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ON THE SPAN OF POLYNOMIALS

WITH INTEGER COEFFICIENTS

STEFANO CAPPARELLI, ALBERTO DEL FRA, AND CARLO SCIÒ

Abstract. Following a paper of R. Robinson, we classify all hyperbolic poly-
nomials in one variable with integer coefficients and span less than 4 up to
degree 14, and with some additional hypotheses, up to degree 17. We conjec-
ture that the classification is also complete for degrees 15, 16, and 17.

Besides improving on the method used by Robinson, we develop new tech-
niques that turn out to be of some interest.

A close inspection of the polynomials thus obtained shows some properties
deserving further investigations.

1. Introduction

The study of polynomials in one variable and integer coefficients is a topic of re-
markable interest that has been investigated by a number of outstanding researchers
such as Stieltjes, Kronecker, Chebyshev, Hermite, Schur, and Pólya.

Besides their intrinsic interest in various branches of Mathematics such as, for
example, Algebra and Analysis, one should recall their importance in the applica-
tions, from Probability Theory to Physics and Engineering.

In many situations, it is important to count the number of real roots of given
polynomials in a given domain. A special place is reserved to the classification of
monic polynomials with integer coefficients, irreducible (over the integers), that in
such a domain have all real roots.

A classic result in this direction is one of Kronecker [3] who determined the
infinite family of all such polynomials having roots in the interval [−2, 2].

Another remarkable result, due to Schur [9], says that for every interval I with
length less than 4, the set of such polynomials with roots in I is finite.

On the other hand, Robinson, [7], showed that, given any interval of length
greater than 4, there are infinitely many polynomials of the desired type, with
roots in the given interval.

It is still open, as far as we can tell, the problem of the finiteness of the number
of such polynomials with roots in an interval of length exactly 4, except for those
intervals obtained as an integer translation of [−2, 2], for which Kronecker’s result
can easily be extended.

Following a common terminology, we call hyperbolic a polynomial in one variable
having all real roots. We call span of such a polynomial the difference between the
largest and the smallest root. We recall that irreducible hyperbolic polynomials
with integer coefficients necessarily have all distinct roots. From these results, it
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is natural to think that the set, which we denote by Pn, of the hyperbolic monic
irreducible polynomials over the integers whose span is less that 4 deserves a special
investigation. We also denote by Kn the set consisting of all those polynomials of
Pn all of whose roots lie in [−2, 2]. Finally we set Nn to be the complement of Kn

in Pn.
A fundamental work on such polynomials was done by Robinson [8] who classified

them, up to equivalence, up to degree 6 and was able to study them up to degree 8
only partially, because of the intrinsic computational complexity of the problem. In
the present paper, which we see as an ideal continuation of Robinson’s work, we are
able to confirm Robinson’s list for the degrees 7 and 8 and to extend it up to degree
14, using more modern computing tools and a slightly more refined procedure.
Moreover, we obtained a list of polynomials up to degree 17, by imposing some
reasonable restrictions inspired by a kind of statistical analysis of such polynomials.

We have observed that the number of polynomials in our list that do not satisfy
Kronecker’s conditions seems to diminish drastically as the degree n increases.

2. Robinson’s method

Let fn(x) be an irreducible monic polynomial in Z[x] of degree n > 1, having
only real roots:

(2.1) fn(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an.

Supposing the roots are listed as follows: α1 < α2 < · · · < αn, the span of fn(x)
equals the difference αn − α1.

We say that such a polynomial fn(x) with roots α1, . . . , αn is equivalent to gn(x)
with roots β1, . . . , βn if, up to reordering, βi = ±αi+k , for i = 1, . . . , n and k ∈ Z.
We can and will choose a representative polynomial in each equivalence class so
that the average of the roots is between 0 and 1

2 . In those cases where the average

is precisely 0 or 1
2 , then, following Robinson, we agree to choose the polynomial for

which the average 1
2 (αn + α1) is the closest to 1

4 .

Denote by f
(i)
n the i-th derivative of the polynomial fn. The derivative f

(i)
n is

still a hyperbolic polynomial. Let

αi,1 < αi,2 < · · · < αi,n−i

be the roots of f
(i)
n . Clearly, every root αi,j corresponds to a relative extremum of

f
(i−1)
n . Obviously, the value of f

(i−1)
n (αi,j) is positive at a relative maximum point,

and the value of f
(i−1)
n (αi,j) is negative at a relative minimum point.

For the (n− 1)-th derivative of fn (of degree 1), the following is the only root:

αn−1,1 = −a1
n
.

The assumption that 0 ≤ −a1

n ≤ 1
2 implies that

−n

2
≤ a1 ≤ 0,

which gives us an upper and lower bound for the first coefficient.

We get an upper bound for a2 since f
(n−2)
n (αn−1,1) < 0; hence

0 >
f
(n−2)
n (αn−1,1)

(n− 2)!
=

n(n− 1)

2

a21
n2

+ (n− 1)a1(
−a1
n

) + a2,
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i.e.,

(2.2) a2 <
n− 1

2n
a21.

We are able to obtain a lower bound for a2, which was not given by Robinson.

The roots of the second degree polynomial f
(n−2)
n are

αn−2,1 =
−(n− 1)a1 −

√
(n− 1)2a21 − 2n(n− 1)a2
n(n− 1)

,

αn−2,2 =
−(n− 1)a1 +

√
(n− 1)2a21 − 2n(n− 1)a2
n(n− 1)

,

and the span of the (n− 2)-th derivative is

αn−2,2 − αn−2,1 =
2
√
(n− 1)2a21 − 2n(n− 1)a2

n(n− 1)
.

If this span is less than k for some k, then

(n− 1)2a21 − 2n(n− 1)a2 <
k2

4
n2(n− 1)2,

i.e.,

(2.3) a2 >
n− 1

2n
a21 −

k2

4

(
n

2

)
.

Now, as a simple consequence of the Gauss–Lucas Theorem, the span of the deriv-
ative is smaller than the span of fn which, in turn, is assumed to be smaller than
4, so we certainly have the following lower bound for a2:

(2.4) a2 >
n− 1

2n
a21 − 4

(
n

2

)
.

We get a sharper lower bound by using the following theorem (see Theorem 6.1.6
of [5]):

Theorem 2.1. Let Dn be the span of fn (n ≥ 3) and D2 the span of f
(n−2)
n . We

then have

D2 ≤ cnDn,

where

cn :=

{
(n− 1)−1/2 if n is even,
(n+1)1/2

n if n is odd.

Since Dn < 4, then D2 < 4cn. By using (2.3), we get

(2.5) a2 >
n− 1

2n
a21 − 4c2n

(
n

2

)
.

Summing up we have proved

Proposition 2.2.
n− 1

2n
a21 − 4c2n

(
n

2

)
< a2 <

n− 1

2n
a21.
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Once we have determined the coefficients a1 and a2, we can get upper and lower

bounds for a3. The fact that f
(n−3)
n (αn−2,1) > 0 implies(

n

3

)
α3
n−2,1 +

(
n− 1

2

)
a1α

2
n−2,1 +

(
n− 2

1

)
a2αn−2,1 + a3 > 0,

while f
(n−3)
n (αn−2,2) < 0 implies(

n

3

)
α3
n−2,2 +

(
n− 1

2

)
a1α

2
n−2,2 +

(
n− 2

1

)
a2αn−2,2 + a3 < 0,

from which we deduce

Proposition 2.3. If −
2∑

j=0

(
n− j

3− j

)
ajα

3−j
n−2,1 < −

2∑
j=0

(
n− j

3− j

)
ajα

3−j
n−2,2, then

−
2∑

j=0

(
n− j

3− j

)
ajα

3−j
n−2,1 < a3 < −

2∑
j=0

(
n− j

3− j

)
ajα

3−j
n−2,2.

Analogously we can determine upper and lower bounds for a4.

Proposition 2.4. If −
3∑

j=0

(
n− j

4− j

)
ajα

4−j
n−3,2 < −

3∑
j=0

(
n− j

4− j

)
ajα

4−j
n−3,2s−1, for s =

1, 2, then

−
3∑

j=0

(
n− j

4− j

)
ajα

4−j
n−3,2 < a4 < −

3∑
j=0

(
n− j

4− j

)
ajα

4−j
n−3,2s−1,

and therefore we get the best upper bound by choosing the minimum of the two
values for s = 1, 2.

Remark 2.5. The roots αn−3,t (t = 1, 2, 3) of the polynomial f
(n−3)
n are known once

we have computed a1, a2, a3.

In general, we have

Proposition 2.6. If h is even, let, for r = 1, 2, . . . , h2 − 1 and s = 1, 2, . . . , h
2 ,

Lh=maxr

⎡
⎣−h−1∑

j=0

(
n− j

h−j

)
ajα

h−j
n−h+1,2r

⎤
⎦, Rh=mins

⎡
⎣−h−1∑

j=0

(
n−j

h−j

)
ajα

h−j
n−h+1,2s−1

⎤
⎦.

If h is odd, let, for s = 1, 2, . . . , h−1
2 ,

Lh=maxs

⎡
⎣−h−1∑

j=0

(
n−j

h−j

)
ajα

h−j
n−h+1,2s−1

⎤
⎦, Rh=mins

⎡
⎣−h−1∑

j=0

(
n−j

h−j

)
ajα

h−j
n−h+1,2s

⎤
⎦.

If Lh < Rh, we have Lh < ah < Rh.

If at any step Lh ≥ Rh or the interval [Lh, Rh] does not contain integers, the
algorithm stops. At the h-th step (h > 2) we also check whether the span dh is less
than 4.
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3. An application of a theorem of Hermite

Our method is largely based on Robinson’s method combined, in the case of the
determination of even index coefficients, with the classic theorem of Hermite [2]
(see also [1] and [4]) which allows us to improve the upper bound Rh.

Theorem 3.1. Given a real polynomial fn(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an,
with (complex) roots α1, . . . , αn, consider the matrix

S =

⎛
⎜⎜⎝
s0 s1 . . . sn
s1 s2 . . . sn+1

. . . . . . . . . . . .
sn sn+1 . . . s2n−2

⎞
⎟⎟⎠ ,

where sj =
∑n

i=1 α
j
i (j = 0, . . . , n), the j-th Newton’s symmetric function on the

roots of the polynomial.
The signature of S is equal to the number of real roots of fn(x), and the rank of

S is equal to the number of distinct roots.

In particular, we deduce:

Corollary 3.2. fn(x) is a hyperbolic polynomial if and only if the matrix S is
positive definite.

It is well known that Newton’s symmetric functions on the roots of fn are ex-
pressible as polynomials in the coefficients a1, . . . , an. This implies that all the
principal minors of S are also polynomials in the coefficients of fn.

The conditions that the principal minors of S must be positive yield an upper
bound for the coefficients with even index as in the following example concerning
the 2× 2 principal minor of S:∣∣∣∣s0 s1

s1 s2

∣∣∣∣ =
∣∣∣∣ n −a1
−a1 a21 − 2a2

∣∣∣∣ = (n− 1)a21 − 2na2 > 0.

This is equivalent to the upper bound (2.2). In general, the k × k princi-
pal minor is a function of the first 2k − 2 coefficients, which we may denote by
∆k(a1, . . . , a2k−2), linear in a2k−2, which has negative coefficient. Hence ∆k > 0
is equivalent to an upper bound b2k−2 for a2k−2 in terms of a1, . . . , a2k−3, which is
often stronger, for small k, than the upper bound in Proposition 2.6.

We used this algorithm to compute the list of polynomials up to degree 10. While
we found no significant gain in time with respect to Robinson’s original method in
our implementation, we believe that it could deserve further study. In the next
section we are going to show a different algorithm that proved to be remarkably
faster.

4. The sequence {qk}

Given the hyperbolic polynomial fn(x) as in (2.1), with roots α1 < · · · < αn,
we will define the sequence {qk}, k odd, by taking qk as the only real root of the
equation

n∑
i=1

(αi − x)k = 0.

Proposition 4.1. lim
k→∞

qk =
α1 + αn

2
.
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Proof. Assume α1 < α2 < · · · < αjk ≤ qk ≤ αjk+1 < · · · < αn.
We have

(4.1) (qk − α1)
k + · · ·+ (qk − αjk)

k = (αjk+1 − qk)
k + · · ·+ (αn − qk)

k.

Set {
(qk − αi)

k = εk,i(qk − α1)
k (i = 2, . . . , jk),

(αj − qk)
k = ηk,j(αn − qk)

k (j = jk + 1, . . . , n− 1).

Equality (4.1) can be rewritten as

(qk − α1)
k(1 + εk,2 + · · ·+ εk,jk) = (αn − qk)

k(1 + ηk,jk+1 + · · ·+ ηk,n−1).

Hence, setting
∑

εk,i = εk and
∑

ηk,j = ηk,

(qk − α1)
k(1 + εk) = (αn − qk)

k(1 + ηk)

and so, if we set

(4.2) ζk = k

√
1 + ηk
1 + εk

,

we have

(4.3) qk =
α1 + αnζk
1 + ζk

.

To conclude it is enough to show that lim
k→∞

ζk = 1. This a consequence of the

following two remarks:

i) εk,i < ε′k,i :=

(
αn − αi

αn − α1

)k

(i = 2, . . . , jk),

ηk,i < η′k,i :=

(
αi − α1

αn − α1

)k

(i = jk + 1, . . . , n− 1),

ii) ε′k,i ≤ ε′k,2 (i = 2, . . . , jk), η′k,i ≤ η′k,n−1 (i = jk + 1, . . . , n− 1).

Using i) and ii) one can show that

(4.4) εk < (n− 2)ε′k,2, ηk < (n− 2)η′k,n−1.

From (4.4) it follows that

(4.5)
1

1 + (n− 2)ε′k,2
≤ 1 + ηk

1 + εk
≤ 1 + (n− 2)η′k,n−1.

Since αn−αi

αn−α1
< 1 and αi−α1

αn−α1
< 1, both ε′k,n−1 and η′k,2 are infinitesimal. There-

fore as k approaches infinity, the first and third member of (4.5) approach 1 and so
lim
k→∞

ζk = 1. �

Remark 4.2. The proof can easily be modified to show the same result even when
the roots of f(x) are not all distinct.

Definition 4.3. Let F(α1, αn) be the family of all the degree n hyperbolic poly-
nomials with fixed smallest root α1 and largest root αn.

From Proposition 4.1 it follows that for every polynomial in F(α1, αn) the related
sequence {qk} approaches the same value α1+αn

2 .
For any polynomial of the family F(α1, αn) we want to estimate the absolute

value of the difference |qk − α1 + αn

2
|.
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One can easily compute that

|qk − α1 + αn

2
| = |(ζk − 1)(αn − α1)|

2(1 + ζk)
.

We also note that for the particular polynomial p(x) = (x − α1)(x − αn)
n−1 ∈

F(α1, αn) the corresponding value of ζk is k
√
n− 1 and, analogously, for P (x) =

(x−α1)
n−1(x−αn) ∈ F(α1, αn) the corresponding value of ζk is 1

k
√
n−1

. Moreover,

if we denote by q̄k the generic element of the sequence corresponding to either p(x)
or P (x), we have, in both cases,

|q̄k − α1 + αn

2
| = |( k

√
n− 1− 1)(αn − α1)|
2( k
√
n− 1 + 1)

.

Lemma 4.4. For every polynomial in F(α1, αn), for the corresponding value of

ζk, the following inequalities hold:
1

k
√
n− 1

≤ ζk ≤ k
√
n− 1.

Proof. ζk ≤ k
√
n− 1 ⇐⇒ k

√
1+ηk

1+εk
≤ k

√
n− 1 ⇐⇒ (1+ηk) ≤ (1+εk)(n−1). Since

ηk,i ≤ 1, for all i, we have 1 + ηk = 1 + ηk,jk+1 + · · ·+ ηk,n−1 ≤ n − jk ≤ n− 1 ≤
(1 + εk)(n− 1).

On the other hand, and in the same manner, we can show that 1
k
√
n−1

≤ ζk

because (1 + εk) ≤ (1 + ηk)(n− 1). �

Proposition 4.5. For every polynomial f ∈ F(α1, αn) we have

|(ζk − 1)(αn − α1)|
2(1 + ζk)

≤ |( k
√
n− 1− 1)(αn − α1)|
2( k
√
n− 1 + 1)

.

Proof. We distinguish two cases. In the case when ζk > 1 it is enough to check that

( k
√
n− 1 + 1)(ζk − 1) ≤ ( k

√
n− 1− 1)(ζk + 1),

which is equivalent to

ζk ≤ k
√
n− 1,

which holds because of Lemma 4.4.
In the case when ζk < 1 we can see that

( k
√
n− 1 + 1)(1− ζk) ≤ ( k

√
n− 1− 1)(ζk + 1),

which is equivalent to

ζk ≥ 1
k
√
n− 1

,

which holds, again, because of Lemma 4.4. �

The function mk(f, q) :=
∑n

i=1(αi − q)k depends on a1, . . . , ak, q, linearly in the
k-th coefficient ak of the hyperbolic polynomial f(x). So we may also explicitly
indicate it by mk(a1, . . . , ak, q).

In the recursive procedure to find our polynomials, we will exploit this fact in
order to obtain, once the coefficients a1, . . . , ak−1 are given, a lower and an upper
bound for ak, using two inequalities of the type:

k∑
i=0

c′imi(a1, . . . , ak, q) ≤ 0,

k∑
i=0

c′′i mi(a1, . . . , ak, q) ≥ 0.
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To do this, let us denote, for any degree k ≥ 0, by Tk(x) the k-th Chebyshev
Polynomial of the first kind. Recall that T0(x) = 1, T1(x) = x, and Tk(x) =
2xTk−1(x)− Tk−2(x), k ≥ 2, and that Tk(x) has k real roots in the interval [−1, 1]
given by the explicit formulas xi = cos (π2

2i−1
k ). Moreover, the extrema of Tk are

all ±1 and Tk(1) = 1 while Tk(−1) = (−1)k. We can change the variable in order to
consider the Chebyshev’s polynomials appropriate to any given interval [a, b] (see
[6], 1.3.2). In particular, we consider Tk,h(x) = Tk(

x
h ), which are the Chebyshev

polynomials for the interval [−h, h]. We shall use

S′
k,h(x) = Tk,h(x)− 1, S′′

k,h(x) = Tk,h(x) + 1.

We shall need the following easily checked properties of these polynomials: S′
k,h(x)

≤ 0 in [−h, h] with maxima equal to 0 and minima equal to −2; S′′
k,h(x) ≥ 0 in

[−h, h] with maxima equal to 2 and minima equal to 0.

Set S′
k,h(x) =

∑k
i=0 c

′
ix

i and S′′
k,h(x) =

∑k
i=0 c

′′
i x

i.

For any value q such that |αj − q| ≤ h, for all αj , we have
∑k

i=0 c
′
i(αj − q)i ≤ 0

and
∑k

i=0 c
′′
i (αj − q)i ≥ 0 for all αj ; hence

n∑
j=1

k∑
i=0

c′i(αj − q)i ≤ 0,

n∑
j=1

k∑
i=0

c′′i (αj − q)i ≥ 0

or
k∑

i=0

c′i

n∑
j=1

(αj − q)i ≤ 0,

k∑
i=0

c′′i

n∑
j=1

(αj − q)i ≥ 0,

i.e.,

(4.6)

k∑
i=0

c′imi(a1, . . . , ak, q) ≤ 0,

k∑
i=0

c′′i mi(a1, . . . , ak, q) ≥ 0.

These last two inequalities imply, because of the linearity in ak, conditions such as

(4.7) g′(a1, . . . , ak−1, q) ≤ ak ≤ g′′(a1, . . . , ak−1, q)

provided g′(a1, . . . , ak−1, q) ≤ g′′(a1, . . . , ak−1, q).
A priori, we do not know the roots α1, . . . , αn. We know, however, that lim qi =

q̄ := α1+αn

2 and that

|qi − q̄| ≤ ( i
√
n− 1− 1)(αn − α1)

2( i
√
n− 1 + 1)

< 2
i
√
n− 1− 1

i
√
n− 1 + 1

:= ρi

since αn − α1 < 4, by hypothesis.
If k is even, and assuming we have already determined the coefficients a1, . . . ,

ak−1, then qk−1 is determined. Its distance from q̄ is less than ρk−1. Therefore, by
choosing q = qk−1 and h = 2 + ρk−1 the conditions are satisfied to apply (4.7). If
k is odd, an analogous result can be obtained by choosing q = qk−2.

Summarizing, the algorithm is as follows.
Given n, a1, a2 and q1 = −a1/n, we consider m3(a1, a2, a3, q1). Therefore the

only variable left is a3. We consider the polynomials S′
3,2+ρ1

(x), S′′
3,2+ρ1

(x) related
to T3,2+ρ1

(x). We can now search for integer solutions of inequalities (4.6) with
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k = 3. If there are no such solutions the algorithm stops. Otherwise, for any
solution a3, we solve the equation

m3(a1, a2, a3, x) = 0
to find q3.

Now we consider m4(a1, a2, a3, a4, q3), where the only variable is a4. We consider
the polynomials S′

4,2+ρ3
(x), S′′

4,2+ρ3
(x) related to T4,2+ρ3

(x). If we do not find
integer solutions a4 for inequalities (4.6) with k = 4, we stop. Otherwise we continue
by considering, for any such a4, the functionm5(a1, a2, a3, a4, a5, q3) (the same value
q3 is used both for m4 and m5), and so on.

We used this method to compute polynomials up to degree 14. In the follow-
ing table we compare it with Robinson’s by giving the time, in seconds, the two
algorithms took to compute the lists for n = 8 and n = 9 on the same 9 Gflop
processors.

n Robinson sequence {qk}
8 49644 sec 1143 sec
9 1203686 sec 4943 sec

5. Strengthening of the bounds

For degree 15 and higher both the methods of Sections 3 and 4 take an exceed-
ingly long time to complete. So we made some reasonable assumptions, based on
a number of empirical observations described below. For degree 15 we used some
combinations of these assumptions, always obtaining the same list of polynomials.
For degrees 16 and 17 instead we used the method of Section 5.5.

5.1. Bounds on the spans. Let

Pn = {fn|span(fn) < 4},
P(i)
n = {f (i)

n |fn ∈ Pn}, i = 0, . . . , n− 2,

Si
n = {spanf (i)

n |f (i)
n ∈ P(i)

n }kn,i = maxSi
n.

We tabulated kn,i as a function of n by comparing the span of f
(n−i)
n with the

span of f
(m−i)
m whenever this is possible, i.e., when 2 ≤ i ≤ min(n,m).

n kn,n−2kn,n−3kn,n−4kn,n−5kn,n−6kn,n−7kn,n−8kn,n−9kn,n−10kn,n−11kn,n−12

3 1.7638

4 1.91493.3166

5 1.54922.6833 3.5103

6 1.36632.3664 3.10693.6498

7 1.23442.1391 2.84013.38273.7763

8 1.13391.9637 2.61593.13513.53873.8303

9 1.05411.8257 2.43552.92673.31873.61953.8395

10 1.00001.7321 2.31312.78573.17033.47783.71753.9057

11 0.92711.6057 2.14792.59492.96733.27663.53033.7320 3.8825

12 0.88761.5374 2.05692.48572.84363.14223.38993.5985 3.7729 3.8952

13 0.83561.4473 1.93922.35002.69892.99683.25093.4658 3.6446 3.7893 3.9146
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Remark 5.1. Notice that in this table,

(5.1) kn,n−i > kn+1,n+1−i > · · · .

If we assume that such an inequality holds in general, we could exploit it for a2,
by choosing a value of k smaller than cn (see Theorem 2.1) in formula (2.3), by esti-
mating kn,n−2 to be smaller than kn−1,n−3, which was obtained in the classification
of the polynomials of degree n− 1.

For the other coefficients, one could assume that the span of the (n − i)-th
derivative is less than kn−1,n−1−i, obtained in the classification of polynomials of
the previous degree.

5.2. Further restrictions on the spans. For all the polynomials that we ob-

tained up to degree 14, we computed
Sn−i
n

Sn−i+1
n

, for n = 4, . . . , 14, the ratio of the

span of f
(n−i)
n over the span of f

(n−i+1)
n and we took the minimum Ri

n and the

maximum R
i

n of such ratios.
We observed that the intervals thus obtained are quite small; moreover, there is

a definite stabilizing trend in the sequences Ri
3, R

i
4, R

i
5, . . ., R

i

3, R
i

4, R
i

5, . . .
In the table below we show the resulting intervals for i = 3, 4, 5, 6.

n (R3
n, R

3

n) (R4
n, R

4

n) (R5
n, R

5

n) (R6
n, R

6

n)

4 (1.71339, 1.73205)(1.18598, 1.36603)
5 (1.72679, 1.73205)(1.29707, 1.34765)(1.12377, 1.22365)
6 (1.72950, 1.73205)(1.31292, 1.34367)(1.15427, 1.21707)(1.07876, 1.15923)
7 (1.73141, 1.73205)(1.32581, 1.33813)(1.18672, 1.20868)(1.11519, 1.14395)
8 (1.73117, 1.73205)(1.33026, 1.34267)(1.19500, 1.21622)(1.12471, 1.15417)
9 (1.73108, 1.73205)(1.33239, 1.33943)(1.19917, 1.21107)(1.13077, 1.14674)
10 (1.73152, 1.73205)(1.33464, 1.34140)(1.20293, 1.21425)(1.13625, 1.15138)
11 (1.73165, 1.73205)(1.33763, 1.34046)(1.20812, 1.21274)(1.14349, 1.14945)
12 (1.73183, 1.73205)(1.33787, 1.34267)(1.20848, 1.21622)(1.14399, 1.15413)
13 (1.73200, 1.73205)(1.33990, 1.34176)(1.21183, 1.21481)(1.14844, 1.15233)

5.3. Restrictions on the location of roots. Given a hyperbolic polynomial f
of degree n, with (real) roots x1, . . . , xn, let µ =

∑n
i=1 xi and mk =

∑n
i=1(xi − µ)k

be, respectively, the average and the Newton functions of the xi’s around µ.
It is well known that the value c3 = m2

3/m
3
2 gives information about the sym-

metry of the xi’s around the average µ, while c4 = m4/m
2
2 is related to the density

of the xi’s around µ.
We have found it useful also to define the following functions, generalizing the

above for any integer k ≥ 1:

c2k+1 =
m2k

2k+1

m2k+1
2k

, c2k+2 =
mk

2k+2

mk+1
2k

.

We observed that the values of these functions on the polynomials we determined
up to degree 14 vary in quite short intervals, as the following tables show:
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n (c′3, c
′′
3) (c′5, c

′′
5) (c′7, c

′′
7) (c′9, c

′′
9) (c′11, c

′′
11) (c′13, c

′′
13)

4 (0, 0.2427)
5 (0, 0.1209)(0, 0.1795)
6 (0, 0.0841)(0, 0.0545)
7 (0, 0.0279)(0, 0.0142)(0, 0.0211)
8 (0, 0.0472)(0, 0.0285)(0, 0.0369)
9 (0, 0.0619)(0, 0.0397)(0, 0.0443)(0, 0.0621)
10 (0, 0.0392)(0, 0.0195)(0, 0.0223)(0, 0.0375)
11 (0, 0.0340)(0, 0.0102)(0, 0.0054)(0, 0.0039)(0, 0.0038)
12 (0, 0.0213)(0, 0.0040)(0, 0.0015)(0, 0.0009)(0, 0.0014)
13 (0, 0.0026)(0, 0.0001) (0, 0) (0, 0) (0, 0) (0, 0)

n (c′4, c
′′
4 ) (c′6, c

′′
6 ) (c′8, c

′′
8 ) (c′10, c

′′
10) (c′12, c

′′
12)

4 (1.1653, 1.8457)

5 (1.3367, 1.7968)

6 (1.2857, 1.7460) (1.5873, 2.4041)

7 (1.3858, 1.6338) (1.6855, 2.1910)

8 (1.3910, 1.7143) (1.6823, 2.3234) (1.9454, 2.9186)

9 (1.3826, 1.6010) (1.6653, 2.0180) (1.8985, 2.5117)

10 (1.3636, 1.6314) (1.6750, 2.0647) (1.8901, 2.5278) (2.0698, 3.0006)

11 (1.4305, 1.5585) (1.7529, 1.9158) (2.0025, 2.2945) (2.2076, 2.6926)

12 (1.3846, 1.6364) (1.7094, 2.1319) (1.9789, 2.5177) (2.2102, 2.8058) (2.3739, 3.0692)

13 (1.4477, 1.5606) (1.7716, 1.9740) (2.0497, 2.2906) (2.2922, 2.5436) (2.5053, 2.7613)

where c′i = min ci, c′′i = max ci and the minimum and the maximum are com-
puted, up to the fourth decimal digit, over all the polynomials of a given degree we
determined.

These tables suggested to us some reasonable restrictions on the values of these
functions for the polynomials of degree 15 and up.

Recalling that each ck is a polynomial expression in the first k coefficients
a1, a2, . . . , ak of fn(x), we recursively get a restriction on the coefficient ak.

5.4. Restrictions on the range of the coefficients, using Hermite’s theo-
rem. We have noticed that for all the polynomials we determined up to degree 14,
the actual value of the coefficient a2 lies remarkably between b2−n−1 and b2−n+1
(n the degree of the polynomial), where b2i (i a positive integer) is the bound due
to Hermite’s Theorem (see Section 3). Similar conditions appear also for the other
coefficients of even index of the polynomials: for i > 1, a2i lies between b2i − n

i − 2
and b2i − n

i + 2. Therefore it seemed natural to impose an analogous restriction
to the coefficients of even index. We have no such restriction on the coefficients of
odd index.

The range of the coefficients of odd index implied by Proposition 2.6 is far
too large; however, we empirically observed that in all the polynomials we have
determined up to degree 14, the coefficients of odd index are always quite close to
the center of the interval of variability. More precisely, the coefficients are always
within twelve units of the center.

5.5. Restrictions on the range of the coefficients, using the method of
the sequence {qk}. In Section 4, in order to obtain a range of variability of every
coefficient ak, we used the k-th Chebyshev polynomial of the first kind related to the
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interval [−2−ρk−1, 2+ρk−1]. By selecting the Chebyshev polynomials for narrower
intervals, one can obviously get a smaller range of variability for the coefficients ak.
It turned out that all polynomials we determined using the wider intervals would
have also been found if we had used the interval [−2, 2]. Thus, for degrees higher
than 14 we decided to use the interval [−2, 2], for every k ≥ 3, in order to remain
within a manageable computation. This method turned out to give us results up
to degree 17. Of course, the list of polynomials of degree 15 to 17 may not be
complete.

6. Conclusions

The number of inequivalent polynomials in any given degree that do not belong
to Kronecker’s family seems to follow a decreasing trend as the degree n increases.
Recalling the sets Pn and Nn defined in Section 1, and denoting by |Pn| and |Nn|
their respective cardinalities, we have the following table.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|Pn| 4 5 14 15 17 15 26 21 18 11 16 4 10 7 9 3
|Nn| 1 3 10 14 13 15 19 19 15 10 9 4 9 6 3 3

Some natural questions present themselves:
i) Is there a degree n for which Nn is empty?
ii) Are there infinitely many such n?
iii) Is the union of all sets Nn a finite set?

Moreover:
j) Is condition (5.1) true in general?

jj) Theorem 6.1.2 of [5] implies
Sn−i
n

Sn−i+1
n

≤
√

i

i− 2
. In the table of Section 5.2 we

observe that for i = 3 this upper bound is reached, while for i > 3, the maximum

R
i

n stays well below

√
i

i− 2
. In the same table we also listed Ri

n for which we do

not know an analogous lower bound for i > 3. For i = 3, Theorem 6.1.6 of [5] gives
the lower bound of 1.5, which turns out to be definitely smaller than the observed
lower bounds R3

n.
jjj) The first table of Section 5.3 seems to suggest a high level of symmetry for
the roots of the polynomial around the average. The second table also shows some
regularities that deserve further study. We believe that this could lead to a better
understanding of the distribution of the roots.
jv) The most striking observation, in our opinion, concerns the constraints on the
coefficients given in Section 5.4:

b2i −
n

i
− 2 ≤ a2i ≤ b2i −

n

i
+ 2,

where b2i is determined by Hermite’s Theorem. Is this true in general?
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7. List of polynomials

Here we only give the list of the polynomials belonging to Pn, 9 ≤ n ≤ 17,
since the list for n ≤ 8 is given by Robinson in [7]. We also give the span of every
polynomial and point out if it belongs to Kn. We recall that the list of polynomials
for degrees 15, 16 and 17 might not be complete.

x17x16x15x14x13x12x11x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 span K

0 0 0 0 0 0 0 0 1 −4−2 20 −3−33 6 18 −1 −1 3.99871
0 0 0 0 0 0 0 0 1 −4−2 20 −3−33 6 19 −1 −2 3.98540
0 0 0 0 0 0 0 0 1 −4−2 21 −5−37 12 24 −5 −4 3.95702
0 0 0 0 0 0 0 0 1 −4−2 21 −5−36 10 21 −1 −1 3.98720
0 0 0 0 0 0 0 0 1 −4−2 22 −8−38 20 21 −9 −1 3.97479
0 0 0 0 0 0 0 0 1 −3−6 20 13−44−13 34 4 −7 3.99471
0 0 0 0 0 0 0 0 1 −3−5 17 9−31 −7 18 1 −1 3.97058
0 0 0 0 0 0 0 0 1 −3−5 17 9−30 −8 16 3 −1 3.91334
0 0 0 0 0 0 0 0 1 −3−5 18 7−34 −1 20 −3 −1 3.96247
0 0 0 0 0 0 0 0 1 −3−5 20 3−41−12 25−10 −1 3.95064
0 0 0 0 0 0 0 0 1 −2−8 13 25−26−35 14 16 1 3.88107
0 0 0 0 0 0 0 0 1 −2−8 14 23−30−28 18 12 1 3.94888
0 0 0 0 0 0 0 0 1 −2−8 15 22−37−23 32 6 −5 3.97514
0 0 0 0 0 0 0 0 1 −2−7 12 17−22−15 13 3 −1 3.98193
0 0 0 0 0 0 0 0 1 −2−7 13 16−26−13 16 3 −2 3.99566
0 0 0 0 0 0 0 0 1 −2−7 13 16−26−13 17 3 −3 3.98087
0 0 0 0 0 0 0 0 1 −2−7 14 15−30−10 19 2 −1 3.90728
0 0 0 0 0 0 0 0 1 −1−9 7 28−15−34 9 12 1 3.96732
0 0 0 0 0 0 0 0 1 −1−9 7 28−15−34 10 12 −1 3.95293
0 0 0 0 0 0 0 0 1 −1−8 7 21−15−20 10 5 −1 3.86436 ∗
0 0 0 0 0 0 0 0 1 0−9 0 27 0−30 0 9 −1 3.93257 ∗
0 0 0 0 0 0 0 1−5 0 30−20−66 46 63−28−21 1 3.97316
0 0 0 0 0 0 0 1−5 1 26−22−46 43 31−23 −6 1 3.95382
0 0 0 0 0 0 0 1−5 1 26−21−49 40 42−20−15 −1 3.96611
0 0 0 0 0 0 0 1−5 2 22−22−32 35 19−16 −4 1 3.97746
0 0 0 0 0 0 0 1−4 −3 24 −2−49 11 36 −8 −6 1 3.97174
0 0 0 0 0 0 0 1−4 −3 25 −4−53 16 43 −8−11 −1 3.94653
0 0 0 0 0 0 0 1−4 −3 26 −7−56 28 44−19−10 1 3.99778
0 0 0 0 0 0 0 1−4 −2 22 −8−39 22 23−13 −2 1 3.98108
0 0 0 0 0 0 0 1−3 −7 24 16−67−12 75 0−27 1 3.98291
0 0 0 0 0 0 0 1−3 −6 19 15−40−20 29 11 −4 −1 3.94810
0 0 0 0 0 0 0 1−3 −6 21 11−49 −5 42 −3−10 2 3.99770
0 0 0 0 0 0 0 1−1−10 8 36−21−56 20 36 −5 −7 3.98290
0 0 0 0 0 0 0 1−1−10 8 36−21−55 20 31 −5 −3 3.97599
0 0 0 0 0 0 0 1−1−10 9 35−28−49 35 21−15 13.954803
0 0 0 0 0 0 0 1−1−10 10 34−34−43 43 12−12 13.954801 *
0 0 0 0 0 0 0 1 0−11 0 43 1−70 −5 41 5 −4 3.99766
0 0 0 0 0 0 0 1 0−11 0 44 0−77 0 55 0−11 3.95929 *
0 0 0 0 0 0 0 1 0−10 0 35 −1−50 5 25 −5 −1 3.92140 *
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x17x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 span K

0 0 0 0 0 0 1 −5 0 33 −31 −72 96 53 −94 −2 21 −13.98306
0 0 0 0 0 0 1 −4 −4 28 1 −71 9 76 −5 −29 −2 13.98516
0 0 0 0 0 0 1 −4 −4 29 −1 −77 18 91 −17 −44 2 53.99484
0 0 0 0 0 0 1 −3 −7 24 17 −68 −19 81 13 −36 −5 33.99040
0 0 0 0 0 0 1 −2 −10 19 37 −65 −61 95 42 −53 −9 73.98016
0 0 0 0 0 0 1 −2 −9 16 31 −44 −50 47 35 −15 −6 13.93451
0 0 0 0 0 0 1 −2 −9 17 29 −50 −39 58 19 −21 −3 13.96503
0 0 0 0 0 0 1 −1 −11 9 45 −29 −83 41 66 −25−17 53.99860
0 0 0 0 0 0 1 −1 −11 9 45 −28 −83 35 65 −15−15 13.99354
0 0 0 0 0 0 1 −1 −10 9 36 −28 −56 35 35 −15 −6 13.90721 ∗
0 0 0 0 0 0 1 0 −11 −1 44 7 −77 −15 55 10−11 −13.99906

0 0 0 0 0 1 −6 5 30 −49 −50 112 31 −99 −5 30 0 −13.94917
0 0 0 0 0 1 −5 0 32 −27 −71 77 65 −71 −25 20 4 −1 3.9794
0 0 0 0 0 1 −4 −5 33 1−100 29 132 −49 −67 23 6 −13.97656
0 0 0 0 0 1 −3 −8 26 25 −84 −39 122 30 −75 −8 13 −13.98719
0 0 0 0 0 1 −3 −8 26 25 −83 −41 117 39 −67 −18 10 13.97211
0 0 0 0 0 1 −2 −11 20 48 −74 −105 123 118 −88 −61 21 113.97533
0 0 0 0 0 1 −2 −11 21 46 −82 −90 146 80−116 −24 33 −13.99809
0 0 0 0 0 1 −2 −10 18 39 −58 −74 79 67 −40 −22 4 13.99300
0 0 0 0 0 1 −2 −10 19 37 −65 −61 96 41 −57 −6 9 −13.97494
0 0 0 0 0 1 −1 −12 11 54 −43 −113 71 110 −46 −40 8 13.95981 ∗
0 0 0 0 0 1 −1 −12 12 53 −53 −103 103 79 −79 −12 12 13.96762 ∗
0 0 0 0 0 1 0 −13 0 65 0 −156 0 182 0 −91 0 133.97084 ∗
0 0 0 0 0 1 0 −12 0 53 0 −104 0 86 0 −24 0 13.97485 ∗
0 0 0 0 0 1 0 −12 0 54 0 −112 0 105 0 −36 0 13.98478 ∗
0 0 0 0 0 1 0 −12 1 54 −9 −112 27 105 −31 −36 12 13.97566 ∗
0 0 0 0 0 1 0 −11 0 44 0 −78 0 60 0 −16 0 13.98882 ∗
0 0 0 0 1 −6 3 41 −55 −105 178 129−234 −83 126 26−20 −23.96762
0 0 0 0 1 −6 3 42 −60 −104 205 104−283 −28 159 −10−25 13.97425
0 0 0 0 1 −4 −5 33 2 −103 24 150 −42−101 22 26 −3 −13.94382
0 0 0 0 1 −2 −11 21 46 −82 −90 145 81−111 −28 27 3 −13.99859

0 0 0 1 −7 8 43 −95 −86 308 43 −445 50 291 −55 −68 12 13.99779
0 0 0 1 −7 8 43 −94 −91 308 73 −465 −16 338 6−100 −4 73.98621
0 0 0 1 −7 9 37 −90 −56 258 −3 −332 64 197 −37 −44 3 13.99950
0 0 0 1 −6 2 46 −54−140 198 223 −295−203 180 93 −30 −9 13.99509
0 0 0 1 −6 3 42 −59−109 206 131 −308 −77 214 23 −62 −3 53.96291
0 0 0 1 −4 −7 42 8−171 46 337 −145−324 143 131 −43−14 13.97999
0 0 0 1 −4 −6 38 3−137 44 234 −103−193 82 69 −22 −8 13.98024
0 0 0 1 −3 −11 35 49−162 −114 375 147−448 −99 253 26−49 13.99581
0 0 0 1 −3 −10 33 38−141 −68 293 56−301 −15 135 −1−17 −13.99389
0 0 0 1 −1 −13 12 66 −55 −165 120 210−126−126 56 28 7 −13.94152 ∗
0 0 1 −7 7 50−103−127 393 129−692 −35 597 −1−217 −10 15 13.99656
0 0 1 −6 1 54 −66−188 325 313−697 −238 747 38−382 44 72−173.99308
0 0 1 −3−11 37 45−181 −79 445 34 −572 67 357 −84 −81 27 −13.97472
0 0 1 −2−13 24 69−113−191 263 291 −312−235 173 87 −34−10 13.99698
0 0 1 −1−15 12 91 −54−283 111 470 −100−393 30 140 0−15 −13.99995
0 0 1 −1−15 12 92 −55−294 119 515 −120−474 45 196 −1−22 13.98530
0 0 1 −1−14 13 78 −66−220 165 330 −210−252 126 84 −28 −8 13.94880 ∗
0 1 −8 13 49−154 −77 583 −88−1104 379 1151−380−642 129 158−10−113.99671
0 1 −8 15 35−138 9 394−265 −488 495 242−349 −15 89 −11 −6 13.98403
0 1 −1−16 13 106 −66−373 164 742−203 −818 109 451 −10 −93 −6 13.99156
0 1 −1−16 16 103−103−339 339 596−596 −526 526 188−188 −16 16 13.98105 ∗
0 1 0−17 0 119 0−442 0 935 0−1122 0 714 0−204 0 173.98294 ∗
0 1 0−16 0 104 0−352 0 659 0 −664 0 316 0 −48 0 13.98767 ∗
0 1 0−16 0 104 0−352 0 660 0 −672 0 336 0 −64 0 13.99144 ∗
0 1 0−16 0 104 0−352 0 660 0 −672 0 336 0 −64 0 23.98074 ∗
0 1 0−16 0 105 0−364 0 714 0 −784 0 440 0 −96 0 13.99452 ∗
1 −6 0 58−58−232 306 504−694 −655 789 515−431−220 92 35 −6 −13.99965
1 −4 −9 50 22−254 26 676−208−1012 361 846−259−362 66 61 −1 −13.98861
1 −2−15 30 91−183−285 583 485−1036−424 1014 142−500 20 96−15 −13.99758
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