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ON THE ACCURACY OF THE FINITE ELEMENT METHOD
PLUS TIME RELAXATION

J. CONNORS AND W. LAYTON

ABSTRACT. If u denotes a local, spatial average of u, then w/ = u — @ is the
associated fluctuation. Consider a time relaxation term added to the usual
finite element method. The simplest case for the model advection equation
ut + @ - Vu = f(z,t) is
(un,t + @ - Vg, vn) + x(uh, v) = (f(2,), 0n).

We analyze the error in this and (more importantly) higher order extensions
and show that the added time relaxation term not only suppresses excess
energy in marginally resolved scales but also increases the accuracy of the
resulting finite element approximation.

1. INTRODUCTION

In a landmark result published in 1973, Dupont [Du73] showed that in general
the usual, continuous finite element method for first order hyperbolic equations con-
verges suboptimally by one power of the mesh width h, even for infinitely smooth
solutions, periodic boundary conditions and uniform meshes (see also Hedstrom
[Hed79]). For less smooth solutions, it is also well known that the usual Galerkin
finite element methods (FEM) can produce highly oscillatory approximate solu-
tions, e.g., [C79]. Even cases (for example linear elements and cubic splines) for
which optimal convergence has been proven for periodic boundary conditions on
uniform meshes (e.g., Dupont [Du73|, Thomée and Wendroff [TWT4]), optimal con-
vergence rates are not expected on highly non-uniform meshes. Dupont’s result for
smooth solutions and the “wiggles” observed in tests for less smooth solutions have
motivated the development of many nonstandard Galerkin methods, stabilizations
and regularizations for first order hyperbolic problems and associated convection
dominated, convection-diffusion equations. Examples include the SUPG method
(Hughes [BHS0]), discontinuous Galerkin methods (Lesaint and Raviart [LR74]),
subgrid artificial viscosity methods (e.g., Layton [L02], [L05], Guermond [Guer99],
Burman and Hansbo [BHO04], and Braack, Burman, John and Lube [BBJLOT]).

Among these many variations on finite element methods, in complex applications
there is a special interest in regularizations that are computationally inexpensive,
increase accuracy and incorporate numerical realizations of important physical pro-
cesses omitted in the hyperbolic model equation. This report performs a numerical
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analysis of one such regularization which is motivated by work of Rosenau [R89]
and Schochet and Tadmore [ST92] on the regularized Chapman-Enskog expansions
of conservation laws. It has been extensively tested by Stolz and Adams and Kleiser
in [AS02], [SA99], [SAKOTal, [SAKO1D], [SAKO2] for compressible flows. The reg-
ularization is inexpensive and incorporates physical effects by time relaxation (see
Section 1.1) to damp fluctuations in time induced by marginally resolved scales in
conservation laws and convection dominated problems. This regularization is thus
physically interesting; it has been proven to truncate scales [LNQO7] and is estab-
lished in the practical computations of Stolz, Adams and Kleiser. In this report we
study the complementary accuracy question:

Does this reqularization also increase the asymptotic accuracy
of the approximation as well as stabilize the

approximation of under-resolved solutions?

To reduce the problem to a simple form, consider the advection equation: for
Q = (0,1)% a (periodic) box in R, given a unit vector @ and smooth, known
1-periodic functions ug(z), f(z,t), find 1-periodic u = u(x,t) : @ x [0,T] — R
satisfying

(1.1) up+ @ -Vu= f(z,t), 2€ Q0 <t <T < o0,
and u(x,0) = ug(x).

In 1 dimension the problem is, given smooth, known 1l-periodic functions ug(z),
f(z,t), find u = u(x,t) satisfying

(1.2) u +ug = f(z,t), £€(0,1),0 <t <T < o0,
u(0,t) = u(1,t), and u(z,0) = ug(x).

The simplest example of the discretization.
The simplest example of the family of methods be considered is a small variation
on the usual finite element method. To present it, let

X =Hy(Q):={vel*():Vve L*(Q),v(@)=v(z+e),j=1,...,d},

and let X, C X denote a generic, conforming finite element space based on a mesh
with representative mesh-width h and satisfying an approximation property typical
of piecewise polynomials of degree k. The semi-discrete approximation begins with
a chosen filter length scale (traditionally denoted J) and a relaxation parameter x.
Let an overbar denote a discrete local averaging over radius O(9) (defined precisely
in Section 1.2). Thus, given an approximate solution wuy, its discrete average is
denoted T;" and the associated fluctuation is up’ = up— up". Although our
analysis is for a specific filter, it can be studied as well for many other filters. The
main properties of averaging used in the analysis are O(5?) accuracy in L?(Q) (with
L?(9) norm denoted || - ||) and smoothing in the form

o —@'[| < C627Y|V2 o], 1 =0,1,2, and
—h —h —h
2| ARG + 8|1V + 118"1] < Clgl].
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The zeroth order example of the approximations we consider follows: find wuy :
[0,T] — X}, satisfying

(1.3) (uns + @ - Vun, o) + x(up', v}) = 0,Yo, € Xy,
up (z,0) approximates ug well.

This is the usual Galerkin approximation plus a time relaxation/stabilization term
intended to damp small fluctuations; see Section 1.1. In other studies, the time re-
laxation term has often been added in the simpler form --- + x(up’,vp).
The difference between the term --- + x(up’,v},) above and the simpler form
o+ x(up/,vp) is discussed in Section 5.2.

Adding in the term x(uj,,v,) introduces a consistency error in the discrete equa-
tions which, using its O(6%) accuracy, is

. _ x(un', vp) — 2
consistency error = sup ———" ~ \/x||lu —T||? = C(u)/xd°.
v €Xp thH
For an interesting example, if x = O(h~1),d = O(v/h) this consistency error term
is O(v/h). This suggests that the N = 0 case, (1.3) above, is not interesting and
higher order (generalized) fluctuations are necessary to attain greater accuracy.

The higher order case.

The most important variant of (I3]), analyzed herein and introduced by Stolz,
Adams and Kleiser in their computations of turbulent compressible flows [AS02],
[SA99], [SAKO1a], [SAKO1D], [SAKO2] (see also [Gue04]), is based on a higher order
fluctuation model. Briefly, given a continuous averaging operator, denoted ¢ — ¢
(see Section 3.1), a continuous deconvolution operator Dy is a bounded linear
operator on L?(Q2) with the property

(1.4) ¢ = DN + O(6*N+2) for smooth ¢.
In particular,
16 — Dl < C(N)FNT2|[g rana , for ¢ € HEVF2(Q).
In the discrete case, considered herein, let " and D" denote discrete averaging
and deconvolution operators. These act on X, instead of X, are defined precisely

in Section 2 and have properties analogous to the continuous case. The associated
higher order/[] (discrete) generalized fluctuation is

ul = up — D"
The (higher order) time relaxation discretization then follows: find uy : [0,7] —
X, satisfying
(1.5) (une + @ - Vun, o) + x(un™, v5) = 0, Yoy, € Xn,
up(z,0) € X}, approximates ug well.
Note that since ¢ = ¢ + O(62), (IL3) is the N = 0 case of (L3).

The consistency error in the higher order method (L) is not limited (in the
continuous case) since

consistency error =~ +/x||u — Dn||2 = C(u)/x5*V 2.

LAs N increases to moderate values, ¢ — D¢ becomes quite close to sharp spectral cutoff.
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For example, let y = O(h~'),5 = O(v/h). If N = 0 the consistency error is O(v/h)
while if N = 1 the consistency error is already O(h%/?).

If x = 0, (A reduces to the usual FEM which converges with suboptimal rate
O(h*) with continuous piecewise polynomials of degree k:

sup u(t) — un(t)| < C[lu(0) — un(0)||
0<t<T

+C  min - sup {[ju—wpl| + [Jur = vnell + [[(w = vn)e ]}
vi,:[0,T]|=Xp 0<t<T
The classic paper of Dupont [Du73] shows that in general this result is unimprovable
for the usual Galerkin method: the L? convergence rate of O(h®) is attained for
Hermite cubicsP

1.1. The genesis and use of time relaxation stabilization. Many stabiliza-
tions are used for convection dominated problems and each has its own advantages
and disadvantages. The present time relaxation regularization has minimal effect
on the solution’s large scales. It thus has promise for longer time calculations. It
also does not change the order of the equation. Thus, in more complex problems no
extra boundary conditions (either explicit or implicit) are needed and no artificial
boundary or interior layers are introduced in the solution or its derivatives. When
an evolution equation is solved as a part of a complex application in which an effi-
cient filtering routine is implemented, higher order time relaxation is also efficient
in both computer time and programmer effort.

The time relaxation term first arose in theoretical studies of regularizations of
Chapman-Enskog expansions of conservation laws in Rosenau [R89], Schochet and
Tadmor [ST92]. The higher order time relaxation term was pioneered by Stolz,
Adams and Kleiser in their large eddy simulations of compressible turbulence. As
a stand alone regularization, it has been successful for the Euler equations for
shock-entropy wave interaction and other tests ([AL99], [ASO1], [AS02], [SAKOIal,
[SAKO1D], [SAKO2]), as well as aerodynamic noise prediction and control (Guenaff
[Gue04]). Tt was observed to ensure sufficient numerical entropy dissipation for
numerical solution of conservation laws; see Adams and Stolz [AS02], p.393. A
mathematical foundation for its inclusion in models for turbulent flow has also
been derived; see [LNO7|, [ELNQT].

1.2. An implementation of [MLF03]. Among interesting tests and results for
treatment of the nonlinear terms in flow problems, a particularly clever and ef-
ficient idea for implementation of time relaxation is given in Mathew, Lechner,
Foysi, Sesterhenn and Friedrich [MLF03|]. To explain their idea, consider an ex-
plicit method in time, suppress the spacial discretization and consider the following
algorithm.

Algorithm 1. Given: u™(~ u(ty))

Calculate: T"! = u™ — Atd - Vu"
Postprocess a1 by:

(1.6) "t = (1 - x)u" ! + xDGu" .
2Dupont shows that there exist infinitely smooth solutions for which a lower estimate for the

error of O(h3) holds. His proof also shows that this suboptimal rate of convergence is the generic
case.
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The (here explicit) time stepping u™ — u"*! can be done by a black box code
with the (here explicit) postprocessing added between steps. Eliminating the in-
termediate quantity u"*! in the algorithm and rearranging terms shows that the
algorithm is equivalent to

Wt =" — Atd - VUt — x[I — DGl 1,

which includes a similar time relaxation term. The form of the time relaxation term
can be further altered by various other explicit and implicit postprocessing steps

replacing (6.

2. PRELIMINARIES: AVERAGING AND DECONVOLUTION

Averaging and deconvolution present interesting new challenges for the numeri-
cal analysis of singularly perturbed differential equations. (They are themselves
interesting, discrete, elliptic-elliptic singularly perturbation problems, [RST96],
[SW83].) There are surely many ways yet to be discovered to use them to increase
the accuracy of approximate solutions to many problems. Let

olelg olelg
dre T fge
and let H;; = H;;(Q) denote the closure of O3 in the H* norm. Welet X = Hi# ()
and X;, C X denote a typical, finite element subspace of X associated with a
maximum mesh size h. We shall suppose that the finite element space satisfies the

following approximation assumption, typical of piecewise polynomials of degree k:
for all v € X N H'*L(Q),

(2.1) 122 {B||V (v —vp)|| + [|[v — v} < CRT ol g, for 1 <1< k.
Vh h

C?:z{(beC’f;C(R): ($+€j),Vj:1,-.-7d7 |a|20}’

2.1. Averaging by continuous and discrete differential filters. We define
next the precise continuous and discrete differential filters used herein. These are
related to the Yoshida regularization of semi-groups and to scale space analysis.
Differential filters were introduced into flow modeling by Germano [Ger86]. The
stabilization used is based on averaging by a discrete differential filter (Manica and
Kaya-Merdan [MMO06]). Let § > 0 (and typically 1 > § > O(h)) be the selected
averaging radius.

Definition 1 (Continuous and discrete differential filter). Given ¢ € L?(Q) its

discrete average Gp¢p = Eh € X}, is the unique solution of
—h —h
(22) 62(v¢ ,V’Uh) =+ (¢ avh) = (QS,’U}L),V’U}L € Xh'

The associated fluctuation is ¢’ := ¢ — Eh. _
The continuous differentially filtered average G¢ = ¢ € X is the unique solution
of

(2.3) 62(Vo, V) + (¢,v) = (¢,v),Vv € X.

Associated with (Z2)) define the usual discrete Laplacian operator A" : L2(Q) —
X}, and projection I, : L2(2) — X, by

(Vo,Vuy) = (—Ath, vp), Yoy, € X}, , and
(¢,vn) = (Inop, vp), Yop € Xp,.
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With these definitions, the discrete filter (Z2) can be written (—62A" + 11, )¢ =
(II5¢) or

(2.4) 3" = G = (~>A" +10,) " (I,g)

and the continuous filter is ¢ = G¢ = (—2A+1)"1¢ .
The mathematical stability and accuracy properties of continuous and discrete

averaging has been extensively studied in [BIL0G], [D04], [DEO6], [ELNOT], [LO07],
[LLO3], [LLO5|, [LLOGa], [LMNROG], [LMNROS|, [LNO7], [MMO6] because they are

central to large eddy simulation of turbulent flows. Next, we recall and sharpen a
few useful results from [LMNROS] specialized to the periodic case.

Lemma 1 (Stability, smoothing and accuracy of averaging). For ¢ € X we have

—h —h —h —h
FPlA"G |+ 8|1V || +[[67]] < Cll¢ll, and |[VE"|| < C||Vg].
If € X and N¢ € L*(Q)

V(6= +0=3'1* < C inf {5?[V(&—vn)|P+ 16— sl "} +Co*| Ao
Forallp e X

25)  FIVE -GN +16-6'17 = min {51V —wa)|l* + [ - oal ).
Under the approzimation assumption 1) and for ¢ € X N H*1(Q)

(2.6) BV E 3P +16 - 3|1 < C@E*h%* + h2H42)[320.
Further, for ¢ € X N H*1(Q)

- h . — - 1
(2.7) 16— ¢"|] < C5 min {O*IIV (@ — vn)[I* + 11§ — val[*}>2
vp €Xp
< C(WF 1 4 67T W) 4] s,
— —h . — - 1
(2.8) |6 =9 |la-10,1) < Ch ﬂgggh{ézllv(sé — o) [ + (|6 — val[*}2
< C(6R* Y + hEF2)| | s, for k> 1,
e h, . — — 1
(2.9) 16 = ¢ Mlm-10,1) < Ch(5) Uirg)rgh{ézllv(sﬁ — o) [ + 1|6 — vnl[*}2

< O(hF2(1 + %))|$|Hm, for k> 2.

Proof. The first two claims were proven in Lemma 2.11 and 2.12 in [LMNROS] in
2 and 3 dimensions but the proof is dimension independent. The third and fourth
claim will follow from normal finite element error analysis (e.g., [SW83]), accounting
for the dependence upon 6. We give a brief proof next. Given ¢, the equations for

¢ and $h are, respectively,
(2.10) 628", Von) + (3", vn) = (9,01), Yon € Xa,
52(Vo, V) + (¢,v) = (¢,v),Yv € X.
In other words, ah is the usual Galerkin approximation of a symmetric and
coercive problem so the third claim (Z5) holds (see, e.g., [SW83] for more details

about estimates for elliptic-elliptic singular perturbation problems). The fourth
[230) follows from the third plus the approximation assumption. The fifth follows
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from a classical duality argument for ([ZI0) as follows. Let ¥ be the unique 1-
periodic solution of
(2.11) —PAV + T =¢— $h, on Qand ¥(z) =¥(x+e;),j=1,...,d
The solution ¥ has the following regularity, for example [LO7],
- —h
FPAY| + 68|V + (¥ < Cllg -6

Subtracting the continuous and discrete equations in (2I0) above gives a standard
Galerkin orthogonality condition

OX(V(@—3").Von) + (3= " vn) = 0, ¥y € Xp.
The variational formulation of the dual problem (ZIT]) is
SV, Vo) + (W,0) = (¢ — ¢ ,v), Vv € X.
Setting v = ¢ — ah and using the Galerkin orthogonality gives, Vv, € Xy,
18 =3"I* = *(V(¥ o), V(6= 3") + (¥ v, 6 - ")
< [PV = o) 119 — el PRSIV @ =3I +1[6 - 3"I71 2.

Choosing vy, appropriately and using the approximation assumption (21 and
the regularity of ¥ yields

— — h h 1,,— — — — - - 1
18 -3"17 < Cl)? + ()18 =3 eIV @ — 81+ 1[6 - 811”2,

so that, using the approximation assumption gives
B3l < CEPIVE -8 +115 - 3"1)
< ORI+ 20l s
which is the claimed L? error bound.

The H—! estimate will follow similarly by duality. Indeed, let 8 € H;&(Q) be
fixed but arbitrary and let ¥ be the 1-periodic solution of

(2.12) —0?AVU+ U =8, on Qand ¥(z)=V(r+ej),j=1,...,d
It is known, e.g., [LO7] (and easily proven by Fourier series), that the solution ¥
satisfies
S|V + 8|V + V] < C||[VAl.
The variational formulation of the dual problem (ZI2)) is that
82Uy, v,) + (T, 0) = (B,v), Vv € X.
Setting v = ¢ — E)h and using the Galerkin orthogonality 21I0) gives, Vv, € X5,
— —h — —h — —h
(B,o =) =*(V(¥—vn), V(6= )+ (¥ —vn¢d— )
1 —  —h — —=h 1
< OV (W = op)[]? + (18 — o P]2[8%]|V (@ — @) + ¢ — &)=
Using the approximation assumption and the regularity of ¥ yields

(8.6 -3") < CH|[VBII?IV @~ 3")II? +1[6 — 8P} if k = 1 and

(8.5-3") < Ch(DIVBIPIVE ~ 3P + 116 —3"|%% irk > 2.
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The last two results follow by dividing by ||V3|| and taking the supremum of
B e HL(Q). 0

2.2. Deconvolution. The deconvolution problem, central in image processing,
e.g., [BB9Y], is
given ¢ (+noise), find ¢ (approzimately).

One of the most basic deconvolution methods is the van Cittert algorithm,
[vC31], [BB98]. For continuous deconvolution, it is equivalent to N steps of first
order Richardson iteration for the equivalent problem

given w solve u = u + {u — Gu} for u.

Algorithm 2 (van Cittert approximate deconvolution). Set vg =u and fix N
form=1,2--- N —1,
perform vyy1 = v, + {0 — Gu, }.
Define Dyu := vy .

The discrete van Cittert deconvolution operator is defined by substituting Gy,
for G and @" for % in the above algorithm. The discrete van Cittert deconvolution
operator will be denoted by D%. By eliminating the intermediate steps, the N*"
van Cittert deconvolution operators Dy and D?\, are given explicitly by

N N
(2.13) Dy¢:=>» (I-G)"¢ and D¢ := Y (I, — Gu)"¢.
n=0 n=0

The van Cittert operator acts like an extrapolation in scale space from resolved
to unresolved scales. For example, the approximate deconvolution operators corre-
sponding to N =0,1,2 are

!

g
I

0 ﬂa

!

U= 2U — T,
Dyti = 3u — 30 + u.

Definition 2 (Deconvolution error). Given ¢, the deconvolution error is, respec-
tively, in the continuous or discrete cases given by

deconvolution error = ¢ — DNE or =¢— D}Krah .

The deconvolution error plays a fundamental role in the consistency error inher-
ent in algorithms based on deconvolution methods. Although there remain many
open questions about even these simplest deconvolution operators, a theory is be-
ginning to develop. Next we summarize a few points, sharpening the results, as
necessary, for the hyperbolic problem.

Proposition 1 (Stability and accuracy of deconvolution). Let Dy and D’Ii, be given
by the van Cittert algorithm. Then Dy and D% : L?(Q) — L%*(Q) are bounded,
self-adjoint positive operators as are I — Dy and I — D}I{,. Further,

1D < C(N)|Jo]], Vv € X,
IDXT"|| < C(N)|[vll, Yo € X,
|[VDR"|| < C(N)||Vv|], Yo € X.
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In the case of differential filters A := —82/ + 1, Ay = (=62AM + 1), G =
A7 and Gy = (Ap) "'y, Then
(2.14) ¢ = D¢ =82V (=) A)" g, vg € L2(9),
(2.15) ép — DG = VT2 AMNFL(4,) - (N4 g yo, € X,

Proof. The stability claims are in Lemma 2.11 of [LMNROS]. The first accuracy
results (214 was proven by Stoltz and Adams [SA99] and independently by Dunca

[D04] and Dunca and Epshteyn [DEQ6], see also [BIL06]. The second (2.I5) is in
Lemma 2.10 in [LMNROS]. O

Lemma 2 (Smoothing property). For any ¢p, € X},
—h —h —h
S| A" (DR )|+ 6V (DR dn | + [[Dxn || < C(N)||6nl]-
Proof. Consider the van Cittert algorithm. We have at its initiation ¢g = %h
which satisfies
—h —h
(216) 62(v¢h7 V’Uh) + (¢h avh) = (d)ha Uh)avvh € Xh~
Setting ¢, = vp, and using various inequalities gives for ¢g = %h
def 1
(2.17)  [llgolll = {8*|AM (DR ¢o)|I* + 8|V (DR po)lI* + [ Dol }2 < Cllgnll.
For the first step of van Cittert,
—h  —h
¢1=¢o+{do —én }.
Thus, by the triangle inequality and the last estimate,
—h —h
(2.18) oIl < llldolll + oo (Il + [llén I

—h
< Clllgnlll +ll¢o I

If the above estimate ([217) is applied with ¢y, replaced by ¢g on the right-hand
side, we have

—h —h
o [[ < Cligoll = Clign || < Cllnll,

again by (2I7)). Thus,
Ho1l]] < Cllenll-

For the general case we proceed by induction. O

One question regards boundedness of the right-hand side of (ZI4]) and ZI5).
Some partial answers, summarized below, are in [L07] and [LMNROS].

Proposition 2 (Deconvolution error estimates). For all ¢ € L*(),

6 — DEG"|| < C(N)|lo — 3,
while if ¢ € X and A¢ € L*(Q)

6 = D"l < CN) inf. {82][V(6 = 3" + 16 = 3"I7} + C(V)3? A9l

Further, under the approzimation assumption 1) and for ¢ € X N H?N+2(Q) N
HkJrl(Q)’

—h
16 = D¢ || < C(N)(Sh" + B[ @llks1 + CO*N 2| lan .
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Under the same conditions,
—h _
16— DX [| < CN) (R 4+ 57 05 2) ][k 41 + CT* N2 [lan yo-

Proof. The first two inequalities are proven in Lemmas 2.12 and 2.13 in [LMNRAOS].
The third combines Lemma 2.14 and Remark 2.14 in [LMNRO§| with [LO7]. The
remainder is a sharpening of Lemma 2.14 in [LMNROS]. Since the proof of the
shortened result has same structure as that of Lemma 2.14 in [LMNRO0S], we shall
outline the proof where it is identical to that of Lemma 2.14 in [LMNROS] and give
the details where it deviates.

To begin, we rewrite ¢ — D’&Eh = (I — D}Gy)¢ as

(2.19) (I —DYGM¢ = (I — DNyG)¢+ (Dy — D¥)Go + D (G — GM)o.

This is a small but critical reordering of the decomposition of the corresponding
one in the proof Lemma 2.14 in [LMNROS]. We know ||D% || < C(N), so

_ h o —
IDK(G = GMell < CN)[6 = 8[| < CRM (1 + )8

The bound of the right-hand side has been sharpened in Lemma 1 above from the
corresponding one in [LMNROS]. The first term in ([2.19) is bounded in Proposition
2 giving
I(I = DnG)gl| < CFN 2| AN g]| < 6°VH2|g|a .
Consider the term (Dy — D?V)Ggﬁ. Adding and subtracting terms in this order
yields G¢ (rather than Gp¢) which is at least as smooth as ¢. Thus, we estimate
(Dn — D%)G¢ using the argument in [LMNROS] (Lemma 2.14). Indeed, with

Y =Go,

N N
(D = D})Go = [(I = G)" = (I = Gn)" [+ Y [ = G)" — (I — Ga)"]¥

n=0 n=0

The n = 0 term vanishes while the n = 1 term is 1) — Eh, bounded in Lemma 1
above. The first term on the right-hand side is the critical one. Thus, consider

N

ST =G = (I—Gu)"]w.

n=0
For n = 2 we have, adding and subtracting (I —Gp)(I — G) (instead of in the other
order (I — G)(I — Gp) used in [LMNROS]), gives

(I — G2 — (I = Gn)? = (G — G)(I = G)b + (I — Gr) (G — G

It is not difficult to show, using the spectral mapping theorem, that both G} and
I — G}, are SPD (symmetric positive definite) and ||I — Gp|[rz2—r2) < 1. Thus,

(I — G)*¢p — (I —Gn)*¥|| < |[(Gh — G)I — G|+ ||(Gh — GV
< CM + 67 R(I — G)ligr + [lkra )

Since [@lrr1 < Cllollkr1, |Z|k-+1 < C||l[k+1, we have
1 = G)*% — (I = Gu)*¥l| < C(A* 4 67 1R 2)||g][t1,

and the result holds for n = 2. To complete the proof we continue by induction for
3 <n < N as in [LMNRO§| only adding and subtracting terms in the same order
as the above n = 2 case. (I
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The error in discrete deconvolution is bounded by the error in the best approx-
imation in Xj,. If filtering is itself inexpensive to perform, then the van Cittert
algorithm is economical in both computer time and programmer effort because it
only requires repeated filtering. Various other deconvolution methods are also be-
ing developed for similar purposes such as Tikhonov [S07], [MSO7] and optimized
van Cittert [LS07], and could also be considered. It is also possible to define means
and fluctuations by projections into hierarchical finite element spaces. This idea
leads to more methods that are similar in motivation but whose analysis would be
different in detail.

3. A QUASI-STATIC PROJECTION

The reason for the improvement in accuracy for the time relaxation discretization
is captured already in the analysis of an equilibrium projection in this section. The
projection

Q X — Xy,
is defined after some necessary notation as follows. When N = 0, D} = II;, and
(I — DEGp)u = u — @™ is the fluctuation about the mean (normally denoted u').
Analogously, for N > 0, u — DiGru = u — D;{,ﬂh represents a higher order,
generalized fluctuation (for example [LMNROG], [LNOT]) that we will denote by u*.

Definition 3 (Higher order fluctuations). The generalized (higher order) fluctua-
tion, denoted u*, is
u* :=u— DN Ghu.
Given y > 0 and § > 0 and for w € X, the projection @ : X — X by
wp, := Quw € X}, is (unique) solution of the finite dimensional linear problem,

(3.1) (@ - V(w—wp) 4+ (w—w),v) + x(w—wp)*,v}) =0,V € X

Lemma 3. Let x > 0, § > 0. &) has a unique solution. Q : X — Xp, is a
well-defined projection operator.

Proof. The equations (B defining @ reduce to a linear system for the projection
so existence is implied by triviality of ker(Q). To verify triviality, let w = 0, and
set vp, = wy, . This gives

(@ - Vwn, wn) + ||wal|* + x||w;]|* = 0.

Under periodic boundary conditions (E) - Vwp,wp) = 0 and thus wy, = 0. That
Q? = Q follows similarly. O

If x = 0, BJ) reduces to the usual finite element method for a two point bound-
ary value problem. Finite element error analysis shows that w — Quw satisfies

lw = Qul| < C inf {||[V(w—wp)||+ [[w—vnl[}.
VR EXp

This estimate also leads to an asymptotic rate of convergence suboptimal by one
power of h, sharp for some elements, [L83] (as for hyperbolic problems, Dupont
[Du73]). For other, special elements on uniform meshes and for smoother solutions,
this extra power of i can be recovered by a cancellation argument, e.g., Axelsson and
Gustafsson [AGT9]. On the other hand, if, as is commonly manifested as oscillations
at the smallest resolved scale, this loss of accuracy comes in the behavior of the
error at the smallest resolved scales, it is plausible that the extra control of small
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scales in the time relaxation discretization for xy > 0 will lead to an increase in
accuracy as well as stability.

Theorem 1 (Projection error). Let D% be the discrete van Cittert deconvolution
operator. Let w € X and let Q be the projection BIl). Then, the error in the
projection satisfies

e = QP+ xll(w — Qu)*| < C(N)_int {(1+ 572w —
+x IV (w = on)[? + xll(w = va)*|*}.
Proof. Let w € X}, be arbitrary (for the moment), and write
w—Qu = (w—w)— (Quw—w) =n— ¢,
where 1 := w — w and ¢p, := Qw — w € X};. The projection equations can be
rewritten as
(@ - Von + dnon) + x(¢0",07) = (@ -V +1,00) + X(0", 05) = 0, Y05, € X

Setting v, = ¢, and using (E} -Von, on) = 0 and the usual inequalities gives

(3-2) l16n >+ XlI7lI* < 20 - V. én) + [nl|* + "I

The key term is (@ - V), ¢p). The idea is to separate scales in this term and
treat the large and small scales differently. The small scales are controlled by
the stabilization in the time relaxation term and the large scales are treated as a
consistency error term. (This idea has been used for other stabilizations in, for
example, [L02], [LO5], and Guermond [Gue04].) We treat the N = 0 case and the
general case separately to make the ideas clear.

The deconvolution order N = 0 case.

In the N = 0 case this term is split into means and fluctuations and is integrated
by parts:

N=0:(a V) =(a V0, n +&}) =—(n,a Vo) + (a - Vn, ).

Inserting this in the right-hand side of ([B.2)), recalling that |E>| = 1, and using
standard inequalities gives

X c —h
onll? + xllonlI* < [Inll> + x| + §|\¢H|2 + EHV??HQ + 2[[nl|[IVyll-

We use the a priori bound HV$Z|| < 35|¢n|| from Lemma 1 (tracking the con-

. —h -2 .
stant through its proof) and 2|n|[[IV&|| < [Inl|3llénl| < Slénll? + 55> |n|[2. This
yields

l1onl* + xll@hl1* < (2 +67)Inl* + 2xIn'[I> + Ox =MVl + 2| In]l.
Thus, by the triangle inequality,
[|lw — Qul|* + x||(w — Qu)'||?
< ON) it {(1+ 87w — a2+ x IV (w = )12+ I = w2
The case of higher deconvolution order N > 1.

The proof for N > 1 follows the above N = 0 case only the splitting uses
generalized fluctuations. Indeed, split

(T -V, n) = (@ -V, Dl (@) + 6}) = —(0, @ - VD& (Bn) + (T - Vi, 63).
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Both terms on the right-hand side are handled analogously to the N = 0 case
with the second term treated identically. The first term on the right-hand side

(n, @ -V(DY (ah))) is treated like the term (7, E)V%i) of the N = 0 case using the

a priori estimate from Lemma 2 that HVDK,(@h)H < C571|pn||- The remainder
of the proof follows exactly the N = 0 case. (]

Corollary 1. Let X;, satisfy the approxzimation assumption (21)). Let w € X be
smooth and let Q be the projection BI]). Then, the error in the projection satisfies

lw = Qul* + xl[(w — Qw)*||* < C(N, w){(1 +§~*)A?*2 4 xT1A?* 4+ xn?+2}.
Thus if § = O(hz),x = O(h™1)

lw — Qul| < C(N, w)hF*2,
[|(w — Qu)*|| < C(N, w)h**1,

Proof. Use ||(w—wp)*|| < Cllw—wy|| and the approximation assumption (Z1I)). O

4. NUMERICAL ANALYSIS OF THE TIME DEPENDENT PROBLEM

This section proves the following error estimate for the method (CZ) which
(roughly speaking) states that the error in the method consists of the error in
the equilibrium projection plus a consistency error term. With proper choice of y,
6 and N, we obtain the improved rate of convergence of O(h’”é) which seems to
be typical of stabilized methods.

Theorem 2 (Convergence of the method with time relaxation). Let Q be the
equilibrium projection BJ). Let X, satisfy @2J). For 0 <t <T < oo the error in
the method (LX) satisfies

T
sup ||U—Uh||2+/ XlI(w—un)*|*dt < C(T, N){[[u(0) —un(0)||* +sup [[u—Qul|*
[0,T7 0 [0,77

T
+/0 Dl (= Qu)[1? + llue — Quel* + xlu” (t)]*]dt}.

Remark 1. The consistency error fOT x| u*(t)||2dt is directly related to the decon-
volution error and will be bounded using Proposition 2. Since (Qu); = Q(uy), the
remaining terms will be estimated using Theorem 1.

Proof. Subtraction shows that the error e(t) := u(t) — up(t) satisfies
(e + @ - Ve, v) 4 x(e*,v}) = x(u*, v}), Yo, € Xp,

which is driven by the methods consistency error on the right-hand side. As usual,
split the error as
6277_¢h»77:u_QU»¢h:Uh—QU~
Rearranging the error equation, we then have, for any v, € Xj,
(4.1)
(Dn,e+ @ -V, on) +x (875 v5) = (me=n, vn) X (™, 03) +1(@-Vtm, 0n) +x (0", 07)]-
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By the definition of the projection operator (), the bracketed term on the right-
hand side vanishes. Setting v, = ¢y, gives

1d * * *
S llonll2 + X2 = (e — 1, 6n) + x(u", 67)
1 X o« X | s
< §[||77t||2+|\77|\2]+§||u H2+§H¢h||2+||¢h”2-
Equivalently,

d . .
gillonl® XIS < [mell® + llmll®) + Xl |12 + 2l gn]*

Gronwall’s’ inequality implies that for 0 <t <7T < o0,

t t

H¢h(t)||2+/0 xllgnl12dt" < [l¢n(0)[[*+C(T) /O e (812117 x [ ()] de

The trial inequality then yields the claimed result. Il
Using the error estimate for the projection in Theorem 1 gives the following.

Corollary 2. For 0 <t <T < oo, the error in the method ([LH) satisfies

T
sup ||u — up||? +/O XlI(w = up)*|[Pdt < C(T, N){][u(0) — un(0)||*

)

+ inf sup[(14672) sup ||lu—vp [P+ x IV (w—v)| ]2+ x| (w—20p)*]|?
A TSIPICH872) sup 2 9 a4 )

T
+/ (L 071w = o)l P+ x7HIV (= vn)el* + Xl (w = vn)7 || *dt}
0

T
+ [ o pary.
Proof. This follows from Theorems 1 and 2. O

By Proposition 2 we can estimate the consistency error which is the square root
of the last term in the above error estimate. Indeed, under the approximation

assumption (Z1),

T T
/ e ()] 2dt = / I = DhG)u(e)|Pde
0 0

)

< Ol (4214 (3)2) 4 54y,

T
h
(4.2) < / Oxh* 2 (14 (5)*) ()[R 41 + Cx0™ u®) By 4 2dt
0

Rates of convergence then follow.

Corollary 3. Suppose the assumptions of Theorem 2 hold, u is smooth, and the
approximation assumption [21) holds. Then,

T
sup [ — +/ ll(u = wn)*|[2dt < C(T, N, u){|[u(0) — un (0)]?
y 0

+(1+5_2>h2k+2+x_1h2k+xh2k+2+Xh2k+2(%)2+X64N+4}.



ACCURACY OF TIME-RELAXATION 633

Proof. This is immediate. O

Taking square roots and collecting the leading terms (when 1 > § > h,x > 1) in
the above error estimate gives

)+ x2 02N,

41, R
errory ) < error(0) + {5 1A + Y 2R 4 y2RFTL 4 X%h"“(g

The error is optimized by
§~vVh,x~h"! and N > k.

These choices attain the accuracy for smooth solutions

T
sup ||[u — up|| < error(0) + Ch**2 and \// ||(u — up)*||2dt < error(0) + CA*T,
(0,71 0

which is suboptimal by one-half power of h for the L? error but optimal for the
error in the generalized fluctuation.

5. POSSIBLE EXTENSION TO ANOTHER TIME RELAXATION TERM

The theory of the discretization has been developed for a simplified problem:
one space dimension, periodic boundary conditions, no time discretization, and a
convenient form of the time relaxation term. We shall consider nontrivial boundary
conditions through a computational illustration in Section 6. Time discretization
of the relaxation term is less understood. In the case of implicit methods, if (T3]
is discretized in time by the (1,1)-Padé/trapezoid method, it is straightforward
(although longer than the continuous time case) to prove stability, convergence
and even superconvergence. Thus, there remains efficiency, which is critical in
3 dimensional problems for which () is a common simplified model. In full
trapezoidal discretizations of the method (LH), at each time step a linear system
must be solved which, if assembled, is fully due to the (nonlocal) filtering terms in
the deconvolution operator Dy. When an iterative method is used to solve this
linear system, this filtering occurs in a residual calculation and can be implemented
without assembly. The action of Dy in this residual requires N solves with the
coefficient matrix (—§2A" 4 1), which has condition number O(1 + (£)?). On the
other hand, if the term x(up*, vf) = x(un™*, vi) is treated explicitly (as tested
by Guenaff [Gue04] for N = 0), no special care is needed since this term involves
filtering a known function 2N times. This suggests that for complex 3 dimensional
problems, some combination of implicit (for stiff terms) and explicit (for the time
relaxation term) methods would be the most efficient.

This section considers alternate forms of the time relaxation term. If the gener-
alized fluctuation operator v — v* is positive semi-definite (as with the van Cittert
deconvolution operator I — D% G},), the added term in the method is often sim-
plified to x(up*,v). In this case some improvement in the error over the usual
Galerkin FEM can be shown. This is sketched next.

When I — D;{,Gh is symmetric and positive,

u,v = (I — D;{,Gh)u,v)

defines a semi-inner product and semi-norm on L?(2).
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Remark 2. If the orthogonality relation ((I — D%Gp)u, D%Gpv) = 0 holds, then
the two forms are equivalent. In the periodic case it is easy to verify that this
orthogonality fails. Indeed, if such a relation held for all A and all u and v, then it
would hold in the limit as A — 0. Then each Fourier mode of (I — DyGp)DnGh
would necessarily vanish. These (rescaling by 0k < k) are given by

k? k2

)N—H]( )N+1.

1+ k2 1+ k2
This quantity is plotted for N = 0,1,2 next in the next figure for 0 < k§ < 7
(rescaled by 6k < k). From the plot we see that in the continuum limit there
is no orthogonality property. There is however a strengthened CBS inequality of
the form ((I — DnGpr)u, DnGro) < y|[ul||v]], for some v < 3 and that (again in
the continuum limit) there is a high order approximate orthogonality for smooth
functions.

FI(I = DnGr)DnGp](k) = [1 - (

DODG. A
d-DODG |
08
06
0.4
0z <
N - \\
+ t + -
as 110 1[5 20 25 30
k

Thin line: N = 0; Medium line: N = 1; Thick line: N =2

1
Definition 4. (u,v), := (I — D%Gp)u,v) , and ||ul|, := (u,u)?. Let x > 0 and
6 > 0. Define the modified projection @ : X — X}, as follows. Then wy := Quw €
X}, is the unique solution of the finite dimensional linear problem:

(5.1) (@ - V(w—wp) + (w—wp),v) + x((w —wp)*, v) = 0,Vop, € X

Following the analysis in Section 3, we have the following projection error esti-
mate.

Theorem 3 (The modified projection’s error). Consider the modified projection
GID). Then, the error in the projection satisfies

llw = Qul|? + x[Jw — Qul[2 < C(N) b {(1+ §72) Jw — vnl|?

+ XTIV (w = on)[IP + xllw = val[23-
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Proof. Let w € X}, be arbitrary (for the moment) and write
w—Qu = (w— @) — (Qu —T) =1 — b,

where 1 := w — w and ¢p, := Qw — w € X};. The projection equations can be
rewritten as

(@ - Vén + dn,on) + x(on* 0n) = (@ - Vi +n,01) + x(*,0) = 0,Yoy, € Xp,.

Settlng Vh = (bha USing (6> : v¢h7 (bh) =0 9 (n*7 ¢h) = (777 ¢h)* S ||77||*H¢h||* and
the usual inequalities gives

(5.2) onll® + xllénl|? < 20T - Vi, én) + |[nl]* + x||n]|2.

The key term is (7 - Vn, ¢n). This term is split into means and fluctuations and
integrated by parts. Indeed, split

—h . —n .
(@ Vn,6n) = (@ -V, DN (00" ) + é3) = —(0. @ - VDX (én")) + (@ - Vi, by)-
Inserting this in the right-hand side of (5.2)) and using standard inequalities gives

X c —h
onll? + xllonllZ < Inl* + xlInll + §||¢h||i + §||V77||2 +2|[nl|[IVDRdn” |-

Using the a priori bound HVD?V(%}L)H < C571|pn| yields
llonl* + xllnl|? < 2+ 872 nll* + 2x[[nl[Z + Ox |Vl
Finally, the triangle inequality completes the proof. O
Consider the modified method: given x > 0, find uy, : [0,T] — X}, satisfying
(5.3) (wni + @ - Vup,vn) + x(un”, vn) = 0,¥v, € Xy,
up(x,0) approximates ug(z) well.
Adapting the error analysis in Theorem 2 yields the following result.

Theorem 4. Let @ be the modified equilibrium projection. For 0 <t <T < oo the
error in the method [B.3) satisfies

T
Sup} ||U_Uh||2+/ xllu—upl[Fdt < C(T, N){|Ju(0) — un(0)[|? +[Sup] [lu — Qul[?
0 0,7

)

T
+/ [llu = QullZ + llue — Quel[* + x*[Jw” (t)[*]dt}.
0
Proof. The error e(t) := u(t) — uy(t) satisfies
(er 4+ @ - Ve, vp) + x(e*,vn) = x(u*,vn), Vo, € Xp,.

Split the error as e = n — ¢p,m = u — @u, on = up — @u Rearranging the error
equation, gives, for any v, € X,

(Gne+ @ -V n, vn) X (05, vn) = (=1, )+ x(u*, vp) +[(@-Vnn, vn) +x (7%, v8)].

Due to @ the bracketed term vanishes. Setting v, = ¢y, gives

1d
EEH%HQ*‘XH%HE

(nt -, (bh) + X(U*v ¢h)
1
2

A

1 *
(el + 1l P] + S |1 + Cllnl*,
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FIGURE 1. One Delaunay mesh used

In the critical step we use the inequality x(u*, ¢n) < 2x?|[u*]|? + 3|[¢n||*>. The
remainder of the proof follows the same as that of Theorem 2. (I

The consistency error is bounded similarly with y replaced by x? as
T
. h
| @R < Ol g ()7 + 522,

This gives, with the optimal choices § ~ V/h , x ~ h=3 and N > k + 1, that the
accuracy for smooth solutions is predicted to be somewhat less than the previous
case:

error(t) < error(0) + ChF*s.

Remark 3. We believe this estimate might be improvable. For example, one can
try instead x(u*, n) = x(u, #n)« < Sx/[ul2+3x]|¢nl|2. Another possibility is that
the consistency error estimate might be improvable through estimates in negative
Sobolev norms because, for example,

T T T
/ xllulPdt = / X, w).dt = / X(* u)de
0

0 0
T T
< /0 XHU’H%[l(Q)dt /0 XH“*H?{—l(Q)dt

This is an open problem.

6. FOUR COMPUTATIONAL ILLUSTRATIONS

There have been several simplifying assumptions in the formulation of the model
hyperbolic problem, including that the problem is linear and has periodic boundary
conditions. Nonlinear conservation laws require special techniques that are beyond
this report so the tests will focus upon the behavior of the method when the other
simplification is relaxed. We let the spacial domain be a rectangle in 2 dimensional.
It is well known that many methods can have special (usually favorable) properties
on uniform meshes and on meshes that are aligned exactly with the convection
direction. To remove this effect, we always use meshes generated by a Delaunay
algorithm. A typical example is plotted in Figure [l

The 2 dimensional calculations were done using FreeFEM++-, and the 1
dimensional calculations in Section 6.1 were done with a MatLab program. With
unstructured meshes, we can select the convecting velocity to be qd = (1,0). Thus
we have the following test problem with right-hand side chosen so that the true
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solution is

Utrue (T, Y, t) = sin(4my) sin(mwz) sin(t), so that
f(z,y,t) = sin(4dmy)(sin(rz) cos(t) + cos(mx) sin(t)],

given by find u = u(x,y,t) satisfying

Oou  Ou 1
54—%_ (x,y,t), on Q= (0,1) x (O’Z)’ and ¢ > 0,

1
uw(z,y,0) =0, on Q, u(0,y,t) =0for t > 0,0 <y < T

In the first table we give the error in the usual finite element method using quadrat-
ics on triangles with maximum triangle diameter given as h for the Delaunay mesh
generated. The rates were calculated in the table in the standard way using the
error at two successive h’s and supposing error(h) = Ch* and then solving for the
exponent a.

h = L? error rate
4.62798e-2 2.41113e-4 —
2.54801e-2 6.66330e-5 2.155
1.30216e-2 1.64784e-5 2.081
6.52674e-3 3.83958¢-6 2.110
3.44127e-3  9.62077e-7 2.162

Usual FEM errors

(6.1)

A line of best fit through a log-log plot of errors gives convergence rate 2.116 for
the usual FEM. This is consistent with an O(h?) error estimate for quadratics for
the usual FEM. Next we add a time relaxation term to this test problem to test
if, with the scaling predicted by the theory (in the simplified context) the accuracy
does increase.

The fact that the theory is in a simplified context is potentially important. The
averaging operator is the solution of a second order problem and the PDE is only
first order and thus the PDE does not have enough boundary conditions for the
averaging operator. It can be argued that many convection dominated problems
contain small amounts of diffusion and that including this and the accompanying
boundary conditions would completely resolve this issue. We, however, wanted to
see how the method could perform for the pure hyperbolic limit and test the limi-
tations of the error analysis. We also note that the question of boundary conditions
for finite element methods for even 2 x 2 systems contains extra subtleties; [L83b]
and Gunzburger [G77].

As a first (reasonable) guess for the extra boundary conditions needed, we ex-
ploited the fact that in our chosen time stepping method we were always averaging
a known function. Thus, given a function ¢ vanishing at the inflow boundary x = 0,

we calculated its average ¢ — Eh by the usual FEM approximation of

—82Np+ ¢ =¢, in Q,

#(0,y) = ¢(=0), on the inflow boundary
¢ = ¢, on the rest of the boundary.
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Other definitions are possible and can be explored. The parameter values tested
were 6 = 0.1vVh, x =1 /h, and N = 2 deconvolution steps. These choices agree with
the theoretical predictions of values that increase accuracy with quadratic elements.
The following errors were observed. A line of best fit to the log-log plot of errors
gives convergence rate 2.668, consistent with the theoretical prediction of 2.5. A
similar test (omitted for space) that was performed also showed no convergence
rate improvement over the usual FEM when using N = 0 and N = 1 deconvolution
orders, also as predicted.

h= L? error rate
4.62798¢-2 1.50848e-4 —
2.54801e-2 2.08445e-5 3.316
1.30216e-2 3.10657¢-6 2.836
6.52674e-3 5.53691e-7 2.497
3.44127e-3 9.59315e-8 2.739

Time Relax FEM errors

(6.2)

We note that although the exact solution is chosen to be exactly zero on the
boundary, the approximate solution is zero only on the inflow boundary and only
approximately zero on the rest of the boundary. One can ask if the extra boundary
conditions in the averaging operator played any role in the errors. This can also be
easily tested using the knowledge that the true solution is exactly zero on 992. To

. . —h
do this we repeated the test but redefined the averaging operator ¢ — ¢ by the
usual FEM approximation of

—82Np+d=¢, inQ, ¢=0,on .
With the same parameters we observed the following errors.

h = L? error rate
4.62798¢-2 1.13634e-4 —
2.54801e-2 1.87568e-5 3.018
1.30216e-2 2.55018e-6 2.972
6.52674e-3 3.20682¢-7 3.002
3.44127e-3  4.28390e-8 3.145

Time Relax FEM errors
using extra BCs

(6.3)

A line of best fit to log-log plot of errors gives convergence rate 3.034. This con-
vergence rate is beyond the theory.

The second test is a problem with a nonsmooth solution. For the same domain,
test problem, meshes, algorithmic parameters (6, x, N), pick the body forces to be
identically zero, f(xz,t) = 0. We choose a discontinuous boundary condition, for
Jj=12,



ACCURACY OF TIME-RELAXATION 639

The initial condition was

u(z,y,0) =0,0<z <

u(z,y,0) =e 7, 3 <z < %

The exact solution is a discontinuity that moves across the domain so that after ¢t =
1 it reaches a steady discontinuous step. The usual FEM on a general unstructured
mesh without any upwinding or limiters is particularly unsuitable for problems like
this one. Thus, we do not expect excellent solution quality from any variation of the
methods studied. We test this problem to see if the time relaxation term gives any
improvement at all for nonsmooth solutions. We give next approximate solution
plots at ¢ = 1 beginning with the (expected bad) usual FEM in Figure 21

FIGURE 2. Usual FEM at t =1

The behavior is actually worse than the above seems to indicate. This is revealed
when one zooms in to the solution in Figure

Next we give the approximate solution obtained using the FEM+time relaxation
for the same data and algorithmic parameters in Figure @l Oscillations still occur.
(The aim of time relaxation is not to prevent all oscillations but rather to damp
those that do occur.) However, compared with Figure 2] the oscillations are much
smaller than without time relaxation and the larger ones are confined to a neighbor-
hood of the discontinuity. Zooming in to the worst subregion in Figure Bl compared
to Figure Bl is consistent with the above description.

By computing the solution for various values of §, we found the best value of the
averaging radius for this problem to be to § = 0.03v/h; see Figure [, below.
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FIGURE 4. FEM+time relaxation solution
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FIGURE 6. Time relaxation with § = 0.03vA
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6.1. Tests in one space dimension: the one dimensional case is special.
Hyperbolic problems in one space dimension are special for several reasons, and
there are cases known in the literature where faster convergence is observed (or
proven) in one space dimension than in higher dimensions. This section examines
in two tests if the rates of convergence for the time relaxation FEM (that have both
been proven and observed in higher dimensions) might be potentially improvable
under the special features of one space dimension. For the one dimensional tests,
take @ = (0,1). Both uniform and nonuniform meshes are considered to address
the possibility of special properties (e.g., superconvergence and leading order er-
ror cancellation) often observed with uniform meshes. Nonuniform meshes were
generated by choosing a maximum mesh size h < 1, then assigning grid points
starting at xo = 0 followed by z1 = h, then alternately adding x;1; = x; + h/2,
Ziy2 = T;11 + h until the final grid point zy = 1.

Calculations were performed using a MatLab program and continuous piecewise
quadratic elements. Choosing a true solution u(z,t) = sin(mz) sin(t), we calculate
the right-hand side function f(z,t) = sin(mx)cos(t) + mcos(mzx)sin(t). We then
have the problem of approximating u(z,t), satisfying

% + g—z = f(z,t), (z,t) € (0,1) x (0,1),
u(z,0) =0, x € (0,1)

w(0,t) =0, t € (0,1).

With this choice of u, f the following error tables were generated illustrating
accuracy and convergence rates for the finite element method with and without
time relaxation. The maximum size of a mesh element is denoted by h. Time
discretization was performed using the trapezoidal rule, and a time step size of
At = 1/2000 was determined to be sufficiently small for all tests for the time
discretization error to be negligible. Convergence rates, the exponent p in error ~
C h?, were calculated using the maximum L? spacial error over all time steps.
Parameter values § = 0.3-h'/2 and y = 22 were chosen, consistent with the theory
for the time relaxed FEM.

The convergence rates in Table [Il for both regular and time relaxed FEM are
unexpected. For 1 dimensional problems with periodic boundary conditions, the
regular FEM with continuous piecewise quadratic elements on a uniform mesh has a
provably optimal convergence rate O(h?); see [AGT9]. Thus, the shift from periodic
to Dirichlet boundary conditions at the inflow boundary points to an open problem
in the theory. The observed optimal convergence rate of the time relaxed FEM in
1 dimension is better than the predicted rate O(h?®). Table Blsuggests that this is
not a result of the mesh being uniform, but may be a special property of the method
in 1 dimension (see the 2 dimension computations above). The addition of the time
relaxation term results in an order of magnitude improvement in accuracy and rate
of convergence for the 1 dimensional problem. Proving this observed improvement
(from O(h*®) to O(h3)) is an open problem.
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TABLE 1. Maximum L? errors and convergence rates, uniform mesh.

Regular FEM
h Max. Error L%(Q2) Rate

Time relaxed FEM
Max. Error L?(Q) Rate

1/10 4.485128e-4 — 3.308497e-4 —

1/20 1.120078e-4 2.002 4.994900e-5 2.728
1/40 2.799802¢-5 2.000 6.537910e-6 2.934
1/80 7.002847e-6 1.999 8.298419e-7 2.978

1/160 1.754548e-6 1.997 1.046213e-7 2.988

TABLE 2. Maximum L? errors and convergence rates, nonuniform mesh.

Regular FEM

h Max. Error L%(Q2) Rate
1/10 3.599619e-4 —
1/20 8.275052e-5 2.121
1/40 2.135513e-5 1.954
1/80 5.215845¢-6 2.034
1/160 1.322736¢e-6 1.979

Time relaxed FEM

Max. Error L?(Q) Rate
2.779811e-4 —
4.001149e-5 2.797
5.390944¢-6 2.892
6.895017e-7 2.967
8.730697e-8 2.981

The time relaxation method is also expected to improve the quality of approxi-
mations of nonsmooth solutions. This was observed in 2 dimensions and will now
be tested in 1 dimension where the figures are clearer to interpret. Consider solving
the following modified problem:

ou  Ou

o0 3y = 0 (@) €(0,1) x (0,1),
u(g%O) = 1, T € (0705]7
u(z,0) =0, z € (0.5, 1),
u(0,t) =1, t € (0,1).

The true solution is a step function with discontinuity moving toward x = 1 at

a constant rate ‘Zi—f = 1. Computations were performed using a uniform mesh
with mesh size h = 1/40. For the time relaxation method, parameter values
§ = 0.05(h'/?) and x = % were chosen. The next figure shows approximations

generated using both methods at four times. Both solutions initially behave the
same and the discontinuity induces error propagation over time. The time relax-
ation method can be seen to dissipate spurious oscillations, as intended, and quickly
settles into a more accurate representation of the true solution.
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Fi1GURE 7. Comparison of regular, time relaxed FEM approximations.

7. CONCLUSIONS

The theory of the regularized Chapman-Enskog expansions of conservation laws
in Rosenau [R89] and Schochet and Tadmor [ST92] suggest scaling x ~ §~1. Nu-
merical analysis of the error in the method (for smooth solutions) suggests that there
is a difference in the discrete case and instead y ~ 6 2. If one views the mesh-width
h as the induced filter width instead, we recover the scaling x ~ (filter width)~!.
On the other hand, in simulations of turbulent compressible flow, it is common
practice to take § = O(h) (for example, 6 = 3h) to try to squeeze maximum infor-
mation from a given resolution. The numerical analysis herein suggests this might
be overreaching and predicts § ~ v/h as more accurate on the large scales. This is
confirmed by the initial and very limited tests herein.
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The last table of the 2 dimension tests also suggests that greater accuracy than
proven herein might be hiding in the method (possibly for special elements) with
a better averaging or specification of extra boundary conditions. There are many
(and obvious) possibilities testable. There are also cases where the O(h**2) error
estimate can be provably improved to O(h**1). When the finite element space
consists of even order splines on a uniform mesh, super convergence of the time
relaxation discretization has been proven [LO7h] and also implies optimality in L2.
More generally, on a uniform or near the uniform mesh, the cancellation argument
of Dupont [Du73] can be adapted provided a finite element basis exists which is
symmetric about the node associated with each basis function. This includes con-
tinuous, piecewise linears and cubic splines (Dupont [Du73]), continuous quadratics
and cubics (Axelsson and Gustafsson [AG79]), but not C'! Hermite cubics (Dupont
[Du73], Hedstrom [Hed79]). The tests in 1 dimension strongly suggest that proven
rates of convergence, when restricted to one space dimension, might be improvable
by % power of h. This is an open problem.

The convergence result herein extends immediately to multidimension Friedrichs
systems with nonperiodic boundary conditions. Some extensions to convection
dominated, convection diffusion problems are possible but possibly more delicate
due to boundary and interior layers. Extension to nonlinear conservation laws is
more delicate and depends on structure of the nonlinearity in the specific conser-
vation law. It should be done in connection with limiters. Showing that the L?
accuracy for slightly viscous Navier-Stokes equations is greater than that proven
[ELNO07] is also an interesting and important open problem.

7.1. Averaging and deconvolution operators. To introduce the time relax-
ation discretization, the treatment of boundary conditions by the differential filter
must be specified. With second order differential filters extra boundary conditions,
beyond those of the first order continuous problem, must be supplied for the dif-
ferential filter. This difficulty does not occur when solving convection diffusion
equations or other (linear or nonlinear) second order problems. The simplest idea
of specifying ¢ = ¢ on 92 when filtering a known function ¢ was used herein and
seemed to work.

The differential filter used herein is natural for finite element methods, second
order problems and the well developed tools of finite element error analysis. How-
ever, it is also only approximately local. For hyperbolic problems, it is quite possible
that a purely local averaging is preferable. Small but global averaging effects couple
the approximate solution away from the step to the behavior at the discontinuity.
Thus, it might contribute to the small background oscillations seen away from the
discontinuity in Figures @l and Bl This needs to be tested.

Since deconvolution is a well known and important ill posed problem, there
are very many deconvolution operators available for testing. Bertero and Boccacci
[BBI8] give many examples and we note the very interesting construction of Geurts
[Geu9d7].
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