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GENERATORS OF FUNCTION FIELDS
OF THE MODULAR CURVES X;(5) AND X;(6)

CHANG HEON KIM AND JA KYUNG KOO

ABSTRACT. We show that the modular functions j1,5 and j1,6 generate func-
tion fields of the modular curves X1(N) (N = 5, 6, respectively) and find some
number-theoretic properties of these modular functions.

1. INTRODUCTION

Let $ be the complex upper half-plane and let I'; (V) be a congruence subgroup
of SLy(Z) whose elements are congruent to (§ %) mod N (N =1,2,3,...). Since
the group I'y (V) acts on $ by linear fractional transformations, we get the modular
curve X1(N) = T'1(N)\H*, as the projective closure of the smooth affine curve
1 (N)\#$, with genus g1 n.

Let r € Z and r # 0 mod N. For z € 9, Ishii ([7]) found a family of modular
functions X, (z) defined by

—r=1)(N =1\ Yo Krslz)
X, (z) = exp <27rz N > 8130 Kin(2)

where K, ,(z) are Klein forms of level N. For the Klein forms we refer to Kubert
and Lang [I4]. For (y = e*™/N let §n be the field of modular functions for the
principal congruence group I'(N) with Q({y)-rational Fourier coefficients at the
cusp i00. Then X, (z) € Fn (resp. X, -(2)°N € §n) if r is odd (resp. if r is even),
where e is 1 or 2 according as N is odd or even. When N > 7, by utilizing
such modular functions, Ishida and Ishii showed in [§] that X5 (2)°¥Y, X3(2)" are
generators of function fields of the modular curves X;(N). As for the cases N =
1,2, 3 we know that the elliptic modular function j(z) (N = 1), and the Thompson
series of type 2B (N = 2, Table 3 in [2]) and the Thompson series of type 3B (N = 3,
Table 3 in [2]) are generators, respectively, because I';(2)=L¢(2) and I';(3)=L¢(3).
In the case N =4, we refer to [I0]. Thus, in order to find the remaining two cases
N = 5,6 we use the following general fact. Since g; y = 0 only for the eleven cases
1 <N <10 and N =12 ([9]), the function field C(X;(NN)) of the curve X;(N) is
a rational function field over C for such N.

In this article we shall find the field generators j; 5 and j; ¢ as uniformizers
of the modular curves X;(N) when N = 5 and 6, respectively. In §3, ji5 is
constructed by making use of the Dedekind eta functions and Eisenstein series of
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weight 2, and in §4 we build up ji,6 from the Eisenstein series of weight 2. In §5 we
estimate the normalized generators (or hauptmodulus) N(ji,5) and N(j16), and,
when z € HNQ(v/—d) for a square-free positive integer d, we show that N (j1 n)(2)
(N = 5,6) becomes an algebraic integer. In §6 we show that the hauptmodulus
N(j1,5) has integral Fourier coefficients. Lastly, in §7 we find certain connections
between the hauptmodulus N (j;,5) and the parameter ¢ emerging from the moduli
problem of elliptic curves.

Throughout the article we adopt the following notation:

$H* the extended complex upper half-plane

I' a congruence subgroup of SLy(Z)

I'(N) ={y€SLy(Z)}y=1I mod N}

I'o(N) the Hecke subgroup {(24) € I'(1)jc=0 mod N}

X(I) = T\%*

X(N) = D(N)\5*

Xo(N) = To(N)\$*

C(X(T')) function field of the curve X(I)

T the inhomogeneous group of I'(=T'/ £ 1)

o1(n) = > d the sum of positive divisors of n
d|n
d>0

an = eQ‘n’iz/h7 2€H

f|(zczg> =f((2h) 2

fligay, = (@d=b0% - £((£5) -2) - (cz+ )"

Mjy, (cl“) the space of modular forms of weight k with respect to the group I’

Mi(To(N),x) = {f € My (Lo(N))|f(v2) = x(d)(cz+d)* f(2) for all y = (25) €
Lo(N)}

a ~ b means that a is equivalent to b

z — 100 denotes that z goes to 100

vo(F) the sum of orders of zeros of a modular form (or function) F

Voo (F') the sum of orders of poles of a modular form (or function) F

00o(I") the number of I'-inequivalent cusps of T.

We shall always take the branch of the square root having argument in (-3, 7].
Thus, /2 is a holomorphic function on the complex plane with the negative real

axis (—o0, 0] removed. For any integer k, we define 2% to mean (,/z)".

2. FUNDAMENTAL REGION OF X7 (V)
Let I" be a congruence subgroup of SLs(Z).

Definition. An (open) fundamental region R for T' is an open subset of $* with
the properties:

1. there do not exist v € I' and w, z € R for which w # z and w = vz;

2. for any z € *, there is v € I' such that vz € R, the closure of R.

We will examine some necessary results about fundamental regions, which will
give us useful geometric information for the modular curve X;(N). Let T''(N) be
a congruence subgroup of SLy(Z) whose elements are congruent to (1¢) mod N

(N =1,2,3,...). We note that the two groups I'1(N) and I'}(N) are conjugate:
N 0 1/N 0
(1) v - (3 Drem (5 9).
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It turns out that the I'' groups are more convenient than their I'; counterparts for
drawing pictures and making geometric computations. Now we will draw funda-
mental regions by using Ferenbaugh’s idea ([4], §3). Suppose ¢,r € R with r > 0.
Then we define the sets

arc(c,r) ={z€ 9" |z—c| =71},
{z €9 |z—c| <r},
{

z€N"| |z—c >}

inside(e, )

outside(c, r)
Let v = (‘; Z) be an element of I', and assume ¢ # 0. Then we define

arc(y) = arc(a/e, 1/[c]),
inside(y) = inside(a/e¢, 1/|¢|) and
outside(y) = outside(a/c, 1/|c|).

If ¢ = 0, v is of the form z — z+n for some integer n. We shall assume + is not the
identity, so n # 0. We then adopt the following conventions: for n > 0, we define

arc(7y) = {z € 9% Re(z) = E},

2
inside(y) = {z € 9% Re(z) > g} ,
outside(y) = {z € 9% Re(z) < g} .

As for the case n < 0, we define “arc” in the same way and reverse the inequalities
in the definitions of “inside” and “outside”. Then we have

Proposition 1. The element v € I'— {I} sends arc(y~!) to arc(y), inside(y) to
outside(y) and outside(y~1) to inside(7y).

Proof. See [4], Proposition 3.1. O

Theorem 2. With notation as in the above, a fundamental region R for I is given
by

R= ﬂ outside (7).

~yer—{1}

Proof. See [4], Theorem 3.3. O

Now the following theorem enables us to get the generators of the group I

Theorem 3. Let T be a congruence subgroup of T(1) of finite index and R
be a fundamental region for T. Then the sides of R can be grouped into pairs
Ao, o (i = 1,2,...,5) in such a way that \; C R and N\, = v;\;, where v; € T
(i=1,2,...,5). The v;’s are called boundary substitutions of R. Furthermore, T’
is generated by the boundary substitutions y1,...,"7s-

Proof. See [19], Theorem 2.4.4 (or [10], Theorem 1). O
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3. MODULAR FUNCTION ji 5

Let us take I' =T'(5) and put v = (§3), 72 = (19) and v3 = (9%). If Rs is
a fundamental region of I''(5), then by Theorem 2lit is given by

3
Ry = ﬂ outside(y!)
i=1
and is drawn as shown in Figure 1.
(1)
s [ —
Rs

|
ot
|
[\
E
—
[N}
ot

=)
N

(1%)
FIGURE 1. Fundamental domain of I'!(5).

We denote by St the set of inequivalent cusps of I'. Then we see from the above

figure that Spi(5) = {00,0,2, g} Furthermore it follows from Theorem [3] that T (5)
is generated by 71, 72 and 3. Thus we obtain the following theorem by ().
Theorem 4. (i) Sr,(5) = {00,0, 2, 1}. All cusps of I'1(5) are regular ([16], [22]).
(ii) T1(5) is generated by ($ 1), (19) and (5 3).
For later use we are in need of calculating the widths of the cusps of I'1(5).

Lemma 5. Let a/c € P1(Q) be a cusp with (a,c) = 1. Then the width of a/c in
X1(N) is given by N/(e,N) if N # 4.

Proof. See [11], Lemma 3. O
Table [[l shows the inequivalent cusps of I'1(5).

TABLE 1. Cusps of I';(5)

cusp [ oo | O
width | 1|5

= oty
ool

Let G5 be the Eisenstein series of weight 2 defined by
(2) Go(2) = 2¢(2) — 872 Z o1(n)q", z € 9.

n>1
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Then G5 has the following transformation formula ([20], p.68) for (¢ %) € I'(1) and
ZEN:

(3) Go (Zji_z) = (cz + d)*Go(z) — 2mic(cz + d).

Lemma 6. For each prime p, let Ggp)(z) = G2(z) — pGa(pz). Then Ggp)(z) €
Ms(To(p)).

Proof. If v = (‘; 2) is an element of I'g(p), then
G (2 = (cz +d) G (72)
= (cz +d)"*(Ga(v2) — pGa(py2))
= (ez+ d)2(Ga(r2) = pGa(( ., 0 ) - p2)
DeOT=(5%)
2(2

) — 2mic(cz + d)

using ( (1))(

= (cz+d)"?*((cz + d)*G
—p<<5pz+d> Ga(p) — 2wi§(§pz+d>>> by @)
=GP (2).

Recall that there are 2 cusps 00,0 in Xg(p). The g-expansion of G5 implies the
holomorphicity of Gép ) at 0o. At 0,

G @)ooy, =226 (-1/2)

= 273(Ga(~1/2) — pGa(—p/2))
(G (2) - 2miz — p((2/p)*Ga(z/p) - 2wiz/p)) by @)
= Ga(2) — 1/pGa(z/p);

hence it is holomorphic there. O

Lemma 7. For F € My(To(N),x), let Wn(F) be the Fricke involution of F,
i.e., Wn(F) = F\[(O _1)] . Then for a quadratic character x on (Z/NZ)*, Wy

preserves My (To(N), x).

Proof. See [13], p. 145. O

Let n(z) = e [I7-,(1—¢"), z € $ be the Dedekind eta function. It is well
known ([I2], p.235) that

(4) n(z +1) = eBy(z) and n(~1/2) = (=iz)2n(2).

Lemma 8. (i) n?(z)/n(pz) € My (Fo(p)7 (5)) for a prime p > 3.
(i) W07 () /n(p2)) = constant x 7 (p2)/n(=) € Mo (To(p), (5 )
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Proof. For (i) we refer to [I§], p. 28.
(ii) We have

= constant x n?(pz)/n

—~

Hence, this completes the proof by Lemma [7 (I

Now, put (z) = 4-1°(2) /1(52) + By”) (=) and y(2) = 1 (52) /1(2), where By (z) =
G2(2)/(2¢(2)) is the normalized Eisenstein series of weight 2 and E§5)(z) = FEs(z)—
5F5(5%). From the g-expansions of G and 7 it follows that

w(z) = —44q — 52¢> — 56¢° — 228¢" + - - - ,
Y(2)=q+ @ +2¢° + 3¢  +5¢+ - - .

We set ji5(2) = 2(2)/y(2).

Theorem 9. (a) z,y € M(I'1(5)).

(b) C(X1(5)) is equal to C(j1,5(%)).

(c) j1,5 takes the following value at each cusp: ji5(00) = —44, j1 5(0) = —20v/5,
41.5(1/2) = 20V/5, and j1 5(2/5) = oo (a simple pole).

Proof. (a) follows from Lemmas [0l and [8l Next, it is clear by (a) that j15(2) €
C(X1(5)). We see from the construction of x and y that both z and y vanish at
oo. Also, we know from [22], p.39 that vo(z) = vo(y) = 2. Let co and zg (resp. ()
be the zeros of = (resp. y). If zo is equivalent to z{, under I'; (5), then #/y has no
poles in X7 (5) so that it would be a constant. However, the g-expansions of = and
y show that the quotient z/y cannot be a constant. Thus zq is not I'y (5)-equivalent
to 2(, and v (j1,5) = Veo(j1,5) = 1, which implies that j; 5 generates C(X;(5)) over
C. Now we will prove (c¢). As mentioned in Table 1, we note that there are 4
inequivalent cusps 00,0,1/2,2/5 in X;(5).
(i) s = o0t

L s(00) = lim & = lim —124— 52q> — 56¢° — 228¢" + - --
o) = llm — = lim
J15 z—>i00 Y g—0 q + q2 =+ 2q3 + 3q4 + 5q5 + -

= —44.
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(ii) s = 0: Since (9 ') sends oo to 0,

4-1P(2)/n(52) + B (2)]

i1,5(0) = lim
a0 = B G o)
i Y2 /(=5/2) + B (-1/z)
2o 1°(=5/2)/n(=1/2)
_ i ST TE(/5) + 2 Ea(e) = (2 /5) o))
e (V=iz/5"1P(2/5))/(V=T21(2)
by @) and {)
= —20V/5.

(iii) s = 1/2: Now that (23) (9 ') sends oo to 1/2,

J1,5(1/2)

i A 1°E@)/n062) + B ()
=00 n°(5z)/n(2) EH°)
L AP (@)/n(52) + B (2) e B
= ng G (01 by Lemmas [ and

=205 similarly to (ii).

(iv) s =2/5: (21) 00 =2/5.

J1,5(2/5) = lim

4P (2) /n(52) + B (2)

2ioo n°(5z)/n(z) (21)
4.9 (5)
= lim A (z)5/17(5z) + By (2) by Lemmas [l and [§]
= oo (a simple pole). O

4. MODULAR FUNCTION ji 6

Let us take ' =T'1(6) and set v1 = (§§), 72 = (1 9) and y3 = (3 12). If Rg is a
fundamental region of I'! (6), then Rg is described as

3
Re = ﬂ outside (7).

i=1

Hence we have a picture for Rg as shown in Figure 2.

Then as we see in Figure 2, Spi(g) = {00,0,2,3}. Furthermore, it follows from

Theorem [ that T (6) is generated by 71, 72 and ~3. Therefore we obtain the

Theorem 10. (i) Sr, (g = {00,
(ii) T'1(6) is generated by (§ 1

following theorem by ().

0,%,2}. All cusps of I'1(6) are regular ([16], [22]).
), (69) and ({5 2).

Then Table 2 shows the inequivalent cusps of I'; (6) by virtue of Lemma
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(09)

Rg

=)
~—

(3%)

FIGURE 2. Fundamental domain of I''(6).

TABLE 2. Cusps of I';(6)

cusp [ oo | O
width | 1|6

DO [l

[S%] Nl

Let Gép)(z) be the series as in Lemma Put X(z) = GSZ)(z) - Géz)(?)z) =
Ga(z) — 2G5(22) — Ga(32) + 2G5(62) and Y (2) = 2GV(2) — G (2) = Ga(z) —
4G4(22) + 3G2(3%). We set j16(2) = X(2)/Y (2).
Theorem 11. (a) X, Y € My(T'1(6)).

(b) C(X1(6)) is equal to C(j1,6(2)).

(c) ji,6 takes the following value at each cusp: jig(oco) = 1, ji1,6(0) = 4/3,
J1,6(1/3) =0, and j16(1/2) = 1/3.

Proof. By Lemma [6] Gép)(z) € M5(Ty(p)) for a prime p. Meanwhile, the identity

(69) ™ To(p) (29) NTo(p) = To(pa)

allows us to have G5 (v (gz) € M2(T'o(pq)). Therefore we easily get (a), from which

)
he=X/Y € (C(Xl( )). By the ¢g-expansion of G as in ([2]) we derive that
(5) X(2) =87 (¢+¢" +3¢° +¢" +6¢" +---),
(6) Y(z)=—87T2-(q—q2+7q3—5q4+6q5+-~-)~
Thus both X and Y vanish at oo, and the zero formula ([22], p.39) yields v(X) =
v(Y) = 2. If oo and wy (resp. wy() are the zeros of X (resp. Y), then wg is

not I'y(6)-equivalent to wy. Therefore v(j1,6) = Voo(j1,6) = 1, which means that
J1,6 generates C(X1(6)) over C. Next, as for the statement (c), we first recall that

there are four I'y (6)-inequivalent cusps oo, 0, 1/3 and 1/2. Put fi(z) = GéZ)(z)’
f2(2) = f1(32) and f3(2) = G (2). Then

(7) X(2) = f1(z) = fa(z) and Y(z) = 2f1(2) — fs(2).
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We shall then evaluate the values of f; (i = 1,2,3) at each cusp. First we note that

(8  GP(o0) = lim GY(x) =2¢(2)(1-p) by @),
(9) G (0) = lim GY(~1/2) = 2((2)(1 = 1/p) by @) and (@).

(i) Cusp values of fi:
fi(o0) = G“‘”(oo) =-2(2) by @,

f1(0) = GE(0) = ¢(2) by @),
f1(1/3) fl( ) C(2) since f]_ S Mg(ro(Q)) and 1/3 ~ 0 under F0(2),
f1(1/2) = f1(00) = —2((2) since 1/2 ~ oo under T'y(2).

(ii) Cusp values of fo: Observe that fa(z) = f1(32) = 3f1|[( N,
fa(oo) = lim fa(z) = lim £1(32) = fi(o0) = —2¢(2),

. 1
f2(0) = fim f?'[( L, 73 Al on e ),

zZ—i00 z—ico 3 0
:Zl_l>fznoo3f1|[( O)M(ég)]zéfl(o)'?)';C(Q)a
F2(1/3) = ;;zﬂwfzi[( m=JiIPM§f1'[<30>u<§9>]2
= i A LG, = 3402 = A0 =€)
f2<1/2>=z£rf;of2'[< 0, ZZE?ooéfl'K%?nz[(;?)L
=Rl LG ), 75O 95 = §h0/) = 5

(iii) Cusp values of f3:
fa(00) = Gé‘”( )=—4(2) by ®,
f5(0) = G5)(0) = 5¢2) by @),
f3(1/3) = f3(x) = —4((2) since f3 € M2(T'9(3)) and 1/3 ~ oo under I'y(3),
)=

f3(1/2) = f3(0) = f(( ) since 1/2 ~ 0 under I'y(3).

By (i), (ii), (iii) and (7)) we conclude that
X(00) =0, Y(o0) =0, j1,6(c0) =1 (see (@) and (@),
X(0) = SC(Q)’ Y(0) = 3¢(2), j1.6(0) = 4/3,
X(1/3) =0, Y(1/3) = 6¢(2), j1,6(1/3) = 0,
X(1/2) = %C@) Y(1/2) = =3¢(2), jre(1/2) = 1/3. O

5. NORMALIZED GENERATORS

For a modular function f, we call f normalized if its g-series is
1
6+0+a1q+a2q2+~~

Lemma 12. The normalized generator of a genus zero function field is unique.
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Proof. See [10], Lemma 8. O

We will construct the normalized generator (or the hauptmodulus) of the func-
tion field C(X1(N)) (N =5, 6) from the modular function j; x (N = 5,6) described
in Theorem [0 and Theorem [[1l First, we note that

—8 8y
Jus(z) +44 T x4+ 44y

1
:5+5+10q+5q2—15q3—24q4+15q5+~-~,

which is in ¢71Z][g]]. This will be justified later in §6. Thus let N (ji 5) =
As for the modular function j; g, we observe that

2 2y 2(Ga(z) — 4G2(22) + 3G2(32))
Ji6—1 X =Y  2G(22) — 4G2(32) + 2G2(62)
o GQ(Z) — 4G2(22‘) + 3G2(32‘)
N G2(22) — 2G2(32) + Ga(62)
8 (q—?+ T —5¢ + )
82 (2 - 23+ 3¢* + )

_ =8 _
j1,5+44 5

1
—+1+6q+4q° —3¢> —12¢* —8¢° + - -
q

)

which is also in ¢7'Z[[q]] because the g-series of —i— - (G2(2) — 4G2(22) + 3G2(32))
and —— - (G2(22) — 2G2(32) + G2(6%2)) belong to Z[[¢]], and the leading coefficient
of the latter series is 1. Define N(j16) = e Then the above computation

shows that N(j15) and N(ji1,6) are the normalized generators of C(X;(5)) and
C(X1(6)), respectively. By Theorem Bl(c) and [[T(c) we have Tables 3 and 4.

TABLE 3. Cusp values of j; 5 and N(j15)

s (o) 0 1/2 | 2/5
J1.5(5) —44 | —20v/5 | 20v/5 | oo
N(ji5)(s) | o0 # %“5 -5

TABLE 4. Cusp values of j1,6 and N(j1,6)

5 co| 0 |1/3]1/2
jl,G(S) 4/3 0 1/3
N(jlﬁ)(s) o0 5 73 —4

—_

Lemma 13. Let N be a positive integer such that the modular curve X1(N) is of
genus 0. Let t be an element of C(X1(N)) for which (i) C(X1(N)) = C(t) and (ii)
t has no poles except for a simple pole at one cusp s. Let f € C(X1(N)). If f has
a pole of order n only at s, then f can be written as a polynomial in t of degree n.
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Proof. Take v € SLy(Z) such that yoo = s. Let h be the width of s. Then we have

g1l
"T g,
and
1
l a
for some ¢ # 0 and b,, # 0. Thus
n 1
(f = bn(ct) )\v:)\n—1F+"'

h

for some A,,_1, and

1
(f = bn(et)" = A1 ()" Dy = Apa— + -+
h
for some \,_o. In this way we can choose \; € C such that
(f = bn(et)” = Apa(ct)" ™ =+ = Ai(et))]y € C[[g,]]-
Let g = f—bp(ct)”—N,_1(ct)" 1 —---—Xi(ct). Then g has no poles in $H*, and so g
must be a constant, say A\g. Therefore we end up with f = b, c™"t" + A1 1"~ +
<-4 Aict + Ao, as desired. O

Theorem 14. Let d be a square-free positive integer and t be the hauptmodulus
N(j1,n) (N =5,6). For z € Q(v/—d) N9, t(z) is an algebraic integer.

1
Proof. Let j(z) = — + 744 + 196884¢g + - - - be an elliptic modular function. It is
q

well known that j(z) is an algebraic integer for z € Q(v/—d) N § ([15], [22]). For
algebraic proofs, see [3], [17], [21] and [23]. Now, we view j as a function on the
modular curve X;(N). Let s be a cusp of I'; (N) other than oo, whose width is hs.
Then j has a pole of order hy at the cusp s. On the other hand, t(z) — t(s) has a
simple zero at s. Thus

ix I e -

SESFI(N) \{co}

has a pole only at co whose degree is 12 if N = 5 or 6, and so by Lemma [I3] it
is a monic polynomial in ¢ of degree 12, which we denote by f(¢). With the aid
of data from Tables 1, 2, 3 and 4, we can compute the product part in the above
more explicitly, that is,

(t2 —t —31)5(t + 5), if N=5

(t(z) = t(s))" = {(t —5)0(t+3)%(t+4)%, if N=6.

SGSFI(N) \{oo}

Since j and ¢ have integer coefficients in the g-expansions, f(t) is a monic polynomial
in Z[t] of degree 12. This claims that ¢(z) is integral over Z[j(z)]. Therefore t(z) is
integral over Z for z € Q(v/—d) N 9. O
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6. INTEGRALITY OF FOURIER COEFFICIENTS OF N (ji5)

We recall that N(j1,5) = s 5+44 -5 = xliiy — 5, where z(z) = 4-19°(2)/n(52) +
Eé )( ) and y( n°(52)/n(z). Since the g-series of —8y and x + 44y start with

?)
—8(g+¢* +- )(E 8qZ[[ 0 and —8q¢ 4 32¢3 + - - - (€ ¢®Z][q]]), respectively, the
g-series of N (j1,5) is in ¢~ 'Z[[q]] if all the Fourier coefficients of x + 44y are divisible
by 8, in which case we simply write 8 | 4+ 44y. Then
8|z +4dy = 8| x+4y < 8|4-10°(2)/n(52) +4-0°(52)/n(z )—|—E( )(2)
< 2| n°(2)/n(52) +n°(52)/n(z) except for the constant term

because 24 | Eés)(z) except for the constant term. Hence it suffices to show that
2| n5(2)/n(52) + n°(52)/n(z) except for the constant term.

Let A™ be the set of 2 x 2 integer matrices (2%), where a € 14+ NZ,c € NZ,
and ad — bc =n. For f € M, (T'1(N)) we define the Hecke operator T,, by

(10) flr, =073 " fla,

where I'; (N)a; runs through the right cosets of I'y (V) in A™. Then T;, preserves the
space My (To(N), x) for a Dirichlet character x ([I3], §5). Let Wx (f) = f] [( 0 _1)}
0 /g

be the action of the Fricke involution on f.

Lemma 15. Let n be a positive integer prime to N and let f € M(To(N), x) for
a Dirichlet character x. Then we have Wy o T,,(f) = x(n)Ty, o Wi (f).

Proof. A™ has the following right coset decomposition (see [13], [16], [22]):

(11) At = | Ur < ;)

aln @
(a,N)=1

where 0, € SLy(Z) such that o, = (2," 9) mod N. By (I0) and (I,
T, o Wi (f) = nk/2-1 Z

)

[ (8 nja )],

where ay = (5 '), Let agp = onano, (Snl/’a) ay' € A", Then it is easy

to show that o, are in distinct cosets of I'1 (V) in A™, and hence form a set of
representatives; so by (I0),

TnOWN(f)_n(k/2 IZ,ﬂaabaN _n(k/2) 1Zf|

" [onana(§ nfa)l,

=X()To(Wn(f)) since fli,], =X(n)f-
This completes the proof. (Il

Next, we observe that
MyTi(5) = P Ma(To(5),%)-

X€E(Z/5L)

Since (Z/57Z)* is generated by 2 (= 2 mod 5Z), any x € (Z/SZ)X is determlned
by the value at 2. Let x; be the character such that x;(2) = i. Then (Z/5Z)
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is generated by x1 so that x1* = X4riv and x12 = (%) . Note that if x is an odd
character, then M5(I'y(5), x) = {0}. Thus

(12) My (T'1(5)) = My (T'o(5)) & Ma(To(5), (g))

Now that the dimension of the space M (T") is equal to 0o (T') — 1, it follows from
(@) that M (I'o(5), (3)) is two dimensional. In fact it is generated by 1°(z)/n(5z)
and 7°(52)/n(z). Tt then follows from the proof of Lemma [B|(ii) that

(13) Ws(1°(2)/n(52)) = =5V5 - 11°(52) /1(2).
The fact that W5 is an involution and (I3)) imply that

Ws(n®(52)/1(z)) = (=5V5) " -1’ (2) /n(52).

Since T, preserves My (To(N), x), we may set

(14) T (n°(2)/0(52)) = pm - 0°(2)/0(52) + @m - 1°(52) /n(2)
and
(15) T (0°(52)/1(2)) = rim - 1°(2) /0(52) + 5m - 1°(52) /0(2)

for pm, Gms Tm, Sm € C. Here, we recall from [13], p.163 that if f(z) = a,q"™ and
T (f(2)) = > bng™, then

by, = Z X(d)dk_lamn/dz.
d|(m,n)
d>0

If we compare the constant terms in (IH), we get r,,, = 0. In like manner, from (I4)
we have

(16) =3 (g) a1 1.

dlm
d>0

When (m,5) = 1, by Lemma [[5] we obtain

5 5
1’ (2) m n°(2)
T, o Wr =|— )| Ws50T, .
) 5<n<5z>> (3)wee (n<5z>
Then, by (I3)) the LHS of the above is equal to

7 (25) - oo 25

On the other hand, the RHS is equal to

RHS = (2) W5 <pm e 775(52)>

5 n(5z) n(z)
- (3) [ A5 2]

Hence, by equating both sides we deduce that ¢, = 0 and s, = () pm = (2) -

> (%) d*~! by ([@8). Therefore for each positive integer m prime to 5, it follows
dlm
d>0



1060 CHANG HEON KIM AND JA KYUNG KOO

that
5 5

n (2)> n°(2)
17 T = Pm
() <77(5Z) n(52)
and
(18) T (”5(5'2)) - (ﬂ)p _1°(52)

n(z) 5 n(2)
Let % =Y ¢ng™ and % =Y dq™. If we compare the ¢'-coefficients in
(@@ and ([I8), then we get

m

(19) Cm = =5 P, dm = (g) P for (m,5) = 1.

Now, let m = 5. It then follows from (8] that ps = 1. Moreover in (I7) and (1),
by comparing the ¢'-coefficients, we have g5 = 0 and s5 = 5. More generally, we
take m = 5! - mgy with { > 0 and 5 { mg. Then

o o (52) 1 (1) -5 1)

5 5
n°(2) 1 (2)
— (T-)! . = . .
( 5) Pmg 77(52)) Pmg - P5 77(52)
5
URCI
= . =1
Prmo 52) since ps
Similarly,
5 5
n°(52) (mo) 1 1°(52)
21 T =(=). -5t .
. o (57) = () e 255
In the equations [20) and (ZI), if we compare the q'-coefficients, we obtain
mo
with pp, = > (£)dF~'. It is clear that 2 divides Cotomy T ., 3 hence we
d|mg
d>0

conclude that

except for the constant term.

7. RELATIONSHIP WITH MODULI OF ELLIPTIC CURVES

When £ is a field of characteristic prime to IV, the k-rational points on the curve
Xo(N) (X1(N), respectively) parametrize pairs (E, C) (pairs (E, P), respectively),
modulo equivalence over an algebraic closure k®8, of elliptic curves E with a k-
rational cyclic subgroup C (k-rational point P, respectively) of order N. There
are “forgetful” maps X1 (V) to Xo(N) which send (E, P) — (E,C) in terms of the
subgroup C' = {P,[2]P,...,[N]P}. There are two diagrams of interest coming from
these “forgetful” maps:
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X1(5) X1(6)
SN
X1(2) X1(3)
Xo(5) Xo(6)
N
Xo(2) Xo(3)
N
X(1) Xr(l)

All of these curves have genus zero, but some of these modular curves are easier to
describe than others. For example, there is a canonical bijection P! — X (1) of the
“j-line” which sends j — (E;, O;) in terms of the normal form

36 1
- T — -
Jj—1728 Jj—1728
with a specified base point O; = (0 : 1 : 0). Clearly the function field of X (1) is
k().

Similarly, there are canonical bijections P! — X;(N) which send t — (E;, P;) in
terms of the Tate normal forms

Ej:y2+xy:x3—

y? =23 + 222 + tz, if N =2;
(22) B y? + 3zy + ty = 23, ( if N =3;
Y 24+ (L tay + ty = 2 + ta?, if N =5;

Y2+ (1 +tzy + (t— )y = 23 + (t — t2)a?, if N =6,

each with a specified point P, = (0 : 0 : 1) of order N. Such formulas can be
found in [6, pp.94-95]. Using the “forgetful” maps X;(N) to X(1), one has the
expressions

64(4 — 3t)3/(t3(1 — 1)), if N =2;
C ) 27983 /(3 (1 - 1)), if N = 3;
TTY (=12t 1482 4 1263 4143 /(15(1 — 11t — £2)),  if N = 5;

((1—3t)(1 — 9t + 3t2 — 3t3))3/(t5(1 — t)3(1 — 9t)), if N =6.

Clearly the function field of X; (V) is k(¢) in these cases; it may be thought of as
an algebraic extension of k(j). When the parameter ¢ is interpreted as a modular
function ¢(z), we can find the following identities between our modular function
N(j1,n)(2) and t(z).
Theorem 16. (i) N(ji5)(z) +5 = %

(i) N(jr6)(2) + 1= 61520
Here we set € = (5 +<5_1.
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TABLE 5
s |oo|2/5]|1/2| 0
f(s)|oo| O | —€°]e™®

Proof. (i) First we note that ¢ satisfies €2 + & — 1 = 0. Since ¢ = 2cos(27/5) > 0,
we have ¢ = ’1%‘/5 and hence &5 = %5‘/5 Let f(z) = N(ji5)(2) +5. The
values of f(z) at the cusps (obtained from Table 3) are shown in Table 5. Since
A(E;) = —t5(t? + 11t — 1) from the equation of E; in ([22), the set of possible
values of t(z) at the cusps are {c0,0,&°% —e7%}. Since t(z) is a fractional linear
transformation of f(z), we come up with

[f(00), £(2/5), f(1/2), F(0)] = [ta, ta, s, ta],
[00,0, =%, f(2)] = [tr, t2, 3, £(2)],
where t; = t(00),t2 = t(2/5),t3 = t(1/2),ts = ¢(0). Thus we obtain that
(t(z) — t1)(t2 — t3) e

(23)

(t(2) —t3)(ta —t1)  f(z) +&>
Suppose t(z) has a pole or zero at a cusp s. Let h be the width of the cusp s.
Considering the gj-expansion of t(z) at s we see from the identity
(1 — 12t + 14¢2 + 1243 + ¢4)3
5(1— 11t — 12)
that % +0(1) = % + O(1). This yields h = 5. It then follows from Table 1 that

s =1/2 or s = 0. This means that t3,t, € {00,0} and so t1,ts € {e°, —¢7}. There
are four possibilities for the cusp values t(s):

Case (i). t; =&, tg = —e7°,t3 = 0,14 = 00,

Case (11) t1 = 65,t2 = —6_5,t3 =00,t4 =0,
Case (iii). t; = —e 72 tg = &°,t3 = 0,14 = 00,
Case (iv). t1 = —e %ty =% t3 = 00,t4 = 0.

We see by a routine check that only the second and third case satisfy the identity
[23), from which we conclude that ¢(z) should be either
Sf(z) - 1 f(2) + &
u(z) = ————— or v(z)= —FF——.
(2) f(z)+¢&d (2) —e%f(z)+1
Now we consider the elliptic curve E; : y2 + 2zy + y = 2% + 2. By making an
appropriate change of variables we achieve the elliptic curve
4 19
E:y? =42 — o+ —
TS
which is isomorphic to F;. We note that under this isomorphism the point P, =
(0,0) € E; is sent to (2/3,—1) € E. The period lattice L of F is given by L =
w1Z + woZ with
w1 = 6.346046521397767108443973083772736526087 - - - |
wy = 3.1730232606988835542219865418863682630438 - - -

+ 1.458816616938495229330889612903675257158 - - - ¢
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TABLE 6
s |oo|0|1/3]1/2
g(s) oo | 6| —2 | =3

from which we can estimate that
g2(L) =1.33333---, g3(L) = —0.703703703 - - -,
P(w1/5,L) = 0.66666--- , P’'(w1/5,L) =—1.00000--- .

Here P(z, L) stands for the Weierstrass P-function attached to the lattice L. Thus it
turns out that the point of X;(5) corresponding to the pair (E1, P;) is wa/w;. Using
the Fourier expansion of f(z) we can find u(ws/wq) = 1.00000--- and v(wz/w1) =
—1.00000 - - - . Therefore we are forced to have t(z) = u(z).

(ii) Let g(z) = N(j1,6)(2) +1. Then it is immediate from Table 4 that the values
of g(2) at the cusps of X;(6) are as shown in Table 6. Since A(E;) = (t—1)3t%(9t—1)
from the equation of E; in ([22]), the set of possible values of ¢(z) at the cusps are
{00,1,0,1/9}. Since ¢(z) is a fractional linear transformation of g(z), we have the
equality

[9(c0),9(0), 9(1/3), 9(1/2)] = [t1, ta, t3, ta],
[

[00,6, 7239(2)] 1 t2at3a ( )]7
where t; = t(00), to = t(0),t3 = t(1/3),t4 = t(1/2). Thus we establish
(t(z) —t1)(ta —t3) 8

(24) (t) —ta)ta—t1) 9 2

Suppose t(s) = oo for some cusp s. We let h be the width of the cusp s and consider
the gp-expansion of t(z) at s. We choose an element v € SLs(Z) such that yoo = s.
It then follows that t|, = ;= + O(1) for some ¢ € C. Now, from the identity

(1 =3t)(1 — 9t + 3t2 — 3t%))®

B t0(1 —¢)3(1 — 9t)
we see that ¢ +O(1) = é + O(1). This yields A = 2. Tt then follows from Table 2
that s = 1/3 and hence ts = t(1/3) = oo. Similarly if ¢(s) = 0, then we come up

with % +O(1) = = 4+ O(1). Thus we have h = 6 and s = 0, and we deduce that
to = t(0) = 0. Therefore the identity (24)) is simplified to
t(z) =1 8
(25) () =t _ .
—t1 g(Z) +2

Here we have two choices for the values ¢y and ¢4: ¢t; =1 and ¢4, = 1/9, 0r t; = 1/9
and t4 = 1. Only the latter case fits the identity (25), from which we get the
assertion as desired. O

According to the referee’s comment we can have canonical bijections P! —
Xo(N) which send r — (E,, C,) in terms of the normal forms

W=z +2(T+64) 2+r+64 z, if N =2;
PR M2 gy g, it N =3
ro. y n (27‘+25) Ty + (r +22r+125) $ + r+10 2’ if N = 5;
+ 5T_:36.%'y + 9(r+8)(7+9)y o :L‘ + 2(r+9) 2 if N = 6,
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and cyclic subgroups C,. = ((z : y : 1) | ¥,.(x) = 0) of order N which are generated
by the roots of certain divisors of the division polynomials:

T if N =2;
x if N =3;
¢r($) = 5x2 . 4(r2+2r227'+125) if N = 5;
x if N =6.

Using the “forgetful” maps X;(N) — Xo(N), one has the expressions

64t/(1 —t), if N = 2;

) e/ -, if N =3;
T 125t/(1— 11t —¢2), if N =5;
72t/(1 — 9¢), if N =6.

Clearly the function field of Xo(N) is k(r) in these cases; it may be thought of as
an algebraic extension of k(j) which is contained in k(t). These curves are chosen
on the parameter r. For z € $*, define the hauptmoduli

<n"((222)))24:%—24+276q—2048q2+--- if N = 2;
r(2) = (&%3)12=%—12+54q—76q2+'“ N =3;
(7;7((51))6:5—6+9q+10q2+--- if N =5;
2 — 154G+ dg® + - if N =6,

in terms of the Dedekind eta function
n(z)=q¢"* [[Q-q") forq=e".
n=1

We may summarize all of this discussion in a lattice diagram of function fields.
As for X1(5), the “forgetful” maps correspond to the following for a field of &k of
characteristic not dividing 5:

X4 (5) t k()
2
Xo(5) r= i k(r)
6

2 3
X(1) j= (r°+2507+3125)" k(5)

r5
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For X;(6), the “forgetful” maps correspond to the following for a field of k of
characteristic not dividing 6:

X1(6) t k(t)
X1(2) X1(3) k 64t L g (2=
! ! (3t2+6t—1)2 (3t—1)3
Xo(6) -
/ \ 1 / \ 1
wb | o () | )
\3\ /
xof - emtcpmses )
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