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GAUSSIAN MERSENNE AND

EISENSTEIN MERSENNE PRIMES

PEDRO BERRIZBEITIA AND BORIS ISKRA

Abstract. The Biquadratic Reciprocity Law is used to produce a determin-
istic primality test for Gaussian Mersenne norms which is analogous to the
Lucas–Lehmer test for Mersenne numbers. It is shown that the proposed test
could not have been obtained from the Quadratic Reciprocity Law and Proth’s
Theorem. Other properties of Gaussian Mersenne norms that contribute to
the search for large primes are given. The Cubic Reciprocity Law is used to
produce a primality test for Eisenstein Mersenne norms. The search for primes
in both families (Gaussian Mersenne and Eisenstein Mersenne norms) was im-
plemented in 2004 and ended in November 2005, when the largest primes,
known at the time in each family, were found.

0. Introduction

Numbers of the form 2p − 1, where p is a prime number are known as Mersenne
numbers and denoted by Mp. They were named in honor of Father Marin Mersenne
(1588–1648). Mersenne numbers have played a key role in the history of primality
testing. They arise naturally in the search for primes of the form an − 1, where a
is an integer.

Indeed, from the equation an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a+1), it is easy
to deduce that ad− 1 divides an− 1 for each divisor d of n. It follows that if an− 1
is prime, then a = 2 and n = p is prime.

Mersenne numbers that are prime are called Mersenne primes. There are cur-
rently 47 known Mersenne primes. The largest known Mersenne prime is also the
largest known prime. It is M43112609 and was found in August 2008 by GIMPS
(Great International Mersenne Prime Search). GIMPS is a collaborative project
whose goal is to find Mersenne primes, using software designed for that purpose,
based on properties of these numbers, the most relevant of these being the Lucas-
Lehmer Test. The 13 largest Mersenne primes have been found by GIMPS. The
top 9 of this list are the 9 largest primes known to date.

Why is the set of numbers {Mn = 2n − 1| n ∈ N} preferred for the search for
very large primes? We list the following properties of Mn, the proofs of which can
be found in [B], [R], [W] among dozens of other possible references.

MP1: If Mn is prime, then n = p is prime.
MP2 (Euler): If p > 2 is prime and q divides Mp , then q ≡ 1(mod p) and

q ≡ ±1(mod 8).
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MP3 (Lucas-Lehmer Test): Let S0 = 4 and Sk+1 = S2
k − 2 for k ≥ 0. Let

p be an odd prime. Then Mp is prime if, and only if, Sp−2 ≡ 0(mod Mp).
MP4: Reduction modulo Mp is very fast.

MP1 was mentioned above. It indicates that the search for primes of the form
2n − 1 may be restricted to prime exponents n. MP2 is useful for the search for
small prime divisors. It shows that the possible divisors of Mp lie in two specific
arithmetic progressions with common difference 8p. MP3 is the most important
property. It provides a very efficient algorithm which determines the primality of
Mp. Indeed, MP3 shows that one only has to compute p − 2 (which is less than
log2(Mp)) squares modulo Mp to determine the primality of Mp (recall that the
cost of squaring an m bit integer using Fast Fourier Transform is around 2/3 of the
cost of multiplying two different m bit integers). We next explain precisely what
we mean by MP4: The algorithm at step k computes Sk+1 = S2

k − 2 from Sk,
which is an integer of at most p bits. Hence, Sk+1 has at most 2p bits. It then has
to be reduced Modulo Mp, which has p bits. In general, the cost of reducing a 2p
bit integer modulo a p bit integer is at least as large as the cost of multiplying two
different p bit integers. In contrast, the cost of reduction modulo Mp is equivalent
to the cost of adding two different p bit integers, which is much less. Indeed, say
z is a 2p bit integer; then z = a2p + b, where a and b are p bit integers. Since
Mp = 2p − 1, then 2p ≡ 1(mod Mp), from which z ≡ a+ b(mod Mp).

It is relevant to point out that there are many families of numbers of the form
A2n ± 1 that share a property analogous to MP3 (see [W] for a detailed study
of these numbers). However, in general, these families do not share properties
analogous toMP1, MP2 orMP4. That gives the advantage of the use of {Mn| n ∈
N} over other families of the form {A2n ± 1 | n ∈ N} (A is a fixed positive integer)
regarding the search for huge primes.

In this paper we will study two different families of numbers that share properties
analogous to MP1, MP2 and MP3, the first of which also shares MP4. These
families are called Gaussian Mersenne norms and Eisenstein Mersenne norms. To
prove the property analogous to MP3 we make use of the Biquadratic Reciprocity
Law for the Gaussian Mersenne norms and the Cubic Reciprocity Law for the Eisen-
stein Mersenne norms. Moreover, we show that in some sense that we clarify later,
our result for the Gaussian Mersenne norms cannot be derived from the Quadratic
Reciprocity Law. From our main result we conclude that an implementation of a
GIMPS like project for searching for Gaussian Mersenne primes is in order.

The paper is organized as follows: In section 1 we introduce the Gaussian
Mersenne norms and study their basic properties, including those analogous to
MP1, MP2 and MP4, which we denote by GMP1, GMP2 and GMP4. In sec-
tion 2 we state and prove GMP3, and show the limitation of the Quadratic Reci-
procity Law for that purpose. In section 3 we introduce the Eisenstein Mersenne
norms, and we state and prove EMP1, EMP2 and EMP3. Our concluding re-
marks include details of the implementation of the corresponding algorithms.

1. Gaussian Mersenne numbers, norms and primes

Let Z[i] denote the ring of Gaussian integers. As for Z, we search for irreducible
elements of the form an− 1, where a ∈ Z[i] and n is a positive integer. Since an− 1
is divisible by a−1, it is reasonable to restrict our attention to the case where a−1
is a unit. (Not doing so leads to a finite set of irreducible elements of the form
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an − 1. In fact it leads only to the irreducible elements of norm 2 or of norm 5.)
Moreover, if we assume that an − 1 is irreducible in Z[i] and that a − 1 is a unit,
then it is not difficult to show that n must be prime (since ad − 1 is a nonunit and
a nontrivial divisor of an − 1 for any nontrivial divisor d of n).

Since there are exactly four units in the Gaussian ring of integers, the possible
values for a are: a = 2, 0, 1 + i, 1 − i. a = 2 leads to Mn , a = 0 leads nowhere,
and a = 1 − i leads to the conjugate of the case a = 1 + i. We give the following
definition:

Definition 1.1. A Gaussian Mersenne number is an element of Z[i] of the form
(1 ± i)p − 1, for some rational prime p. (1 + i)p − 1 will be denoted by gmp. A
Gaussian Mersenne prime is an irreducible Gaussian Mersenne number.

For α ∈ Z[i] we denote by N (α) = αᾱ the norm of α in Z[i]. We note that
N (gmp) = N (gmp).

Definition 1.2. Let p be a rational prime. The Gaussian Mersenne norm GMp is
defined by

GMp = N (gmp) .

Examples:

GM2 = N (gm2) = N (2i− 1) = 5,

GM3 = N (gm3) = N (2i− 3) = 13.

According to Chris Caldwell’s web page “The Prime Glossary” [C], in 1961
Robert Spira [S] defined the Gaussian Mersenne primes as above. Spira’s interest
was not directly related to the goal of our paper. Caldwell’s page also points
out that Mike Oakes improved the list of known Gaussian Mersenne primes (of
different norm) to 34 in the year 2000. Currently there are 37 known. The largest
corresponds to the exponent n = 1203793 and was found in September 2006 by
Jaworski. The second largest (exponent n = 991961) was found by the second
author of this paper in November 2005, using an implementation of the results we
present in this paper.

For a positive integer n we let gmn = (1 + i)n − 1 and GMn = N(gmn).
A direct calculation of gmn and GMn leads to the following elementary propo-

sition whose proof is left to the reader.

Proposition 1.3. (1) If n is odd, then

gmn = (1 + i)(2i)
n−1
2 − 1,

GMn = 2n − (−1)
n2−1

8 2
n+1
2 + 1(1.1)

=

{
2n − 2

n+1
2 + 1 if n ≡ ±1 (mod 8)

2n + 2
n+1
2 + 1 if n ≡ ±3 (mod 8)

=
(
2

n−1
2 − (−1)

n2−1
8

)
2

n+1
2 + 1(1.2)

=
(
2

n−1
2

)2

+
(
2

n−1
2 − (−1)

n2−1
8

)2

,(1.3)

GMn occurs as a factor in the following Aurifeuillian factorization:

(1.4) (2n + 2
n+1
2 + 1)(2n − 2

n+1
2 + 1) = 22n + 1.
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(2) If n ≡ 0 (mod 4),

gmn = (−1)
n
4 2

n
2 − 1,

GMn =
(
(−1)

n
4 2

n
2 − 1

)2
= 2n − (−1)

n
4 2

n+2
2 + 1

=
(
2

n
2 − 1

)2
+

(
2

n
4

(
1− (−1)

n
4

))2
.

(3) If n ≡ 2(mod 4),

gmn = (−1)
n−2
4 2

n
2 i− 1,

GMn = 2n + 1.

(4) The sequence {GMn}∞n=1 is an increasing sequence of integers that starts
at 1.

(5) If d divides n, then gmd divides gmn in Z[i] and GMd divides GMn.
(6) If d and n are relatively prime, then gmd is relatively prime to gmn in Z[i]

and GMd is relatively prime to GMn.
�

Since every nonreal element of Z[i] is irreducible if, and only if, its norm is a
rational prime, it follows that Gaussian Mersenne primes of different norms are in
one-to-one correspondence with prime Gaussian Mersenne norms. So the search for
Gaussian Mersenne primes is equivalent to the search for primes p for which GMp

is prime.
We now state the main result of our paper concerning Gaussian Mersenne norms:

Theorem 1.4. Gaussian Mersenne norms have the following properties:

GMP1: If GMn is prime, then n is prime.
GMP2: If p is an odd prime and q divides GMp, then q ≡ 1(mod 4p).
GMP3: Let p be an odd prime. Then, GMp is prime if, and only if,

p ≡ 1 (mod 4) and 5
GMp−1

4 ≡ −1 (mod GMp)

or

p ≡ 3 (mod 4) and 5
GMp−1

2 ≡ −1 (mod GMp).

GMP4: If z = a2
3p−1

2 + b2p + c2
p−1
2 + d,

where 0 ≤ a, c < 2
p+1
2 and 0 ≤ b, d < 2

p−1
2 , then

z ≡
[
a+ (−1)

p2−1
8 2b+ c

]
2

p−1
2 + d− b− (−1)

p2−1
8 a (mod GMp).

Proof of GMP1. The proof is immediate from Proposition 1.3, items (4) and (5).
�

Proof of GMP2. Although various elementary proofs can be given, we include one
for sake of completeness: It is enough to prove it for prime divisors q of GMp. So
let such a q be given. Since p is odd, by (1.4) we have

(2p + 2
p+1
2 + 1)(2p − 2

p+1
2 + 1) = 22p + 1.

Since one of the two factors in the left hand side of the equation is GMp, we deduce
that 22p ≡ −1(mod q). It follows that the order of 2 modulo q (ordq(2)) is a divisor
of 4p. 2, p and 2p are discarded as possible values for ordq(2) because otherwise
we would have 22p ≡ 1(mod q) (instead of −1(mod q)). To show that ordq(2) �= 4,
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it is enough to show that 5 does not divide GMp. This follows from the fact that
GM2 = 5 and (6) in Proposition 1.3.

Proof of GMP4. From (1.1) in Proposition 1.3 we get

2p ≡ (−1)
p2−1

8 2
p+1
2 − 1 (mod GMp).

The result is straightforward. �

The proof of GMP3 will be given in the next section.
We end this section with a few historical remarks:
The Cunningham Project seeks to factor the numbers bn±1 for b = 2, 3, 5, 6, 7, 10,

11, 12 up to high powers n [BLSTW]. (1.4) shows that for odd n’s, GMn is a factor
of 22n + 1, which is in the list of the numbers to be factored. Hence the interest in
Gaussian Mersenne norms is broader than the one presented in this paper.

Spiro’s approach to the Gaussian Mersenne integer, which was later enriched by
McDaniel [McD] and by Hausmann and Shapiro [HS], extends the notion of even
and odd numbers into the ring of Gaussian Integers, the notion of Perfect numbers
into the same ring and the connection between Perfect numbers and Mersenne
primes.

2. Primality test for Gaussian Mersenne norms

In this section we will prove GMP3, which is a very simple and easy to im-
plement deterministic primality test for Gaussian Mersenne norms, comparable to
the Lucas-Lehmer Test for Mersenne primes in speed and elegance. A previous
discussion is in order: Note first that equation (1.2) implies that GMp is of the
form A2s + 1, where A < 2s. It follows from Proth’s Theorem (cf., for example,
[B], [W]) that the primality of GMp could be determined by the verification of

an equation of the type a
n−1
2 ≡ −1(mod GMp), for some integer a. According to

Proth’s Theorem, such an a must satisfy
(

a
GMp

)
= −1, where

(
a
n

)
is the Jacobi

symbol. Given p, such an a can be found with not much difficulty via Quadratic
Reciprocity for the Jacobi symbol. However, implementation is much easier if the
choice of a is independent of p. If no such a can be found, implementers usually
look for a finite family of a’s, such that for every p there is an a in the family such

that
(

a
GMp

)
= −1. We next show that this is not possible.

Proposition 2.1. Let {a1, . . . , an} be any set of integers. Then, there exist infin-
itely many primes p such that(

ai

GMp

)
= 1 ∀i = 1, . . . , n.

Proof. Since

GMp ≡ 1 (mod 8) for p > 3,

it follows from the Quadratic Reciprocity Law for 2 that
(

2
GMp

)
= 1, so we can

assume that the ai’s are odd.
Let Q = {q1, . . . , qr} be the set of prime divisors of the ai’s. Dirichlet’s Theorem

on primes in arithmetic progression guarantees the existence of infinitely many
primes p satisfying

p ≡ 1 (mod 8(q1 − 1) · · · (qr − 1)).
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We will show that for all these primes p and for all the ai one has
(

ai

GMp

)
= 1. By

the Quadratic Reciprocity Law for the Jacobi symbol, this is equivalent to showing

that
(

GMp

ai

)
= 1 for each i, and by the properties of the Jacobi symbol it will be

enough to prove that
(

GMp

qj

)
= 1, for each qj ∈ Q. We will in fact prove that

GMp ≡ 1(mod qj), from which the result follows.
Recall from (1.2) that

GMp =

(
2

p−1
2 − (−1)

p2−1
8

)
2

p+1
2 + 1.

Hence, it suffices to prove that

2
p−1
2 − (−1)

p2−1
8 ≡ 0 (mod qj).

Since p ≡ 1(mod 8), then (−1)
p2−1

8 = 1. Also, since p ≡ 1(mod 8(qj − 1)), then

qj − 1 divides p−1
2 . Hence, 1 ≡ 2qj−1 (mod qj) implies 1 ≡ 2

p−1
2 (mod qj), so the

result follows. �

In spite of the negative result of Proposition 2.1, we will next prove GMP3,
which shows that we can test primality for these numbers by using a = 5, but

sometimes raising a to the power
GMp−1

4 instead of just raising to
GMp−1

2 . The
proof of GMP3 relies on the Biquadratic Reciprocity Law. We will follow the
excellent treatment on the subject given in chapter 9 of the book of Ireland and
Rosen [IR].

Theorem 2.2. Let p be an odd prime. GMp is prime if, and only if,

5
GMp−1

4 ≡ −1 (mod GMp) for p ≡ 1 (mod 4),

5
GMp−1

2 ≡ −1 (mod GMp) for p ≡ 3 (mod 4).

Proof. If p = 3, then GMp = 13, which is prime. 56 ≡ −1(mod 13) can be verified
trivially. So we let p be a prime p > 3. We first assume GMp is prime. Denote by
λ = −(gmp) = 1 − (1 + i)p. It is irreducible in the ring of Gaussian Integers Z[i]
because its norm is a rational prime. Also λ is primary (i.e., λ ≡ 1(mod (1+ i)3)).
Let π = 2i− 1. Then, it is easy to see that ππ = 5 is the primary decomposition of
5 in Z[i].

By the Biquadratic Reciprocity Law ([IR], Theorem 2 of chapter 9), we have

χλ(π) = χπ(λ),

where χλ denotes the biquadratic symbol modulo λ and χπ the biquadratic symbol
modulo π. (We note that the power of −1 that appears in the theorem is 1 in our
case because N(λ) ≡ 1(mod 8) for p > 3.)

By the defining property of the Biquadratic symbol we have χλ(5) ≡ 5
GMp−1

4

(mod λ). Since ππ = 5, then χλ(5) = χλ(π)χλ(π), which equals, by the Biquadratic
Reciprocity Law, χπ(λ)χπ(λ). Hence, we need only to compute χπ(λ) and χπ(λ):

χπ(λ) ≡ λ
N(π)−1

4 ≡ λ ≡ 1− (1 + i)p

≡ 1− (1 + i)(2i)
p−1
2 ≡ 1− (1 + i)(1)

p−1
2 ≡ −i (mod π).

Hence, χπ(λ) = −i.
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A similar calculation leads to

χπ(λ) =

{
−i if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

It follows that

χλ(5) =

{
−1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4),

from which we obtain

5
GMp−1

4 ≡ −1 (mod GMp) for p ≡ 1 (mod 4),

5
GMp−1

2 ≡ −1 (mod GMp) for p ≡ 3 (mod 4).

Conversely, letting q be any prime divisor of GMp, from (1.2) we have that

GMp = 2m+1k + 1, where k = 2m −
(

2
p

)
is odd and m + 1 = p+1

2 . Then 5k has

order 2m modulo q if p ≡ 1(mod 4) and has order 2m+1 modulo q if p ≡ 3(mod 4).
In any case q ≡ 1(mod 2m). Since we also know that q ≡ 1(mod p), it follows that
q ≥ 2mp+ 1 >

√
GMp.

Therefore, every prime divisor of GMp is greater than
√
GMp, which implies

that GMp is prime. �

Using 3 instead of 5, a similar calculation leads to the following result:

Theorem 2.3. If p > 3, then GMp is prime if, and only if,

3
GMp−1

4 ≡ −1 (mod GMp) for p ≡ 1, 3 (mod 8),

3
GMp−1

2 ≡ −1 (mod GMp) for p ≡ 5, 7 (mod 8).

Remarks. (1) With the proof of Theorem 2.2 we also end the proof of our
main result on Gaussian Mersenne norms, Theorem 1.4. Both Theorems 2.2
and 2.3 give a deterministic primality test for Gaussian Mersenne norms
as efficient as the Lucas-Lehmer Test for Mersenne numbers. In fact, the
implementation of the test requires the computation of p−2 or p−1 squares
modulo GMp and only 1 modular multiplication of different numbers which
in half of the cases will be a multiplication by either 3 or 5. This fact,
together with the other properties of the GMp’s obtained from Theorem

1.4, and together with the fact that |Mp −GMp| = O(
√
Mp), which makes

it reasonable to believe that the distribution of primes in each family is
equivalent, indicates that a GIMPS like project for the Gaussian Mersenne
primes would produce similar kinds of results with a similar amount of
computing power.

(2) The biquadratic character of 5 or 3 modulo GMp was actually obtained
by Emma Lehmer in 1958 in [L]. Theorems 2.2 and 2.3 can be derived
from her theorem on quartic residuacity, which depends on knowing the
factorization of GMp as a sum of squares (given by (1.3) in Proposition 1.3).
Lehmer’s result on cubic and quartic residuacity can be respectively derived
from the cubic and the biquadratic reciprocity laws, which motivates our
presentation of Theorem 2.2.
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(3) A primality test for numbers of the form A2s ± 1, where A < 2s, based
on the biquadratic reciprocity law, was first given in [BB] and works for
all A �≡ 0 (mod 5). We note that such a test would not apply to GMp for

p ≡ 1 (mod 4), since in that case GMp = A2
p−1
2 + 1 and A ≡ 0 (mod 5)

(see (1.4) in Proposition 1.3).
(4) Note that in the proof of Theorem 2.2 we showed that χπ(−gmp) = −i

for all odd values of p. The biquadratic reciprocity law implies that −i =

χgmp
(π) ≡ (π)

GMp−1

4 (mod gmp) (the congruence takes place in the ring of
Gaussian integers). Hence it is not difficult to deduce that GMp is prime if,

and only if, (π)
GMp−1

4 ≡ −i (mod gmp). Since the absolute value of gmp is

O(
√
GMp), the implementation of this test as an alternative to Theorem

2.2 or Theorem 2.3 may be worth considering.

3. Eisenstein Mersenne norms

The objective of this section is to present a theorem, analogous to Theorem 1.4,
that applies to Eisenstein Mersenne norms, which arise naturally when searching
for prime elements of the form an − 1 in the ring R = Z[ω], where ω is a cube root
of 1.

The ring R, known as the ring of Eisenstein integers, has properties which are
either the same or analogous to properties of the ring of Gaussian integers Z[i]. For
instance, they are both Euclidean domains, hence unique factorization domains. In
both rings it is true that nonreal elements are irreducible if, and only if, their norms
are rational primes. Hence Eisenstein Mersenne numbers and Eisenstein Mersenne
norms will be defined in a way which is completely analogous to the definitions of
Gaussian Mersenne numbers and Gaussian Mersenne norms we gave in section 1.
The ring of Eisenstein integers is the natural domain for the cubic reciprocity law,
the ring of Gaussian integers, the natural domain for the biquadratic reciprocity
law.

The biquadratic reciprocity law has been used to produce a primality test for
numbers of the form A2s ± 1, where A < 2s (in particular for the GMp’s in the
previous section, when p is prime). In this section the cubic reciprocity law will be
used to produce a primality test for the EMp’s, which we will soon see are of the
form A3s + 1, where A < 3s. A primality test for numbers of that form was first
studied by Edouard Lucas in the nineteenth century by using properties of what
are now called Lucas sequences. These methods were studied and extended by H.
C. Williams in the 1970s. A complete account of the history and the results may
be found in [W]. In the 1990s, Guthmann [G], and later the authors of [BB1], used
the cubic reciprocity law to produce a primality test for such numbers. We will see
that the cubic character of 2 modulo EMp suffices to produce a primality test for
the EMp’s. Additionally we will see that the EMp’s have properties EMP1 and
EMP2, which simplify the search for primes in the family. However, they do not
share a property analogous to GMP4, mainly because binary numbers are natural
to computers and they cannot handle base 3 numbers as efficiently.

Since the results and techniques used in the proof are analogous to those used
in the previous two sections, we will limit ourselves to state without proof (or with
a very sketchy one) most of the results of this section.
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Definition 3.1. For a positive integer n, the n-th Eisenstein Mersenne norm EMn

is defined by

EMn = N ((1− ω)n − 1) ,

where N(α) = αᾱ is the norm of α in Z[ω].
((1− ω)n − 1) is denoted by emn. It is an Eisenstein Mersenne number, as well

as emn.

Examples:

EM2 = N
(
(1− ω)2 − 1

)
= N (−1− 3ω) = 7,

EM3 = N
(
(1− ω)3 − 1

)
= N (−4− 6ω) = 28.

In http://www.research.att.com/˜njas/sequences/A066408, Mike Oakes has kept
an updated list of the known prime Eisenstein Mersenne norms. There are currently
25. In a related e-mail in the internet he shows that if EMn is prime, then n is prime
(EMP1). He mentions that the list of the first 12 was known to the “Cunningham
Project” (http://homes.cerias.purdue.edu/˜ssw/cun/).

The main result of this section will be the following:

Theorem 3.2. EMP1: If EMp is prime, then p is prime.
EMP2: Let p > 3 be a prime. If q divides EMp, then q ≡ 1(mod 6p).

EMP3: Let p > 3 be a prime. EMp is prime if, and only if, 2
EMp−1

3 +

22
EMp−1

3 + 1 ≡ 0 (mod EMp).

Before proving the theorem we state some basic properties of Eisenstein Mersenne
numbers and norms that we need to prove the theorem. The proposition is elemen-
tary, and we state it without proof.

Proposition 3.3. If p > 3 is odd, then

EMp =

⎧⎨
⎩

3p − 3
p+1
2 + 1 if p ≡ ±1 (mod 12),

3p + 1 if p ≡ ±3 (mod 12),

3p + 3
p+1
2 + 1 if p ≡ ±5 (mod 12),

emp = (1− ω)p − 1 = (1− ω)(−3ω)
p−1
2 − 1,

EMp = 3
p+1
2

(
3

p−1
2 −

(
3
p

))
+ 1,(3.1)

4EMp =
(
3

p+1
2 −

(
3
p

)
2
)2

+ 27
(
3

p−3
2

)2

(3.2)

where
(

a
p

)
is the Jacobi symbol

(3p + 3
p+1
2 + 1)(3p − 3

p+1
2 + 1)(3p + 1) = 33p + 1.(3.3)

If p is even, then:

• If p ≡ 0 (mod 3), then EMp = ((−1)
p
2+13

n
2 + 1)2.

• If p �≡ 0 (mod 3), then EMp = 3p + (−3)
p
2 + 1.

Proof of Theorem 3.2. (1) EMP1. If d divides n, then emd divides emn; hence
EMd divides EMn. To show that EMd is a nontrivial divisor when d > 1
it is enough to show that the absolute value of emd is > 1. But |emd| =
|(1− ω)d − 1| ≥

√
3
d − 1 > 1 when d > 1.
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(2) EMP2. This can be proved from (3.3) in Proposition 3.3 in a way which
is analogous to the proof of GMP2 for Gaussian Mersenne norms. Details
are left to the reader.

(3) EMP3. Assume EMp is prime. Proposition 9.6.2, page 118 in [IR], states
that 2 is a cube modulo EMp iff 2 divides A and B, where A2 and B2 are
the unique integers such that 4EMp = A2 + 27B2. This result was in fact
known to Jacobi. In any case, (3.2) in Proposition 3.3 shows that A and B

are odd, so 2 is not a cube modulo EMp; hence 2
EMp−1

3 has order 3 modulo

EMp, from which 2
EMp−1

3 + 22
EMp−1

3 + 1 ≡ 0 (mod EMp).
The converse is obtained from a standard argument originally due to

Pocklington (see for instance [W]). Indeed, let x = 2
EMp−1

3 ; from the

elementary identity gcd(x
d−1
x−1 , x − 1) = gcd(d, x − 1), valid for every pair

of integers x and d > 1, and from the fact that EMp ≡ 1 (mod 3), we can

easily deduce from the hypothesis that gcd(2
EMp−1

3 − 1, EMp) = 1. Also,

(3.1) in Proposition 3.3 shows that EMp = A3
p+1
2 + 1, where A < 3

p+1
2 .

The hypotheses of Pocklington’s Theorem are satisfied, and the conclusion
is that EMp is prime. �

We end with a result which slightly improves on GMP3 and EMP3.

Theorem 3.4. Let p > 3 be a prime.

(1) GMp is prime if, and only if,

5
GMp−1

4 ≡
{

−1 (mod GMp) if p ≡ 1 (mod 4),
2p (mod GMp) if p ≡ −1 (mod 4).

(2) EMp is prime if, and only if, 2
EMp−1

3 ≡ 3p − 1(mod EMp).

Proof. (1) 5
GMp−1

4 ≡ −1(mod GMp) when p ≡ 1(mod 4) is as in the statement
of Theorem 2.2. Also, in the proof of that theorem we showed that if p ≡ −1
(mod 4) and GMp is prime, then λ = 1 − (1 + i)p is a primary prime
satisfying χλ(5) = i, where χλ is the biquadratic character modulo λ.

We next show that 2p ≡ i(mod λ): Note first that (1 + i)p ≡ 1(mod λ),
which is immediate from the definition of λ. Hence, 2p = (1+ i)p(1− i)p =
(1 + i)2p(−i)p ≡ (−i)p ≡ i(mod λ) (for the last congruence we used that
p ≡ −1(mod 4)).

We deduce that i = χλ(5) ≡ 5
GMp−1

4 ≡ 2p (mod λ); hence 5
GMp−1

4 ≡ 2p

(mod λ ∩ Z = GMp), as desired.

For the converse, if the last congruence holds, then 5
GMp−1

4 ≡ 2p ≡ i

(mod λ) from which 5
GMp−1

2 ≡ −1(mod λ ∩ Z = GMp). The primality of
GMp now follows from Theorem 2.2.

(2) Let δ = −(emp) = 1 − (1 − ω)p. Then N(δ) = EMp. Let χδ denote the
cubic character modulo δ and let χ2 denote the cubic character modulo 2
(see [IR], page 113). We will show the following:

i) χ2(δ) = ωp,
ii) ωp ≡ 32p ≡ 3p − 1(mod δ).
The result will then be deduced by combining the cubic reciprocity law

and Theorem 3.2 with i) and ii).
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i) By definition of the cubic character, χ2(δ) ≡ (δ)
22−1

3 ≡ δ (mod 2) ≡
(1 + ω)p + 1 ≡ (−ω2)p + 1 ≡ ω−p + 1 ≡ ωp (mod 2), from which i) follows.

ii) Note that by definition of δ we have (1 − ω)p ≡ 1(mod δ). Then
32p = (1 − ω)2p(1 − ω−1)2p = (1 − ω)4p(ω−1)2p ≡ ωp (mod δ). From (3.3)
we deduce 32p ≡ 3p − 1(mod EMp), hence modulo δ.

Assume now that EMp is prime. Then δ is a primary prime in the ring
R of Eisenstein integers, and so is 2. The Cubic Reciprocity Law ([IR],
page 114) states for this case that χ2(δ) = χδ(2). It follows, by using i), ii)

and the definition of χδ that 2
EMp−1

3 ≡ 3p − 1(mod δ), so the congruence
holds modulo δ ∩ Z = EMp, as desired. For the converse it is not difficult

to see that if 2
EMp−1

3 ≡ 3p − 1(mod EMp), then 2
EMp−1

3 +22
EMp−1

3 +1 ≡ 0
(mod EMp), so the primality of EMp follows by Theorem 3.2.

Remarks. (1) The technique used in the proof of (2) in Theorem 3.4 could
have been used to prove EMP3. In fact, if EMp is prime, then the Cubic

Reciprocity Law and the fact shown above χδ(2) �= 1 lead easily to 2
EMp−1

3 +

22
EMp−1

3 + 1 ≡ 0 (mod EMp). The converse is as in the proof of Theorem
3.2. Moreover, it can be verified that χδ(7) is also nontrivial when EMp is
prime. It follows that 2 can be replaced by 7 in the statement of EMP3.

(2) Theorem 3.4 should be used instead of EMP3 and GMP3 when imple-
menting the search for large primes, even though its use will just save up to
one modular multiplication in the determination of the primality of GMp

or EMp for any given p. However, we must say that the implementation we
made of the test in 2004 did not include this result, since we found the re-
sult after the search was over. We also note that 3p−1(mod EMp) = 3p−1

when p ≡ ±5(mod 12); in contrast, 3p − 1(mod EMp) = 3
p+1
2 − 2 when

p ≡ ±1(mod 12). This too should be noted for the implementation of the
search based on Theorem 3.4. An analogous observation should be made
for the search of primes GMp.

(3) For primes q ≡ 1(mod 3) and integers d which are not cubes modulo q,
Kenneth S. Williams [WK] appears to be the first to study how to choose

ε = ±1 such that d
q−1
3 ≡ L+ε9M

L−ε9M (mod q), where L2 + 27M2 = 4q. In our

case q = EMp and the corresponding values of L and M are given in (3.2).
Surely, Theorem 3.4 could have been derived from K. S. Williams’ results.
However, the authors of this paper have been aware for many years that
the main results in [WK], together with the main result in [L] concerning
cubic residuacity, are equivalent to the Cubic Reciprocity Law, and that
there is an analogous equivalence of the Biquadratic Reciprocity Law with
results in biquadratic residuacity. This awareness, together with the fact
that 2p has order 4 modulo GMp and 32p has order 3 modulo EMp made
possible the simple proof presented here, easily derived from the classical
Cubic and Biquadratic Reciprocity Laws.

(4) As was mentioned earlier, there are currently 25 known Eisenstein Mersenne
norms that are prime. The largest of these primes was obtained in No-
vember 2005 with an implementation of an algorithm that searches for
primes in this family based on the results of this paper. The prime is
EM534827. The second author of this paper implemented the search for
primes in both families, the Gaussian Mersenne norms and the Eisenstein
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Mersenne norms. Also in November 2005 the algorithm determined the pri-
mality of GM991961. At the moment this was also the largest prime known
in that family. The algorithm was used to verify that EMn was composite
for all 255361 < n < 534827. Hence the 25 known Eisenstein Mersenne
norms that are prime are in fact the smallest 25 primes in that family. The
same was done for the Gaussian Mersenne family: GM991961 was the 36th
known prime in that family and these were the smallest 36 primes in the
family.

The search was made by using the free CPU time of 6 PC’s assigned
to different professors of the Mathematics Department at University Simon
Bolivar (USB). Additionally, a couple of PC’s assigned to our research group
(GID-24) by the Decanato de Investigaciones of the USB were devoted
almost entirely to the search. The search took around a year and was
stopped in December 2005. In December 2006, Jaworsky determined that
GM1203793 is prime (see [C]). There are now 37 Gaussian Mersenne norms
that are known to be prime. �
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