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POSITIVE INTERPOLATORY QUADRATURE RULES

GENERATED BY SOME BIORTHOGONAL POLYNOMIALS

D. S. LUBINSKY AND A. SIDI

Abstract. Interpolatory quadrature rules whose abscissas are zeros of a
biorthogonal polynomial have proved to be useful, especially in numerical in-
tegration of singular integrands. However, the positivity of their weights has
remained an open question, in some cases, since 1980. We present a general
criterion for this positivity. As a consequence, we establish positivity of the
weights in a quadrature rule introduced by the second author in 1980, gener-

ated by a polynomial that is biorthogonal to (log x)j , 0 ≤ j ≤ n− 1.

1. Introduction and results

Let (a, b) be a real interval and w : (a, b) → (0,∞) be such that
∫ b

a
xjw (x) dx

is defined and finite for 0 ≤ j ≤ n. Let pn be a monic polynomial with distinct

zeros {xj}nj=1 in (a, b). Then, as an approximation to
∫ b

a
f (x)w (x) dx, we may

determine an interpolatory quadrature rule

(1.1) In [f ] =

n∑
j=1

λjf (xj)

that integrates exactly polynomials P of degree ≤ n− 1:

(1.2) In [P ] =

∫ b

a

Pw.

We say that In is the interpolatory rule generated by pn and w. Of course the
classical example is Gauss quadrature, where pn is the nth orthogonal polynomial
for the weight w, but there are many other useful such quadratures.

When pn is a biorthogonal polynomial, that is, when

(1.3)

∫ b

a

pnϕjw = 0, 1 ≤ j ≤ n,

for some functions {ϕj}nj=1, the numerical efficacy of such rules has been demon-

strated by Sidi [12], [13], and by Sidi and Lubinsky [17]. We note that in these
papers, the pn are derived by applying the transformations of Levin and of Sidi
to appropriate moment series of Stieltjes functions. For a brief summary of these
transformations, see for example [15, Chapter 19].
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The earliest choice of biorthogonal polynomials pn related to numerical quadra-

ture seems to be the Sidi polynomials D
(α,β)
n of [12], given by

D(α,β)
n (x) =

n∑
i=0

(−1)n−i

(
n

i

)
(β + i+ 1)α+n xi,

where α, β > −1. If α is a nonnegative integer, these admit the Rodrigues type
representation

D(α,β)
n (x) = (−1)n x−β−1

(
x
d

dx

)α+n [
xβ+1 (1− x)n

]
.

For general α, β > −1, these polynomials satisfy the biorthogonality relation (1.3)

with w (x) =
(
log x−1

)α
xβ , (a, b) = (0, 1) and ϕj (x) = (log x)j−1; see [16]. That

is,

(1.4)

∫ 1

0

D(α,β)
n (x)

(
log x−1

)j+α
xβdx = 0, 0 ≤ j ≤ n− 1.

These polynomials first arose in the theory of convergence acceleration, but the
associated quadrature rules turned out to be very accurate in numerical integration

of functions with endpoint singularities. The asymptotic behavior of D
(0,0)
n was

determined in [4].
The biorthogonal polynomials of [13] and [17] satisfy (1.3) with w (x) = xαe−x,

(a, b) = (0,∞) and ϕj (x) = e−σjx, for some appropriate {σj}; see [14] and [17]. A
detailed study of the zero distribution of these polynomials was undertaken in [5].
Related biorthogonal polynomials have been investigated in [6], [7].

Now, the limited numerical computations carried out in [12] suggest that the

weights {λj}nj=1 of the interpolatory rule generated by D
(0,0)
n for the

integral
∫ 1

0
f (x) dx might be positive for all n, but this was not known at the

time of publication of [12]. In fact, this problem has remained open since 1980. It
is that positivity that is one of the main results of this paper.

More generally, we shall consider a continuously differentiable, strictly increasing,
function ϕ : (a, b) → R, and the monic polynomial pn of degree n determined by
the conditions

(1.5)

∫ b

a

pnϕ
jw = 0, 0 ≤ j ≤ n− 1.

Thus we are choosing ϕj = ϕj−1, 1 ≤ j ≤ n, in (1.3).
Recall that a function g is said to be m absolutely monotone in an interval J if

g(m) exists there and

g(j) > 0 in J for 0 ≤ j ≤ m.

If

(−1)
j
g(j) > 0 in J for 0 ≤ j ≤ m,

g is said to be m completely monotone in J . Our main result is:

Theorem 1.1. Let n ≥ 1 and ϕ : (a, b) → R be a strictly increasing function with
n− 1 continuous derivatives, and let ψ denote its inverse function, with domain of
definition I = {ϕ (x) : x ∈ (a, b)}. Assume that for each β ∈ I, the function

(1.6) g (t) =
1

ψ (β)− ψ (t)
, t ∈ I\ {β} ,
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is n−1 absolutely monotone in I∩(−∞, β) and −g is n−1 completely monotone in

I ∩ (β,∞). Let w : (a, b) → (0,∞) be such that
∫ b

a
xjϕ (x)

k
w (x) dx is defined and

finite for 0 ≤ j ≤ n and 0 ≤ k ≤ n − 1. Let pn be the monic polynomial of degree
n determined by the biorthogonality conditions (1.5). Then the weights {λj}nj=1 in

the interpolatory rule In generated by pn and w are all positive.

We can also prove positivity of the quadrature weights when the weight w is
replaced by w |ϕ|:

Theorem 1.2. Assume the hypotheses of Theorem 1.1 and, in addition, that ϕ is of
one sign in (a, b). Then the weights {λj}nj=1 in the interpolatory rule In generated

by pn and ŵ = w |ϕ| are all positive.

Corollary 1.3. Let α, β > −1 and n ≥ 1. Let w (x) =
(
log x−1

)α
xβ or w (x) =(

log x−1
)α+1

xβ, x ∈ (0, 1). Then the weights {λj}nj=1 in the interpolatory rule

generated by the Sidi polynomials D
(α,β)
n and the weight w are positive.

Remarks . (a) It is interesting that the conditions for the positivity of the weights
{λj}nj=1, namely the absolute/complete monotonicity above, depend only on ϕ.

Once these are satisfied, we obtain positivity for every weight w. Of course pn, and
hence the abscissas themselves, and the values of the weights, depend on w.

(b) The positivity of the weights has implications for convergence of the numer-
ical quadratures as n → ∞, as well as for associated rational approximations. It is
curious that, despite the positivity of {λj}nj=1 for all n, it was shown in [4] that the

zeros of the
{
D

(0,0)
n

}∞

n=1
do not admit the arcsine distribution. All the abscissas of

the classical quadratures admit the arcsine distribution, so this seems to be the first
specific case of this phenomenon. The possible distributions of convergent interpo-
latory quadrature rules were explored in [1], where in particular it was shown that
at least half of the nodes of such quadratures must have the arcsine distribution.
(c) There are well-developed criteria [8], [9], [10], [11] for positivity of the weights
{λj}nj=1 in general interpolatory quadratures, but these do not readily yield our

results.

We can extend Theorem 1.2 to the case where the abscissas {xj} are generated
by the polynomial pn satisfying (1.5), but the weights {λj} are determined by a
different weight v:

Theorem 1.4. Let n ≥ 1 and ϕ : (a, b) → R be a strictly increasing function
with n − 1 continuous derivatives, and let ψ denote its inverse function, with do-
main of definition I = {ϕ (x) : x ∈ (a, b)}. Let v, w : (a, b) → (0,∞) be such that∫ b

a
xjϕ (x)

k
w (x) dx and

∫ b

a
xjϕ (x)

k
v (x) dx are defined and finite for 0 ≤ j ≤ n

and 0 ≤ k ≤ n− 1. Let pn be the monic polynomial of degree n determined by the
biorthogonality conditions (1.5). Assume that for each β ∈ I, the function

(1.7) g (t) =
(v/w) (ψ (t))

ψ (β)− ψ (t)
, t ∈ I\ {β} ,

is n− 1 absolutely monotone in I ∩ (−∞, β) and −g is n− 1 completely monotone
in I ∩ (β,∞). Then the weights {λj}nj=1 in the interpolatory rule In generated by

pn and v are all positive.
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Corollary 1.5. Let α, β > −1, σ ∈ (0, 1) and n ≥ 1. Let w (x) =
(
log x−1

)α
xβ and

v (x) =
(
log x−1

)α
xβ+σ, x ∈ (0, 1). Then the weights {λj}nj=1 in the interpolatory

rule generated by the Sidi polynomials D
(α,β)
n and the weight v are positive.

This paper is organized as follows: in Section 2, we shall present a more gen-
eral criterion for positivity, and present examples. In Section 3, we shall prove
Theorems 1.1, 1.2 and Corollary 1.3.

2. A general criterion

In this section, we assume that ϕj : (a, b) → R, 1 ≤ j ≤ n, and that {ϕj}nj=1

forms a Chebyshev system. That is, if

(2.1) S =

⎧⎨
⎩

n∑
j=1

cjϕj : c1, c2, . . . , cn ∈ R

⎫⎬
⎭ ,

then each element of S either has at most n− 1 distinct zeros or is identically zero.

Moreover, we assume that w : (a, b) → (0,∞) is such that
∫ b

a
xkϕj (x)w (x) dx

is defined and finite for all 1 ≤ j ≤ n, 0 ≤ k ≤ n. Moreover, pn is the monic
polynomial of degree n determined by the biorthogonality conditions (1.3). It is
easily seen that pn exists and is given by

pn (x) = (−1)n

det

⎡
⎢⎢⎢⎢⎢⎣

1 x x2 · · · xn∫ b

a
ϕ1w

∫ b

a
xϕ1w

∫ b

a
x2ϕ1w · · ·

∫ b

a
xnϕ1w∫ b

a
ϕ2w

∫ b

a
xϕ2w

∫ b

a
x2ϕ2w · · ·

∫ b

a
xnϕ2w

∫ b

a
ϕnw

∫ b

a
xϕnw

∫ b

a
x2ϕnw · · ·

∫ b

a
xnϕnw

⎤
⎥⎥⎥⎥⎥⎦

det

⎡
⎢⎢⎢⎣

∫ b

a
ϕ1w

∫ b

a
xϕ1w · · ·

∫ b

a
xn−1ϕ1w∫ b

a
ϕ2w

∫ b

a
xϕ2w · · ·

∫ b

a
xn−1ϕ2w

∫ b

a
ϕnw

∫ b

a
xϕnw · · ·

∫ b

a
xn−1ϕnw

⎤
⎥⎥⎥⎦

.

That the denominator determinant is nonzero follows easily from our hypothesis
that {ϕj}nj=1 forms a Chebyshev system. Likewise the latter hypothesis ensures

that pn has n real simple zeros in (a, b).

Theorem 2.1. Assume that for each α ∈ (a, b), and each set of distinct points

{sj}n−1
j=1 ⊂ (a, b) \ {α}, there exists Q ∈ S such that

h (x) =
1

x− α
−Q (x) , x ∈ (a, b) \ {α}

changes sign at each sj and has no other zeros in (a, b). Then all the weights
{λj}nj=1 in the interpolatory rule In generated by pn and w are all positive.

Proof. Let

�j (x) =
pn (x)

p′n (xj) (x− xj)

denote the jth fundamental polynomial of Lagrange interpolation, so that

λj =

∫ b

a

�jw.
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Because of the biorthogonality condition (1.3), we can also write for any Q ∈ S,

λj =

∫ b

a

pn (x)

p′n (xj)

{
1

x− xj
−Q (x)

}
w (x) dx.

We now choose Q ∈ S to be such that 1
x−xj

− Q (x) changes sign at each xk with

k �= j and has no other zeros. (Thus α = xj and {sk}n−1
k=1 = {xk}nk=1 \ {xj}.) Then

the integrand

f (x) =
pn (x)

p′n (xj)

{
1

x− xj
−Q (x)

}
has “double” zeros at xk with k �= j and no other zeros. Here by a double zero,
we mean that it has a zero at xk, but does not change sign there. Moreover, there
are no other zeros, and f (xj) = 1. It follows that f > 0 in (a, b) except at finitely
many points, and so λj > 0. �

Examples . (I) Let ϕj (x) = xj−1, 1 ≤ j ≤ n. Let α ∈ R and {sj}n−1
j=1 ⊂ R\ {α} be

distinct. Let Q be the polynomial of degree ≤ n− 2 such that for 1 ≤ j ≤ n− 1,

(2.2) Q (sj) =
1

sj − α
.

Then

S (x) = 1− (x− α)Q (x)

is a polynomial of degree ≤ n−1 that has zeros at {sj}n−1
j=1 and assumes the value 1

at α. Hence it has simple zeros at {sj}n−1
j=1 and no other zeros. Then the hypotheses

of Theorem 2.1 are satisfied, so we have another variant of a proof that the Gauss
quadrature rule for the weight w has positive weights.

(II) Let {Ij}nj=1 be intervals in [0,∞) with Ij to the left of Ij+1 for each j. We

allow their endpoints to touch. Let µj be a finite positive Borel measure on Ij with
positive measure on the interior of Ij . Let

ϕj (x) =

∫
Ij

1

x+ t
dµj (t) , x ∈ [0,∞).

Let α and {sj}n−1
j=1 be distinct points in (0,∞). We assume that {sj}nj=1 are in

increasing order. Again, we choose Q to be the linear combination of {ϕj}n−1
j=1 that

satisfies (2.2) for each 1 ≤ j ≤ n− 1. It is well known, and easy to see, that

1

x− α
−Q (x) =

det

⎡
⎢⎢⎢⎢⎢⎣

1
x−α ϕ1 (x) ϕ2 (x) · · · ϕn−1 (x)
1

s1−α ϕ1 (s1) ϕ2 (s1) · · · ϕn−1 (s1)
1

s2−α ϕ1 (s2) ϕ2 (s2) · · · ϕn−1 (s2)
...

...
...

. . .
...

1
sn−1−α ϕ1 (sn−1) ϕ2 (sn−1) · · · ϕn−1 (sn−1)

⎤
⎥⎥⎥⎥⎥⎦

det

⎡
⎢⎢⎢⎣

ϕ1 (s1) ϕ2 (s1) · · · ϕn−1 (s1)
ϕ1 (s2) ϕ2 (s2) · · · ϕn−1 (s2)

...
...

. . .
...

ϕ1 (sn−1) ϕ2 (sn−1) · · · ϕn−1 (sn−1)

⎤
⎥⎥⎥⎦

.
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(Our discussion will show why the denominator determinant does not vanish.) Us-
ing the form of ϕj , we see that

1

x− α
−Q (x) =

∫
I1

∫
I2

· · ·
∫
In−1

D

E
dµ1 (t1) dµ2 (t2) · · · dµn−1 (tn−1) ,

where

D = det

⎡
⎢⎢⎢⎢⎢⎢⎣

1
x−α

1
x+t1

1
x+t2

· · · 1
x+tn−1

1
s1−α

1
s1+t1

1
s1+t2

· · · 1
s1+tn−1

1
s2−α

1
s2+t1

1
s2+t2

· · · 1
s2+tn−1

...
...

...
. . .

...
1

sn−1−α
1

sn−1+t1
1

sn−1+t2
· · · 1

sn−1+tn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

E = det [ϕk (sj)]1≤j,k≤n−1 .

Using the formula for Cauchy determinants [2, p. 195], we obtain

D =

n−1∏
j=1

(sj − x) (tj + α)

(x− α)
n−1∏
j=1

(x+ tj) (sj − α)

∏
1≤j<k≤n−1

(sk − sj) (tk − tj)∏
1≤j,k≤n−1

(tj + sk)
.

We may assume that the {sj} are in increasing order. Moreover, our hypothesis
that Ij is to the left of Ij+1 forces tk − tj ≥ 0 for k ≥ j. Then we see that in the

range of integration, the sign of D is determined only by the sign of
n−1∏
j=1

(sj − x)

and the sign of (x− α)
n−1∏
j=1

(sj − α). More precisely,

D =

n−1∏
j=1

(sj − x)

(x− α)
n−1∏
j=1

(sj − α)

C,

where C = C (s1, s2, . . . , sn−1, t1, t2, . . . , tn−1, α, x) > 0 in the range of integration,
except when tk = tj for some k > j. Since each µj has positive measure on the

interior of Ij , we see that D changes sign, as a function of x, only at {sj}n−1
j=1 , and

has no other zeros. Similarly E > 0. Thus the hypotheses of Theorem 2.1 are
fulfilled.

Two special cases are of interest: when µj is a unit mass at βj ∈ I0j , for each j,
so that

ϕj (x) =
1

x+ βj
, 1 ≤ j ≤ n.

This case can also be reduced to that of a Gauss quadrature for the weight w (x) /
n∏

j=1

(x+ βj). A second is where Ij = [aj , bj ] and dµj (t) = dt on Ij , so that

ϕj (x) = log
x+ bj
x+ aj

, 1 ≤ j ≤ n.
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3. Proofs

We shall make use of

Lemma 3.1. Let −∞ ≤ α < ξ < ∞, let m ≥ 1, and f : (α, ξ] → R be a function
for which f (m+1) exists in (α, ξ], and f (j) > 0 in (α, ξ], 0 ≤ j ≤ m+ 1. Let πm be
a polynomial of degree ≤ m, and let m1 be the total multiplicity of zeros of f − πm

in [α, ξ], and m2 be the total multiplicity of zeros of πm in [ξ,∞). Then

(3.1) m1 +m2 ≤ m+ 1.

Proof. For the case where α = −∞, this appears in [3, p. 30, Lemma 5.3]. The
proof for the above case is exactly the same. Alternatively, one can extend f to
(−∞, α] in such a way that the first m + 1 derivatives exist and remain positive,
and apply Freud’s lemma as stated. The number of zeros of f − πm in [α, ξ] does
not exceed the number in (−∞, ξ]. �

Lemma 3.2. Let ψ and I be as in Theorem 1.1. Let β ∈ I. Let {yj}n−1
j=1 be distinct

points in I\ {β} and

g (t) =
1

ψ (β)− ψ (t)
, t ∈ I\ {β} .

Then there exists a polynomial R of degree ≤ n−2 such that g−R has sign changes
at {yj}n−1

j=1 and no other zeros in I.

Proof. Define

f1 (t) =

{
1

ψ(β)−ψ(t) , t ∈ I ∩ (−∞, β),

0, t ∈ I ∩ (β,∞)

and

f2 (t) =

{
0, t ∈ I ∩ (−∞, β),

1
ψ(β)−ψ(t) , t ∈ I ∩ (β,∞) .

Then

g = f1 + f2.

The idea is to apply Lemma 3.1 to f1 giving a suitable polynomial S, and apply
Lemma 3.1 to −f2 (−t), on a suitable interval, giving a polynomial T , after mapping
the variable back. We then set

R = S + T.

Let us assume

y1 < y2 < · · · < yj−1 < β < yj < · · · < yn−1,

and set y0 = inf I and yn = sup I. Let S be the polynomial of degree ≤ n− 2 that

interpolates to f1 at {yj}n−1
j=1 . Then f1 − S has m1 ≥ j − 1 zeros in I ∩ (−∞, β)

and S has m2 ≥ n− j zeros in (β,∞). By Lemma 3.1,

m1 +m2 ≤ n− 1

⇒ m1 = j − 1 and m2 = n− j.

It follows that f1−S has simple zeros at y1, y2, . . . , yj−1, and S has simple zeros at
yj , yj+1, . . . , yn−1, and no other zeros. From this we can determine the sign pattern
of f1 − S and S. See Figure 1.
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Figure 1

By choosing ξ = yj−1 in Lemma 3.1, we see that S has no zeros in (yj−1, yj).
Moreover, S (yj−1) = f1 (yj−1) > 0 = S (yj). Thus, as f1 − S has a sign change at
yj−1, as does S at yj :

S > 0 in (yj−1, yj) ;

f1 − S > 0 in (yj−1, β) .(3.2)

Because of the simplicity of the zeros of S and f1 − S at the {yk}, we deduce that

sign (S) = (−1)k in (yj−1+k, yj+k) , 0 ≤ k ≤ n− j;(3.3)

sign (f1 − S) = (−1)
k
in (yj−k−1, yj−k) , 1 ≤ k ≤ j − 1.(3.4)

Next, let T be the polynomial of degree ≤ n−2 that interpolates to f2 at {yj}n−1
j=1 .

Since −f2 (−t) and −T (−t) satisfy the hypotheses of Lemma 3.1 on an appropriate
interval, we see that by exactly the same reasoning as for f2, that T has simple
zeros at y1, y2, . . . , yj−1, and f2 − T has simple zeros at yj , yj+1, . . . , yn−1, and no
other zeros. Moreover, T (yj−1) = 0 > f2 (yj) = T (yj). See Figure 2.

Figure 2
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As f2 − T has a sign change at yj , as does T at yj−1,

T < 0 in (yj−1, yj) ;

f2 − T < 0 in (β, yj) .(3.5)

Because of the simplicity of the zeros of T and f2 − T at the {yk}, we deduce that

sign (T ) = (−1)
k+1

in (yj−k−1, yj−k) , 1 ≤ k ≤ j − 1;(3.6)

sign (f2 − T ) = (−1)k+1 in (yj−1+k, yj+k) , 1 ≤ k ≤ n− j.(3.7)

From (3.4) and (3.6), we deduce that in (yj−k−1, yj−k), 1 ≤ k ≤ j − 1, both f1 − S

and −T have sign (−1)
k
, so

g −R = (f1 − S)− T has sign (−1)k .

Next, from (3.3) and (3.7), we deduce that in (yj−1+k, yj+k), 1 ≤ k ≤ n− j, both

f2 − T and −S have sign (−1)
k+1

, so

g −R = (f2 − T )− S has sign (−1)
k+1

.

Finally in (yj−1, β), f1−S and −T are positive, so g−R is positive; and in (β, yj),
f2 − T and −S are negative, so g − R is negative. We have shown that g − R has

sign changes at all the {yj}n−1
j=1 and no other zeros. �

Proof of Theorem 1.1. We must verify that for each α ∈ (a, b), and each set of

distinct {sj}n−1
j=1 in (a, b) \ {α}, there is a generalized polynomial

Q (x) =
n−1∑
j=0

cjϕ (x)j

such that 1
x−α −Q (x) changes sign at each of the {sj}n−1

j=1 and has no other zeros

in (a, b). We make the changes of variables x = ψ (t), α = ψ (β), sj = ψ (yj). Also
set

R (t) =
n−1∑
j=0

cjt
j .

Then we have to find a polynomial R of degree ≤ n− 1 such that 1
ψ(t)−ψ(β) −R (t)

has sign changes at {yj}n−1
j=1 and no other zeros in I. Such a polynomial, even of

degree ≤ n−2, was constructed in the previous lemma (just multiply the polynomial
there by −1). Then Theorem 2.1 gives the positivity of the weights generated by
pn and w. �
Proof of Theorem 1.2. We return to the idea of the proof of Theorem 2.1. Let σ
denote the sign of ϕ in (a, b). The jth weight in the quadrature generated by pn
and ŵ = w |ϕ| is

λj =

∫ b

a

pn (x)

p′n (xj)

1

x− xj
w (x) |ϕ (x)| dx

= σ

∫ b

a

pn (x)

p′n (xj)

{
1

x− xj
−R (ϕ (x))

}
w (x)ϕ (x) dx,

for any algebraic polynomial R of degree ≤ n − 2. Of course, we have used the
biorthogonality condition (1.5). The trick of the proof is to recall that in the proof
of Theorem 1.2, we only needed a polynomial R of degree n − 2 (and not n − 1)
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to ensure that 1
x−xj

− R (ϕ (x)) has sign changes at {xk}nk=1 \ {xj}, and no other

zeros in (a, b). The result then follows. �

Proof of Corollary 1.3 for w (x) =
(
log x−1

)α
xβ . The polynomials D

(α,β)
n are bi-

orthogonal to (log x)j , 0 ≤ j ≤ n − 1, with the weight w (x) =
(
log x−1

)α
xβ ,

x ∈ (0, 1). Here ϕ (x) = log x and the inverse function is ψ (t) = et, t ∈ (−∞, 0).
We have to show that for each γ ∈ (−∞, 0), the function

g (t) =
1

eγ − et
, t ∈ (−∞, 0) \ {γ}

is n− 1 absolutely monotone in (−∞, γ) and −g is n− 1 completely monotone in
(γ, 0). For t ∈ (−∞, γ), we write

g (t) =
1

eγ (1− et−γ)
= e−γ

∞∑
k=0

(
et−γ

)k
.

Then for such a t, and each fixed j ≥ 0,

g(j) (t) = e−γ
∞∑
k=0

kj
(
et−γ

)k
> 0,

and the term-by-term differentiation is justified by (locally) uniform convergence
of the differentiated series. For t ∈ (γ,∞), we have

−g (t) =
1

et (1− eγ−t)
= e−γ

∞∑
k=0

(
eγ−t

)k+1

and then

− (−1)
j
g(j) (t) = e−γ

∞∑
k=0

(k + 1)
j (

eγ−t
)k+1

> 0.

Thus the hypotheses of Theorem 1.1 are fulfilled. �

Proof of Corollary 1.3 for w (x) =
(
log x−1

)α+1
xβ. This follows immediately from

Theorem 1.2 with |ϕ (x)| = |log x| = log x−1, and the previous considerations. �

Proof of Theorem 1.4. The weights in the quadrature rule generated by pn and v
satisfy

λj =

∫ b

a

pn (x)

p′n (xj)

[
(v/w) (x)

x− xj
−Q (ϕ (x))

]
w (x) dx,

for any algebraic polynomial Q of degree ≤ n − 1, in view of (1.5). We can then
follow the same proof as is in Theorems 2.2 and 1.2, with an obvious modification
of Lemma 3.2. �

Proof of Corollary 1.5. Following the same lines as in the proof of Corollary 1.3,
we let

g (t) =
(v/w) (ψ (t))

ψ (γ)− ψ (t)
=

eσt

eγ − et
, t ∈ (−∞, 0) \ {γ} .

For t ∈ (−∞, γ), we see that

g (t) =
∞∑
k=0

e(k+σ)t−(k+1)γ ,



QUADRATURE RULES AND BIORTHOGONAL POLYNOMIALS 855

and for t ∈ (γ, 0),

−g (t) =

∞∑
k=0

e(σ−k−1)t+kγ ,

so can proceed as for Corollary 1.3. �
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