Lp(0, T ;V ).

Moreover, we know by construction that

uτ − uτ1 = uτ − ûτ1− (uτ − ûτ )1 = τv′
τ − τv′τ1 .

This yields, because of the boundedness of {v′
τ} in Lp∗

(0, T ;V ∗),

uτ − uτ1 → 0 in Lp∗
(0, T ;V ∗)

and hence, again by density, ũ = u1 in Lp(0, T ;V ). �

Note that we have not shown boundedness of {ui
τ} (i=1, . . . , s−1) in L∞(0, T ;H)

(the final reason is the missing boundedness of {u0,i(Iτ�)}�∈N in H). Without a
further assumption on the sequence of initial values (see (5.18) below), we also
cannot show the boundedness of {vτ} in Lp(0, T ;V ).

We now come to the proof of the main result.

Proof of Theorem 5.1. For readability, we omit the subscripts 	 and 	′ and do not
emphasise the dependence of τ,N, tn on Iτ� .

The numerical scheme (1.5) corresponding to the time grid Iτ can be written as
the abstract differential equation

(5.4) BA−1v′
τ +BAτuτ = Bfτ in Lp∗

(0, T ;V ∗) ,
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where Aτ is piecewise constant such that Aτ (t) = An for t ∈ (tn, tn+1] (n =
0, 1, . . . , N − 1). For {v′

τ}, we already know from Lemma 5.2 the weak convergence
of a subsequence, still denoted by τ , such that

(5.5) BA−1v′
τ ⇀ BA

−1d in Lp∗
(0, T ;V ∗) ,

where d = [d1, . . . , ds]T with ds = u′ and u being the weak limit in Lp(0, T ;V )
and weak* limit in L∞(0, T ;H) of a subsequence of {uτ}. Because of the growth
condition for A(t) (t ∈ [0, T ]) and the a priori estimates from Theorem 4.2, which
ensure the boundedness of {uτ} in Lp(0, T ;V ), the sequence {Aτuτ} is bounded in
Lp∗

(0, T ;V ∗). Hence, there exists an element a ∈ Lp∗
(0, T ;V ∗) and a subsequence,

again denoted by τ , such that

(5.6) Aτuτ ⇀ a and thus BAτuτ ⇀ Ba in Lp∗
(0, T ;V ∗) .

Finally, by density arguments, it is straightforward to prove the strong convergence

(5.7) fτ → f in Lp∗
(0, T ;V ∗) and thus Bf τ → Bf1 in Lp∗

(0, T ;V ∗) .

Remember here that f τ = fτ1. From (5.4), (5.5), (5.6), and (5.7), we now obtain

(5.8) BA
−1d+Ba = Bf1 in Lp∗

(0, T ;V ∗) .

In order to prove that u is a weak solution to (1.1), we have to show that
u(0) = u0 ∈ H and that u satisfies the differential equation in (1.1). We commence
with the initial condition.

By assumption, we already know that

(5.9) vτ (0) = u0(Iτ ) → u0 in H .

From Theorem 4.2, we also know that the sequence of the values vτ (T ) = uτ (T ) =
uN (Iτ ) is bounded in H. We can thus choose the subsequence in such a way that

(5.10) vτ (T ) = uτ (T ) ⇀ ξ in H

for an element ξ ∈ H. Since the method is stiffly accurate, we have

(5.11) u′ = ds = e
T
s d = b

T
A

−1d = 1T
BA

−1d .

With 〈·, ·〉 denoting the duality pairing for the time-dependent functions (see (2.1)),
we thus find for arbitrary w ∈ V , ϕ ∈ C 1([0, T ];R) with integration by parts

(u(T ), w)ϕ(T )− (u(0), w)ϕ(0) = 〈u′, wϕ〉+ 〈wϕ′, u〉 = 〈BA
−1d, wϕ1〉+ 〈wϕ′, u〉

= (with (5.8)) = 〈Bf1, wϕ1〉 − 〈Ba, wϕ1〉+ 〈wϕ′, u〉 = (with (5.4))

= 〈Bf1−Bf τ , wϕ1〉+ 〈BAτuτ −Ba, wϕ1〉+ 〈BA
−1v′

τ , wϕ1〉+ 〈wϕ′, u〉
= 〈Bf1−Bf τ , wϕ1〉+ 〈BAτuτ −Ba, wϕ1〉+ 〈v′τ , wϕ〉+ 〈wϕ′, u〉
= 〈Bf1−Bf τ , wϕ1〉+ 〈BAτuτ −Ba, wϕ1〉+ 〈wϕ′, u− vτ 〉

+ (vτ (T ), w)ϕ(T )− (vτ (0), w)ϕ(0) .

Taking the limit on the right-hand side and taking into account (5.7), (5.6), the
weak* convergence in L∞(0, T ;H) of a subsequence of {vτ} towards u, (5.10) as
well as (5.9), we end up with

(u(T ), w)ϕ(T )− (u(0), w)ϕ(0) = (ξ, w)ϕ(T )− (u0, w)ϕ(0) .

Choosing ϕ(T ) = 0 and ϕ(0) = 0, respectively, and remembering that V is dense
in H, we find

(5.12) u(0) = u0 , u(T ) = ξ in H .
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We shall now prove that u satisfies the differential equation in (1.1). We test
(5.4) with uτ . In view of the monotonicity of A(t) (t ∈ [0, T ]) and the positive
definiteness of B, we observe for arbitrary w ∈ Lp(0, T ;V ),

0 = 〈BA−1v′
τ +BAτuτ −Bf τ ,uτ 〉

≥ 〈BA
−1v′

τ +BAτuτ −Bf τ ,uτ 〉 − 〈BAτuτ −BAτw1,uτ − w1〉
= 〈BA

−1v′
τ ,uτ 〉+ 〈BAτuτ , w1〉+ 〈BAτw1,uτ − w1〉 − 〈Bfτ ,uτ 〉 .

(5.13)

With Lemma 3.4, we find

〈BA
−1v′

τ ,uτ 〉 =
∫ T

0

〈BA
−1v′

τ (t),uτ (t)〉dt

=

N−1∑
n=0

∫ tn+1

tn

(
BA

−1 1

τ
(un − un1),un

)
dt

=
N−1∑
n=0

(
BA

−1(un − un1),un
)

≥ 1

2

N−1∑
n=0

(
|un+1|2 − |un|2

)
=

1

2

(
|vτ (T )|2 − |vτ (0)|2

)
= 〈v′τ , vτ 〉 .

In the last step, we have employed integration by parts for vτ ∈ W . With (5.9),
(5.10), and (5.12), we find, with integration by parts now for u ∈ W ,

〈u′, u〉 = 1

2

(
|u(T )|2 − |u(0)|2

)
≤ 1

2
lim inf

(
|vτ (T )|2 − |vτ (0)|2

)
= lim inf〈v′τ , vτ 〉 ≤ lim inf〈BA

−1vτ ,uτ 〉 .
(5.14)

By assumption, t �→ A(t)w : [0, T ] → V ∗ is continuous a.e. in (0, T ) for all w ∈ V .
Therefore, for all w ∈ Lp(0, T ;V ),

(5.15) Aτ (t)w(t)1−A(t)w(t)1 → 0 in V ∗ , a.e. in (0, T ) � t .

Because of the growth condition in Assumption A, we also find∫ T

0

‖Aτ (t)w(t)1−A(t)w(t)1‖p
∗

∗ dt ≤ c(1 + ‖w‖pLp(0,T ;V )) .

Lebesgue’s theorem now provides

(5.16) Aτw1 → Aw1 in Lp∗
(0, T ;V ∗) .

From (5.13), we now conclude in the limit (with (5.14), (5.6), the strong conver-
gence in (5.15) together with the weak in Lp(0, T ;V ) convergence of a subsequence
of {uτ} towards u1 as well as (5.7))

0 ≥ 〈u′, u〉+ 〈Ba, w1〉+ 〈BAw1, u1− w1〉 − 〈Bf1, u1〉 .
Invoking (5.8) as well as (5.11), we find

(5.17) 〈BAw1, w1−u1〉 ≥ 〈Ba, w1−u1〉+〈u′, u〉−〈BA
−1d, u1〉 = 〈Ba, w1−u1〉 .

With w = u ± ϑz (z ∈ Lp(0, T ;V )) and ϑ → 0+, the hemicontinuity of A proves
Ba = BAu1 in Lp∗

(0, T ;V ∗). This gives, because of (5.8),

BA
−1d+BAu1 = Bf1 in Lp∗

(0, T ;V ∗) .
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Multiplying from the left by 1T leads, because of the consistency 1TB1 = 1Tb = 1
and with (5.11), to

u′ +Au = f in Lp∗
(0, T ;V ∗) ,

which, finally, proves that u is the solution to (1.1).
Since the solution to (1.1) is unique, we can show by contradiction that the entire

sequences must converge. �

Remark 5.3. Wemay remark that we have also shown that the stage values converge
towards the exact solution in the sense that uτ� ⇀ u1 in Lp(0, T ;V ). If, in addition,

(5.18) {u0(Iτ�)}�∈N ⊂ V , τ�‖u0(Iτ�)‖p ≤ c,

then also {vτ�} can easily be shown to converge weakly in Lp(0, T ;V ) towards u.

6. Stability and smooth-data error estimates

Because of the structure of the method (single-step but with multiple stages),
the situation is somewhat different from what is known for the two-step BDF or the
ϑ-scheme (see [16, 18]). However, we are able to derive stability estimates under
stronger assumptions on the monotonicity of A(t) (t ∈ [0, T ]).

Theorem 6.1 (Stability). Let Assumption A and Assumption RK be fulfilled. In
addition, suppose that A(t) : V → V ∗ (t ∈ [0, T ]) is uniformly monotone in the
sense that there is a constant µ0 > 0 such that for all t ∈ [0, T ] and v, w ∈ V ,

(6.1) 〈A(t)v −A(t)w, v − w〉 ≥ µ0‖v − w‖p .

The solutions {un}N−1
n=0 ⊂ V and {vn}N−1

n=0 ⊂ V to (1.5) corresponding to the data

u0 ∈ H, {fn}N−1
n=0 ⊂ V ∗ and v0 ∈ H, {gn}N−1

n=0 ⊂ V ∗, respectively, then satisfy the
following stability estimate:

max
n=0,1,...,N−1

|un+1 − vn+1|2 + µ0τ
N−1∑
n=0

s∑
i=1

bi‖un,i − vn,i‖p

≤ |u0 − v0|2 + c

N−1∑
n=0

s∑
i=1

bi‖fn,i − gn,i‖p
∗

∗ .

Proof. We again use the representation (4.1). Subtracting the equations for the
two solutions and following the lines of the proof of the first a priori estimate in
Theorem 4.2 provides the stability estimate asserted. �

We shall remark that (6.1) only makes sense for p ≥ 2. Moreover, uniform
monotonicity up to a shift κI would be sufficient (see the discussion following
Assumption A).

Estimates for the discretisation error between the exact and the numerical solu-
tion follow, based upon an error equation that relates the discretisation with the
consistency error, as the stability estimates above. Let en = [en,i, . . . , en,s]T with
en,i = u(tn+ciτ )−un,i, en+1 := en,s, e0 := u0−u0. If the method is stiffly accurate
and fulfills the consistency conditions bT1 = 1 and A1 = c, then (3.2) holds true so
that cs = 1 and u(tn + csτ ) = u(tn+1). So, en+1 is indeed the discretisation error
at time tn+1.
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Theorem 6.2 (Error estimates). Let Assumption A and Assumption RK be ful-
filled. In addition, suppose that A(t) : V → V ∗ (t ∈ [0, T ]) satisfies (6.1) and that
the method fulfills the simplifying condition C(r) for some r ∈ N, r ≥ 1, i.e.

(6.2)
s∑

j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s , q = 1, . . . , r .

Moreover, let u ∈ W be the solution to (1.1) with u0 ∈ H and f ∈ C ([0, T ];V ∗).
If u(q) ∈ Lp∗

(0, T ;V ∗) (q = 1, . . . , r + 1), then the solution {un}Nn=1 to (1.5) with
prescribed u0 ∈ H and fn,i = f(tn + ciτ ) (i = 1, . . . , s, n = 0, 1, . . . , N − 1) fulfills
the error estimate

max
n=0,1,...,N−1

|en+1|2 + µ0τ

N−1∑
n=0

s∑
i=1

bi‖en,i‖p ≤ |e0|2 + cτ rp
∗
‖u(r+1)‖p

∗

Lp∗ (0,T ;V ∗)
.

Proof. From (4.1) and (1.1), evaluated at tn + ciτ (i = 1, . . . , s), we find the error
equation (n = 0, 1, . . . , N − 1)

(6.3)
1

τ
BA

−1 (en − en1) +B (Anu(tn + cτ )−Anun) = Bρn ,

with the abbreviation v(tn + cτ ) = [v(tn + c1τ ), . . . , v(tn + csτ )]
T for a function v

and the consistency error ρn = [ρn,1, . . . , ρn,s]T that is given by

ρn =
1

τ
A−1 (u(tn + cτ )− u(tn)1) +Anu(tn + cτ )− fn

=
1

τ
A−1 (u(tn + cτ )− u(tn)1)− u′(tn + cτ ) .

(6.4)

From testing (6.3) by en and employing Lemma 3.4, the uniform monotonicity
of A(t) (t ∈ [0, T ]) as well as Young’s inequality, we obtain

(6.5)
1

2τ

(
|en+1|2 − |en|2

)
+

µ0

2

s∑
i=1

bi‖en,i‖p ≤ c‖ρn‖p
∗

∗ .

We now estimate the consistency error. A Taylor expansion yields

1

τ
(u(tn + ciτ )− u(tn)) =

r∑
q=1

cqi
q!
τ q−1u(q)(tn) +

1

τ

∫ tn+ciτ

tn

(t− tn)
r

r!
u(r+1)(t)dt

for n = 0, 1, . . . , N − 1, i = 1, . . . , s as well as

u′(tn + ciτ ) =
r∑

q=1

cq−1
i

(q − 1)!
τ q−1u(q)(tn) +

∫ tn+ciτ

tn

(t− tn)
r−1

(r − 1)!
u(r+1)(t)dt .

With (6.2) and (6.4), we easily find

Aρn =
1

τ
(u(tn + cτ )− u(tn)1)− Au′(tn + cτ ) =⎡

⎣1

τ

∫ tn+ciτ

tn

(t− tn)
r

r!
u(r+1)(t)dt−

s∑
j=1

aij

∫ tn+cjτ

tn

(t− tn)
r−1

(r − 1)!
u(r+1)(t)dt

⎤
⎦
T

i=1,...,s

.

Applying Hölder’s inequality, a straightforward calculation shows that

‖ρn‖p
∗

∗ ≤ cτ−1+rp/(p−1)

∫ tn+1

tn

‖u(r+1)(t)‖p
∗
dt
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and thus

τ
N−1∑
n=0

‖ρn‖p∗

∗ ≤ cτ rp/(p−1)‖u(r+1)‖p
∗

Lp∗ (0,T ;V ∗)
.

Multiplying (6.5) by 2τ and summing, finally proves the assertion. �

Remark 6.3. The estimates above provide convergence of order rp∗/2 in the discrete
L∞(0, T ;H)-norm and of order r/(p− 1) in the discrete counterpart of the “energy
space” Lp(0, T ;V ) if the initial error is accordant.

Note that u(q) ∈ Lp∗
(0, T ;V ∗) (q = 0, . . . , r + 1) implies u ∈ C r([0, T ];V ∗). In

the linear case (where p = 2) with time-independent operator, the above regularity

holds true under the following assumptions on the problem data: u
(q)
0 ∈ V (q =

0, . . . , r − 1), u
(r)
0 ∈ H, f (q) ∈ L2(0, T ;V ∗) (q = 0, . . . , r), where

u
(0)
0 := u0 , u

(q)
0 := f (q−1)(0)−Au

(q−1)
0 (q = 1, . . . , r) ;

see [14, Satz 8.5.1 on p. 247] and also [45, §27.1]. There, also, the nonautonomous
case is studied.

7. Strongly continuous perturbation of the monotone operator

In this section, we address problem (1.2). For the Runge–Kutta time discreti-
sation, the situation is again different from what is known for, e.g., the implicit
Euler or the two-step BDF (see [16]) as the assumptions on the underlying opera-
tors A(t) and B(t) (t ∈ [0, T ]) are more restrictive here. This is again due to the
lack of an L∞(0, T ;H)-bound of the sequence of stage values and is inherent in
the structure of the single-step but multiple stages method. Indeed, we are able
to derive a convergence result only for the case p ≥ 2 and error estimates only for
p = 2.

Let Assumption A be fulfilled (without loss of generality, we again restrict our
considerations to the case κ = 0, justified by [18, Remark 1] and [20, Satz 1.3 on
p. 211]). The convergence result then relies upon the following assumption on the
nonmonotone perturbation:

Assumption B. {B(t)}t∈[0,T ] is a family of operators B(t) : V → V ∗ such that
for all v ∈ V the mapping t �→ B(t)v : [0, T ] → V ∗ is continuous for almost all
t ∈ [0, T ]. There are constants c, λB ≥ 0 such that for all t ∈ [0, T ] and v ∈ V ,

(7.1) 〈B(t)v, v〉 ≥ −µ

4
‖v‖p − λB , ‖B(t)v‖∗ ≤ c

(
1 + ‖v‖p−1

)
.

There exists δ ∈ (0, p− 1], c ≥ 0 such that for all t ∈ [0, T ] and v, w ∈ V ,

‖B(t)v −B(t)w‖∗ ≤ cmax(‖v‖, ‖w‖)p−1−δ|v − w|δ/p .(7.2)

Note that (7.1) is satisfied if for all t ∈ [0, T ] and v ∈ V ,

‖B(t)v‖∗ ≤ c
(
1 + ‖v‖p−1−δ

)
.

This can be seen by Young’s inequality. Because of the compact embedding of V
in H, which we shall always assume if B �= 0, (7.2) implies that B(t) : V → V ∗

is strongly continuous. The corresponding Nemytskii operator B maps Lp(0, T ;V )
into Lp∗

(0, T ;V ∗), is bounded and, by the theorem of Lions–Aubin (see e.g. [30,
Thm. 5.1 on p. 58]), is strongly continuous as a mapping of W into Lp∗

(0, T ;V ∗).
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Theorem 7.1 (Existence). Suppose that Assumption A, Assumption B, and As-

sumption RK are fulfilled and that V
c
↪→ H. Let u0 ∈ H and {fn}N−1

n=0 ⊂ V ∗ be

given. Then there is a solution {un}N−1
n=0 ⊂ V to (1.6).

Proof. As in the proof of Theorem 4.1, the existence follows step-by-step, now from
Brézis’ theorem on pseudomonotone operators (see e.g. [46, Thm. 27.A]). �

Theorem 7.2 (A priori estimates). Let Assumption A, Assumption B, and As-

sumption RK be fulfilled, and let u0 ∈ H and {fn}N−1
n=0 ⊂ V ∗ be given. Any solution

{un}N−1
n=0 ⊂ V to (1.6) then satisfies the a priori estimates from Theorem 4.2 (with

λ+ λB instead of λ).

Proof. With (7.1), the proof is essentially the same as that of Theorem 4.2. �

In the present situation, our main convergence result reads as follows.

Theorem 7.3 (Convergence). Consider the time discretisation (1.6) of (1.2) on a
sequence {Iτ�}�∈N of time grids (1.3) with step size τ� = T/N�, N� → ∞ as 	 → ∞,
and let Assumption A, Assumption B, and Assumption RK be fulfilled with p ≥ 2.
For given u0 ∈ H and f ∈ Lp∗

(0, T ;V ∗), suppose that the initial values in (1.6) are
given by

(7.3) {u0(Iτ�)}�∈N ⊂ V , τ�‖u0(Iτ�)‖p ≤ c , u0(Iτ�) → u0 in H as 	 → ∞ ,

and that the right-hand sides are given by (5.1).
A subsequence of the corresponding sequence {uτ�}�∈N of piecewise constant in-

terpolants of the time-discrete solutions to (1.6) as well as of the sequence {vτ�}�∈N

of piecewise linear interpolants then converges strongly in Lr(0, T ;H) (r ∈ [1,∞)),
weak* in L∞(0, T ;H) and weakly in Lp(0, T ;V ) towards an exact solution u ∈ W
to the initial value problem (1.2). Moreover, the corresponding subsequence of the
sequence {v′τ�}�∈N converges weakly in Lp∗

(0, T ;V ∗) towards u′ ∈ Lp∗
(0, T ;V ∗).

The following lemma is a crucial ingredient in the proof of Theorem 7.3 and
follows essentially from the a priori estimates above.

Lemma 7.4. Under the assumptions of Theorem 7.3, there is a subsequence, de-
noted by 	′, an element u ∈ L∞(0, T ;H) ∩Lp(0, T ;V ) with u′ ∈ Lp∗

(0, T ;V ∗), and
an element d = [d1, . . . , ds]T ∈ Lp∗

(0, T ;V ∗) with ds = u′ such that the assertion
of Lemma 5.2 holds true and, in addition,

vτ�′ ⇀ u in Lp(0, T ;V ) , vτ�′ → u in Lr(0, T ;H) ∀r ∈ [1,∞) ,

uτ�′ → u1 in Lr(0, T ;H) ∀r ∈ [1,∞) as 	′ → ∞ .

Proof. Since the time-discrete solution corresponding to (1.2) fulfills the same a
priori estimates as the solution to (1.1) (see Theorem 7.2), the arguments of the
proof of Lemma 5.2 can be repeated here, and we only have to prove the assertions
additional to those of Lemma 5.2.

Because of the stronger assumption (7.3) on {u0(Iτ�)}�∈N, the sequence {vτ�}�∈N

is bounded in Lp(0, T ;V ). We therefore have a subsequence, denoted by 	′, that is
weakly convergent in Lp(0, T ;V ), and the limit can only be u by density. Moreover,
the sequence {v′τ�}�∈N of derivatives is bounded in Lp∗

(0, T ;V ∗). Because of the
theorem of Lions–Aubin (see e.g. [30, Thm. 5.1 on p. 58]), we thus have the strong
convergence of a subsequence {vτ�′ } in Lp(0, T ;H). Since {vτ�′ } remains bounded
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in L∞(0, T ;H), the strong convergence takes place in Lr(0, T ;H) for any r ∈ [1,∞).
The limit can, again by density, only be u.

We now prove the strong convergence of a subsequence {uτ�′ }. We already know
that {uτ�′} converges weak* in L∞(0, T ;H) towards u and thus also weakly in
L2(0, T ;H). Since L2(0, T ;H) is a Hilbert space, it remains to show that

(7.4) ‖uτ�′‖L2(0,T ;H) → ‖u‖L2(0,T ;H) as 	
′ → ∞ ,

in order to prove the strong convergence in L2(0, T ;H) and hence, because of the
boundedness of {uτ�′} in L∞(0, T ;H), the strong convergence in any Lr(0, T ;H)
(r ∈ [1,∞)). The convergence (7.4) is easily seen from the following:∣∣∣‖uτ�′‖

2
L2(0,T ;H) − ‖u‖2L2(0,T ;H)

∣∣∣ = ∣∣∣(uτ�′ , uτ�′

)
L2(0,T ;H)

− (u, u)L2(0,T ;H)

∣∣∣
=

∣∣∣(uτ�′ − vτ�′ , uτ�′

)
L2(0,T ;H)

+
(
vτ�′ − u, uτ�′

)
L2(0,T ;H)

+
(
uτ�′ − u, u

)
L2(0,T ;H)

∣∣∣
≤ ‖uτ�′ − vτ�′ ‖Lp∗ (0,T ;V ∗)‖uτ�′ ‖Lp(0,T ;V ) + ‖vτ�′ − u‖L2(0,T ;H)‖uτ�′ ‖L2(0,T ;H)

+
∣∣∣(uτ�′ − u, u

)
L2(0,T ;H)

∣∣∣ .
The right-hand side converges towards zero because of (5.3) together with the
boundedness of {uτ�}�∈N in Lp(0, T ;V ), because of the strong in L2(0, T ;H) conver-
gence of {vτ�′ } towards u together with the boundedness of {uτ�}�∈N in L∞(0, T ;H)

and thus in L2(0, T ;H), and because of the weak in L2(0, T ;H) convergence of
{uτ�′ } towards u.

In the same way, we may also prove the strong in Lr(0, T ;H) (r ∈ [1,∞))
convergence of a subsequence {ûτ�′ } towards u, where ûτ was the piecewise constant
interpolant of the discrete solution with respect to the grid Iτ taking the left values
on each subinterval. The main difference appears in the first term of the right-hand
side of the foregoing estimate. Here, we observe that, in view of (7.3), also {ûτ�}�∈N

is bounded in Lp(0, T ;V ). Moreover, we find on the time grid Iτ that

vτ (t)− ûτ (t) = (t− tn)v
′
τ (t) , t ∈ (tn, tn+1] , n = 0, 1, . . . , N − 1 ,

instead of (5.2), and (5.3) remains true when replacing uτ by ûτ .
We are now in a position to prove the strong in Lr(0, T ;H) (r ∈ [1,∞)) con-

vergence of {uτ�′} towards u1. We already know that {uτ�′ } converges weakly
in Lp(0, T ;V ) towards u1. With p ≥ 2 and the continuous embedding of V into
H we thus have also the weak in L2(0, T ;H) convergence of {uτ�′ } towards u1.
Furthermore, we observe that∣∣∣‖uτ�′‖

2
L2(0,T ;H) − ‖u1‖2L2(0,T ;H)

∣∣∣ = ∣∣∣(uτ�′ ,uτ�′

)
L2(0,T ;H)

− (u1, u1)L2(0,T ;H)

∣∣∣
=

∣∣∣(uτ�′ − ûτ�′1,uτ�′

)
L2(0,T ;H)

+
(
ûτ�′1− u1,uτ�′

)
L2(0,T ;H)

+
(
uτ�′ − u1, u1

)
L2(0,T ;H)

∣∣∣
≤

∥∥uτ�′ − ûτ�′1
∥∥
Lp∗ (0,T ;V ∗)

∥∥uτ�′

∥∥
Lp(0,T ;V )

+
∥∥ûτ�′1− u1

∥∥
L2(0,T ;H)

∥∥uτ�′

∥∥
L2(0,T ;H)

+
∣∣∣(uτ�′ − u1, u1

)
L2(0,T ;H)

∣∣∣ ,
and the right-hand side tends to zero, which follows from the discussion before. �

Note that we have no boundedness (and so no weak convergence of a subse-
quence) of {viτ�}�∈N in Lp(0, T ;V ) for i = 1, . . . , s− 1 but only for i = s.
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Proof of Theorem 7.3. The proof differs from that of Theorem 5.1 only with respect
to the nonmonotone perturbation. We again omit the subscripts 	 and 	′ in what
follows. In (5.4), we have to replace BAτuτ by BAτuτ +BBτuτ , where Bτ (t) =
Bn for t ∈ (tn, tn+1] (n = 0, 1, . . . , N − 1).

Analogously to (5.16), we can prove

Bτu1 → Bu1 in Lp∗
(0, T ;V ∗)

with exactly the same arguments. With Hölder’s inequality, we conclude from (7.2)
that

‖Bτuτ −Bτu1‖Lp∗ (0,T ;V ∗)

≤ cmax
(
‖uτ‖Lp(0,T ;V ), ‖u1‖Lp(0,T ;V )

)p−1−δ ‖uτ − u1‖δ/pL1(0,T ;H) .

The strong convergence result of Lemma 7.4 now provides

(7.5) Bτuτ → Bu1 in Lp∗
(0, T ;V ∗) .

The rest of the proof follows the same lines as that of Theorem 5.1 and employs in
particular that

〈BBτuτ ,uτ 〉 → 〈Bu1, u1〉 = 〈Bu, u〉 ,
which follows from the strong convergence (7.5) just shown together with Lemma 7.4
and the consistency of the method (1TB1 = 1). �

Remark 7.5. The stage values also converge towards an exact solution u in the sense
that a subsequence of {uτ�}�∈N converges strongly in Lr(0, T ;H) (r ∈ [1,∞)) and
weakly in Lp(0, T ;V ) towards u1.

A statement for the whole sequence of approximations cannot be made since we
do not know uniqueness for (1.2).

In the case p = 2, we are able to derive stability and a priori error estimates
under some additional assumptions.

Theorem 7.6 (Stability and error estimates). Let p = 2. In addition to the
assumptions of Theorem 6.1 and Theorem 6.2, respectively, let Assumption B be
fulfilled and suppose that for all t ∈ [0, T ] and v, w ∈ V ,

(7.6) 〈B(t)v −B(t)w, v − w〉 ≥ −µ0

4
‖v − w‖2 .

The assertion of Theorem 6.1 and Theorem 6.2, respectively, then remain true (up
to a multiplicative constant).

Proof. The proof follows the same lines as that of Theorem 6.1 and Theorem 6.2,
respectively. �

If p > 2, one may come up with requiring

(7.7) 〈B(t)v − B(t)w, v − w〉 ≥ −µ0

4
‖v − w‖p

for all t ∈ [0, T ] and v, w ∈ V in order to derive stability and error estimates. Note,
however, this implies that B(t) : V → V ∗ is monotone, and so, there is no need to
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consider this part separately: For arbitrary M ∈ N and v, w ∈ V , t ∈ [0, T ], (7.7)

implies with wj = w + j
M (v − w) (j = 0, 1, . . . ,M) that

〈B(t)v −B(t)w, v − w〉 =
〈

M−1∑
j=0

(B(t)wj+1 −B(t)wj) , v − w

〉

= M
M−1∑
j=0

〈B(t)wj+1 −B(t)wj , wj+1 − wj〉 ≥ −µ0

4
M2−p‖v − w‖p ,

and the right-hand side tends to zero as M → ∞.
Finally, we remark that it is not possible to incorporate terms involving |v − w|

in the assumption on the nonmonotone perturbation as we are again not able to
absorb certain terms in the H-norm whenever stage values come into play.
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