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DECOUPLED SCHEMES

FOR A NON-STATIONARY MIXED STOKES-DARCY MODEL

MO MU AND XIAOHONG ZHU

Abstract. We study numerical methods for solving a non-stationary mixed
Stokes-Darcy problem that models coupled fluid flow and porous media flow.
A decoupling approach based on interface approximation via temporal extrap-
olation is proposed for devising decoupled marching algorithms for the mixed
model. Error estimates are derived and numerical experiments are conducted
to demonstrate the computational effectiveness of the decoupling approach.

1. Introduction

A wide variety of real world applications involve different physical processes in
different regions of a simulation domain. We are interested in the coupling between
the surface and subsurface motion of a fluid, where the behavior of the fluid can be
described by different partial differential equations, such as the free surface Navier-
Stokes equations, the Navier-Stokes equations, or the Stokes equations in the surface
region, and Darcy’s law in the subsurface region [2, 6, 7, 23]. These coupled models
find important applications in practice, for instance the simulation of flooding in
dry areas. When further coupled with transport-diffusion equations, they can also
be applied to study the propagation and diffusion of pollutants dispersed in water.
In this paper, we focus on the coupled fluid flow and porous media flow modeled
by a mixed Stokes-Darcy problem. There is a rich literature on the mathematical
analysis, numerical methods and applications for the mixed Stokes-Darcy model;
see, e.g., [1, 6, 7, 8, 9, 13, 14, 15, 16, 20] and the references therein.

Specifically, let us consider a fluid flow in Ωf coupled with a porous media flow in
Ωp, see Figure 1, where Ωf ,Ωp ⊂ R

d (d = 2 or 3) are bounded domains, Ωf∩Ωp = ∅,
and Ωf ∩ Ωp = Γ. Denote by Ω = Ωf ∪ Ωp, nf and np the unit outward normal
vectors on ∂Ωf and ∂Ωp, respectively, and τττ i, i = 1, . . . , d− 1, the unit tangential
vectors on the interface Γ. Note that np = −nf on Γ.
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Figure 1. The global domain Ω consisting of the fluid region Ωf

and the porous media region Ωp, separated by the interface Γ.

Let T > 0 be a finite time. The fluid flow is governed by the Stokes equations:

∂uf

∂t
− ν∆uf +∇pf = gf in Ωf × (0, T ],(1.1)

∇ · uf = 0 in Ωf × (0, T ],(1.2)

uf (x, 0) = u0
f (x) in Ωf ,(1.3)

where uf (x, t) represents the velocity of the fluid flow in Ωf , pf (x, t) the kinetic
pressure, gf the external force, and ν > 0 the kinematic viscosity.

The porous media flow is governed by the following equations [2, 23]:

S0
∂ϕ

∂t
+∇ · q = gp in Ωp × (0, T ],(1.4)

q = −K∇ϕ in Ωp × (0, T ] (Darcy’s law),(1.5)

up =
q

n
in Ωp × (0, T ],(1.6)

ϕ(x, 0) = ϕ0(x) in Ωp,(1.7)

where ϕ(x, t) is the piezometric head, q is the specific discharge defined as the
volume of the fluid flowing per unit time through a unit cross-sectional area normal
to the direction of the flow, up is the fluid velocity in Ωp, S0 is the specific mass
storativity coefficient, K is the hydraulic conductivity tensor, n is the volumetric
porosity, and gp is the source term. Note that ϕ = z+

pp

ρg , the sum of elevation head

plus pressure head, where pp is the pressure of the fluid in Ωp, ρ is the density of
the fluid, g is the gravitational acceleration, and z is the elevation from a reference
level. Without loss of generality, we assume z = 0. Furthermore, we assume that
K = diag(K, . . . ,K) with K ∈ L∞(Ωp), K > 0, which implies that the porous
media is homogeneous. Finally, by using Darcy’s law (1.5), the continuity equation
(1.4) in Ωp can be written in the parabolic form

S0
∂ϕ

∂t
−∇ · (K∇ϕ) = gp in Ωp × (0, T ].(1.8)

A key part in a mixed model is the interface coupling conditions. For the Stokes-
Darcy model, the following interface conditions have been extensively studied and
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used in the literature:

uf · nf + up · np = 0 on Γ× (0, T ],(1.9)

pf − νnf
∂uf

∂nf
= ρgϕ on Γ× (0, T ],(1.10)

−ντττ i
∂uf

∂nf
=

α√
τττ i ·Kτττ i

(uf − up) · τττ i,

i = 1, . . . , d− 1 on Γ× (0, T ],(1.11)

where α is a positive parameter depending on the properties of the porous medium
and must be experimentally determined. The first interface condition (1.9) ensures
the mass conservation across the interface Γ, and using (1.5) and (1.6), it can be
rewritten as

uf · nf =
K

n

∂ϕ

∂np
on Γ× (0, T ].(1.12)

The second condition (1.10) is the balance of the normal forces across the interface.
The third one (1.11) states that the slip velocity along the interface is propor-

tional to the shear stress along the interface. There have been many discussions on
this slip condition. It is even unclear if this third condition leads to a well-posed
problem. However, it has been observed that in practice the term up · τττ i on the
right hand side from the porous media flow is much smaller than other terms and
is thus negligible. This leads to the most accepted interface condition, known as
the Beavers-Joseph-Saffman law [3, 13, 14, 19, 21]:

− ντττ i
∂uf

∂nf
=

α√
τττ i ·Kτττ i

uf · τττ i, i = 1, . . . , d− 1 on Γ× (0, T ],(1.13)

which will be used in the rest of the paper.
Several types of boundary conditions for this coupled model are discussed in

[6]. For simplicity, in this paper we assume the homogeneous Dirichlet boundary
conditions for the coupled model, that is,

uf = 0 on ∂Ωf\Γ,(1.14)

φ = 0 on ∂Ωp\Γ.(1.15)

Denote W = Hf ×Hp and Q = L2(Ωf ), where

Hf =
{
v ∈

(
H1(Ωf )

)d
: v = 0 on ∂Ωf,D

}
and

Hp =
{
ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp,D

}
.

The space L2(D), where D = Ωf or Ωp, is equipped with the usual L2-scalar prod-

uct (·, ·) and L2-norm ‖ · ‖L2 � ‖ · ‖0. The spaces Hf and Hp are equipped with
the following norms:

‖u‖Hf
= ‖∇u‖0 =

√
(∇u,∇u) ∀u ∈ Hf ,

‖ϕ‖Hp
= ‖∇ϕ‖0 =

√
(∇ϕ,∇ϕ) ∀ϕ ∈ Hp.
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We equip the space W with the following norms: ∀u = (u, ϕ) ∈ W ,

‖u‖0 =
√
n(u,u)Ωf

+ ρgS0(ϕ, ϕ)Ωp
,

‖u‖W =
√
nν(∇u,∇u)Ωf

+ ρgK(∇ϕ,∇ϕ)Ωp
≈ ‖∇u‖0,

where (·, ·)D refers to the scalar product (·, ·) in the corresponding domain D for
D = Ωf or Ωp, and ≈ refers to equivalent norms.

For simplicity, we assume that n, ρ, g, S0, ν and K are constants. The given data
u0
f , ϕ

0, gf , and gp are assumed to be smooth enough. The weak formulation of the

above non-stationary Stokes-Darcy model reads as follows: find u = (uf , ϕ) ∈ W
and pf ∈ Q, such that ∀t ∈ (0, T ],(

∂u

∂t
, v

)
+ a(u, v) + b(v, pf ) = f(v) ∀v = (v, ψ) ∈ W,(1.16)

b(u, q) = 0 ∀q ∈ Q,(1.17)

u(x, 0) = u0,(1.18)

where

a(u, v) = aΩ(u, v) + aΓ(u, v),

aΩ(u, v) = aΩf
(uf ,v) + aΩp

(ϕ, ψ),

aΩf
(uf ,v) = n

∫
Ωf

ν∇uf : ∇v + n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(uf · τττ i)(v · τττ i),

aΩp
(ϕ, ψ) = ρg

∫
Ωp

K∇ϕ · ∇ψ,

aΓ(u, v) = nρg

∫
Γ

(ϕv · nf − ψuf · nf ) ,

b(v, pf ) = −n

∫
Ωf

pfdivv,

f(v) = n

∫
Ωf

gf · v + ρg

∫
Ωp

gpψ.

The well-posedness of the mixed Stokes-Darcy model (1.16)-(1.18) can be found in
[6, 7] for the stationary case and is assumed to hold similarly for the non-stationary
case. In this paper, we focus on its numerical solution.

Throughout this paper, we will use letters C and C̃ (with or without subscripts)
to denote generic positive constants independent of the discretization parameters
k and h. For convenience, we will use the notation x � y to denote that x ≤ Cy.
We will also denote u(t) = (uf (t), ϕ(t)), pf (t), etc., by omitting x when there is no
confusion.

It is known [6] that aΩf
(·, ·), aΩp

(·, ·), and aΓ(·, ·) are continuous, and a(·, ·) is
coercive. Namely,

aΩf
(u,v) ≤ C‖u‖Hf

‖v‖Hf
∀u,v ∈ Hf ,(1.19a)

aΩp
(φ, ψ) ≤ C‖φ‖Hp

‖ψ‖Hp
∀φ, ψ ∈ Hp,(1.19b)

aΓ(u, v) ≤ C‖u‖W ‖v‖W ∀u, v ∈ W,(1.19c)

a(v, v) ≥ α0‖v‖2W ∀v ∈ W,(1.19d)
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where α0 is a positive constant. Furthermore, aΩf
(·, ·) and aΩp

(·, ·) are symmetric,

aΓ(u, v) = −aΓ(v, u) and aΓ(u, u) = 0 ∀u, v ∈ W.(1.20)

We are interested in decoupled numerical methods for the mixed model. There
are many appealing reasons as discussed in [18] that have led to active research
on developing effective and efficient decoupling techniques for multi-physics mixed
models so that existing single-model solvers can be applied locally with little ex-
tra computational and software overhead. Most of the decoupled methods for the
Stokes-Darcy model in the literature are developed for the stationary case. For ex-
ample, iterative subdomain methods based on domain decomposition are proposed
and studied in [6, 7, 8, 12]; a Lagrange multiplier based approach is suggested in
[15]; a two-grid method is proposed in [18]; and several decoupled pre-conditioners
are constructed in [5]. For the non-stationary case, a Dirichlet-Neumann iterative
method is proposed and numerical experiments are reported in [6]. In this paper, a
decoupling approach based on interface approximation via temporal extrapolation
is proposed for devising decoupled marching algorithms for the mixed model so
that at each time level, two decoupled subproblems are solved independently by
invoking a Stokes solver and a Darcy solver, respectively. Error estimates are de-
rived and numerical experiments are conducted to demonstrate the computational
effectiveness of the decoupling approach.

The rest of the paper is organized as follows. Both coupled and decoupled
marching algorithms are presented in Section 2. The error analysis is given in
Section 3. Numerical experiments are reported in Section 4, followed by conclusions
in Section 5.

2. Numerical algorithms

We consider a triangulation Th of the domain Ωf ∪ Ωp, depending on a positive
parameter h > 0, made up of triangles if d = 2, or tetrahedra if d = 3. We assume
as in [6] that:

(1) each triangle or tetrahedra, say T , is such that int(T ) 
= ∅;
(2) int(T1)∩ int(T2) = ∅ for each pair of different T1, T2 ∈ Th, and if T1 ∩T2 =

F 
= ∅, then F is a common face or edge or vertex to T1 and T2;
(3) diam(T ) ≤ h for all T ∈ Th;
(4) Th is regular; that is, there exists a constant Cr ≥ 1 such that

max
T∈Th

diam(T )

ρT
≤ Cr ∀h > 0

with ρT = sup {diam(B) : B is a ball contained in T};
(5) the triangulations Tfh and Tph induced on the subdomains Ωf and Ωp are

compatible on the interface Γ; that is, they share the same edges (if d = 2)
or faces (if d = 3) therein;

(6) the triangulation TΓh induced on Γ is quasi-uniform; that is, it is regular
and there exists a constant CΓ > 0 such that minT∈TΓh

hT ≥ CΓh for all
h > 0.

Let Wh = Hfh ×Hph ⊂ W and Qh ⊂ Q denote the finite element subspaces as
introduced for the stationary mixed model in [6, 18]. The finite element spaces Hfh

and Qh approximating velocity and pressure in the fluid flow region are assumed to
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satisfy the well known discrete inf-sup condition: There exists a positive constant
β, independent of h, such that ∀qh ∈ Qh, ∃vh ∈ Wh, vh 
= 0,

b(vh, qh) ≥ β‖vh‖W ‖qh‖Q.(2.1)

Several families of finite element spaces designed for the Stokes problem are provided
in [4]. They all satisfy the discrete inf-sup condition (2.1) and can thus be applied
for Hfh and Qh. Standard finite element approximations of H1(Ωp) can be applied
for Hph in the porous media flow region. For illustration, we assume that the finite
element spaces of the first-order approximation O(h) are used in the fluid flow, such
as the well-known MINI elements, and the porous media flow regions, such as the
linear Lagrangian elements. The corresponding inverse estimates are well known:

‖∇vh‖0 ≤ Ch−1‖vh‖0 ∀vh ∈ Hfh,(2.2)

‖∇ψh‖0 ≤ Ch−1‖ψh‖0 ∀ψh ∈ Hph.(2.3)

The following estimates on the coupling term are also useful in our analysis.

Lemma 1. ∀u = (u, φ), v = (v, ψ) ∈ W , there exists C > 0 such that ∀ε > 0,

(2.4) |aΓ(u, v)| ≤
1

4ε
‖u‖2W + Cε‖v‖2W .

In addition, ∀uh = (uh, φh), vh = (vh, ψh) ∈ Wh, there exists C > 0 such that

(2.5) |aΓ(uh, vh)| ≤
1

4ε
‖uh‖2W + Cεh−1‖vh‖20.

Proof. (2.4) is a trivial extension of (1.19c).
Furthermore, from a refined trace estimate (see [24], page 17, with ε = h1/2) and

the inverse inequalities (2.2)-(2.3),

|aΓ(uh, vh)| ≤ C̃
[
‖∇φh‖0

(
h−1/2‖vh‖0 + h1/2‖∇vh‖0

)
+ ‖∇uh‖0

(
h−1/2‖ψh‖0 + h1/2‖∇ψh‖0

)]
≤ C̃h−1/2(‖∇φh‖0‖vh‖0 + ‖∇uh‖0‖ψh‖0)

≤
(

1

4ε
ρgK‖∇φh‖20 + Cεh−1‖vh‖20

)
+

(
1

4ε
nν‖∇uh‖20 + Cεh−1‖ψh‖20

)

≤ 1

4ε
‖uh‖2W + Cεh−1‖vh‖20,

which proves (2.5). �

We also introduce a subspace Vh of Wh defined by

Vh = {vh ∈ Wh : b(vh, qh) = 0 ∀qh ∈ Qh} ,(2.6)

and correspondingly, the projection Rh : v = (v, ψ) ∈ W �→ Rhv = (Rhv, Rhψ) ∈
Vh defined by

((Rhv, vh)) = ((v, vh)) v ∈ W, vh ∈ Vh,(2.7)

where

((u, v)) = nν(∇u,∇v)Ωf
+ ρgK(∇φ,∇ψ)Ωp

∀u = (u, φ), v = (v, ψ) ∈ W.(2.8)

If v ∈ W ∩
{
(H2(Ωf ))

d ×H2(Ωp)
}
, we have the error estimates:

‖Rhv − v‖0 � h2, ‖∇(Rhv − v)‖0 � h.(2.9)
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Without loss of generality, we assume a uniform mesh applied to the time interval
[0, T ] with tm = mk, m = 0, 1, . . . , J , where k = T

J is the time step.

2.1. Coupled marching schemes for the mixed model. Recall that the mixed
model (1.16)-(1.17) is formulated as an abstract time-dependent saddle-point prob-
lem. It is natural to consider the following first-order implicit marching scheme by
applying the backward divided difference for the temporal discretization and the
finite element Galerkin method for the spacial discretization, which leads to the
coupled backward Euler scheme:

Algorithm 1. Coupled Backward Euler Scheme (CBES)
Find um

h = (um
fh, ϕ

m
h ) ∈ Wh and pmfh ∈ Qh, m = 1, . . . , J , such that ∀vh =

(vh, ψh) ∈ Wh and ∀qh ∈ Qh,(
um
h − um−1

h

k
, vh

)
+ a(um

h , vh) + b(vh, p
m
fh) = fm(vh),(2.10)

b(um
h , qh) = 0,(2.11)

u0
h = Rhu

0,(2.12)

where fm = f(tm), u0 = (u0
f , ϕ

0).
Note that at each time level, CBES amounts to solving a stationary mixed

Stokes-Darcy problem and is thus well-posed. Theoretical analysis and numeri-
cal experiments in the following sections will show that CBES is unconditionally
stable and error estimates are also given. Higher-order marching schemes, such as
the Crank-Nicolson scheme, may be applied if necessary. As in the stationary case,
the major concern here is that a coupled problem must be solved at each time level.
In principle, the decoupled methods developed for the stationary model can all be
applied here at each time level. However, those methods either involve an iterative
procedure, or a coarse-grid solver, or have other overhead and disadvantages.

2.2. Decoupled marching schemes for the mixed model. We now propose a
decoupling approach based on the temporal extrapolation on the interface, which
will lead to efficient decoupled marching algorithms and easy implementation. Re-
call that a(·, ·) = aΩ(·, ·)+aΓ(·, ·). The key idea of the two-grid decoupling approach
for the stationary model in [18] is to approximate the interface coupling term aΓ(·, ·)
by a coarse-grid solution. A straightforward extension of the two-grid approach to
the time-dependent setting is to approximate the term aΓ(u

m
h , vh) in the coupled

algorithm CBES by aΓ(u
m
H , vh), which, however, requires solving a coupled coarse-

grid problem for um
H at each time step. It is important to note that the coarse-grid

approximation may, in principle, be replaced by any other approximation with
comparable accuracy. Thanks to the nature of time-dependent problems that the
computed solutions from previous time steps can provide useful information for
various approximation purposes via suitable temporal extrapolation techniques,
see e.g. [17], we now describe how to approximate um

h in the interface coupling
term aΓ(u

m
h , vh) by an appropriate extrapolation of the computed solutions from

the previous time steps. For the backward Euler scheme, for instance, it suffices to
approximate um

h |Γ by the corresponding first-order temporal extrapolation, simply

um−1
h |Γ, which leads to the following decoupled backward Euler scheme:
Algorithm 2. Decoupled Backward Euler Scheme (DBES)

Find uh,m = (uh,m
f , ϕh,m) ∈ Wh and ph,mf ∈ Qh, m = 1, . . . , J , such that ∀vh =
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(vh, ψh) ∈ Wh and ∀qh ∈ Qh,(
uh,m − uh,m−1

k
, vh

)
+ aΩ(u

h,m, vh) + b(vh, p
h,m
f )(2.13)

= fm(vh)− aΓ(u
h,m−1, vh),

b(uh,m, qh) = 0,(2.14)

uh,0 = Rhu
0.(2.15)

It is easy to see that DBES is also well-posed. Furthermore, at each time step,
the discrete model (2.13)-(2.15) is equivalent to two decoupled problems that cor-
respond to a Stokes problem in Ωf and a Darcy problem in Ωp, respectively, with
associated boundary conditions defined by uh,m−1 from the previous time level on
Γ. More specifically, the discrete Stokes problem in the fluid region Ωf reads as

follows: Find uh,m
f ∈ Hfh and ph,mf ∈ Qh, m = 1, . . . , J , such that ∀vh ∈ Hfh and

∀qh ∈ Qh,

n

(
uh,m
f − uh,m−1

f

k
,vh

)
+ aΩf

(uh,m
f ,vh) + bΩf

(vh, p
h,m
f )

= n

∫
Ωf

gm
f · vh − nρg

∫
Γ

ϕh,m−1vh · nf ,

bΩf
(uh,m

f , qh) = 0,

uh,0
f = Rhu

0
f ,

where bΩf
(vh, qh) = −n

∫
Ωf

qhdivvh, and the discrete Darcy problem in the porous

media region Ωp reads as follows: Find ϕh,m ∈ Hph, m = 1, . . . , J , such that
∀ψh ∈ Hph,

ρgS0

(
ϕh,m − ϕh,m−1

k
, ψh

)
+ aΩp

(ϕh,m, ψh) = ρg

∫
Ωp

gmp ψh + nρg

∫
Γ

ψhu
h,m−1
f · nf ,

ϕh,0 = Rhϕ
0.

Similarly, higher-order extrapolations may applied to further improve the ap-
proximation accuracy, if necessary. For instance, one may approximate um

h by

2um−1
h −um−2

h in the interface coupling term due to the second-order extrapolation

um = 2um−1 − um−2 +O(k2).

3. Error analysis

The error analysis for the decoupled algorithm DBES is divided into two parts.
First, we derive error estimates for the coupled scheme CBES, which is more con-
venient than directly working on the decoupled scheme. Then, we compare the
difference between the coupled and decoupled schemes, which finally leads to the
required error estimates for the decoupled scheme.

For convenience, let us introduce the following notation. We denote the backward
divided difference operator dt by

dtu
m
h =

um
h − um−1

h

k
, for m = 1, . . . , J.(3.1)
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When m = 0, we define dtu
0
h = (dtu

0
fh, dtϕ

0
h) as the solution to the following

problem:

(dtu
0
h, vh) + a(u0

h, vh) = f0(vh) ∀vh ∈ Vh.(3.2)

We also denote

dttu
m
h =

dtu
m
h − dtu

m−1
h

k
, for m = 1, . . . , J.(3.3)

Similarly, we also introduce the divided differences dtu
h,m and dttu

h,m, for m =
1, . . . , J , for the solution uh,m of DBES, and for m = 0, dtu

h,0 is defined in the
same way as dtu

0
h in (3.2).

It is easy to verify that both ‖dtu0
h‖0 and ‖dtuh,0‖0 can be bounded from above

by constants depending on the given data u0 and f0.

3.1. Error estimates for CBES. Let us define a projection operator Ph : (w(t),
p(t)) ∈ W ×Q �→ (Phw(t), Php(t)) ∈ Wh ×Qh, ∀t ∈ [0, T ] by

a(Phw(t), vh) + b(vh, Php(t)) = a(w(t), vh) + b(vh, p(t)) ∀vh ∈ Wh,(3.4)

b(Phw(t), qh) = 0 ∀qh ∈ Qh.(3.5)

Note that (3.4)-(3.5) correspond to a stationary mixed Stokes-Darcy problem and
is thus well defined from [6, 7]. Apparently, Ph is a linear operator. Therefore, for
any (w(t), p(t)) ∈ W ×Q and (v(t), q(t)) ∈ W ×Q,

Ph(u(t)− v(t)) = Phu(t)− Phv(t),

Ph(p(t)− q(t)) = Php(t)− Phq(t).

Furthermore, under a certain smoothness assumption on (w(t), p(t)), we have the
following error estimates:

‖Phw(t)− w(t)‖W � h,(3.6)

‖Php(t)− p(t)‖0 � h(3.7)

from [6] and

‖Phw(t)− w(t)‖0 � h2(3.8)

from [18].

From now on, we assume that u(t) ∈
(
H2(Ωf )

)d × H2(Ωp), ut(t) and utt(t) ∈(
L2(Ωf )

)d×L2(Ωp) for the solution of the continuous coupled problem (1.16)-(1.18).

Theorem 1. For CBES (2.10)-(2.12), it follows, for m = 1, . . . , J , that

‖um
h − u(tm)‖0 � k + h2,(3.9)

‖∇(um
h − u(tm))‖0 � k + h,(3.10)

‖pmfh − pf (tm)‖0 � k + h+ k−1h2.(3.11)

Proof. Observe that

um
h − u(tm) = [um

h − Phu(tm)] + [Phu(tm)− u(tm)] = θm1 + θm2 ,(3.12)

pmfh − pf (tm) =
[
pmfh − Phpf (tm)

]
+ [Phpf (tm)− pf (tm)] = ζm1 + ζm2 .(3.13)

From (3.8), we first have

‖θm2 ‖0 � h2.(3.14)
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In order to estimate θm1 , it is easy to verify that for m = 1, . . . , J ,(
θm1 − θm−1

1

k
, vh

)
+ a(θm1 , vh) + b(vh, ζ

m
1 ) = −(ωm, vh),(3.15)

where

ωm =
Phu(tm)− Phu(tm−1)

k
− ut(tm)

=

[
Phu(tm)− Phu(tm−1)

k
− u(tm)− u(tm−1)

k

]
+

[
u(tm)− u(tm−1)

k
− ut(tm)

]
= ωm

1 + ωm
2 .

Taking vh = θm1 in (3.15) and observing that b(θm1 , ζm1 ) = 0, we have(
θm1 − θm−1

1

k
, θm1

)
+ a(θm1 , θm1 ) = −(ωm, θm1 ).

Since a(·, ·) is coercive, it follows that
‖θm1 ‖20 − (θm−1

1 , θm1 ) ≤ k‖ωm‖0‖θm1 ‖0.
Thus,

‖θm1 ‖0 ≤ ‖θm−1
1 ‖0 + k‖ωm‖0.(3.16)

Observe that

ωj
1 = (Ph − I)

u(tj)− u(tj−1)

k
= k−1

∫ tj

tj−1

(Ph − I)ut(t)dt.(3.17)

So,

k

m∑
j=1

‖ωj
1‖0 ≤

m∑
j=1

∫ tj

tj−1

‖(Ph − I)ut(t)‖0dt � h2.(3.18)

Furthermore,

kωj
2 = u(tj)− u(tj−1)− kut(tj) = −

∫ tj

tj−1

(t− tj−1)utt(t)dt.

Thus,

k
m∑
j=1

‖ωj
2‖0 ≤ k

m∑
j=1

∫ tj

tj−1

‖utt(t)‖0dt � k.(3.19)

Finally note that ‖θ01‖0 ≤ ‖u0
h−u(0)‖0+‖u(0)−Phu(0)‖0 � h2. Similarly, ‖∇θ01‖0 �

h. Therefore, from (3.16) we obtain

‖θm1 ‖0 � k + h2.(3.20)

Estimate (3.9) then follows from (3.12), (3.14) and (3.20).
Now we prove estimate (3.10). Taking vh = 2(θm1 − θm−1

1 ) in (3.15) and noting
that

b(2(θm1 − θm−1
1 ), ζm1 ) = 0, for m = 1, . . . , J,

we have(
θm1 − θm−1

1

k
, 2(θm1 − θm−1

1 )

)
+ a(θm1 , 2(θm1 − θm−1

1 )) = −(ωm, 2(θm1 − θm−1
1 )).
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Therefore,

2k(dtθ
m
1 , dtθ

m
1 ) + 2aΩ(θ

m
1 , θm1 − θm−1

1 )

= −2k(ωm, dtθ
m
1 )− 2aΓ(θ

m
1 , θm1 − θm−1

1 )

= −2k(ωm, dtθ
m
1 ) + 2kaΓ(dtθ

m
1 , θm−1

1 )

≤ k‖ωm‖20 + k‖dtθm1 ‖20 + k2‖dtθm1 ‖2W + (Cnρg)2‖θm−1
1 ‖2W .(3.21)

Then we have

‖θm1 ‖2W − ‖θm−1
1 ‖2W + k‖dtθm1 ‖20 ≤ (Cnρg)2‖θm−1

1 ‖2W + k‖ωm‖20,
which leads to

‖θm1 ‖2W + k

m∑
j=1

‖dtθj1‖20 ≤
m−1∑
j=0

(Cnρg)2‖θj1‖2W + k

m∑
j=1

‖ωj‖20 + ‖θ01‖2W .

It follows from Gronwall’s lemma that

‖θm1 ‖2W+k

m∑
j=1

‖dtθj1‖20 ≤ exp

⎛
⎝m−1∑

j=0

(Cnρg)2

⎞
⎠
⎛
⎝k m∑

j=1

‖ωj
1‖20 + k

m∑
j=1

‖ωj
2‖20 + ‖∇θ01‖20

⎞
⎠.

(3.22)

Note that

k

m∑
j=1

‖ωj
1‖20 � h4(3.23)

and

k
m∑
j=1

‖ωj
2‖20 ≤ k−1

m∑
j=1

k2

(∫ tj

tj−1

‖utt(t)‖0dt
)2

≤ k

m∑
j=1

[(∫ tj

tj−1

12dt

)(∫ tj

tj−1

‖utt(t)‖20dt
)]

= k2
∫ tm

0

‖utt(t)‖20dt.(3.24)

So,

‖θm1 ‖2W +
m∑
j=1

k‖dtθj1‖20 � h4 + k2
∫ tm

0

‖utt(s)‖0ds+ ‖∇θ01‖20 � k2 + h2,

which implies

‖∇θm1 ‖0 � k + h.(3.25)

Also note that ‖∇θm2 ‖0 � h from (3.6). Estimate (3.10) then follows.
Finally, we prove the estimate for pressure (3.11). Note from (3.13) that

‖pmfh − pf (tm)‖0 ≤ ‖ζm1 ‖0 + ‖ζm2 ‖0.(3.26)

First, we have from (3.7),

‖ζm2 ‖0 � h.(3.27)

To estimate ‖ζm1 ‖0, let us start with the estimate for ‖dtθm1 ‖0. Subtracting equation
(3.15) on the two adjacent time levels, we have for m = 2, . . . , J ,

(3.28)

(
dtθ

m
1 − dtθ

m−1
1

k
, vh

)
+ a(dtθ

m
1 , vh) +

1

k
b(vh, ζ

m
1 − ζm−1

1 ) = −(dtω
m, vh).



718 MO MU AND XIAOHONG ZHU

Taking vh = dtθ
m
1 in (3.28) and observing that b(dtθ

m
1 , ζm1 − ζm−1

1 ) = 0, then
similarly to (3.16), we obtain
(3.29)

‖dtθm1 ‖0 ≤ ‖dtθ11‖0 + k

m∑
j=2

‖dtωj‖0 ≤ ‖dtθ11‖0 + k

m∑
j=2

‖dtωj
1‖0 + k

m∑
j=2

‖dtωj
2‖0.

By definition,

‖dtθ11‖0 =
1

k
‖θ11 − θ01‖0 ≤ 1

k
(‖θ11‖0 + ‖θ01‖0).

Recall that ‖θ01‖0 � h2, and we also have

‖θ11‖0 � k2 + h2

from (3.19) and (3.16). It follows that

‖dtθ11‖0 � k + k−1h2.(3.30)

On the other hand, we have from (3.17),

dtω
j
1 =

ωj
1 − ωj−1

1

k
= (Ph − I)

u(tj)− 2u(tj−1) + u(tj−2)

k2
.

Thus,

k
m∑
j=2

‖dtωj
1‖0 = k

m∑
j=2

max
tj−2≤t≤tj

‖(Ph − I)utt(t)‖0 � h2.(3.31)

Furthermore,

dtω
j
2 =

ωj
2 − ωj−1

2

k
= −1

2
[utt(sj0)− utt(sj1)] ,

for some sj0 ∈ (tj−1, tj), sj1 ∈ (tj−2, tj−1). Then

k

m∑
j=2

‖dtωj
2‖0 ≤ 1

2
k2J max

0≤t≤T
‖uttt(t)‖0 � k.(3.32)

Combining (3.29) with (3.30), (3.31) and (3.32), we arrive at

‖dtθm1 ‖0 � k + k−1h2, for m = 1, . . . , J.(3.33)

In summary, we have from (3.15),

b(vh, ζ
m
1 ) ≤ C‖∇vh‖0(‖dtθm1 ‖0 + ‖∇θm1 ‖0 + ‖ωm‖0).

Therefore, from the discrete inf-sup condition (2.1), it follows that

‖ζm1 ‖0 ≤ Cβ−1(‖dtθm1 ‖0 + ‖∇θm1 ‖0 + ‖ωm‖0) � k + h+ k−1h2,(3.34)

by using (3.25), (3.33), as well as the following estimate for ‖ωm‖0:

‖ωm‖0 ≤ ‖ωm
1 ‖0 + ‖ωm

2 ‖0 ≤ k−1

∫ tm

tm−1

‖(Ph − I)ut(t)‖0dt+ Ck

� k−1(kh2) + Ck � k + h2.

Thus, (3.11) follows from (3.26), (3.27) and (3.34). This completes the proof of the
theorem. �
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3.2. Error estimates for DBES. We now turn to the error estimates for DBES
(2.13)-(2.15). For this purpose, let us compare the difference (em, ηm) between
the solution of the decoupled scheme (2.13)-(2.15) and the solution of the coupled
scheme (2.10)-(2.12) due to the interface decoupling by temporal approximation,

where ηm = pmfh − ph,mf and em = (em, ξm) with em = um
fh − uh,m

f and ξm =

ϕm
h − ϕh,m. In particular, e0 = (0, 0).
Observing the difference between the coupled scheme (2.10)-(2.11) and the decou-

pled scheme (2.13)-(2.14), we have the following governing equations for (em, ηm),
m = 1, . . . , J :

(
em − em−1

k
, vh

)
+ aΩ(e

m, vh) + aΓ(u
m
h − uh,m−1, vh) + b(vh, η

m) = 0 ∀vh ∈ Wh,

(3.35)

b(em, qh) = 0 ∀qh ∈ Qh.(3.36)

The following lemma gives upper bounds for the solution um
h of CBES, which

will be used in the error estimates for em in Theorem 2. For completeness, the
proof of Lemma 2 is included in the Appendix.

Lemma 2. For CBES (2.10)-(2.12), we have

‖dtuJ
h‖20 + k2

J∑
m=1

‖dttum
h ‖20 + k

J∑
m=1

‖∇dtu
m
h ‖20 ≤ M0.(3.37)

Furthermore, there exist constants C1 > 0 and C2 > 0 independent of h, such that
if

C1h ≤ k ≤ C2h,(3.38)

then

‖∇dtu
J
h‖20 + k

J∑
m=2

‖dttum
h ‖20 ≤ M1.(3.39)

The positive constants M0 and M1 above are independent of k and h.

Theorem 2. Under the assumption (3.38), we have for m = 1, . . . , J ,

‖em‖20 + k
m∑
j=1

‖∇ej‖20 � k2,(3.40)

‖∇em‖20 + 2k
m∑
j=1

‖dtej‖20 � k,(3.41)

‖ηm‖20 � k.(3.42)
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Proof. Taking vh = 2kem in (3.35), we have

(
em − em−1

k
, 2kem

)
+ aΩ(e

m, 2kem)

= −aΓ(u
m
h − uh,m−1, 2kem)

= aΓ(2ke
m, um

h − um−1
h + um−1

h − uh,m−1)

= aΓ(2ke
m, em−1 + kdtu

m
h )

= 2kaΓ(e
m − em−1, em−1) + 2k2aΓ(e

m, dtu
m
h )

= 2k2
[
aΓ(dte

m, em−1) + aΓ(e
m, dtu

m
h )

]
≤ 2k2

[(
1

4k
‖em−1‖2W + C̃kh−1‖dtem‖20

)
+

(
1

4k
‖em‖2W + C̃k‖dtum

h ‖2W
)]

≤ 1

2
k
(
‖em‖2W + ‖em−1‖2W

)
+ C̃k3h−1‖dtem‖20 + C̃k3‖dtum

h ‖2W

≤ 1

2
k
(
‖em‖2W + ‖em−1‖2W

)
+ k2‖dtem‖20 + C̃k3‖dtum

h ‖2W ,

(3.43)

where the divergence-free property, equality (1.20), the definition of dtu
h,m, and

Lemma 1 with ε = k are used. Note that the left hand side of (3.43) can be
rewritten as

‖em‖20 − ‖em−1‖20 + k2‖dtem‖20 + 2k‖em‖2W + 2nk
d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(em · τττ i)2,

by using the identity (see [11])

2(a− b, a) = ‖a‖20 − ‖b‖20 + ‖a− b‖20 ∀a, b ∈ L2(D).(3.44)

It follows that

‖em‖20 − ‖em−1‖20 + k‖em‖2W +
1

2
k
(
‖em‖2W − ‖em−1‖2W

)
� k3‖dtum

h ‖2W .(3.45)

Therefore,

‖em‖20 + k

m∑
j=1

‖ej‖2W � k2(k

m∑
j=1

‖dtuj
h‖

2
W ).(3.46)

Estimate (3.40) then follows from the estimate (3.37) of CBES and the equivalence
between ‖em‖W and ‖∇em‖0.

Now we prove the estimate (3.41). By taking vh = 2(em − em−1) in (3.35) and
using the divergence-free property, we have(

em − em−1

k
, 2(em − em−1)

)
+ aΩ(e

m, 2(em − em−1))

+ aΓ(u
m
h − uh,m−1, 2(em − em−1)) = 0;
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namely,

2k (dte
m, dte

m) + 2aΩ(e
m, em − em−1)

= −2kaΓ(u
m
h − uh,m−1, dte

m)

= −2kaΓ(u
m
h − um−1

h + um−1
h − uh,m−1, dte

m)

= −2kaΓ(kdtu
m
h + em−1, dte

m)

= −2k2aΓ(dtu
m
h , dte

m)− 2kaΓ(e
m−1, dte

m)

≤ 2k2‖dtum
h ‖L2(Γ)‖dtem‖L2(Γ) + 2k‖em−1‖L2(Γ)‖dtem‖L2(Γ)

≤ 2Ck2‖∇dtu
m
h ‖0‖∇dte

m‖0 + 2Ck‖∇em−1‖0‖∇dte
m‖0

≤ 2C2k · k‖∇dtu
m
h ‖20 + k2‖∇dte

m‖20 + 2C2‖∇em−1‖20.(3.47)

The left hand side of (3.47) can be written as

2k (dte
m, dte

m) + 2aΩ(e
m, em − em−1)

= 2k (dte
m, dte

m) + 2aΩ(e
m − em−1, em)

= 2k (dte
m, dte

m) + aΩ(e
m, em)− aΩ(e

m−1, em−1) + k2aΩ(dte
m, dte

m)

= 2k‖dtem‖20 + ‖∇em‖20 + n
d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(em · τττ i)2(3.48)

− ‖∇em−1‖20 − n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(em−1 · τττ i)2

+ k2‖∇dte
m‖20 + nk2

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(dte
m · τττ i)2.

Therefore,

‖∇em‖20 + n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(em · τττ i)2 − ‖∇em−1‖20

− n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(em−1 · τττ i)2 + 2k‖dtem‖20(3.49)

≤ 2C2k · k‖∇dtu
m
h ‖20 + 2C2‖∇em−1‖20.

Then we have

‖∇em‖20 + n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(em · τττ i)2 + 2k

m∑
j=1

‖dtej‖20

≤
m−1∑
j=0

C1‖∇ej‖20 + 2C2k · k
m∑
j=1

‖∇dtu
j
h‖20.

By using the estimate (3.37), we arrive at

‖∇em‖20 + 2k
m∑
j=1

‖dtej‖20 ≤
m−1∑
j=0

C1‖∇ej‖20 + C2k.

Then the estimate (3.41) follows by using Gronwall’s lemma.
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To prove (3.42), we need to estimate dte
m. Subtracting (3.35)-(3.36) on two

adjacent time levels, we have for m = 2, . . . , J ,(
dte

m − dte
m−1

k
, vh

)
+ aΩ(dte

m, vh) +
1

k

[
aΓ(u

m
h − uh,m−1, vh)

−aΓ(u
m−1
h − uh,m−2, vh)

]
+

1

k
b(vh, η

m − ηm−1) = 0 ∀vh ∈ Wh,(3.50)

b(dte
m, qh) = 0 ∀qh ∈ Qh.(3.51)

Taking vh = 2kdte
m in (3.50) and using the divergence-free property and Lemma

1 with ε = k, we obtain

2
(
dte

m − dte
m−1, dte

m
)
+ 2kaΩ(dte

m, dte
m)

= −1

k

[
aΓ(u

m
h − uh,m−1, 2kdte

m)− aΓ(u
m−1
h − uh,m−2, 2kdte

m)
]

= −2aΓ(u
m
h − uh,m−1 − um−1

h + uh,m−2, dte
m)

= 2aΓ(dte
m, kdtu

m
h − kdtu

h,m−1)

= 2aΓ(dte
m, kdtu

m
h − kdtu

m−1
h + kdtu

m−1
h − kdtu

h,m−1)

= 2aΓ(dte
m, k2dttu

m
h + kdte

m−1)− 2kaΓ(dte
m, dte

m)

= 2k2aΓ(dte
m, dtt(u

m
h − em))

≤ 2k2
[
1

4k
‖dtem‖2W + C̃kh−1‖dtt(em − um

h )‖20
]

≤ 1

2
k‖dtem‖2W +

1

2
k2

(
‖dttem‖20 + ‖dttum

h ‖20
)
,(3.52)

where the last inequality follows from a properly chosen constant C in (3.38). Sim-
ilarly, the left hand side of (3.52) can be written as

‖dtem‖20− ‖dtem−1‖20 + k2‖dttem‖20 + 2k‖dtem‖2W

+ 2nk

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(dte
m · τττ i)2.

Therefore,

‖dtem‖20 − ‖dtem−1‖20 ≤ 1

2
k2‖dttum

h ‖20,

which leads to

‖dtem‖20 ≤ 1

2
k(·k

m∑
j=2

‖dttum
h ‖20) + ‖dte1‖20.(3.53)

Note that

‖dte1‖20 = ‖e
1 − e0

k
‖20 =

1

k2
‖e1‖20.

From (3.46), we have

‖e1‖20 � k2(k‖dtu1
h‖2W ) � k3

by using (3.37). Thus,

‖dte1‖20 � k.(3.54)



SCHEMES FOR A NON-STATIONARY MIXED STOKES-DARCY MODEL 723

So, from inequalities (3.39), (3.53) and (3.54), we have the estimate

‖dtem‖0 � k1/2.(3.55)

Now we are ready to prove estimate (3.42). Taking vh = (vh, 0) in (3.35), we have

n

(
em − em−1

k
,vh

)
+ aΩf

(em,vh) + aΓ(u
m
h − uh,m−1, vh) + b(vh, η

m) = 0.

Therefore,

b(vh, η
m) � ‖∇vh‖0(‖dtem‖0 + ‖∇em‖0) + |aΓ(um

h − uh,m−1, vh)|
= ‖∇vh‖0(‖dtem‖0 + ‖∇em‖0) + |aΓ(kdtum

h + em−1, vh)|
� ‖∇vh‖0(‖dtem‖0 + ‖∇em‖0 + k‖∇dtϕ

m
h ‖0 + ‖∇ξm−1‖0).

The discrete inf-sup condition (2.1) then implies

‖ηm‖0 � ‖dtem‖0 + ‖∇em‖0 + k‖∇dtϕ
m
h ‖0 + ‖∇ξm−1‖0

≤ ‖dtem‖0 + ‖∇em‖0 + k‖∇dtu
m
h ‖0 + ‖∇em−1‖0,

or equivalently,

‖ηm‖20 � (‖∇em‖20 + ‖∇em−1‖20 + ‖dtem‖20) + k2‖∇dtu
m
h ‖20.

Estimate (3.42) then follows from (3.41), (3.55) and (3.37). This completes the
proof of the theorem. �

Combining Theorem 2 with Theorem 1, we have the following error estimates
for DBES.

Corollary 1. Under the assumption (3.38), for m = 1, . . . , J , the following esti-
mates hold:

‖uh,m − u(tm)‖0 � k + h2,(3.56)

‖∇(uh,m − u(tm))‖0 � k1/2 + h,(3.57)

‖ph,mf − pf (tm)‖0 � k1/2 + h.(3.58)

Note that we have imposed the condition k = O(h) in (3.38) for the error analysis
of DBES, which is usually satisfied in practical computation in order to balance the
accuracy in temporal and spacial approximations. In contrast, the fully explicit
Euler scheme, although automatically decoupled, is subject to a severe stability
condition k = O(h2) as usual.

4. Numerical experiments

For illustrating the convergence performance and mechanism, we report on our
numerical experiments for both coupled and decoupled marching algorithms CBES
and DBES.

Let the computational domain Ω be composed of Ωf = (0, 1)× (1, 2) and Ωp =
(0, 1) × (0, 1) with the interface Γ = (0, 1) × {1}. In the first testing problem, all
the physical parameters n, ρ, g, ν, K, S0 and α are simply set to 1. The Dirichlet
boundary conditions are imposed for velocity uf on ∂Ωf\Γ and for the piezometric
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head ϕ on ∂Ωp\Γ. The initial conditions, boundary conditions, and the forcing
terms are chosen such that the exact solution is given by

uf (x, t) = (
[
x2(y − 1)2 + y

]
cos t,

[
−2

3
x(y − 1)3 + 2− π sin(πx)

]
cos t),(4.1)

pf (x, t) = [2− π sin(πx)] sin
(π
2
y
)
cos t,(4.2)

ϕ (x, t) = [2− π sin(πx)][1− y − cos(πy)] cos t.(4.3)

The finite element spaces are constructed by using the well-known MINI elements
for the fluid flow and the linear Lagrangian elements for the porous media flow. In
the implementation of the algebraic solver for CBES, an augmented Lagrangian
algorithm (see II.5.2 in [4]) is used to solve the saddle-point problem iteratively
for pf , and at each iteration the MATLAB GMRES routine is used to solve a
coupled system for uf and ϕ. For DBES, a conjugate gradient algorithm (see
(21.2)-(21.12) in [10]) is applied in the Stokes solver. Furthermore, the MATLAB
PCG routine with the sparse incomplete Cholesky factorization preconditioner is
applied in various places of the implementation whenever an SPD problem is to be
solved. The tolerance ε is set to be 10−8 for the stopping criteria of the pressure
iteration in both the augmented Lagrangian algorithm and the conjugate gradient
algorithm. The tolerance and the maximum number of iterations in the MATLAB
GMRES and PCG routines are set to be 10−10 and 1000, respectively.

We focus on the decoupled algorithm DBES. To demonstrate its convergence,
we list in Table 1 and Table 2 the errors between the computed solution and the
exact solution with varying spacing h and time step k.

To examine the orders of convergence with respect to the spacing h, let us study
the errors with a fixed time step k = 0.01 and varying spacing h = 1/2, 1/4, 1/8,
1/16, 1/32 by a mid-point mesh refinement. With such a small time step, ob-
serve from Table 2 that the approximation errors O(kγ) + O(hµ) are dominated
by the h-terms O(hµ) when h varies in the given range. So, the ratio ρlh,(·) of the

approximation errors on two adjacent mesh levels Ω2h and Ωh is approximately
(2h)µ/hµ = 2µ, where (·) refers to uf , ϕ and pf , and l refers to the H l-error norm.
Therefore, we can simply use ρlh,(·) to estimate the corresponding order of conver-

gence with respect to h. It is clearly seen from Table 3 that the error estimates of
u in Corollary 1 for the orders of convergence in space agree with the numerical
experiments. It is also interesting to observe that the numerical rates for the Stokes
pressure in L2 seem to be better than the theoretical rates (3.58).

We take a more accurate, but slightly more sophisticated, approach to examine
the orders of convergence with respect to the time step k because the approximation
errors O(kγ)+O(hµ) are dominated by the h-terms O(hµ). For instance, assuming

vh,k(x, tm) ≈ v(x, tm) + C1(x, tm)kγ + C2(x, tm)hµ,(4.4)

it follows that

vh,k(x, tm)− vh,
1
2k(x, tm) ≈ C1(x, tm)(1− 1/2γ)kγ .(4.5)

Thus,

vh,k(x, tm)− vh,
1
2k(x, tm)

vh,
1
2k(x, tm)− vh,

1
4k(x, tm)

≈ (1− 1/2γ)

(1/2γ − 1/4γ)
=

(4γ − 2γ)

(2γ − 1)
.(4.6)
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Table 1. The convergence performance of DBES at time tm = 0.5
and tm = 1, with varying spacing h but fixed time step k = 0.01.

m = 50, tm = 0.5

h ‖uh,m
f −uf (tm)‖0 ‖ϕh,m−ϕ(tm)‖0 ‖∇(u

h,m
f −uf (tm))‖0 ‖∇(ϕh,m−ϕ(tm))‖0 ‖ph,m

f −pf (tm)‖0
1
2

0.4875596461 0.4041223472 2.7803737315 2.5711752411 5.1011732529

1
4

0.1276607993 0.1218562903 1.4232574524 1.4941463864 1.5844129997

1
8

0.0323167897 0.0332595996 0.7162613241 0.7810566553 0.4385935708

1
16

0.0080998243 0.0086674998 0.3587345572 0.3952267936 0.1232022733

1
32

0.0020227613 0.0023358997 0.1794346920 0.1982265710 0.0365262409

m = 100, tm = 1

h ‖uh,m
f −uf (tm)‖0 ‖ϕh,m−ϕ(tm)‖0 ‖∇(u

h,m
f −uf (tm))‖0 ‖∇(ϕh,m−ϕ(tm))‖0 ‖ph,m

f −pf (tm)‖0
1
2

0.3003203211 0.2531915482 1.7107457406 1.5828559416 3.0509756452

1
4

0.0786219134 0.0770174402 0.8760902638 0.9197305950 0.9577316927

1
8

0.0198994124 0.0212129034 0.4409560929 0.4808453403 0.2670986466

1
16

0.0049783640 0.0056816710 0.2208599688 0.2433352851 0.0755399068

1
32

0.0012381307 0.0017059304 0.1104782600 0.1220700067 0.0226324584

Table 2. The convergence performance of DBES at time tm =
0.3, with varying time step k but fixed spacing h = 1

16 .

k ‖uh,m
f −uf (tm)‖0 ‖ϕh,m−ϕ(tm)‖0 ‖∇(u

h,m
f −uf (tm))‖0 ‖∇(ϕh,m−ϕ(tm))‖0 ‖ph,m

f −pf (tm)‖0
3
50

0.0088334863 0.0099197352 0.3905397205 0.4302571249 0.1364831001

3
100

0.0088233887 0.0095499662 0.3905254667 0.4302439712 0.1350441304

3
200

0.0088214205 0.0093615439 0.3905211484 0.4302456417 0.1344419393

3
400

0.0088212220 0.0092669141 0.3905197280 0.4302489054 0.1341705746

3
800

0.0088213192 0.0092195656 0.3905192064 0.4302511923 0.1340423600

3
1600

0.0088214171 0.0091958923 0.3905189930 0.4302525056 0.1339801286

Table 3. Examining the orders of convergence O(hµ) for DBES
by ρlh,(·) ≈ 2µ, with varying spacing h, fixed time step k = 0.01,

and at time tm = 0.5.

h ‖uh,m
f

−uf (tm)‖0 ρ0h,uf
‖ϕh,m−ϕ(tm)‖0 ρ0h,ϕ ‖ph,m

f
−pf (tm)‖0 ρ0h,pf

1
2

0.4875596461 3.819181 0.4041223472 3.316385 5.1011732529 3.219598

1
4

0.1276607993 3.950293 0.1218562903 3.663793 1.5844129997 3.612486

1
8

0.0323167897 3.989814 0.0332595996 3.837277 0.4385935708 3.559947

1
16

0.0080998243 4.004340 0.0086674998 3.710562 0.1232022733 3.372980

1
32

0.0020227613 0.0023358997 0.0365262409

h ‖∇(u
h,m
f

− uf (tm))‖0 ρ1h,uf
‖∇(ϕh,m − ϕ(tm))‖0 ρ1h,ϕ

1
2

2.7803737315 1.953528 2.5711752411 1.720832

1
4

1.4232574524 1.987065 1.4941463864 1.912981

1
8

0.7162613241 1.996633 0.7810566553 1.976224

1
16

0.3587345572 1.999249 0.3952267936 1.993813

1
32

0.1794346920 0.1982265710
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Table 4. Examining the orders of convergence O(kγ) for DBES

by ρk,v ≈ (4γ−2γ)
(2γ−1) , with varying time step k, fixed spacing h = 1

8 ,

and at time tm = 1.

k ‖uh,k
f −u

h, 1
2
k

f ‖0 ρk,uf
‖ϕh,k−ϕh, 1

2
k‖0 ρk,ϕ ‖ph,k

f −p
h, 1

2
k

f ‖0 ρk,pf

1
10 0.0002137289 1.968292 0.0012999694 1.872289 0.0104060674 2.014106

1
20 0.0001085860 1.984729 0.0006943209 1.937976 0.0051665942 2.007383

1
40 0.0000547107 1.992313 0.0003582712 1.969515 0.0025737955 2.003703

1
80 0.0000274609 1.996049 0.0001819084 1.984896 0.0012845198 2.001851

1
160 0.0000137576 0.0000916463 0.0006416659

k ‖∇(uh,k
f − u

h, 1
2
k

f )‖0 ρk,∇uf
‖∇(ϕh,k − ϕh, 1

2
k)‖0 ρk,∇ϕ

1
10 0.0028232766 1.943890 0.0067171597 1.860649

1
20 0.0014523847 1.971827 0.0036101161 1.933205

1
40 0.0007365681 1.985720 0.0018674255 1.967326

1
80 0.0003709326 1.992739 0.0009492203 1.983841

1
160 0.0001861421 0.0004784760

Therefore, if we define

ρk,v =
‖vh,k − vh,

1
2k‖0

‖vh, 12k − vh,
1
4k‖0

,(4.7)

where v = uf , ϕ, pf , ∇uf or ∇ϕ, then ρk,v ≈ (4γ−2γ)
(2γ−1) from (4.6). In particular,

ρk,v ≈ 2 for γ = 1 when the corresponding order of convergence in time is of O(k).
A set of values of ρk,v are listed in Table 4 with varying time step k, but a fixed
spacing h = 1

8 , which clearly suggests that the concerned orders of convergence in
time are all of O(k) for DBES. To further confirm this same observation, we also
list in Table 5 another set of values of ρk,v with varying time step k, but a different
spacing h = 1

16 for DBES. Therefore, the numerical experiments strongly suggest
that the orders of convergence in time in the error estimates (3.57) and (3.58) for
the H1-norm of u and the L2-norm of pressure pf might not be optimal for DBES,

and may be further improved from O(k1/2) to O(k) by a finer analysis. However,
the error estimate (3.56) for the L2-norm of u is optimal in both time and space
for DBES.

Finally, for comparison, we list in Table 6 the exact solution and the solutions
for CBES and DBES at selected locations, with varying spacing h from 1/2 to 1/16
and with a fixed time step k = 0.01. It is seen that DBES almost retains the same
accuracy as CBES, and the approximation accuracy does not deteriorate due to the
decoupling technique.

It is also of practical interest to examine the effects of the physical parame-
ters. For illustration, we consider another test problem with the varying hydraulic
conductivity K, while other parameters n, ρ, g, ν, S0 and α, as well as the com-
putational domain and boundary conditions, remain the same as in the previous
test problem. However, the initial data, boundary data, and the forcing terms are
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Table 5. Examining the orders of convergence O(kγ) for DBES

by ρk,v ≈ (4γ−2γ)
(2γ−1) , with varying time step k, fixed spacing h = 1

16 ,

and at time tm = 0.6.

k ‖uh,k
f −u

h, 1
2
k

f ‖0 ρk,uf
‖ϕh,k−ϕh, 1

2
k‖0 ρk,ϕ ‖ph,k

f −p
h, 1

2
k

f ‖0 ρk,pf

3
50 0.0001424214 1.967334 0.0005874511 1.874202 0.0066395100 2.002696

3
100 0.0000723931 1.987050 0.0003134407 1.937613 0.0033152857 2.002180

3
200 0.0000364325 1.994091 0.0001617664 1.969082 0.0016558376 2.001300

3
400 0.0000182702 0.0000821532 0.0008273811

k ‖∇(uh,k
f − u

h, 1
2
k

f )‖0 ρk,∇uf
‖∇(ϕh,k − ϕh, 1

2
k)‖0 ρk,∇ϕ

3
50 0.0017126004 1.966713 0.0030124037 1.860959

3
100 0.0008707930 1.985332 0.0016187370 1.932211

3
200 0.0004386133 1.993384 0.0008377642 1.966645

3
400 0.0002200345 0.0004259866

Table 6. The comparison between the exact solution and the so-
lutions of CBES and DBES at the point x = (0.5, 1.5) for the fluid
flow and at (0.5, 0.5) for the porous medium flow with a fixed time
step k = 0.01, at tm = 0.1.

h uf (x, tm) um
fh uh,m

f

1
2 (1.5546940082,−1.1773479523) (1.5921313881,−1.1322728727) (1.5921313884,−1.1322728717)

1
4 (1.5546940082,−1.1773479523) (1.5593652198,−1.1636481793) (1.5593709738,−1.1636555301)

1
8 (1.5546940082,−1.1773479523) (1.5564707718,−1.1741917982) (1.5564804765,−1.1741981061)

1
16 (1.5546940082,−1.1773479523) (1.5551444509,−1.1765370209) (1.5551472727,−1.1765402623)

h pf (x, tm) pm
fh ph,m

f ϕ(x, tm) ϕm
h ϕh,m

1
2 -0.8031951295 0.1664526584 0.1642503932 -0.5679447227 -0.5423730106 -0.5421249643

1
4 -0.8031951295 -1.1664301192 -1.1673319397 -0.5679447227 -0.5701236315 -0.5700535315

1
8 -0.8031951295 -0.8840872577 -0.8845656184 -0.5679447227 -0.5690320401 -0.5690082459

1
16 -0.8031951295 -0.8183287665 -0.8186986757 -0.5679447227 -0.5681775839 -0.5681655349

chosen such that the exact solution of the coupled model is given by

uf (x, t) = ((y2 − 2y + 1) cos t, (x2 − x) cos t),(4.8)

pf (x, t) =
[
2ν(x+ y − 1) +

gn

3K

]
cos t,(4.9)

φ(x, t) =

[
n

K

(
x(1− x)(y − 1) +

1

3
y3 − y2 + y

)
+

2ν

g
x

]
cos t.(4.10)

The approximation errors listed in Tables 7, 8, and 9 corresponding to K =
0.1, 0.01, 0.001 show that the numerical solutions approximate the exact solution
with satisfied order of convergence when the hydraulic conductivity K varies. Note
that Tables 7, 8, and 9 are for absolute errors instead of relative errors, while the
orders of magnitude for pf and φ increase as K decreases. For more numerical
experiments and simulation, the reader is referred to [5, 25, 26].
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Table 7. The approximation errors for DBES for K = 0.1 with
varying spacing h, fixed time step k = 10−3, and at time tm = 0.05.

h ‖uh,m
f −uf (tm)‖0 ‖ϕh,m−ϕ(tm)‖0 ‖ph,m

f −pf (tm)‖0 ‖∇(uh,m
f −uf (tm))‖0 ‖∇(ϕh,m−ϕ(tm))‖0

1
2 0.0730762822 0.3481047236 0.2686044007 0.3998059670 2.7633839815

1
4 0.0183429476 0.0894437360 0.0707507409 0.1987595531 1.4254426719

1
8 0.0045923514 0.0225179093 0.0199145832 0.0991959428 0.7186942188

1
16 0.0011481794 0.0056387600 0.0058051380 0.0495634151 0.3601255888

1
32 0.0002868260 0.0014108989 0.0017768174 0.0247744729 0.1801616776

Table 8. The approximation errors for DBES for K = 0.01 with
varying spacing h, fixed time step k = 10−3, and at time tm = 0.05.

h ‖uh,m
f −uf (tm)‖0 ‖ϕh,m−ϕ(tm)‖0 ‖ph,m

f −pf (tm)‖0 ‖∇(uh,m
f −uf (tm))‖0 ‖∇(ϕh,m−ϕ(tm))‖0

1
2 0.0730138376 3.4882311353 0.2799971333 0.4002664205 27.7449194208

1
4 0.0183265110 0.8938577440 0.0758389140 0.1988147132 14.2788409796

1
8 0.0045895877 0.2248207490 0.0226786588 0.0992007783 7.1902105579

1
16 0.0011476663 0.0562930252 0.0070463192 0.0495638447 3.6016449317

1
32 0.0002867438 0.0140869534 0.0018642987 0.0247745120 1.8016691717

Table 9. The approximation errors for DBES for K = 0.001 with
varying spacing h, fixed time step k = 10−4, and at time tm =
0.005.

h ‖uh,m
f −uf (tm)‖0 ‖ϕh,m−ϕ(tm)‖0 ‖ph,m

f −pf (tm)‖0 ‖∇(uh,m
f −uf (tm))‖0 ‖∇(ϕh,m−ϕ(tm))‖0

1
2 0.0730393023 34.9379941545 0.2992707690 0.4012939366 277.9462760134

1
4 0.0183334901 8.9502226078 0.0790647707 0.1991521538 143.0136301460

1
8 0.0045893020 2.2508374474 0.0209467869 0.0993355912 72.0030993422

1
16 0.0011477180 0.5635365671 0.0059432842 0.0496265430 36.0633380934

1
32 0.0002869416 0.1409357933 0.0018230784 0.0248053217 18.0393893493

5. Conclusions

A decoupling approach based on interface approximation via temporal extrapola-
tion is proposed for devising decoupled marching algorithms for the non-stationary
mixed Stokes-Darcy model. An error analysis is presented and numerical experi-
ments are conducted to demonstrate the computational effectiveness of the decou-
pling approach.

Appendix

Proof of Lemma 2. In order to prove the estimate (3.37), subtracting the coupled
backward Euler scheme (2.10)-(2.11) on two adjacent time levels and noticing the
definition of dtu

0
h, we have for m = 1, . . . , J ,

(A.1)

(
dtu

m
h − dtu

m−1
h

k
, vh

)
+ a(dtu

m
h , vh) =

1

k

[
fm(vh)− fm−1(vh)

]
∀vh ∈ Vh.
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Taking vh = 2kdtu
m
h = 2k(dtu

m
fh, dtϕ

m
h ) ∈ Vh in (A.1), we obtain

(A.2)(
dtu

m
h −dtu

m−1
h

k
, 2kdtu

m
h

)
+ a(dtu

m
h , 2kdtu

m
h )=

1

k

[
fm(2kdtu

m
h )−fm−1(2kdtu

m
h )

]
.

Then we have

‖dtum
h ‖20 − ‖dtum−1

h ‖20 + k2‖dttum
h ‖20 + 2k‖dtum

h ‖2W

= n
1

k

∫
Ωf

(gm
f − gm−1

f ) · (2kdtum
fh) + ρg

1

k

∫
Ωp

(gmp − gm−1
p )(2kdtϕ

m
h )

− 2nk
d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(dtu
m
fh · τττ i)2

≤ C2nν−1

∫ tm

tm−1

‖gft(t)‖20dt+ nνk‖∇dtu
m
fh‖20(A.3)

+ C2ρgK−1

∫ tm

tm−1

‖gpt(t)‖20dt+ ρgKk‖∇dtϕ
m
h ‖20.

Therefore,

‖dtuJ
h‖20 + k2

J∑
m=1

‖dttum
h ‖20 + k

J∑
m=1

‖dtum
h ‖2W

≤ C2nν−1

∫ T

0

‖gft(t)‖20dt+ C2ρgK−1

∫ T

0

‖gpt(t)‖20dt+ ‖dtu0
h‖20,(A.4)

which yields estimate (3.37).
We now turn to prove (3.39). For m = 2, . . . , J , taking vh = 2(dtu

m
h −dtu

m−1
h ) ∈

Vh in (A.1), we have

(A.5)

2k(dttu
m
h , dttu

m
h ) + 2aΩ(dtu

m
h , dtu

m
h − dtu

m−1
h )

=
1

k

[
fm(2(dtu

m
h − dtu

m−1
h ))− fm−1(2(dtu

m
h − dtu

m−1
h ))

]
− 2aΓ(dtu

m
h , dtu

m
h − dtu

m−1
h )

= 2[fm(dttu
m
h )− fm−1(dttu

m
h )] + 2kaΓ(dttu

m
h , dtu

m−1
h ).

Then we have

2k‖dttum
h ‖20 + ‖dtum

h ‖2W − ‖dtum−1
h ‖2W + k2‖dttum

h ‖2W

+ n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(dtu
m
fh · τττ i)2 − n

d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(dtu
m−1
fh · τττ i)2

+ nk2
d−1∑
i=1

∫
Γ

α√
τττ i ·Kτττ i

(dttu
m
fh · τττ i)2

≤ n

∫ tm

tm−1

‖gft(t)‖20dt+ ρgS−1
0

∫ tm

tm−1

‖gpt(t)‖20dt+ k‖dttum
h ‖20

+ k2‖dttum
h ‖2W + C2nρgν−1K−1‖dtum−1

h ‖2W .

(A.6)
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Therefore,

‖dtuJ
h‖2W + k

J∑
m=2

‖dttum
h ‖20 ≤ n

∫ T

t1

‖gft(t)‖20dt+ ρgS−1
0

∫ T

t1

‖gpt(t)‖20dt

+

J−1∑
m=1

C2nρgν−1K−1‖dtum
h ‖2W + ‖dtu1

h‖2W + C‖∇dtu
1
fh‖20.

(A.7)

Note that

‖∇dtu
1
fh‖0 =

1

k
‖∇(u1

fh − u0
fh)‖0

=
1

k
‖∇

(
[u1

fh − u0
fh]− [ufh(t1)− ufh(t0)] + [ufh(t1)− ufh(t0)]

)
‖0

≤ 1

k

[
‖∇[u1

fh − ufh(t1)]‖0 + ‖∇[u0
fh − ufh(t0)]‖0(A.8)

+ ‖∇[

∫ t1

t0

∂

∂t
ufh(t)dt]‖0

]

� 1 + k−1h+ k−1h+ max
t0≤t≤t1

‖ ∂

∂t
∇ufh(t)‖0 � C,

by using (2.9), (3.10) and the stability condition k = O(h). Similarly, we also
have ‖∇dtu

1
fh‖0 � C. Estimate (3.39) then follows from (A.7) and (A.8) by using

Gronwall’s lemma, which completes the proof of Lemma 2. �
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