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SOME COMPLETELY MONOTONIC FUNCTIONS

OF POSITIVE ORDER

STAMATIS KOUMANDOS AND MARTIN LAMPRECHT

Abstract. We completely determine the set of (α, β) ∈ R
2 for which the

function eαx−eβx

ex−1
is convex on (0,∞) and use this result to give some special

classes of completely monotonic functions of positive order related to gamma
and psi functions.

1. Introduction

Euler’s gamma function Γ(x) is defined by Γ(x) =
∫∞
0

tx−1e−tdt for x > 0. Its
logarithmic derivative ψ(x) = Γ′(x)/Γ(x) is called the psi or digamma function,
and the derivatives ψ(n)(x) are called polygamma functions. In this paper we shall
extend and strengthen some of the results obtained in [4] regarding inequalities
for ratios of gamma functions and differences of digamma and polygamma func-
tions. For background information and an extensive bibliography concerning such
inequalities, we refer to [4].

Many of the inequalities presented in [4] are obtained by verifying the complete
monotonicity of certain functions. A function f : (0,∞) → R is said to be com-
pletely monotonic if it has derivatives of all orders and satisfies

(1.1) (−1)nf (n)(x) ≥ 0, for all x > 0 and n ≥ 0.

J. Dubourdieu [1] proved that if a nonconstant function f is completely monotonic,
then strict inequality holds in (1.1). See also [2] for a simpler proof of this result. A
necessary and sufficient condition for complete monotonicity is given by Bernstein’s
theorem (see [11, p. 161]), which states that f is completely monotonic on (0,∞)
if and only if

f(x) =

∫ ∞

0

e−xtdμ(t),

where μ is a nonnegative measure on [0,∞) such that the integral converges for all
x > 0.

In [6], Koumandos and Pedersen called a function f completely monotonic of
order n = 0, 1, 2, . . . if xnf(x) is completely monotonic on (0,∞). Thus, completely
monotonic functions of order 0 are the classical completely monotonic functions,
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while completely monotonic functions of order 1 are the strongly completely mono-
tonic functions that have been introduced in [10]. It is easy to see that a function
f is completely monotonic if xf(x) is completely monotonic, and therefore a func-
tion that is completely monotonic of order n is completely monotonic of order
m = 0, 1, . . . , n− 1.

In [6, Thm. 1.3], it is furthermore shown that a function f is completely mono-
tonic of order n ≥ 1 on (0,∞) if, and only if,

f(x) =

∫ ∞

0

e−xtp(t)dt,

where the integral converges for all x > 0 and where p is n− 1 times differentiable
on [0,∞) with p(n−1)(t) = μ([0, t]) for some Radon measure μ and p(k)(0) = 0 for
0 ≤ k ≤ n − 2. This has already been proven for the case n = 1 in [10, Thm. 1]
and for the case n = 2 in [4, Lem. 2] and will be used here in the case n = 3 in
order to strengthen some of the results obtained in [4].

The applications of [4, Lem. 2] that are presented in [4] lead to the question for
which (α, β) ∈ R

2 the function fα,β(x), defined by

fα,β(x) :=
eαx − eβx

ex − 1
for x ∈ R \ {0} and fα,β(0) = α− β,

is convex in (0,∞). We will give a complete solution to this question and thus
extend some further results from [4].

In order to state our results, for α, β ∈ R set

ε1(α, β) := 2αβ + 2α2 − 3α+ 2β2 − 3β + 1,

ε2(α, β) := 4α2β2 − 4α2β − 4αβ2 + 4αβ − α2 + α− β2 + β,

ε3(α, β) := (α− 1
2 )

2 + (β − 1
2 )

2 − 1
2 ,

and

Γ1 := {(α, β) : 0 ≤ β ≤ 1 < α} ∩ {(α, β) : ε1(α, β) = 0},
Γ2 := {(α, β) : 0 ≤ β ≤ 1 ≤ α} ∩ {(α, β) : ε2(α, β) = 0},
Γ3 := {(α, β) : β ≤ 1

2 − |α− 1
2 |} ∩ {(α, β) : ε1(α, β) = 0},

and let C andD be the open bounded sets whose boundaries are given by the Jordan
curves Γ1 ∪ Γ2 ∪ {(1, β) : 1

2 ≤ β ≤ 1} and Γ2 ∪ Γ3 ∪ {(α, α) : 1
6 (3−

√
3) ≤ α ≤ 1},

respectively. Let H denote the half-plane {(α, β) : β ≤ α} and set

A := (H ∪ {(α, 1) : 0 ≤ α ≤ 1
2}) \D

and B := D \ (C ∪ {(1, β) : 0 ≤ β ≤ 1
2}). (Cf. Figure 1. The graphs in this paper

have been created by using the KETpic package for Maple [3].)
It is perhaps interesting to note that the set {(α, β) : ε1(α, β) = 0} describes an

ellipse with center ( 12 ,
1
2 ) and semi-axes 1√

2
and 1√

6
with the major axis forming an

angle of −π
4 with the α-axis. Γ1 and Γ3 are therefore elliptical arcs (Γ3 is even a

quarter-ellipse).
Continuing with necessary definitions, for α, β ∈ R and t > 0, define gα,β(t) :=

gα(t)− gβ(t), where

gα(t) := tα−1
[
(1− α)2t2 + (1 + 2α− 2α2)t+ α2

]
− t− 1,



SOME COMPLETELY MONOTONIC FUNCTIONS OF POSITIVE ORDER 1699

B

C

A

Γ3

Γ2

Γ1

1
2

1

1
2

1

α

β

Figure 1. The sets A, B and C. The bold curves are ∂A. Note
that Γ1 ∩ Γ2 ∩ Γ3 = (1, 0) and that the dotted line {(1, β) : 0 <
β ≤ 1

2} belongs to neither A, B or C, but to A∗.

and, for α, β ∈ R \ {1} with ε2(α, β)ε3(α, β) ≤ 0,

t∗(α, β) =
ε2(α, β)− 2αβ(1− α)(1− β) +

√
−ε2(α, β)ε3(α, β)

2(1− α)2(1− β)2
.

Finally, for any set M ⊂ R
2, let M∗ denote its reflection with respect to the straight

line {(α, α) : α ∈ R}.

Theorem 1.1. (1) For (α, β) ∈ A the function fα,β(x) is convex in (0,∞) and
for (α, β) ∈ A∗ it is concave there.

(2) For (α, β) ∈ B ∪B∗ the function f ′′
α,β(x) changes sign in (0,∞).

(3) In C ∪C∗ the sign of f ′′
α,β(x) is constant in (0,∞) if, and only if, (α, β) ∈

Cconv ∪ C∗
conv, where

Cconv := {(α, β) ∈ C : gα,β(t
∗(α, β)) ≥ 0}.

fα,β(x) is convex in (0,∞) if (α, β) ∈ Cconv and concave if (α, β) ∈ C∗
conv

(cf. Figure 2).
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Figure 2. The set C. The bold curves are ∂C. The dashed curve
describes the set of points (α, β) ∈ C for which gα,β(t

∗(α, β)) = 0.

Let S1 denote the set of (s, t) ∈ R
2 such that (1− t, 1− s) ∈ A ∪ Cconv and set

T := ({(s, t) : 0 ≤ s, t} ∪ {(s, t) : t ≤ 1− s}) \ {(s, t) : 0 < t < 1− s < 1}
and S2 := S1 ∩ T .

Theorem 1.1 will allow us to prove the following extensions of results from [4].

Theorem 1.2. (1) Let

L(x) := x− Γ(x+ t)

Γ(x+ s)
xs−t+1.

Then

Φ(x) := −Γ(x+ s)

Γ(x+ t)
xt−s−1L′′(x)

is completely monotonic of order 2 on (0,∞) for all (s, t) ∈ S1, and for
(s, t) ∈ S2 the function L′(x) is completely monotonic on (0,∞). In par-
ticular, for (s, t) ∈ S2, the function L(x) is strictly increasing and concave
on (0,∞) and the inequality

(1.2) 0 < x− Γ(x+ t)

Γ(x+ s)
xs−t+1 <

1

2
(s− t)(s+ t− 1)

holds for all x > 0 (cf. [4, Thm. 1]).
(2) For (s, t) ∈ S2 the inequality

ψ(x+ t)− ψ(x+ s) +
s− t+ 1

x
<

Γ(x+ s)

Γ(x+ t)
xt−s−1

holds for all x > 0 and the function

ψ(x+ s)− ψ(x+ t)− s− t

x
+

(s− t)(s+ t− 1)

2x2

is completely monotonic in (0,∞) for all (s, t) ∈ S1 (cf. [4, Cor. 1]).
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(3) For m, n ∈ N with m > n, let

Un,m(x) :=

m∑
k=n

(t)k
(s)k

eikx, Vn,m(x) :=
Γ(s)

Γ(t)

m∑
k=n

1

ks−t
eikx,

where (a)k = a(a + 1) · · · (a + k − 1). If (s, t) ∈ S2 ∩ {(s, t) : s ≥ 1}, then
for π

n ≤ x < π, n > 1, the estimate

|Un,m(x)− Vn,m(x)| < 1

ns−t

Γ(s)

Γ(t)

(s− t)(s+ t− 1)

2

holds (cf. [4, Prop. 1]).
(4) Let

Λ(x) := x log

(
Γ(x+ t)

Γ(x+ s)
xs−t

)

and

K(x) := ψ′(x+ t)− ψ′(x+ s) +
2

x
[ψ(x+ t)− ψ(x+ s)] +

s− t

x2
.

If (s, t) ∈ S1, then the function K(x) = 1
xΛ

′′(x) is completely monotonic
of order 2 on (0,∞) and the function −Λ′(x) is completely monotonic on
(0,∞). In particular, the function Λ(x) is strictly decreasing and convex
on (0,∞), so that

− (s− t)(s+ t− 1)

2
< x log

(
Γ(x+ t)

Γ(x+ s)
xs−t

)
< 0, for all x > 0.

In particular, when s = 0, then the above results hold for t ≤ 0 and 1
2 ≤

t ≤ 1, but not for any other t ∈ R (cf. [4, Prop. 2]).

Special cases of Theorem 1.2 (3) were the main tools in [7] and [8] for the es-
timation of certain trigonometric sums arising in the context of starlike functions.
Moreover, it is perhaps interesting to note that in [5] the exact range of t for which
inequality (1.2) holds when s = 1 has been determined to be [13 , 1).

An application of [6, Thm. 1.3] leads to the following.

Theorem 1.3. (1) There is an analytically defined a∗ < 0 with numerical
value a∗ = −0.0741 . . ., such that the function

ξ(x) = a2[ψ′(x)]2 + aψ′′(x) +
2a(1− a)

x
ψ′(x)− a(1− a)

x2
, a �= 0,

is completely monotonic of order 3 in (0,∞) if, and only if, a ∈ (−∞, a∗]∪
[ 23 ,∞) (cf. [4, Thm. 2 (1)]).

(2) The functions

f1(x) := [ψ′(x)]
2
+ ψ′′(x),

f2(x) :=
2

3

(
ψ′(x) +

1

2x

)2

+ ψ′′(x)− 1

2x2

are completely monotonic of order 3 on (0,∞). On the other hand, while
being completely monotonic of order 2, the function

f3(x) = −ψ′′(x)− 2

x
ψ′(x) +

1

x2

is not completely monotonic of order 3 on (0,∞) (cf. [4, Cor. 3]).
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2. Proofs of Theorems 1.2 and 1.3

We shall first show that in the case s = 0 the function K defined in Theorem 1.2
(4) is not completely monotonic for t ∈ (0, 12 ) ∪ (1,∞). To that end observe that
by the asymptotic formula

ψ(x+ t)− ψ(x) =
t

x
− t(t− 1)

2x2
+

t(1− 3t+ 2t2)

6x3
+O(x−4), x → ∞,

we have

6x4K(x) → −2t3 + 3t2 − t, x → ∞.

Since −2t3 + 3t2 − t takes negative values for t ∈ (0, 12 ) ∪ (1,∞), K cannot be
completely monotonic on (0,∞) for those t.

The remaining statements of Theorem 1.2 follow from the proofs of Thm. 1,
Cor. 1, Prop. 1 and Prop. 2 in [4], since f1−t,1−s(x) is convex on (0,∞) for all
(s, t) ∈ S1 by Theorem 1.1 and convex and monotonic on (0,∞) for all (s, t) ∈ S2

by Theorem 1.1 and [9, Thm. 1.1 (3), (4)].
In order to prove Theorem 1.3 (1) note that in the proof of [4, Thm. 2] it is

shown that ξ can be written as the Laplace transform of the function

Ga(u) := a2
∫ u

0

δ(u− v)δ(v)dv + 2a(1− a)

∫ u

0

δ(v)dv − auδ(u)− a(1− a)u,

where

δ(u) :=
ueu

eu − 1
, δ(0) := 1.

In the proof of [4, Thm. 2] it is also shown that G
(n)
a (u) ≥ 0 for n = 0, 1, 2, u > 0

and a ∈ (−∞, 0] ∪ [ 23 ,∞) and that

G′′
a(u) = a2

∫ u

0

δ′(u− v)δ′(v)dv − auδ′′(u).

Hence, it follows from [6, Thm. 1.3] that ξ(x) will be completely monotonic of
order 3 on (0,∞) if, and only if, G′′′

a (u) ≥ 0 for u ≥ 0. From the above formula for
G′′

a(u) we calculate

G′′′
a (u) = a2

(∫ u

0

δ′′(u− v)δ′(v)dv +
δ′(u)

2

)
− a (uδ′′′(u) + δ′′(u)) .

From the proof of [4, Thm. 2] we obtain

(2.1) δ′(u) > 0, δ′′(u) > 0, δ′′′(u) < 0 for all u ≥ 0,

and thus

(2.2)
d

dv
δ′′(u− v)δ′(v) = −δ′′′(u− v)δ′(v) + δ′′(u− v)δ′′(v) > 0 for all u ≥ v.

For a < 0 this means that G′′′
a (u) ≥ 0 for u ≥ 0 if, and only if,

a ≤ a∗ := min
u≥0

uδ′′′(u) + δ′′(u)∫ u

0
δ′′(u− v)δ′(v)dv + δ′(u)

2

.

A numerical computation shows that a∗ = −0.0741 . . ..
For a ≥ 2

3 it follows from (2.2) that

1

a
G′′′

a (u) ≥ 1

3
(uδ′′(u) + δ′(u))− uδ′′′(u)− δ′′(u).
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Elementary considerations show that the right-hand side of this inequality is posi-
tive for all u ≥ 0. Therefore G′′′

a (u) > 0 in (0,∞) for a ∈ (−∞, a∗]∪ [ 23 ,∞), but not
for a ∈ (a∗, 0). Since it has been shown in [4, Thm. 2] that ξ(x) is not completely
monotonic for a ∈ (0, 23 ), the proof of Theorem 1.3 (1) is complete.

Finally, for the proof of Theorem 1.3 (2), note that the functions f1(x) and f2(x)
are merely the function ξ in the special cases a = 2

3 and a = 1 and that, as shown
in the proof of [4, Cor. 2], the function f3(x) is the Laplace transform of a function
ρ3(u), for which ρ′′3(u) = uδ′′(u), u ∈ [0,∞), with δ(u) as defined above. Since it
was shown above that (uδ′′(u))′ = uδ′′′(u)+ δ′′(u) changes sign in [0,∞), it follows
from [6, Thm. 1.3] that f3 cannot be completely monotonic of order 3 on [0,∞).

3. Proof of Theorem 1.1

First, note that fα,β(x) = −fβ,α(x) and therefore it will be enough to examine
the curvature of fα,β(x) in (0,∞) for (α, β) ∈ H.

Next, observe that

f ′′
α,β(x) =

exgα,β(e
x)

(ex − 1)3
, x ≥ 0.

Hence, the curvature of fα,β(x) in (0,∞) is completely determined by the sign of
gα,β(t) in (1,∞).

Theorem 1.1 now follows from the following four lemmas.

Lemma 3.1. For α < 0 the function gα(t) is negative in (1,∞) and for 0 < α ≤ 1
2

and α > 1 the function gα(t) is positive in (1,∞). For 1
2 < α < 1 the function

gα(t) changes sign in (1,∞).

Proof. For all α ∈ R we have gα(1) = 0 and

g′α(t) = (α− 1)2(α+ 1)tα + (−2α3 + 2α2 + α)tα−1

+α2(α− 1)tα−2 − 1,

g′′α(t) = α(α− 1)tα−3(t− 1)((α2 − 1)t− α(α− 2)),

g′′′α (1) = α(α− 1)(2α− 1).

Consequently, for all α ∈ R, g′α(1) = g′′α(1) = 0.

Case −1 ≤ α ≤ 1
2 and 1 < α. In this case g′′α does not vanish in (1,∞) and thus

the sign of g′α in (1,∞) will be equal to the sign of g′′′α (1). For −1 ≤ α < 0 we have
g′′′α (1) < 0, whereas g′′′α (1) > 0 for 0 < α < 1

2 or 1 < α. Therefore, gα is negative in

(1,∞) if −1 ≤ α < 0 and positive if 0 < α ≤ 1
2 or 1 < α.

Case α < −1. In this case g′′α has exactly one zero tα in (1,∞). Since g′′′α (1) < 0,
it follows that g′′α < 0 in (1,∞) if and only if 1 < t < tα. Since g′α(t) → −1 as
t → ∞, this shows that g′α is negative in (1,∞). Hence, for α < −1, gα is negative
in (1,∞).

Case 1
2 < α < 1. In this case we have g′′′α (1) < 0 and thus gα(t) < 0 for t > 1 close

to 1. Since obviously gα(t) → ∞ as t → ∞, the proof of the lemma is complete. �
Lemma 3.2. For (α, β) ∈ B \ Γ1, the sign of gα,β(t) changes on (1,∞).

Proof. Since g1,β(t) = −gβ(t), the case α = 1 of our assertion follows from Lemma
3.1. For the other (α, β) in question we have α �= 1 and α > β and thus

lim
t→∞

t−(1+α)gα,β(t) = (1− α)2 > 0.
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It will therefore be enough to show that gα,β(t) takes negative values in (1,∞) for
(α, β) ∈ B with α �= 1.

We have g
(n)
α,β(1) = 0 for n = 0, 1, 2 and

g
(3)
α,β(1)

α− β
= ε1(α, β).

Consequently, for

(α, β) ∈ {(α, β) : β < α, ε1(α, β) < 0},
gα,β(t) takes negative values in (1,∞) and it only remains to show that the same
is true for (α, β) in the triangle {(α, β) : 1

2 < β < α < 1}.
To that end, fix a β ∈ ( 12 , 1) and observe that by Lemma 3.1 there is a t∗ ∈ (1,∞)

such that gβ(t
∗) = 0. Our claim will follow once we have shown that the function

h(α) := gα(t
∗), α ∈ ( 12 , 1), is negative for all α ∈ (β, 1), since

gα,β(t
∗) = gα(t

∗)− gβ(t
∗) = h(α).

We calculate

(t∗)1−αh′(α) = 2(t∗−1)(α(t∗−1)−t∗)+log t∗(α2(t∗−1)2−2t∗α(t∗−1)+t∗(t∗+1)),

and thus h′(α) vanishes for those α for which the rational function

r(α) :=
α2(t∗ − 1)2 − 2t∗α(t∗ − 1) + t∗(t∗ + 1)

α(t∗ − 1)− t∗

cuts the horizontal α �→ 2(1 − t∗)/ log t∗. It is straightforward to verify that, in
( 12 , 1), r(α) has no pole and r′(α) has exactly one zero and hence h can have at

most two local extrema in ( 12 , 1).
Now, suppose that h′(β) > 0. Then, since h(1) = 0 and

h′(1) = log t∗(t∗ + 1) + 2(1− t∗) > 0

for all t∗ ∈ (1,∞), h must have at least two local extrema in (β, 1). On the other
hand, 4

√
t∗h( 12 ) = (

√
t∗ − 1)4 > 0 and hence h(α) has to have at least one local

minimum in ( 12 , β). But h(α) can have at most two local extrema in ( 12 , 1) and
therefore h′(β) < 0. If now h(α) > 0 would hold for an α ∈ (β, 1), then, since
h(1) = 0 and h′(1) > 0, h(α) would have to have more than two local extrema in
(β, 1). Thus, we must have h(α) < 0 for all α ∈ (β, 1), and the proof of the lemma
is complete. �

Lemma 3.3. For (α, β) ∈ H \D we have gα,β(t) ≥ 0 in (1,∞), and for 0 ≤ β ≤ 1
2

the function g1,β(t) is nonpositive in (1,∞).

Proof. The case α = β is trivial and since gα,1(t) = gα(t) and g1,β(t) = −gβ(t), the
cases α = 1 and β = 1 of our assertion follow from Lemma 3.1.

In order to prove the lemma also for the other (α, β) in question, set

hα(t) := (1− α)2t2 + (1 + 2α− 2α2)t+ α2, α, t ∈ R.

The parabola hα(t) opens upward for all α ∈ R, its discriminant is nonnegative

exactly for 1
2 (1 −

√
2) ≤ α ≤ 1

2 (1 +
√
2) < 3

2 , and h′
α(1) > 0 exactly if α < 3

2 .
Hence, hα(t) > 0 for all α ∈ R and t > 1, and therefore gα,β(t) ≥ 0 is equivalent to

log hα(t)− log hβ(t) ≥ (β − α) log t.
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Figure 3. The sets P and N . The interior of P is hatched. The
bold curves are ∂N . The dotted arc describes the set H ∩{(α, β) :
ε3(α, β) = 0}. The dashed curves describe the set H ∩ {(α, β) :
ε2(α, β) = 0}. The four dots describe the location of the points
q1, . . . , q4.

Since this inequality holds for all (α, β) ∈ R when t = 1, it will suffice to prove that

(3.1)
h′
α(t)

hα(t)
−

h′
β(t)

hβ(t)
≥ β − α

t

or

th′
α(t)hβ(t)− th′

β(t)hα(t) + (α− β)hα(t)hβ(t) ≥ 0 for t > 1.

The left-hand side of the latter inequality is equal to (α− β)(1− t)2pα,β(t), where

pα,β(t) = t2(1 − α)2(1 − β)2 + t(β(β − 1) + (α2 − α)(1− 2β(β − 1))) + α2β2,

so that (3.1) is equivalent to

pα,β(t) ≥ 0 for t > 1.

The discriminant of the parabola (in the following we will always assume that α �= 1
and β �= 1) pα,β(t) is given by −ε2(α, β)ε3(α, β). Since pα,β(t) opens upward, it
therefore follows that the nonnegativity of pα,β(t) in (1,∞) only remains to be
verified for (α, β) ∈ N := H \ P , where (cf. Figure 3)

P := D ∪ {(α, β) : ε2(α, β)ε3(α, β) ≥ 0} ∪ {(1, β) : β ∈ R} ∪ {(α, 1) : α ∈ R}.
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A straightforward computation shows that if pα,β(t) has a zero at 1, then ε1(α, β)

= 0 must hold. Since {(α, β) : ε1(α, β) = 0} ∩ H is contained in D, a continuity
argument yields that the number of zeros of pα,β(t) in [1,∞) is constant in each
component of N .

It is easy to verify that N consists of exactly 4 components and that no two of
the points q1 := ( 14 , 0), q2 := ( 32 , 0), q3 := (0,− 3

4 ) and q4 := ( 32 ,
9
8 ) lie in the same

component of N (cf. Figure 3). Since one readily sees that pqj (t) has no zeros in
(1,∞) for j = 1, . . . , 4, it follows that pα,β(t) is positive in (1,∞) for all (α, β) ∈ N .

The proof of the lemma is complete. �

Lemma 3.4. The function fα,β(x) is convex on (0,∞) if (α, β) ∈ Cconv. For
(α, β) ∈ C \ Cconv and (α, β) ∈ Γ1 the sign of f ′′

α,β(x) changes on (0,∞).

Proof. It follows from the proof of Lemma 3.3 that gα,β(t) has a critical point t in
(1,∞) if, and only if, t is a zero of pα,β(t). Furthermore, since one easily checks
that α, β �= 1 and ε1(α, β) �= 0 for all (α, β) in the connected set C, the proof of
Lemma 3.3 also shows that the number of zeros of pα,β(t) in [1,∞) is constant in
C. It is readily verified that q5 := ( 1110 ,

1
2 ) ∈ C (cf. Figure 2) and that pq5(t) has

exactly two zeros in (1,∞). Hence, for (α, β) ∈ C, gα,β(t) has exactly two local
extrema in (1,∞). Since β < α �= 1 in C, it follows from the proof of Lemma 3.2
that gα,β(t) is positive for all t large enough. Since moreover gα,β(1) = 0 for all
(α, β) ∈ R

2, the largest one, say t∗, of the critical points of gα,β(t) in [1,∞) must
be a local minimum of gα,β(t), and gα,β(t) will be nonnegative in (1,∞) if, and only
if, gα,β(t

∗) ≥ 0. t∗ must be the largest zero of pα,β(t) and can thus be calculated
to be t∗(α, β).

The set Γ1 belongs to the boundary of both C and E, where E is the open
bounded set that has the Jordan curve Γ1∪{(1, β) : 0 ≤ β ≤ 1

2} as its boundary (E

is shaded in Figure 2). The point q6 := ( 101100 ,
1
4 ) lies in E and pq6(t) has exactly one

zero in (1,∞). Hence, on Γ1, at least one of the zeros of pα,β(t) is equal to 1. Since
ε2(α, β)ε3(α, β) �= 0 for (α, β) ∈ Γ1, the function pα,β(t) cannot have a double zero
at t∗(α, β) on Γ1. Therefore t∗(α, β) is the only critical point of gα,β(t) in (1,∞)
when (α, β) ∈ Γ1. Since gα,β(1) = 0 and gα,β(t) > 0 for large t, this means that we
must have gα,β(t

∗(α, β)) < 0 for (α, β) ∈ Γ1. �
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