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DUALITY THEORY AND PROPAGATION RULES

FOR GENERALIZED DIGITAL NETS

JOSEF DICK AND PETER KRITZER

Abstract. Digital nets are used in quasi-Monte Carlo algorithms for approx-
imating high dimensional integrals over the unit cube. Hence one wants to
have explicit constructions of digital nets of high quality. In this paper we
consider the so-called propagation rules for digital nets, which state how one
can obtain a new digital net of different size from existing digital nets. This
way one often can generate digital nets of higher quality than were previously
known. Here we generalize existing propagation rules for classical digital nets
to generalized digital nets as introduced by Dick.

1. Introduction

Often it is necessary to approximate a high dimensional integral
∫
[0,1]s

f(x) dx

by some numerical algorithm. One way of doing so is by using a quasi-Monte Carlo

(qMC) algorithm, where one simply approximates the integral by 1
N

∑N−1
h=0 f(xh).

As quadrature points one can use a so-called digital (t,m, s)-net. Classical digital
(t,m, s)-nets were introduced by Niederreiter [7] (see also [8]). The aim of these
constructions is to obtain point sets which are uniformly distributed in [0, 1)s. By
a point set we mean a multiset, i.e., points may occur repeatedly. One obtains the
optimal order of convergence (up to powers of the logarithm of the total number of
points) in this case for functions which have finite variation in the sense of Hardy
and Krause; see [8].

In [5], digital nets were generalized to construct point sets for which the corre-
sponding qMC algorithm achieves higher order convergence of the integration error
for smoother functions. The construction principle of a digital net in the sense of
[7] and [5] is based on linear algebra over finite fields and works as follows. Here
and in the following, vectors are always written as row vectors.

Definition 1. Let q be a prime power and let n,m, s be natural numbers. Let
C1, . . . , Cs be n × m matrices over the finite field Fq of order q. We construct
qm points in [0, 1)s in the following way: For 0 ≤ h < qm let h = h0 + h1q +
· · ·+ hm−1q

m−1 be the base q representation of h. Consider an arbitrary but fixed
bijection η : {0, 1, . . . , q − 1} → Fq, where η(0) is the zero element in Fq. Identify
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h with the vector h := (η(h0), . . . , η(hm−1)) ∈ F
m
q . For 1 ≤ j ≤ s, we multiply the

matrix Cj by h, i.e.,

Cj · h� =: (yj,1(h), . . . , yj,n(h)) ∈ Fq,

and set

x
(j)
h :=

η−1(yj,1(h))

q
+ · · ·+ η−1(yj,n(h))

qn
.

Set xh :=
(
x
(1)
h , . . . , x

(s)
h

)
. The point set consisting of the points x0, . . . ,xqm−1

is called a digital net over Fq. The matrices C1, . . . , Cs are called the generating
matrices of the digital net.

As can be seen from Definition 1, the properties of the points of a digital net
(such as, e.g., their distribution in the unit cube) are determined by properties of
the generating matrices C1, . . . , Cs. These properties are, in the currently most
general form of digital nets as introduced in [5], described by additional parameters
t, α, β, which is why those nets are referred to as (t, α, β, n×m, s)-nets. The exact
role of the parameters t, α and β is stated in the following definition.

Definition 2. Let n,m, α ≥ 1 be natural numbers; let 0 < β ≤ min(1, αm/n)
be a real number. Let Fq be the finite field of prime power order q and let

C1, . . . , Cs ∈ F
n×m
q with Cj = (�cj,1, . . . ,�cj,n)

�. The digital net with generating ma-
trices C1, . . . , Cs is called a digital (t, α, β, n×m, s)-net for an integer t, 0 ≤ t ≤ βn,
if the following condition is satisfied. For each choice of 1 ≤ ij,νj

< · · · < ij,1 ≤ n,
where νj ≥ 0 for j = 1, . . . , s, with

(1) i1,1 + · · ·+ i1,min{ν1,α} + · · ·+ is,1 + · · ·+ is,min{νs,α} ≤ βn− t,

the vectors

(2) �c1,i1,ν1 , . . . ,�c1,i1,1 , . . . ,�cs,is,νs , . . . ,�cs,is,1

are linearly independent over Fq.
If t is the smallest non-negative integer such that the digital net generated by

C1, . . . , Cs is a digital (t, α, β, n × m, s)-net, then we call the digital net a strict
digital (t, α, β, n×m, s)-net.

Remark 1. Note that Definition 2 implies that t must be chosen such that ν1 +
· · ·+ νs ≤ m holds whenever (1) is satisfied. (Note that νj ≤ ij,1.)

Remark 2. W.l.o.g. β in Definition 2 may be chosen such that βn is an integer,
although in the formulae below it is often more convenient to define β in a way
which does not guarantee that βn is an integer. This does not affect the quality of
the net, as the left hand side of (1) is always an integer (therefore one could always
replace βn with �βn�).

Remark 3. Without loss of generality we added the condition that β ≤ 1 in Defi-
nition 2. Note that there is some redundancy in Definition 2. One could view the
value βn− t as the strength of the digital net, which is the value which matters in
Definition 2. Through which values of β and t a particular strength was obtained
does not have any influence, i.e., a digital (t, α, β, n×m, s)-net has the same prop-
erties as a digital (t′, α, β′, n × m, s)-net, as long as βn − t = β′n − t′ (see also
Theorem 2 below). In view of [5, Remark 5.3] we can therefore assume without loss
of generality that β ≤ 1.
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To understand why this redundancy is needed one needs to consider digital
sequences. As in the classical case, we base the definition of digital sequences on
the definition of digital nets; i.e., each suitable subset of the digital sequence has
to be a digital (t, α, β, n × m, s)-net. When one considers digital sequences, the
redundancy of β and t then disappears; see [5] for the definition of such digital
sequences.

The definition of classical digital (t,m, s)-nets is obtained by choosing α = β = 1
and m = n in Definition 2.

Remark 4. As already indicated in Remark 3, the value of the difference βn− t is
crucial for the quality of a digital net. This is why βn− t (which simplifies to m− t
in the case of classical digital nets) is referred to as the strength of the digital net.
Generally speaking, it is desirable to obtain digital nets with strength as large as
possible; i.e., one is interested in constructing nets with low t-value. However, due
to the involved interdependence of the parameters of a digital net, there are many
combinatorial restrictions on the possible values of the strength of a digital net.
The question of which strength of a digital net can be achieved or not is in general
non-trivial (cf. [15]).

To illustrate the usefulness of digital (t, α, β, n × m, s)-nets for numerical inte-
gration, we state the following result:

Theorem 1. Let {x0, . . . ,xqm−1} be a digital (t, α, β, n×m, s)-net over the finite
field Fq. Let f : [0, 1]s → R have mixed partial derivatives up to order α ≥ 1 in
each variable which are square integrable. Then∣∣∣∣∣

∫
[0,1]s

f(x) dx− 1

qm

qm−1∑
h=0

f(xh)

∣∣∣∣∣ = O
(
q−(βn−t)(βn− t)αs

)
.

For α = 1 this is a classical result, see for example [8], and for α > 1, see [5].
Hence it is important to have explicit constructions of digital nets with a large value
of βn− t.

In a series of papers, see for example [2, 9, 11, 13] and also the survey article
[10], so-called propagation rules for digital (t,m, s)-nets were introduced, which
allow one to construct new digital nets from known ones and thereby improve on
the parameters, in particular on the strength, of those nets. That such constructions
are very useful can be seen in [15], where the best-known parameters of classical
(t,m, s)-nets are listed. Even though many propagation rules have been studied for
the case of classical digital nets (see again [15]), there has, so far, been no systematic
approach to propagation rules for the generalized digital (t, α, β, n × m, s)-nets
introduced in [5]. It is the aim of this paper to study such rules for the generalized
digital nets in greater detail, and thereby find new ways of explicitly constructing
digital nets of high quality (see Section 4 for numerical results).

Some simple propagation rules for generalized digital nets were already stated
in [5]; for a proof, see [4, Theorem 3.3]. For completeness we repeat them in the
following theorem, and we also include some further trivial propagation rules.

Theorem 2 (Propagation Rules I–VI). Let P be a digital (t, α, β, n×m, s)-net over
Fq with generating matrices C1, . . . , Cs ∈ F

n×m
q (we assume that βn is an integer).

Then we have the following:
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(i) P is a digital (t′, α, β′, n×m, s)-net for all 0 < β′ ≤ min(1, αm/n) and all
t′ ≤ β′n with β′n− t′ ≤ βn− t.

(ii) P is a digital (t′, α′, β′, n × m, s)-net for all 1 ≤ α′ ≤ n, where β′ =
βmin(1, α′/α) and t′ = �tmin(1, α′/α)�.

(iii) Let 1 ≤ n′ ≤ n. Then the matrices C
(n′)
1 , . . . , C

(n′)
s , where C

(n′)
j consists

of the first n′ rows of Cj, generate a digital (t′, α, β, n′ ×m, s)-net, where
t′ = max(�t− β(n− n′)�, 0).

(iv) Let n′ ≥ n. Then the generating matrices C
(n′)
1 , . . . , C

(n′)
s , where the first

n rows of C
(n′)
j are the same as those of Cj and the remaining n′ − n rows

are 0 = (0, . . . , 0) ∈ F
m
q , generate a digital (t, α, β′, n′ × m, s)-net, where

β′ = βn/n′.
(v) Let 1 ≤ s′ ≤ s and u ⊆ {1, . . . , s} be a subset of cardinality s′. Then the set

of generating matrices {Cj : j ∈ u}, generate a digital (t, α, β, n×m, s′)-net.

(vi) For 1 ≤ j ≤ s, let C ′
j ∈ F

n×(m+v)
q be the matrix obtained by augmenting

Cj with v columns of 0� = (0, . . . , 0)� ∈ F
n
q . Then C ′

1, . . . , C
′
s generate a

digital (t, α, β, n× (m+ v), s)-net.

In this paper, we discuss further (non-trivial) propagation rules. In some cases
it is convenient to view those propagation rules from the dual space of the digital
net, which is why we generalize the duality theory of [12] to the digital nets of
Definition 2 in Section 2. Using this theory, we then establish generalizations of
the propagation rules which are known for digital (t,m, s)-nets. Here we introduce
generalizations of the following propagation rules: the direct product of digital nets
(see e.g. [10]), the (u, u+ v)-construction [2], the matrix-product construction [11],
three different base change propagation rules [13, 14, 15] and the construction of
higher order nets [5].

Throughout the paper, we assume that q is a prime power and Fq is the finite
field of order q. Once again we remark that vectors c ∈ F

m
q will always denote row

vectors.

2. Duality theory

In this section we generalize the duality theory introduced in [12] to digital
(t, α, β, n×m, s)-nets. Given generating matrices C1, . . . , Cs of a generalized digital
net, let

C = (C�
1 | · · · | C�

s ) ∈ F
m×sn
q .

The row space of C, denoted by C , is a linear subspace of Fsn
q . We define the dual

space N of C as the null space of C.
Let α ∈ N. For a ∈ F

n
q let µα(0) = 0 and for a = (a1, . . . , an), where the

only non-zero elements are ai1 , ai2 , . . . , aiv , with n ≥ i1 > i2 > · · · > iv ≥ 1, let
µα(a) = i1 + · · ·+ imin(α,v). For vectors A = (a(1), . . . , a(s)) ∈ F

sn
q , with a(i) ∈ F

n
q

for 1 ≤ i ≤ s, we define

µα,n(A) =
s∑

i=1

µα(a
(i)).

Remark 5. For α = 1 we obtain the definition of the quantity Vm in [12].

The following definition is analogous to [12, Definition 2].
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Definition 3. For any non-zero linear subspace N of Fsn
q we define the minimum

distance

δα,n(N ) = min
A∈N\{0}

µα,n(A).

We always have δα,n(N ) ≥ 1 and δα,n(N ) ≥ δα′,n(N ) for α ≥ α′ ≥ 1.
We generalize [12, Proposition 1], which itself is a generalization of the Singleton

bound from coding theory. The proof can be obtained along the same lines as the
proof of [12, Proposition 1]. We put (x)+ = max(x, 0).

Proposition 1. Let N be a non-zero linear subspace of Fsn
q with dim(N ) − 1 =

rn+ u, where 0 ≤ u < n and 0 ≤ r < s. Then we have

δα,n(N ) ≤ (s− r − 1)[n+ (n− 1) + (n− 2)+ + · · ·+ (n− α+ 1)+]

+(n− u) + (n− u− 1) + (n− u− 2)+ + · · ·+ (n− u− α+ 1)+.

Proof. Let h = dim(N ) ≥ 0. Let π : N → F
h+1
q be the linear transformation which

maps A ∈ N to the (h+1)-tuple of the last h+1 coordinates of A. If π is surjective,
then there exists a non-zero A1 ∈ N with

π(A1) = (1, 0, . . . , 0) ∈ F
h+1
q ;

i.e., the last h coordinates of A1 are 0. Then

µα,n(A1) ≤ (s− r − 1)[n+ (n− 1) + (n− 2)+ + · · ·+ (n− α+ 1)+]

+(n− u) + (n− u− 1) + (n− u− 2)+ + · · ·+ (n− u− α+ 1)+.

If π is not surjective, then for any A2 in the kernel of π we have

µα,n(A2) < (s− r − 1)[n+ (n− 1) + (n− 2)+ + · · ·+ (n− α+ 1)+]

+(n− u) + (n− u− 1) + (n− u− 2)+ + · · ·+ (n− u− α+ 1)+.

In both cases we get the result of the proposition. �

Remark 6. Putting α = 1 in the proposition above yields [12, Proposition 1].

We can also obtain the analogue to [12, Theorem 1], which was already stated
in [5, Remark 4.4].

Theorem 3. The matrices C1, . . . , Cs ∈ F
n×m
q generate a digital (t, α, β, n×m, s)-

net over Fq if and only if

δα,n(N ) ≥ βn− t+ 1,

where N is the dual space of the row space C . If C1, . . . , Cs generate a strict digital
(t, α, β, n×m, s)-net over Fq, where we assume that βn is an integer, then

δα,n(N ) = βn− t+ 1.

We also have the following result (cf. [12, Section 2]).

Proposition 2. We have

dim(C ) ≤ m and dim(N ) ≥ sn−m.

Proof. The bound on the dimension of C follows as C is the row space of a matrix
withm rows. The second inequality follows asN is the null space of C and therefore
dim(N ) = sn− dim(C ). �
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3. Propagation rules

In this section we introduce several propagation rules for digital (t, α, β, n×m, s)-
nets. Analogues for digital (t,m, s)-nets exist already in the literature (those cases
are also covered as special cases of our results).

3.1. Direct product of two nets. As in the classical case (see, e.g., [10]), a
digital (t, α, β, n × m, s)-net can be constructed by forming the direct product of
two smaller nets.

To be more precise, let q be a prime power, let P1 be a digital (t1, α1, β1, n1 ×
m1, s1)-net over Fq and P2 a digital (t2, α2, β2, n2 × m2, s2)-net over the same
field. We denote the points of P1 by x0,1, . . . ,xqm1−1,1 and the points of P2 by
x0,2, . . . ,xqm2−1,2. Furthermore, we denote the generating matrices of P1 and P2

by C1,1, . . . , Cs1,1 and C1,2, . . . , Cs2,2, respectively. Based on P1 and P2, we form a
new digital (t, α, β, n×m, s)-net P over Fq, where n = n1 +n2, m = m1 +m2, and
s = s1 + s2. The points of P are defined to be the direct product of the points of
P1 and P2, i.e., P is the collection of the qm points

(xi1,1,xi2,2) , 0 ≤ i1 ≤ qm1 − 1, 0 ≤ i2 ≤ qm2 − 1.

For the generating matrices D1, . . . , Ds of P , this means that

Dj =

(
Cj,1 0n1×m2

0n2×m1 0n2×m2

)
, 1 ≤ j ≤ s1,

and

Dj =

(
0n2×m1 Cj−s1,2

0n1×m1 0n1×m2

)
, s1 + 1 ≤ j ≤ s,

where 0k×l denotes a k × l matrix consisting only of zeros. In the following, we
denote the i-th row of the matrix Dj by dj,i for 1 ≤ j ≤ s.

We have the following result (which is Propagation Rule 4 in [10]).

Theorem 4 (Propagation Rule VII). Let q be a prime power, let P1 be a digital
(t1, α1, β1, n1×m1, s1)-net over Fq and let P2 be a digital (t2, α2, β2, n2×m2, s2)-net
over the same field. Furthermore, let P be defined as above. Then P is a digital
(t, α, β, n×m, s)-net over Fq, where n = n1 + n2, m = m1 +m2, s = s1 + s2, and

α = max{α1, α2}, β = min{β1, β2}, t ≤ max{β1n1 + t2, β2n2 + t1}.

Proof. It is easily verified that 0 ≤ β ≤ min(1, αm/n). We need to check that t, as
given above, satisfies the necessary conditions such that P is indeed a (t, α, β, n×
m, s)-net. Let ν1, . . . , νs ≥ 0 and, for 1 ≤ j ≤ s, let 1 ≤ ij,νj

< ij,νj−1 < · · · <
ij,1 ≤ n, with

(3) i1,1 + · · ·+ i1,min{ν1,α} + · · ·+ is,1 + · · ·+ is,min{νs,α} ≤ βn− t.

Note that βn− t exceeds neither β1n1 − t1 nor β2n2 − t2. Thus, (3) implies

i1,1 + · · ·+ i1,min{ν1,α} + · · ·+ is1,1 + · · ·+ is1,min{νs1
,α} ≤ β1n1 − t1,

is1+1,1 + · · ·+ is1+1,min{νs1+1,α} + · · ·+ is,1 + · · ·+ is,min{νs,α} ≤ β2n2 − t2,

and, since β1, β2 ≤ 1,

ij,1 ≤ n1, 1 ≤ j ≤ s1, and ij,1 ≤ n2, s1 + 1 ≤ j ≤ s.
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As a consequence, we have that the row vectors dj,ij,νj
, . . . ,dj,ij,1 are rows of the

matrix (
Cj,1 0n1×m2

)
for each j ∈ {1, . . . , s1}. Similarly, the row vectors dj,ij,νj

, . . . ,dj,ij,1 are rows of

the matrix (
0n2×m1 Cj−s1,2

)
for each j ∈ {s1 + 1, . . . , s}, respectively.

Due to the assumptions made on the parameters of P1 and P2, it thus follows that
the row vectors d1,i1,ν1

, . . . ,d1,i1,1 , . . . ,ds,is,νs
, . . . ,ds,is,1 are linearly independent,

which completes the proof. �

Remark 7. Note that for i = 1, 2, we always have βini ≤ αimi, and as
βn − t ≤ βini − ti, i = 1, 2, we obtain βn − t ≤ αimi. In order to obtain the
best rate of convergence of the integration error, we require βn to be of order αm
(see Theorem 1 or [5, Corollary 5.5]). Note that we view β and t as functions of
α (see [5, Remark 4.5]). Thus, to achieve such a convergence rate one should find
values t1, t2, β1, β2 for α1 = α2.

3.2. The (u, u+v)-construction. In the classical case of digital (t,m, s)-nets there
is a construction stemming from coding theory called the (u, u + v)-construction
(see, e.g., [2]). We now show that a similar construction is possible in the generalized
case. However, we do not outline the (u, u+ v)-construction in its coding-theoretic
context, but show the result by making use of the generating matrices of the digital
nets.

Again let P1 be a digital (t1, α1, β1, n1 × m1, s1)-net over Fq, with generating
matrices C1,1, . . . , Cs1,1, and let P2 be a digital (t2, α2, β2, n2 ×m2, s2)-net over Fq

with generating matrices C1,2, . . . , Cs2,2. We assume that s1 ≤ s2. From these two
digital nets we form a new digital (t, α, β, n×m, s)-net over Fq, where n = n1+n2,
m = m1 +m2, and s = s1 + s2, in the following way: Let

k := min{2β1n1 − 2t1 + 1, β2n2 − t2}
and let P be the digital net generated by the matrices D1, . . . , Ds, with

Dj =

(
Cj,1 − (Cj,2)

k×m2

0n2×m1 0(n−k)×m2

)
, 1 ≤ j ≤ s1,

and

Dj =

(
0n2×m1 Cj−s1,2

0n1×m1 0n1×m2

)
, s1 + 1 ≤ j ≤ s,

where (Cj,2)
k×m2 denotes the matrix that consists of the first k rows of Cj,2 and

−(Cj,2)
k×m2 denotes the additive inverse in Fq of the matrix (Cj,2)

k×m2 .
The following propagation rule generalizes the (u, u + v)-construction from [2];

see [2, Corollary 5.1].

Theorem 5 (Propagation Rule VIII). Let q be a prime power, let P1 be a digital
(t1, α1, β1, n1×m1, s1)-net over Fq and let P2 be a digital (t2, α2, β2, n2×m2, s2)-net
over the same field. Furthermore, let P be defined as above. Then P is a digital
(t, α, β, n×m, s)-net over Fq, where n = n1 + n2, m = m1 +m2, s = s1 + s2, and

α = max{α1, α2}, β = min{β1, β2}, t = �βn� − k.
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Remark 8. Similar to Remark 7, one should use α1 = α2 in Theorem 5 in order to
be able to obtain βn to be of order αm.

We omit the proof of the last theorem, as the (u, u+ v)-construction is a special
case of the matrix-product construction, which we consider in the next section.

3.3. The matrix-product construction. The matrix-product construction for
classical digital nets was introduced in [11], which itself is a generalization of the
matrix-product construction of codes in [3]. The (u, u+ v)-construction considered
above is a special case thereof. In the following we introduce the construction
principle, which works in exactly the same way as the construction introduced in
[11] for (d, k,m, s)-systems, and then we provide a bound on the quality of digital
nets obtained this way. As the construction method is the same, the proof method
is also very similar (indeed, this subsection is to a large extent identical to [11,
Sections 3 and 4]; for completeness we repeat the necessary results and definitions
here). As in [11], we introduce some notation and definitions first.

Let us first introduce matrices which are non-singular by column (NSC matrices)
[3]. Let A be an M ×M matrix over a finite field Fq. For 1 ≤ l ≤ M , let Al denote
the matrix which consists of the first l rows of A. For 1 ≤ k1 < · · · < kl ≤ M , let
A(k1, . . . , kl) denote the l × l matrix consisting of the columns k1, . . . , kl of Al.

Definition 4. We call an M × M matrix A defined over a finite field Fq non-
singular by columns (NSC) if A(k1, . . . , kl) is non-singular for each 1 ≤ l ≤ M and
1 ≤ k1 < · · · < kl ≤ M .

Recall that an M ×M matrix A = (Ak,l) is upper triangular if Ak,l = 0 for all
1 ≤ l < k ≤ M .

Remark 9. As noted in [11], an M ×M NSC matrix over Fq exists if and only if
1 ≤ M ≤ q; see [3, Section 3]. For any integer 1 ≤ M ≤ q, an explicit M × M
upper triangular NSC matrix over Fq is given in [3, Section 5.2].

For the matrix-product construction in its general form, another definition is
needed.

Definition 5. Let 1 ≤ r1 ≤ · · · ≤ rM be integers and V1 ⊆ F
r1
q , . . . , VM ⊆ F

rM
q be

vector spaces over Fq. Let r = rM and for each 1 ≤ l ≤ M and any vl ∈ Vl, let
v̄l ∈ F

r
q be the vector obtained from vl by appending zero entries if rl < r. We

call an M × M matrix A over Fq compatible with (V1, . . . , VM ) if for any vectors
v1 ∈ V1, . . . ,vM ∈ VM and ū1, . . . , ūM ∈ F

r
q with

[ū�
1 . . . ū�

M ] = [v̄�
1 . . . v̄�

M ] ·A
and

ūl = [ū1,l . . . ūr,l] ∈ F
r
q for 1 ≤ l ≤ M,

we have ūk,l = 0 for each 1 ≤ l ≤ M and rl < k ≤ r.

The following remark and lemma are from [11].

Remark 10. For any integers 1 ≤ r1 ≤ · · · ≤ rM , if A is an M × M matrix over
Fq compatible with (Fr1

q , . . . ,FrM
q ), then A is compatible with (V1, . . . , VM ) for any

vector spaces V1 ⊆ F
r1
q , . . . , VM ⊆ F

rM
q over Fq.

Lemma 1. Let A be an M ×M upper triangular matrix over Fq. For any integers
1 ≤ r1 ≤ · · · ≤ rM , A is compatible with (Fr1

q , . . . ,FrM
q ).
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Now we can introduce the matrix-product construction. Assume we are given
digital (tk, α, βk, nk×mk, sk)-nets over Fq with generating matrices C1,k, . . . , Csk,k,
1 ≤ k ≤ M , where we assume that 1 ≤ s1 ≤ · · · ≤ sM . Note that we now use the
same value of α for all M digital nets; i.e., we assume that tk and βk are known for
the same given value of α for k = 1, . . . ,M . By adding zeroes at the appropriate
places in the respective generating matrices we can assume that n1 = · · · = nM = n;
i.e., we replace each Cj,k with C ′

j,k, where the rows nk +1, . . . , n are (0, . . . , 0) and

the first nk rows of Cj,k and C ′
j,k are the same for j = 1, . . . , sk.

As in Section 2, for 1 ≤ k ≤ M we form the matrices

Ck = ((C ′
1,k)

� | · · · | (C ′
sk,k

)�).

The row space of Ck is denoted by Ck ⊆ F
nsk
q and the dual space of Ck is denoted

by C⊥
k ⊆ F

nsk
q .

Put s = sM and for each k = 1, . . . ,M and ak ∈ C ⊥
k , let āk ∈ F

ns
q be the vector

obtained from ak ∈ F
nsk
q by appending enough zeroes, that is,

ā�k =

(
a�k
0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a�1,k
...

a�sk,k
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where aj,k ∈ F
n
q for 1 ≤ k ≤ M and 1 ≤ j ≤ sk.

For the remainder of this section we will assume that A is an M×M NSC matrix
over Fq which is compatible with (C⊥

1 , . . . ,C ⊥
M ) (this of course implies that M ≤ q).

For example, we can choose an upper triangular NSC matrix as A.
Let

M := {(ā�1 ā�2 . . . ā�M ) ·A : ak ∈ C ⊥
k for 1 ≤ k ≤ M};

i.e., M is a linear space of (ns)×M matrices over Fq. In the next step we define
an Fq-linear mapping

φ : M → F
n(s1+···+sM )
q .

Let

C = (c̄�1 c̄
�
2 . . . c̄�M ) ∈ M

be a matrix in M, where

c̄�k =

⎛
⎜⎜⎜⎝

c̄�1,k
c̄�2,k
...

c̄�s,k

⎞
⎟⎟⎟⎠

and c̄j,k ∈ F
n
q for 1 ≤ k ≤ M and 1 ≤ j ≤ s. Since A is invertible, there exist

uniquely determined vectors a1 ∈ C⊥
1 , . . . , aM ∈ C ⊥

M , such that

(4) (c̄�1 . . . c̄�M ) = (ā�1 . . . ā�M ) ·A.
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Note that for 1 ≤ k ≤ M we have

ā�k =

⎛
⎜⎝

ā�1,k
...

ā�s,k

⎞
⎟⎠ ,

where āj,k = aj,k ∈ F
n
q for 1 ≤ j ≤ sk and āj,k = 0 ∈ F

n
q for sk < j ≤ s. By (4), we

have

(5) c̄�j,k =
M∑
v=1

ā�j,vAv,k

for each 1 ≤ k ≤ M and 1 ≤ j ≤ s. For any 1 ≤ k ≤ M , let ck ∈ F
nsk
q be the vector

obtained by taking the first sk blocks of c̄k ∈ F
ns
q , that is,

c�k =

⎛
⎜⎝

c̄�1,k
...

c̄�sk,k

⎞
⎟⎠ .

Since A is compatible with (C ⊥
1 , . . . ,C⊥

M ), we have

c̄j,k = 0 ∈ F
n
q

for any 1 ≤ k ≤ M and sk < j ≤ s. Let C ∈ F
n(s1+···+sM )
q be the vector

C = (c1c2 . . . cM ).

We define the Fq-linear mapping φ : M → F
n(s1+···+sM )
q by φ(C) = C.

Let N = φ(M). Let C = (c1 . . . cM ) ∈ N be a vector, where for each 1 ≤ k ≤ M
we have ck ∈ F

nsk
q with

c�k =

⎛
⎜⎝

c�1,k
...

c�sk,k

⎞
⎟⎠

and cj,k ∈ F
n
q for 1 ≤ j ≤ sk. The set N is now the dual space of a digital

(t, α, β, n × m, s)-net, where s = s1 + · · · + sM , m = m1 + · · · + mM , and n =
max1≤k≤M nk (one could also set n = n1 + · · · + nM by appending zeroes at the
last rows of the generating matrices as was done with C ′

j,k after Lemma 1).
We now investigate the quality of the digital nets obtained via the matrix-product

construction; i.e., we find a lower bound on δα,n(N ). We have

µα,n(C) =

M∑
k=1

µα,n(ck) =

M∑
k=1

sk∑
j=1

µα(cj,k).

We have C = (c1 . . . cM ) ∈ F
n(s1+···+sM )
q and assume that C 
= 0. By the definition

of C, there are vectors a1 ∈ C⊥
1 , . . . , aM ∈ C⊥

M such that

(c̄�1 . . . c̄�M ) = (ā�1 . . . ā�M ) ·A.

Let l be the largest integer such that al 
= 0 (this exists as C 
= 0). Note that

a�l =

⎛
⎜⎝

a�1,l
...

a�sl,l

⎞
⎟⎠
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and µα,n(al) =
∑sl

j=1 µα(aj,l). Let {j1, . . . , ju} be the largest subset of {1, . . . , sl}
such that aj,l 
= 0 for all j ∈ {j1, . . . , ju}. By the definitions of l we have u ≥ 1.
Moreover, we note that µα,n(al) = µα(aj1,l) + · · ·+ µα(aju,l).

The following lemma is a generalization of [11, Lemma 4.1].

Lemma 2. Under the notation and assumptions as above, for each j ∈ {j1, . . . , ju}
we have

µα(c̄j,1) + · · ·+ µα(c̄j,M ) ≥ (M − l + 1)µα(aj,l).

Proof. Let j ∈ {j1, . . . , ju}, and let āj,l = (aj,l,1 . . . aj,l,n). Further let n ≥ ij,l,1 >
· · · > ij,l,v ≥ 1 be such that aj,l,ij,l,r 
= 0 for 1 ≤ r ≤ v and aj,l,i = 0 for i ∈
{1, . . . , n} \ {ij,l,1, . . . , ij,l,v}. Then µα(aj,l) = µα(āj,l) = ij,l,1 + · · · + ij,l,min(v,α).
Let i ∈ {ij,l,1, . . . , ij,l,min(v,α)}.

Let the ith entries of āj,1, . . . , āj,M ∈ F
n
q be given by α1, . . . , αM ∈ Fq, and let

the ith entries of c̄j,1, . . . , c̄j,M ∈ F
n
q be given by β1, . . . , βM ∈ Fq. By (4) we have

(6) (β1 . . . βM ) = (α1 . . . αM ) ·A.

We have j ≤ sl and hence āj,l = aj,l, and αl 
= 0 by the definition of l and i. On
the other hand, αk = 0 for k > l, as āk,l = 0 for that case. Therefore we can write
(6) as

(β1 . . . βM ) = (α1 . . . αl) ·Al.

In the following we show that there are at least M − l + 1 entries of (β1 . . . βM )
which are non-zero. Assume to the contrary that there exist integers 1 ≤ k1 <
· · · < kl ≤ M such that βk1

= · · · = βkl
= 0. Then we have

0 = (βk1
. . . βkl

) = (α1 . . . αl) ·A(k1, . . . , kl).

But as αl 
= 0 and A(k1, . . . , kl) is non-singular (as A is NSC) it follows that
(βk1

. . . βkl
) 
= 0, which yields a contradiction. Hence there are at least M − l + 1

entries of (β1 . . . βM ) which are non-zero. As this holds for all i ∈ {ij,l,1, . . . ,
ij,l,min(v,α)}, the result follows. �

The following lemma is a generalization of [11, Lemma 4.2].

Lemma 3. Under the notation and assumptions above we have

µα,n(C) ≥ (M − l + 1)µα,n(al).

Proof. We have µα,n(C) =
∑M

k=1

∑sk
j=1 µα(cj,k) and µα,n(al) = µα(aj1,l) + · · · +

µα(aju,l). Since A is compatible with (C ⊥
1 , . . . ,C⊥

M ), we have c̄j,k = 0 ∈ F
n
q for any

1 ≤ k ≤ M and sk < j ≤ s. Therefore, for each 1 ≤ k ≤ M we have
sk∑
j=1

µα(cj,k) =

s∑
j=1

µα(c̄j,k).

Hence

µα,n(C) =
M∑
k=1

s∑
j=1

µα(c̄j,k) =
s∑

j=1

M∑
k=1

µα(c̄j,k) ≥
∑

j∈{j1,...,ju}

M∑
k=1

µα(c̄j,k).

Lemma 2 now implies that

µα,n(C) ≥ (M − l + 1)
∑

j∈{j1,...,ju}
µα(aj,l) = (M − l + 1)µα,n(al).

�
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The following lemma is a generalization of [11, Theorem 4.3].

Lemma 4. Let N be the Fq-linear subspace of F
n(s1+···+sM )
q constructed above.

Then

dimN ≥
M∑
k=1

(nsk −mk)

and

δα,n(N ) ≥ min
1≤l≤M

(M − l + 1)δα,n(C
⊥
l ).

Proof. By the construction of N we have dimN =
∑M

k=1 dimC ⊥
k . Since dimC⊥

k ≥
nsk −mk the first result follows. The second result follows directly from Lemma 3.

�

The dual space of N , N⊥ ⊆ F
n(s1+···+sM )
q , satisfies dimN⊥ ≤ m1 + · · · +mM .

Let N ′ be a generating matrix for N⊥ and let m′ be the number of rows of N . As
dimN⊥ ≤ m1+· · ·+mM , it follows thatm′ ≤ m1+· · ·+mM . Ifm′ < m1+· · ·+mM

we can add rows of zeroes to N ′ to obtain a matrix N which generates N and has
m = m1 + · · ·+mM rows.

We partition N into submatrices N1, . . . , Ns1+···+sM , each of size m× n,

N = (N1 | N2 | . . . | Ns1+···+sM ).

Then we define the generating matrices of the digital net by

(7) Dj = N�
j for 1 ≤ j ≤ s1 + · · ·+ sM .

Remark 11. Instead of finding the generating matrices via the dual space, we can
also write them down directly (note that the generating matrices are not unique and
we only give one possible way of defining them; the point set is, up to a reordering
of the points, always the same though).

For simplicity assume that A is an upper triangular NSC matrix over Fq. As A
is a non-singular matrix, the diagonal elements Al,l are all non-zero and therefore

have an inverse A−1
l,l in Fq. Let σ0 = 0 and for 1 ≤ k ≤ M , let σk = s1 + · · · + sk.

Recall that C ′
j,k ∈ F

n×mk
q and let 0n×m denote the n×m zero matrix over Fq. Let

m = m1 + · · ·+mM . Then for 1 ≤ k ≤ M and σk−1 < j ≤ σk, let

Dj =
(
0n×m1 . . . 0n×mk−1 Vk,kC

′
j−σk−1,k

. . . Vk,MC ′
j−σk−1,M

)
∈ F

n×m
q ,

where Vk,l ∈ Fq is given by Vk,k = A−1
k,k for 1 ≤ k ≤ M , and for l = 1, . . . ,M − 1

we set

Vk,k+l = −A−1
k,k(Ak,k+lVk+l,k+l + · · ·+Ak,k+1Vk+1,k+l) for 1 ≤ k ≤ M − l;

i.e., the matrix V = (Vk,l)1≤k,l≤M , where Vk,l = 0 for k > l, is the inverse of A.
The matrices D1, . . . , DσM

are then the generating matrices of the digital net which
has dual space N .

The following theorem is a generalization of [11, Corollary 4.6].

Theorem 6 (Propagation Rule IX). Assume we are given digital (tk, α, βk, nk×mk,
sk)-nets (where βknk is an integer), 1 ≤ k ≤ M , over Fq, and an M × M NSC
matrix A.

Then the digital net constructed by the matrix-product propagation rule which
is generated by D1, . . . , Ds ∈ F

n×m
q as in Equation (7), where s = s1 + · · · + sM ,
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n = max1≤k≤M nk, and m = m1 + · · · + mM , is a digital (t, α, β, n × m, s)-net,
where β = min(1, αm/n) and

t = βn+ 1− min
1≤l≤M

(M − l + 1)(βlnl − tl + 1).

Proof. In view of Remark 3 we only need to prove a bound on βn − t and choose
β such that the requirements of Definition 2 are satisfied. Hence choosing β =
min(1, αm/n) will be sufficient.

From Lemma 4 we obtain δα,n(N ) ≥ min1≤l≤M (M − l + 1)δα,n(C ⊥
l ) and from

Theorem 3 we obtain δα,n(C⊥
k ) ≥ βknk−tk+1 for 1 ≤ k ≤ M . Therefore δα,n(N ) ≥

min1≤l≤M (M − l + 1)(βknk − tk + 1). This implies that the linear independence
condition in Definition 2 is satisfied if we choose t such that βn− t+ 1 = δα,n(N ),
i.e., t = βn+1−min1≤l≤M (M − l+1)(βlnl − tl +1). Hence the result follows. �

Theorem 6 can be generalized in the following ways. We assume now that we
have given digital (tk, αk, βk, nk × mk, sk)-nets, 1 ≤ k ≤ M , i.e., the α-values of
each digital net can be different. Let n′ = n1 + · · · + nM , and let the first n
rows of D′

j be the first n rows of Dj and the remaining n′ − n rows be 0. Then

D′
j ∈ F

n′×m
q for 1 ≤ j ≤ s1+ · · ·+ sM . Note that the point set obtained from using

the generating matrices D1, . . . , Ds1+···+sM is the same as the one obtained from
D′

1, . . . , D
′
s1+···+sM .

Corollary 1. Assume we are given digital (tk, αk, βk, nk×mk, sk)-nets (where βknk

is an integer), 1 ≤ k ≤ M , over Fq and an M ×M NSC matrix A.
Then the digital net constructed by the matrix-product propagation rule, which is

generated by D′
1, . . . , D

′
s ∈ F

n′×m
q , where s = s1+ · · ·+sM , n′ = n1+ · · ·+nM , and

m = m1+ · · ·+mM , is a digital (t′, α′, β′, n′×m, s)-net, where α′ = max1≤k≤M αk,
β′ = min1≤k≤M βk and

t′ = �β′n′�+ 1− min
1≤l≤M

(M − l + 1)(βlnl − tl + 1).

Proof. First we check that β′ ≤ min(1, α′m/n′). We have β′ = min1≤k≤M βk ≤ 1,
as βk ≤ 1. Hence it remains to show that β′n′ ≤ α′m. We have βknk ≤ αkmk and
hence

β′n′ = β′n1 + · · ·+ β′nM ≤ β1n1 + · · ·+ βMnM ≤ α1m1 + · · ·+ αMmM ≤ α′m.

As α ≥ αk we have δα,n(C⊥
k ) ≥ δαk,n(C

⊥
k ) ≥ βknk − tk for 1 ≤ k ≤ M . Thus,

using the same arguments as in the proof of Theorem 6, the result follows by using
Lemma 4. �
Remark 12. For M = 2 and

A =

(
1 1
0 1

)

the matrix-product construction yields the (u, u+ v)-construction. The generating
matrices from Remark 11, augmented with enough rows of zeroes, are the same as
in Section 3.2.

Remark 13. Although β and t are different in Theorem 6 and Corollary 1, the
essential value is the strength of the digital net given by βn− t, which is the same
in both results.

Remark 14. Similar to Remark 7, one should use α1 = · · · = αM in Corollary 1 in
order to be able to obtain βn to be of order αm.
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3.4. A double m construction. In [12], Niederreiter and Pirsic introduced a
propagation rule which used two digital nets, a digital (t1,m, s)-net and a digital
(t2,m, s)-net, to construct a digital (t, 2m, s)-net. In the following we generalize
this propagation rule to generalized digital nets.

Assume we are given two digital nets over the same finite field Fq, a digital
(t1, α1, β1, n×m, s)-net with generating matrices C1,1, . . . , Cs,1 ∈ F

n×m
q and a dig-

ital (t2, α2, β2, n×m, s)-net with generating matrices C1,2, . . . , Cs,2 ∈ F
n×m
q . Then

we consider the digital (t, α, β, 2n×2m, s)-net with generating matrices D1, . . . , Ds

given by

(8) Dj =

(
Cj,2 Cj,1

−Cj,2 0n×m

)
, for 1 ≤ j ≤ s.

In [12], the construction is described via the dual space, which we repeat in the
following. As in the previous sections, for k = 1, 2, we form the matrices

Ck = ((C1,k)
� | · · · | (Cs,k)

�).

The row space of Ck is denoted by Ck ⊆ F
ns
q and the dual space of Ck is denoted

by C⊥
k ⊆ F

ns
q . For k = 1, 2, let ak = (a1,k . . .as,k) ∈ C ⊥

k and set

c = (a1,1, a1,1 + a1,2, a2,1, a2,1 + a2,2, . . . , as,1, as,1 + as,2) ∈ F
2ns
q .

Let the space of vectors c obtained this way be denoted by N , i.e.,

N = {c ∈ F
2ns
q : a1 ∈ C⊥

1 , a2 ∈ C⊥
2 }.

We have

dim(N ) = dim(C⊥
1 ) + dim(C⊥

2 ) ≥ 2(sn−m),

and hence dim(N⊥) ≤ 2sn − dim(N ) ≤ 2m. Note that the space spanned by the
rows of

E = (D�
1 | · · · | D�

s ),

where Dj is given by (8), is N⊥ and hence N is the dual space of the row space
of E.

In order to bound the quality parameter for the digital net with generating
matrices D1, . . . , Ds, we define

D(C⊥
1 ,C ⊥

2 ) = max
1≤j≤s

max
Rj

max(0, µα,n(aj,1)− µα,n(aj,1 + aj,2)),

where Rj is the set of all ordered pairs (a1, a2), with ak = (a1,k . . . as,k) ∈ C⊥
k \{0},

ai,1 + ai,2 = 0 for i 
= j and aj,1 + aj,2 
= 0. We define the maximum over Rj to be
zero if Rj is empty.

The following theorem generalizes [12, Theorem 5] (the proof is very similar to
the proof of [12, Theorem 5]).

Theorem 7 (Propagation Rule X). Let C1,1, . . . , Cs,1 be the generating matrices
of a digital (t1, α1, β1, n×m, s)-net and C1,2, . . . , Cs,2 be the generating matrices of
a digital (t2, α2, β2, n×m, s)-net over the same Fq.

Then the digital net generated by D1, . . . , Ds given by (8) is a digital (t, α, β, 2n×
2m, s)-net, where α = max(α1, α2), β = min(β1, β2), and

t ≤ max(2βn− (1 + β1)n+ t1 +D(C⊥
1 ,C ⊥

2 ), 2βn− (1 + β2)n+ t2, 0)
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if C ⊥
1 ∩ C⊥

2 = {0}, and
t ≤ max(2βn− (1 + β1)n+ t1 +D(C⊥

1 ,C⊥
2 ), 2βn− (1 + β2)n+ t2,

2βn+ 1− δα,n(C
⊥
1 ∩ C ⊥

2 ), 0)

if C ⊥
1 ∩ C⊥

2 
= {0}.

Proof. By the definition of α and β it follows that 0 < β ≤ 1 and 2βn ≤ β1n+β2n ≤
α1m + α2m ≤ 2αm. Hence the parameters α and β are well defined according to
Definition 2.

Using Theorem 3, it is sufficient to show that 2βn − t + 1 is a lower bound on
δα,2n(N ). Hence we only need to show a lower bound on µα,2n(c) for all nonzero
vectors c in N .

In the proof we will use the property that δα,n(C
⊥
k ) ≥ δαk,n(C

⊥
k ) ≥ βkn− tk+1,

as α ≥ αk for k = 1, 2.
Let c ∈ N be nonzero. Then

µα,2n(c) =
s∑

j=1

µα(aj,1, aj,1 + aj,2).

We consider several cases. If a1 = 0, then a2 
= 0 and therefore

µα,2n(c) ≥ n+

s∑
j=1

µα(aj,2) ≥ n+ δα,n(C
⊥
2 ) ≥ n+ β2n− t2 + 1.

If a2 = 0, then a1 
= 0 and analogously we obtain

µα,2n(c) ≥ n+
s∑

j=1

µα(aj,1) ≥ n+ δα,n(C
⊥
1 ) ≥ n+ β1n− t1 + 1.

If a1, a2 
= 0, but a1 + a2 = 0, then a1 ∈ C ⊥
1 ∩ C ⊥

2 . If C ⊥
1 ∩ C ⊥

2 = {0}, then
this case is not possible. If C⊥

1 ∩ C ⊥
2 
= {0}, then

µα,2n(c) = µα,n(a1) ≥ δα,n(C
⊥
1 ∩ C ⊥

2 ).

The last case is where a1, a2 
= 0 and a1 + a2 
= 0. Then

µα,2n(c) ≥
s∑

j=1
aj,1+aj,2 �=0

(n+ µα(aj,1 + aj,2)) +

s∑
j=1

aj,1+aj,2=0

µα(aj,1).

If the first sum in the last expression has at least two terms, then µα,2n(c) ≥ 2n+2.
Otherwise it has exactly one term, say for j = j0, and then

µα,2n(c) ≥ n+ µα(aj0,1 + aj0,2) +

s∑
j=1
j �=j0

µα(aj,1)

= n+ µα,n(a1) + µα(aj0,1 + aj0,2)− µα(aj0,1)

≥ n+ β1n− t1 + 1−D(C ⊥
1 ,C⊥

2 ).

Therefore we have

δα,2n(N ) ≥ min((1 + β1)n− t1 + 1−D(C ⊥
1 ,C⊥

2 ), (1 + β2)n− t2 + 1)

if C ⊥
1 ∩ C⊥

2 = {0}, and
δα,2n(N ) ≥ min((1+β1)n− t1+1−D(C⊥

1 ,C ⊥
2 ), (1+β2)n− t2+1, δα,n(C

⊥
1 ∩C ⊥

2 ))

if C ⊥
1 ∩ C⊥

2 
= {0}. Thus the result follows. �
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Remark 15. Similar to Remark 7, one should use α1 = α2 in Theorem 7 in order
to be able to obtain βn to be of order αm.

3.5. A base change propagation rule. We state a result that is analogous to
Theorem 9 in [13], which is sometimes also referred to as the trace code for digital
nets (cf. [15]).

Theorem 8 (Propagation Rule XI). Let q be a prime power and r be a positive
integer. If P is a digital (t, α, β, n × m, s)-net over Fqr , then we can construct a
digital (t, α, β, n× rm, rs)-net Q over Fq from P .

Proof. The proof is of the same flavor as the proof of Theorem 9 in [13]. Let P be
a digital (t, α, β, n×m, s)-net over Fqr , with generating matrices C1, . . . , Cs, where
each matrix Cj , 1 ≤ j ≤ s has row vectors c1,j , . . . , cn,j . We now choose an ordered
basis B1, . . . , Br of Fqr over Fq and an Fq-linear isomorphism ϕ : Fm

qr → F
rm
q . Then

we consider the generating matrices of a net Q,

D(j−1)r+k :=

⎛
⎜⎝
d1,(j−1)r+k

...
dn,(j−1)r+k

⎞
⎟⎠ , 1 ≤ j ≤ s, 1 ≤ k ≤ r,

where di,(j−1)r+k = ϕ(Bkci,j) for 1 ≤ i ≤ n, 1 ≤ j ≤ s, 1 ≤ k ≤ r. We claim that
Q is a digital (t, α, β, n× rm, rs)-net over Fq.

Choose integers

1 ≤ i(j−1)r+k,ν(j−1)r+k
< i(j−1)r+k,ν(j−1)r+k−1 < · · · < i(j−1)r+k,1 ≤ n

such that
s∑

j=1

r∑
k=1

(
i(j−1)r+k,1 + · · ·+ i(j−1)r+k,min{ν(j−1)r+k,α}

)
≤ βn− t

and let δ
(j,k)
l ∈ Fq such that

(9)

s∑
j=1

r∑
k=1

ν(j−1)r+k∑
l=1

δ
(j,k)
l di(j−1)r+k,l,(j−1)r+k = 0 ∈ F

rm
q .

Due to the definition of the vectors di(j−1)r+k,l,(j−1)r+k, (9) can be rewritten as

(10)
s∑

j=1

r∑
k=1

ν(j−1)r+k∑
l=1

δ
(j,k)
l ϕ

(
Bkci(j−1)r+k,l,j

)
= 0 ∈ F

rm
q .

Now, let, for 1 ≤ j ≤ s,

Uj :=
r⋃

k=1

{
i(j−1)r+k,1, . . . , i(j−1)r+k,ν(j−1)r+k

}
.

Furthermore, for 1 ≤ j ≤ s and 1 ≤ k ≤ r, put e
(j,k)
l = 1 if

l ∈
{
i(j−1)r+k,1, . . . , i(j−1)r+k,ν(j−1)r+k

}

and e
(j,k)
l = 0 otherwise. Then (10) can be rewritten as

s∑
j=1

r∑
k=1

∑
l∈Uj

e
(j,k)
l δ

(j,k)
l ϕ

(
Bkci(j−1)r+k,l,j

)
= 0 ∈ F

rm
q .



DUALITY THEORY AND PROPAGATION RULES FOR DIGITAL NETS 1009

Since ϕ is an Fq-linear isomorphism, we conclude that

s∑
j=1

∑
l∈Uj

γ
(j)
l cl,j = 0 ∈ F

m
qr

with

(11) γ
(j)
l =

r∑
k=1

e
(j,k)
l δ

(j,k)
l Bk ∈ Fqr .

Let us now consider
s∑

j=1

∑
l∈Uj

γ
(j)
l cl,j .

For 1 ≤ j ≤ s, let µj := |Uj | and denote the elements of Uj , in increasing order, by

gj,µj
< gj,µj−1 < · · · < gj,1.

Note that we also have 1 ≤ gj,µj
and gj,1 ≤ n, and

∑s
j=1

(
gj,1 + · · ·+ gj,min{µj ,α}

)
≤

βn−t, due to the order of gj,1, . . . , gj,µj
and the conditions on the indices i(j−1)r+k,l

above. Thus, since the vectors cl,j stem from the generating matrices of the digital

(t, α, β, n×m, s)-net P , it follows that we must have γ
(j)
l = 0 for l ∈ Uj , 1 ≤ j ≤ s.

Hence, by (11), e
(j,k)
l δ

(j,k)
l = 0 for l ∈ Uj , 1 ≤ j ≤ s, and 1 ≤ k ≤ r. By the

definition of the numbers e
(j,k)
l , all coefficients δ

(j,k)
l in (9) are zero. �

Remark 16. As in [13, Theorem 9], the strength of the net obtained via this base
change propagation rule stays unchanged, which is βn− t.

3.6. A dual space base change propagation rule. In this section we introduce
another propagation rule, first established in [14], where we change the ground field
from Fqr to Fq, for some prime power q and some positive integer r. The difference
to the previous propagation rule is that the Fq-linear transformation from Fqr to F

r
q

is now applied to the dual space instead of applying it to the generating matrices.
The following result generalizes [14, Corollary 1].

Theorem 9 (Propagation Rule XII). Given a digital (t, α, β, n × m, s)-net over
Fqr , we can construct a digital (t′, α, β, rn× rm, s)-net over Fq, where

t′ ≤ rt+ (r − 1)(sα− 1).

Proof. Let ϕ : Fqr → F
r
q denote again an Fq-linear isomorphism. Let C1, . . . , Cs ∈

F
n×m
qr denote the generating matrices of the digital (t, α, β, n × m, s)-net, and let

C = (C�
1 | · · · | C�

s ). The row space of C is denoted by C ⊆ F
sn
qr , and the dual space

of C is denoted by C ⊥ ⊆ F
sn
qr . For a vector c = (c1, . . . , cs) ∈ C⊥, with cj ∈ F

n
qr , let

c̄j = ϕ(cj) ∈ F
rn
q and c̄ = (c̄1, . . . , c̄s), where we extend the Fq-linear isomorphism

from Fqr → F
r
q componentwise, to an Fq-linear isomorphism from F

n
qr → F

rn
q . Then

we obtain a linear space C̄ ⊥ ⊆ F
rsn
q , by setting C̄ ⊥ = {c̄ : c ∈ C ⊥}.

Note that dimFq
(C̄⊥) = r dimFqr

(C⊥), and dimFqr
(C ⊥) ≥ sn −m by Proposi-

tion 2. Thus dimFq
(C̄⊥) ≥ rsn − rm, and the dual space of C̄ ⊥, denoted by C̄ ,

satisfies dimFq
(C̄ ) ≤ rm. Let C̄ ∈ F

rm×rsn
q be a matrix whose row space is C̄ ,

and let C̄ = (D�
1 | · · · | D�

s ), where Dj ∈ F
rn×rm
q for 1 ≤ j ≤ s. The matrices

D1, . . . , Ds now generate a digital net over Fq.
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We now investigate the quality of this digital net. Let c̄ ∈ C̄ ⊥ be a nonzero
vector. We have µα,rn(c̄) = µα(c̄1)+ · · ·+µα(c̄s). As c̄ is nonzero, it follows that c
is nonzero. If µα(cj) = 0, then cj = 0 and hence c̄j = 0, which implies µα(c̄j) = 0.

Let µα(cj) > 0, and cj = (cj,1, . . . , cj,n). Let ij,1 > · · · > ij,νj
> 0 be the

indices of the nonzero elements of cj , i.e., cj,ij,v 
= 0 for 1 ≤ v ≤ νj and cj,i = 0
for i /∈ {ij,1, . . . , ij,νj

}. Then c̄j = (ϕ(cj,1), . . . , ϕ(cj,n)), and ϕ(cj,ij,v) 
= 0 for
1 ≤ v ≤ νj , and ϕ(cj,i) = 0, for i /∈ {ij,1, . . . , ij,νj

}. Then

µα(c̄j) ≥
min(α,νj)∑

u=1

(r(ij,u − 1) + 1)

= r

min(α,νj)∑
u=1

ij,u − (r − 1)min(α, νj)

= rµα(cj)− (r − 1)α.

The above inequality also holds if µα(cj) = 0; hence

µα,rn(c̄) ≥
s∑

j=1

(rµα(cj)− (r − 1)α)

= rµα,n(c)− s(r − 1)α ≥ rδα,n(C
⊥)− s(r − 1)α.

As the last inequality holds for all nonzero c̄ ∈ C̄ ⊥, it follows that δα,rn(C̄
⊥) ≥

rδα,n(C
⊥)− s(r− 1)α. Thus we can choose t′ such that βrn− t′ + 1 = δα,rn(C̄

⊥).
Using δα,n(C

⊥) ≥ βn− t+ 1, the result follows. �

3.7. A base change propagation rule for projective spaces. In this section
we generalize a propagation rule for digital nets which appears in MinT [15] under
the name “base reduction for projective spaces”. Let r ≥ 1. Let C1, . . . , Cs ∈ F

n×m
qr

be the generating matrices of a digital (t, α, β, n×m, s)-net. Note that the linear
independence condition in Definition 2 stays unchanged if we multiply a row of
Cj by some nonzero element in Fqr . Doing so, we can obtain generating matrices
C ′

1, . . . , C
′
s ∈ F

n×m
qr , which also generate a digital (t, α, β, n × m, s)-net, and for

which the first column of each C ′
j only consists of zeroes and ones.

Let ϕ be an Fq-linear isomorphism from Fqr to Fr
q such that ϕ(1) = (0, . . . , 0, 1) ∈

F
r
q. For a vector c ∈ F

m
qr with c = (c1, . . . , cm) we define ϕ(c) = (ϕ(c1), . . . , ϕ(cm)) ∈

F
rm
q , and for a matrix C ∈ F

n×m
qr with C = (c�1 , . . . , c

�
n )

�, we define ϕ(C) =

(ϕ(c1)
�, . . . , ϕ(cn)

�)� ∈ F
n×rm
q .

For 1 ≤ j ≤ s, now let D′
j = ϕ(C ′

j) ∈ F
n×rm
q . Note that the first r − 1 columns

of D′
j are zero for each j = 1, . . . , s, as the first column of C ′

j consists only of zeroes

and ones. Let Dj ∈ F
n×(rm−(r−1))
q be the matrix obtained by discarding the first

r − 1 rows of D′
j . Then, because we only discarded zeroes, the strength of the

digital net with generating matrices Dj is the same as the strength of the digital
net with generating matrices D′

j . From the proof of Theorem 8 we obtain that the
strength of the digital net generated by D′

1, . . . , D
′
s is the same as the strength of

the digital net with generating matrices C ′
1, . . . , C

′
s, which in turn is the same as

the strength of the digital net with generating matrices C1, . . . , Cs. Thus we obtain
the following result.
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Theorem 10 (Propagation Rule XIII). Let r ≥ 1. Given a digital (t, α, β, n×m, s)-
net over Fqr , using the construction outlined in this section, we can obtain a digital
(t, α, β, n× (rm− r + 1), s)-net over Fq.

3.8. A higher order to higher order construction. In [5], an explicit con-
struction of digital (t, α, β, n×m, s)-nets was introduced which is based on classical
(t,m, s)-nets. This can also be viewed as a propagation rule, which we generalize
in the following.

Let d ≥ 1 and let C1, . . . , Csd ∈ F
n×m
q be the generating matrices of a digital

(t, α, β, n×m, sd)-net over Fq. Let Cj = (c�j,1, . . . , c
�
j,n)

� for j = 1, . . . , sd, i.e., cj,l
is the lth row of Cj . Now let the matrix Dj be composed of the first rows of the
matrices C(j−1)d+1, . . . , Cjd, then the second rows of C(j−1)d+1, . . . , Cjd, and so on.

The matrix Dj is then a dn×m matrix, i.e., Dj = ((dj,1)
�, . . . , (dj,dn)

�)�, where
dj,l = cu,v with l = (v− j)d+u, 1 ≤ v ≤ n, and (j− 1)d < u ≤ jd for l = 1, . . . , dn
and j = 1, . . . , s. The following result is a generalization of [5, Theorem 4.11] (see
also [4, Theorem 4.1] and [1, Theorem 1]).

Theorem 11 (Propagation Rule XIV). Let d ≥ 1 be a natural number and let
C1, . . . , Csd be the generating matrices of a digital (t, α, β, n ×m, sd)-net over the
finite field Fq, where we assume that βn is an integer. Let D1, . . . , Ds be defined as
above.

Then, for any α′ ≥ 1, the matrices D1, . . . , Ds are generating matrices of a
digital (t′, α′, βmin(1, α′/(αd)), dn×m, s)-net over Fq with

t′ =

⌈
min(d, α′/α)min

(
βn, t+

⌊
αs(d− 1)

2

⌋)⌉
.

Proof. First note that if βn ≤ t+ �αs(d− 1)/2�, then t′ = min(d, α′/α)βn and

βmin(1, α′/(αd))dn− t′ = βmin(d, α′/α)n− βmin(d, α′/α)n = 0;

hence in this case the bound is trivial.
Assume now that βn > t+ �αs(d− 1)/2�. Let Dj = ((dj,1)

�, . . . , (dj,dn)
�)� for

j = 1, . . . , s. Further, let the integers i1,1, . . . , i1,ν1
, . . . , is,1, . . . , is,νs

be such that
1 ≤ ij,νj

< · · · < ij,1 ≤ dn and

i1,1 + · · ·+ i1,min(ν1,α) + · · ·+ is,1 + · · ·+ is,min(νs,α) ≤ βmin(1, α′/(αd))dn− t′.

We need to show that the vectors

d1,i1,1 , . . . ,d1,i1,ν1
, . . . ,ds,is,1 , . . . ,ds,is,νs

are linearly independent over Fq.
For j = 1, . . . , s let Uj = {dj,ij,νj

, . . . ,dj,ij,1}. The vectors in the set Uj stem

from the matrices C(j−1)d+1, . . . , Cjd. For j = 1, . . . , s and fj = (j−1)d+1, . . . , jd,
let wfj ≥ 0 be the largest integer such that there are efj ,1 > · · · > efj ,wfj

> 0 with

{(efj ,u − j)d + fj : u = 1, . . . , wfj} ⊆ {ij,νj
, . . . , ij,1}, where for wfj = 0 we set

{(efj ,u − j)d+ fj : u = 1, . . . , wfj} = ∅.
Let αd ≤ α′. For a given 1 ≤ j ≤ s we have

jd∑
fj=(j−1)d+1

⎛
⎝

min(α,wfj
)∑

r=1

d(efj ,r − 1) + min(α,wfj )(fj − (j − 1)d)

⎞
⎠

≤ ij,1 + · · ·+ ij,min(νj ,αd).
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Furthermore, we have

jd∑
fj=(j−1)d+1

⎛
⎝

min(α,wfj
)∑

r=1

d(efj ,r − 1) + min(α,wfj )(fj − (j − 1)d)

⎞
⎠

=

jd∑
fj=(j−1)d+1

⎛
⎝

min(α,wfj
)∑

r=1

defj ,r +min(α,wfj )(fj − jd)

⎞
⎠

≥
jd∑

fj=(j−1)d+1

min(α,wfj
)∑

r=1

defj ,r − α
d(d− 1)

2
.(12)

Thus

d
s∑

j=1

jd∑
fj=(j−1)d+1

min(α,wfj
)∑

r=1

efj ,r ≤
s∑

j=1

(ij,1 + · · ·+ ij,min(νj ,α′)) + sα
d(d− 1)

2

≤ βmin(1, α′/(αd))dn− t′ + sα
d(d− 1)

2

and therefore

s∑
j=1

jd∑
fj=(j−1)d+1

min(α,wfj
)∑

r=1

efj ,r ≤ βn− t′

d
+ sα

d− 1

2

≤ βn− t−
⌊
αs(d− 1)

2

⌋
+

αs(d− 1)

2

≤ βn− t+
1

2
.

As efj ,r, βn and t are all integers, it follows that

s∑
j=1

jd∑
fj=(j−1)d+1

min(α,wfj
)∑

r=1

efj ,r ≤ βn− t.

Thus it follows from the digital (t, α, β, n × m, sd)-net property of the digital net
generated by C1, . . . , Csd that the vectors d1,i1,1 , . . . ,d1,i1,ν1

, . . . ,ds,is,1 , . . . ,ds,is,νs
are linearly independent.

Now let αd > α′. For a given 1 ≤ j ≤ s with νj ≥ α′ we have

jd∑
fj=(j−1)d+1

⎛
⎝

min(α,wfj
)∑

r=1

d(efj ,r − 1) + min(α,wfj )(fj − (j − 1)d)

⎞
⎠

≤ ij,1 + · · ·+ ij,α′ + (αd− α′)ij,α′

and for 1 ≤ j ≤ s with νj < α′ we have

jd∑
fj=(j−1)d+1

⎛
⎝

min(α,wfj
)∑

r=1

d(efj ,r − 1) + min(α,wfj )(fj − (j − 1)d)

⎞
⎠

≤ ij,1 + · · ·+ ij,νj
.
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Note that
s∑

j=1,νj≥α′

ij,α′ ≤ βmin(1/α′, 1/(αd))dn− t′/α′.

Let

Ij =

{
ij,1 + · · ·+ ij,min(νj ,α′) + (αd− α′)ij,min(νj ,α′) if νj ≥ α′,
ij,1 + · · ·+ ij,min(νj ,α′) if νj < α′.

Hence we have
s∑

j=1

Ij ≤ βmin(1, α′/(αd))dn− t′ + (αd− α′)(βmin(1/α′, 1/(αd))dn− t′/α′)

= βmin(αd/α′, 1)dn− t′αd/α′.

Further we can use inequality (12) again. Thus it follows that

d

s∑
j=1

jd∑
fj=(j−1)d+1

min(α,wfj
)∑

r=1

efj ,r ≤
s∑

j=1

Ij + sα
d(d− 1)

2

≤ βmin(αd/α′, 1)dn− t′αd/α′ + sα
d(d− 1)

2

and therefore

s∑
j=1

jd∑
fj=(j−1)d+1

min(α,wfj
)∑

r=1

efj ,r ≤ βn− t′
α

α′ + sα
d− 1

2

≤ βn− t−
⌊
sα

d− 1

2

⌋
+ sα

d− 1

2

≤ βn− t+
1

2
.

As efj ,r, βn and t are all integers, it follows that

s∑
j=1

jd∑
fj=(j−1)d+1

min(α,wfj
)∑

r=1

efj ,r ≤ βn− t.

Thus it follows from the digital (t, α, β, n × m, sd)-net property of the digital
net generated by C1, . . . , Csd that the vectors d1,i1,1 , . . . ,d1,i1,ν1

, . . . . . . ,ds,is,1 , . . . ,
ds,is,νs

are linearly independent, and hence the result follows. �

4. Numerical results

The results in Section 3 allow the construction of a digital (t, α, β, n×m, s)-net
from other existing (generalized) digital nets. In the following we present some
examples where we can improve on the construction from [1, 5].

In the tables below, we present, for selected values of m, q, and s, the results
obtained when we use different propagation rules for the cases α = 2 and β = 1.
Table 1 covers the case where q = 2 for s = 15 and s = 25, Tables 2 and 3 the cases
q = 3 and q = 5, respectively, for the same choices of s. In all tables we consider
m between 15 and 30. Since α and β are fixed, and different propagation rules
might yield different ratios of n and m, it is most useful to compare the strengths
of the nets obtained. As outlined in Remark 3, the strength of a digital net refers
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to the value of σ = σ(β, n, t) = βn− t. Note that, in some of our new propagation
rules, one can make many different choices of smaller nets that might (or might
not) yield a bigger net with the same parameters. For example, a (t, 2, 60× 30, 25)-
net could be constructed using Propagation Rule VII from a (t, 2, 40 × 20, 20)-net
together with a (t, 2, 20× 10, 5)-net or from a (t, 2, 30× 15, 10)-net together with a
(t, 2, 30× 15, 15)-net or several other combinations. In our tables, we only give the
best values of the strength σ we can obtain by going through all possible choices of
the smaller nets involved.

In Tables 1, 2, and 3, we compare the following quantities.

• σdir: The strength of a digital (t, 2, 1, 2m × m, s)-net over Fq using the
generating matrices of an existing classical digital (t′,m, 2s)-net over Fq,
where we then obtain (cf. [1, 5])

t = 2min
{
m, t′ +

⌊s
2

⌋}
.

(See also Theorem 11, which is a generalization of the result in [5]. Further,
see [6] for constructions of polynomial lattice rules.) In the following we
refer to this construction method as the direct construction method.

• σVII: The strength of a digital net constructed from a digital (t1, 2, 2m1 ×
m1, s1)-net P1 and a digital (t2, 2, 2m2×m2, s2)-net P2 over Fq using Prop-
agation Rule VII (see Section 3.1), where P1 and P2 are obtained by the
direct construction method from classical nets. Here, n = 2m.

• σVIII: The strength of a digital net constructed from a digital (t1, 2, 2m1 ×
m1, s1)-net P1 and a digital (t2, 2, 2m2 ×m2, s2)-net P2 (s1 ≤ s2) over Fq

using Propagation Rule VIII (see Section 3.2), where P1 and P2 are obtained
by the direct construction method from classical nets. Here, n = 2m.

• σIX: The strength of a digital net constructed from a digital (t1, 2, 2m1 ×
m1, s1)-net P1, a digital (t2, 2, 2m2 × m2, s2)-net P2, and a digital (t3, 2,
2m3 × m3, s3)-net P3 (s1 ≤ s2 ≤ s3) over Fq using Propagation Rule IX
(see Section 3.3), where P1, P2, and P3 are obtained by the direct construc-
tion method from classical nets. Note that this propagation rule is only
applicable for q = 3, 5. Again, n = 2m.

• σXI: The strength of a digital net obtained by using Propagation Rule
XI with r = 3. Since the t-values of classical digital nets over F53 =
F125 are hardly available, we restrict ourselves to the bases 2 and 3 here.
Furthermore, since 3 is not a divisor of 25, σXI does not occur in the tables
for dimension s = 25. For σXI we have n = 2(m/3) (provided that m is a
multiple of 3).

We emphasize that our examples are just illustrations and by no means can
systematically cover all cases one might theoretically consider; to be more precise,
we have the following restrictions in Tables 1–3.

• Not all of the fourteen propagation rules occurring in Section 3 are repre-
sented in the tables. Furthermore, we only show particular choices of the
parameters involved. We restrict ourselves to some cases where considerable
improvement can be observed.

• We do not consider combinations of different propagation rules. Each of
the values in Tables 1–3 is obtained by applying only one propagation rule
(plus the direct construction method) at once.
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Table 1. σ-values depending on m (15 ≤ m ≤ 30) for α = 2,
β = 1, q = 2, and s = 15 (left), s = 25 (right).

m σdir σVII σVIII σXI

15 0 0 1 4

16 0 0 1

17 0 2 2

18 0 2 2 6

19 2 2 2

20 2 2 4

21 2 4 4 8

22 2 4 5

23 2 4 6

24 2 4 6 10

25 4 6 8

26 4 6 8

27 6 6 9 12

28 8 8 10

29 10 10 10

30 12 12 12 14

m σdir σVII σVIII

15 0 0 0

16 0 0 0

17 0 0 1

18 0 0 1

19 0 0 1

20 0 0 1

21 0 0 1

22 0 0 1

23 0 0 1

24 0 0 1

25 0 0 1

26 0 0 1

27 0 0 1

28 0 0 1

29 0 0 1

30 0 0 1

Table 2. σ-values depending on m (15 ≤ m ≤ 30) for α = 2,
β = 1, q = 3, and s = 15 (left), s = 25 (right).

m σdir σVII σVIII σIX σXI

15 0 2 2 5 6

16 0 2 4 5

17 0 2 4 6

18 2 4 5 6 8

19 2 4 6 8

20 4 4 6 8

21 4 6 8 8 10

22 6 6 8 9

23 6 6 9 10

24 8 8 9 12 12

25 8 8 10 13

26 10 10 12 13

27 10 10 13 14 14

28 12 12 13 14

29 14 14 14 16

30 16 16 16 17 16

m σdir σVII σVIII σIX

15 0 0 1 1

16 0 0 1 1

17 0 0 1 2

18 0 0 1 2

19 0 0 1 2

20 0 0 1 2

21 0 0 1 2

22 0 0 1 2

23 0 0 1 2

24 0 0 1 4

25 0 0 1 4

26 0 2 2 5

27 0 2 2 5

28 0 2 2 6

29 0 2 2 6

30 0 2 4 8

• Not all propagation rules are applicable for all sets of parameters. This is
indicated by void cells in the tables in cases where a certain propagation
rule was not applicable.

A more systematic approach, taking into account more combinations of parameters
and different propagation rules, would be very interesting and would certainly lead
to further improvements. However, due to the vast number of choices, we leave this
systematic approach open for future research.
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Table 3. σ-values depending on m (15 ≤ m ≤ 30) for α = 2,
β = 1, q = 5, and s = 15 (left), s = 25 (right).

m σdir σVII σVIII σIX

15 0 4 5 6

16 2 4 5 8

17 2 4 6 8

18 4 6 8 9

19 4 6 9 10

20 6 6 10 12

21 8 8 12 13

22 8 8 13 14

23 10 10 13 14

24 12 12 14 16

25 14 14 16 17

26 16 16 17 18

27 18 18 18 20

28 20 20 20 20

29 22 22 22 22

30 24 24 24 24

m σdir σVII σVIII σIX

15 0 0 1 2

16 0 0 1 2

17 0 0 1 2

18 0 0 1 2

19 0 0 1 2

20 0 0 1 2

21 0 0 1 4

22 0 0 1 4

23 0 2 2 5

24 0 2 2 5

25 0 2 4 6

26 0 2 4 6

27 2 4 5 8

28 2 4 5 8

29 4 4 5 9

30 6 6 6 10
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