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WELL-POSEDNESS AND NUMERICAL ANALYSIS

OF A ONE-DIMENSIONAL NON-LOCAL TRANSPORT

EQUATION MODELLING DISLOCATIONS DYNAMICS

A. GHORBEL AND R. MONNEAU

Abstract. We consider a situation where dislocations are parallel lines mov-
ing in a single plane. For this simple geometry, dislocations dynamics is mod-
eled by a one-dimensional non-local transport equation. We prove a result of
existence and uniqueness for all time of the continuous viscosity solution for
this equation. A finite difference scheme is proposed to approximate the con-
tinuous viscosity solution. We also prove an error estimate result between the
continuous solution and the discrete solution, and we provide some simulations.

1. Introduction

1.1. Physical motivation. In this work, we are interested in the dislocations
dynamics in a crystal material (see [18] for a physical description of dislocations).
A perfect crystal, for small deformations, is well described by the equations of
linear elasticity. The real crystals contain, in particular, some line defects called
dislocations. The dislocations dynamics is one of the main explanations of the
plastic deformation of metals. When we apply an exterior stress, these dislocations
lines can move in a slip plane of the crystal. We consider here a simple geometry
where the dislocations are parallel lines moving in a same plane (xy). This plane
is embedded in a three-dimensional elastic crystal. The particular geometry of
this problem leads to the study of a one-dimensional model given by the following
non-local transport equation modelling dislocations dynamics:

(1)

⎧⎨
⎩

∂u

∂t
(x, t) = c[u](x, t)

∂u

∂x
(x, t) in R× (0,+∞),

u(x, 0) = u0(x) in R,

where the solution u is a scalar function, ∂u
∂t and ∂u

∂x are its time and space deriva-
tives, respectively. Here the dislocations move with a non-local velocity c[u] known
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as the resolved Peach-Koehler force; see [20]. It is given by

(2)

⎧⎪⎨
⎪⎩

c[u](x, t) = cext(x) + cint[u](x, t),

cint[u](x, t) =

∫
R

c0(x− x′) (E(u(x′, t))− Px′) dx′,

where the function E is the floor function defined by E(v) = k if k ≤ v < k + 1,
k ∈ Z. The scalar function u has no physical meaning but it is chosen such that
the jumps of E(u) correspond to the positions of dislocations (see Figure 1). The
velocity c[u] is the sum of two terms. We first assume the existence in the material
of obstacles to the motion of dislocations. The term cext represents the exterior
stress created by these obstacles (such as precipitates in the material, other fixed
dislocations, other defects, . . . ). We consider obstacles that are independent on
time and periodic in space. Namely, we assume that the velocity satisfies

(3) cext ∈ W 1,∞(R) such that cext(x+ 1) = cext(x) in R.

The second term cint[u] is a non-local term, given by a convolution with respect
to the space variable, and represents the elastic interior stress created by all the
dislocations in the material. This term cint[u] is obtained by the resolution of the
equations of linear elasticity. For instance, in the model of Peierls-Nabarro (see
[5]), we have in the case of edge dislocation (see [18])

(4) c0(x) =
−μb2

2π(1− ν)

x2 − ζ2

(x2 + ζ2)2
on R ,

where ν = λ
2(λ+μ) is the Poisson ratio and λ and μ > 0 are the Lamé coefficients

for isotropic elasticity. The Burgers vector �b is equal to b�ex, with b > 0 and �ex the
unit vector in the direction of x of Figure 1. There is a physical parameter ζ �= 0
(depending on the material) which represents the size of the core of the dislocation.

1.2. Main results. In the rest of this paper, we use some adapted norms intro-
duced in the following definition.

Definition 1.1 (Adapted norms). Let two functions f ∈ L1
loc(R) and g ∈ L∞

loc(R).
We define the quantities

|f |L1
unif(R)

= sup
x∈R

∫
I(x)

|f(y)| dy and |g|L∞
int(R)

=

∫
R

|g|L∞(I(x)) dx,

where I(x) = (x − 1
2 , x + 1

2 ). We denote respectively L1
unif(R) and L∞

int(R) spaces
that consist of functions for which these quantities are finite.

Remark 1.2. These spaces are motivated by the following fact. For c0 ∈ L∞
int(R)

and f ∈ L1
unif(R), we will show later that the convolution product c0 � f is well

defined. This will be applied to define cint[u] with f(x) = E (u(x, t))− Px.

We denote Lip(R) the space of Lipschitz continuous functions on R.

1.2.1. Existence and uniqueness of a continuous solution. We consider the following
assumptions for the kernel c0:

(5)

⎧⎪⎨
⎪⎩

c0 ∈ W 1,1(R) ∩ L∞
int(R),

c0(x) = c0(−x) and

∫
R

c0(x) dx = 0 .
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Figure 1. Representation of dislocations with the function E(u)

One can check easily that the kernel given in (4) satisfies (5). We consider the
initial condition u0 ∈ Lip(R) such that for x ∈ R

(6) u0(x+ 1) = u0(x) + P and 0 < b0 ≤ u0
x ≤ B0 < +∞ a.e.

with b0 and B0 some constants and P ∈ N\{0}. This condition means in particular
that dislocations are periodically distributed. As mentioned above, in order to study
the solutions of (1), we use the theory of continuous viscosity solutions (see [7, 10]).
Our first main result is:

Theorem 1.3 (Long time existence and uniqueness of the solution). Under as-
sumptions (3), (5), (6), there exists a unique continuous viscosity solution u ∈
W 1,∞

loc (R× [0,+∞)) of (1), (2) satisfying u(x+ 1, t) = u(x, t) + P .

In [5], a short time existence and uniqueness result is given for a two-dimensional
problem for a single dislocation line. Because in the present work our problem is
one-dimensional, we are able to get a refined result for the dynamics of several
dislocations in interaction, namely the existence and uniqueness of a solution for
all time.

Let us mention that under the more restrictive assumptions that the velocity
c[u] is nonnegative, the existence and uniqueness of a solution for all time is proved
in [1, 9].
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In the special case where the kernel c0 is assumed nonnegative, some existence
and uniqueness results for all time in any dimension are available in a “Slepčev
formulation” (see [8, 14]).

The previous theorem will be proved in two steps. First, we will prove the result
for short time (see for instance [17]) using a fixed point theorem. Second, we will
repeat this short time result on a sequence of time intervals of lengths Tn decreasing
to zero, such that

∑
n∈N

Tn = +∞.

Remark 1.4. Let us mention three remaining open problems.

• When the initial data u0 is not monotone, the existence and uniqueness of
the solution for all time is an open question.

• We do not know the behavior of the solution as t → +∞.
• If we replace ∂u

∂x in equation (1) by its absolute value, then we have a non-

local Hamilton-Jacobi equation. Physically, the absolute value would allow
us to consider the possible annihilation of two dislocations associated to
opposed jumps of E(u). The existence and uniqueness of a solution for all
time is an open question in the general case. Nevertheless, in the whole
paper we will only consider the case of solutions u monotone in space which
allows us to forget the absolute value.

1.2.2. Convergence of a numerical scheme. We build a finite difference scheme of
order one in space and time

• by assuming that it is upwind,
• by approximating the non-local term c0 � E (u(·, t)) by a discrete convolu-
tion, and

• by using an explicit Euler scheme in time.

Given a mesh size Δx, Δt and a lattice Id = {(iΔx, nΔt); i ∈ Z, n ∈ N}, (xi, tn)
denotes the node (iΔx, nΔt) and vn = (vni )i the values of the numerical approxima-
tion of the continuous solution u(xi, tn). We then consider the following numerical
scheme:

(7) v0i = u0(xi), vn+1
i = vni +Δt ci(v

n)×
{

D+
x v

n
i if ci(v

n) ≥ 0,

D−
x v

n
i if ci(v

n) < 0,

with

(8) D+
x v

n
i =

vni+1 − vni
Δx

, D−
x v

n
i =

vni − vni−1

Δx
,

and ci(v
n) is defined below.

We choose Δx = 1
K , K ∈ N \ {0} because of the 1-periodicity in space. We

denote cexti = cext(xi) which satisfies cexti+K = cexti . The discrete velocity is

(9) ci(v
n) = cexti + cint, ni with cint, ni =

∑
l∈Z

c0l E(vni−l)Δx,

where

(10) c0i =
1

Δx

∫
Ii

c0(x) dx and Ii =

[
xi −

Δx

2
, xi +

Δx

2

]
.

We are interested in solutions vn satisfying vni+K = vni + P for all i ∈ Z. Then we
can check that the discrete velocity satisfies ci+K(vn) = ci(v

n).
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Note that the global scheme vn+1 = S(vn) given by (7) is not monotone in
general because the velocity ci(v

n) depends non-monotonically on the solution vn

itself (here some c0i are non-positive because we assumed that
∫
R
c0(x) dx = 0).

We assume that the mesh satisfies the following CFL (Courant, Friedrichs, Lévy)
condition

(11) Δt <
Δx

4
(
|cext|L∞(R) + P |c0|L1(R)

) .

Our second main result is

Theorem 1.5 (Error estimate). Let u be the continuous viscosity solution of prob-
lems (1), (2) under assumptions (3), (5), (6). Let v be the discrete solution of the
associated finite difference scheme (7)-(10). Assume that the time step Δt satisfies

(12) Δt = αΔx with 0 < α <
1

4
(
|cext|L∞(R) + P |c0|L1(R)

) .

Then, there exists two constants T1, C > 0, depending on α, |cext|W 1,∞(R), P ,∣∣c0∣∣
W 1,1(R)

,
∣∣c0∣∣

L∞
int(R)

, B0 and b0 in (6), such that

sup
i∈Z

|u(iΔx, nΔt)− vni | ≤ C |Δx|1/2 for all n ≤ T1

Δt
if Δx ≤ T1

C
.

The proof of this theorem is based on the ideas of Crandall and Lions [13] adapted
to the case of non-local equations (see [2]).

Extensive simulations of dislocations dynamics are provided in [16].

1.3. Brief review of the literature. Let us recall that, in the 1980s, the notion
of viscosity solution was first introduced by Crandall and Lions in [11] for first-order
Hamilton-Jacobi equations. For an introduction to this notion, see in particular the
books of Barles [7], and of Bardi and Capuzzo-Dolcetta [6].

Recently, Alvarez, Hoch, Le Bouar and Monneau [4, 5] used this theory for the
resolution of a non-local Hamilton-Jacobi equation modelling dislocation dynam-
ics. They proved results of short time existence and uniqueness of a discontinuous
viscosity solution. Their results are mainly valid for dislocations with the shape of
graphs and loops, and they used the level set approach, which was introduced by
Osher and Sethian [19]. As already mentioned, in the situation where the non-local
velocity is non-negative, Barles and Ley [9] proved that the existence and unique-
ness is valid for any time interval for a level set formulation. Still in the case of
non-negative velocity, an approach for discontinuous viscosity solution was devel-
oped by Alvarez, Cardaliaguet and Monneau [1]. Let us mention, for dislocations
dynamics with mean curvature terms, Forcadel in [15] proved a short time existence
and uniqueness result.

A numerical analysis was done by Crandall and Lions [13], for approximations
of solutions of Hamilton-Jacobi equations. Convergence of a first-order scheme for
an abstract non-local eikonal equation was proved by Alvarez, Carlini, Monneau
and Rouy [2]. They also applied this convergence result for the numerical analysis
of a non-local Hamilton-Jacobi equation in [3] describing the dynamics of a single
dislocation in two dimensions.
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1.3.1. Organization of the paper. In Section 2, we give some properties of the so-
lution of an auxiliary local equation, i.e. an eikonal equation where the velocity
is assumed to be a given function independent on the solution. In Section 3, we
give some properties of the non-local velocity. The existence and uniqueness result
of a continuous solution, i.e. Theorem 1.3, is then proved in Section 4. We give
preliminary results for the discrete local problem in Section 5 and for the discrete
non-local velocity in Section 6. Theorem 1.5 about the error estimate is proved in
Section 7. Finally, in Section 8 we give some simulations.

2. Preliminary results for the eikonal equation

with prescribed velocity

In this section, we start by recalling the notion of viscosity solution of an eikonal
equation. We then give some properties of the solution of a such equation.

Let T > 0. Consider the following problem:

(13)

⎧⎪⎨
⎪⎩

∂u

∂t
(x, t) = c(x, t)

∣∣∣∣∂u∂x (x, t)
∣∣∣∣ in R× (0, T ) ,

u(x, 0) = u0(x) on R .

We make the following assumptions:

a) the velocity c : R× (0, T ) −→ R is bounded, Lipschitz continuous in space
and in time,

b) the initial data u0 ∈ Lip(R).

We recall the notions of viscosity subsolutions, supersolutions and solutions for (13)
(see [10]). We denote

USC(R× [0, T )) = {u : R× [0, T ) −→ R , locally bounded, upper semicontinuous}

and

LSC(R× [0, T )) = {u : R× [0, T ) −→ R , locally bounded, lower semicontinuous}.
We then define

Definition 2.1 (Viscosity subsolution, supersolution and solution).

1) A function u ∈ USC(R × [0, T )) is a viscosity subsolution of (13) if the
following properties hold:
i) u(x, 0) ≤ u0(x) in R,
ii) for every (x0, t0) ∈ R × (0, T ) and for every test function ϕ ∈

C1(R × (0, T )) such that u − ϕ has a local maximum at (x0, t0), we
have

∂ϕ

∂t
(x0, t0) ≤ c(x0, t0)

∣∣∣∣∂ϕ∂x (x0, t0)

∣∣∣∣ .
2) A function u ∈ LSC(R× [0, T )) is a viscosity supersolution of (13) if the

following properties hold:
i) u(x, 0) ≥ u0(x) in R,
ii) for every (x0, t0) ∈ R × (0, T ) and for every test function φ ∈

C1(R × (0, T )) such that u − φ has a local minimum at (x0, t0), we
have

∂φ

∂t
(x0, t0) ≥ c(x0, t0)

∣∣∣∣∂φ∂x (x0, t0)

∣∣∣∣ .
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3) A function u ∈ C(R× [0, T )) is a continuous viscosity solution of (13) if it
is both a viscosity subsolution and a viscosity supersolution of (13).

We have the following a priori estimates for the solution of the eikonal equation.
These estimates are may be quite classical, and part of them is already proved in
[5], but we give a proof for sake of completeness.

Proposition 2.2 (a priori estimates for the solution of the eikonal equation).
Assume that c ∈ W 1,∞(R × [0, T ]) and u0 ∈ Lip(R) such that |(u0)x| ≤ B0 a.e.
and (u0)x ≥ b0 a.e. for some B0 > b0 > 0. Then, there exists a unique continuous
viscosity solution u on R × [0, T ) of problem (13). Moreover, u ∈ Lip(R × [0, T )).
With Lc := Lc(t) = |cx(·, t)|L∞(R), B(t) = B0 eLct and b(t) = b0 e−Lct, we have the

following estimates:

i) for every 0 ≤ t < T ,

|ux(x, t)| ≤ B(t) a.e.

and
ux(x, t) ≥ b(t) a.e.

ii) Moreover
|ut(x, t)| ≤ |c|L∞(R×(0,T )) B(t) a.e.

Proof of Proposition 2.2. We refer to [7, Theorem 2.8, page 38] for the proof of
existence and uniqueness of a solution u. We introduce the double variables (x, y) ∈
R

2 and set the half-plane Ω = {x ≥ y}. Consider the following problem:

(14)

⎧⎪⎨
⎪⎩
wt(x, y, t) = c(x, t) |wx(x, y, t)| − c(y, t) |wy(x, y, t)| in Ω× (0, T ),

w(x, y, 0) = u(x, 0)− u(y, 0) in Ω,

w(x, x, t) = 0 on ∂Ω× (0, T ).

Then, w(x, y, t) = u(x, t)−u(y, t) is a continuous viscosity solution of problem (14)
(we refer to [12, Lemma 2, page 357] for a proof).

Let Φ(x, y, t) = B(t)(x− y). Then, we have

Claim 1. Φ is a (viscosity) supersolution of problem (14).

As a matter of fact, since Φ is smooth, Φ is a classical supersolution of problem
(14). Indeed, on the one hand, we have

w(x, y, 0) = u(x, 0)− u(y, 0) ≤ B0(x− y) = Φ(x, y, 0) and
w(x, x, t) = 0 = Φ(x, x, t) .

On the other hand, we have

Φt − c(x, t) |Φx|+ c(y, t) |Φy|

= LcB0 eLct(x− y)− c(x, t)B0 eLct + c(y, t)B0 eLct

= B0 eLct (−c(x, t) + c(y, t) + Lc(x− y)) .

Moreover,

|c(x, t)− c(y, t)| ≤ Lc |x− y| and x ≥ y implies c(x, t)− c(y, t) ≤ Lc(x− y).

We then obtain
Φt − c(x, t) |Φx|+ c(y, t) |Φy| ≥ 0 .

This proves Claim 1.
Let ϕ(x, y, t) = b0 e−Lct(x− y). Then we have
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Claim 2. ϕ is a (viscosity) subsolution of problem (14).

The proof is similar to the proof of Claim 1, and we skip it.
By the comparison principle (see [7, Theorem 2.10, page 47]):

a)

w(x, y, t) ≤ Φ(x, y, t) i.e.

(15) u(x, t)− u(y, t) ≤ B(t)(x− y) for (x, y, t) ∈ Ω× (0, T ),

b) and

ϕ(x, y, t) ≤ w(x, y, t) i.e.

(16) b(t)(x− y) ≤ u(x, t)− u(y, t) for (x, y, t) ∈ Ω× (0, T ).

We deduce that

(17) 0 ≤ b(t)(x− y) ≤ u(x, t)− u(y, t) ≤ B(t)(x− y) ≤ B(t) |x− y|

for all (x, y, t) ∈ Ω× (0, T ) . Passing to the limit in (17), by Rademacher’s Theorem
[7], we get

0 ≤ b(t) ≤ ux(x, t) ≤ B(t) for a.e. (x, t) ∈ Ω× [0, T ) .

We now prove the Lipschitz in time estimate. Let (x0, t0) ∈ R × (0, T ) and ϕ ∈
C1(R× (0, T )) such that u−ϕ has a local maximum at (x0, t0). We show that ϕt ≤
|c|L∞(R×(0,T )) B(t0). From

ϕ(x0,t0)−ϕ(x,t0)
|x−x0| ≤ u(x0,t0)−u(x,t0)

|x−x0| and (17) we obtain

ϕx(x0, t0) ≤ B(t0)

and then

ϕt(x0, t0) ≤ c(x0, t0) |ϕx(x0, t0)| ≤ |c|L∞(R×(0,T )) |ϕx(x0, t0)| ≤ |c|L∞(R×(0,T )) B(t0).

Let Φ ∈ C1(R×(0, T )) such that u−ϕ has a local maximum at (x0, t0) ∈ R×(0, T ).
Similarly, we check easily that Φt ≥ − |c|L∞(R×(0,T )) B(t0). Therefore, we have

ϕt ≤ |c|L∞(R×(0,T )) B(t0) and Φt ≥ − |c|L∞(R×(0,T )) B(t0) .

We conclude that

|ut| ≤ |c|L∞(R×(0,T )) B(t0) in the viscosity sense. �

We now give a stability result.

Proposition 2.3 (Stability of the solution by perturbation of the velocity). Let
vi, i = 1, 2, be a viscosity solution of the problem

(18)

{
vit(x, t) = ci(x, t)

∣∣vix(x, t)∣∣ in R× [0, T ) ,

vi(x, 0) = u0(x) on R ,



NON-LOCAL TRANSPORT EQUATION 1543

where ci ∈ W 1,∞(R× [0, T ]) and u0 ∈ Lip(R). Then,

(19)

∣∣v1 − v2
∣∣
L∞(R×[0,T ])

≤
∫ T

0

ds
∣∣c2(·, s)− c1(·, s)

∣∣
L∞(R)

max
(∣∣v1x(·, s)∣∣L∞(R)

,
∣∣v2x(·, s)∣∣L∞(R)

)
.

This result has been proved in [5]. For sake of completeness we give it here.

Proof of Proposition 2.3. We denote

v̄2(x, t) = v2(x, t)−
∫ t

0

∣∣c2(·, s)− c1(·, s)
∣∣
L∞(R)

∣∣v2x(·, s)∣∣L∞(R)
ds.

We want to prove that v̄2 is a viscosity subsolution of the equation satisfied by
v1. We denote I(v) = vt − c1(x, t) |vx|. Formally, I(v1) = 0 and I(v2) = v2t −
c1(x, t)

∣∣v2x∣∣ = (c2(x, t)− c1(x, t)
) ∣∣v2x∣∣. We show that

I(v2) ≤
∣∣c2(·, t)− c1(·, t)

∣∣
L∞(R)

∣∣v2x(·, t)∣∣L∞(R)

in the viscosity sense. Indeed, let ϕ ∈ C1(R× (0, T )) such that v2 − ϕ has a local
maximum at (x0, t0) ∈ R× (0, T ). Then,

I(ϕ) = ϕt − c1(x, t) |ϕx| ≤
(
c2(x, t)− c1(x, t)

)
|ϕx| ≤

∣∣c2(·, t)− c1(·, t)
∣∣
L∞(R)

|ϕx| .

Similarly, setting Φ ∈ C1(R × (0, T )) such that v2 − Φ has a local minimum at
(x0, t0) ∈ R× (0, T ), we have

I(Φ) ≥ −
∣∣c2(·, t)− c1(·, t)

∣∣
L∞(R)

|Φx| .

Moreover, at t = 0, we have v̄2 = v2 = u0 = v1. Hence, we deduce that v̄2 is a
subsolution of the equation satisfied by v1. Then, by the comparison principle [7],
for all t ∈ [0, T ], we have v̄2 ≤ v1, i.e.

v2(x, t)− v1(x, t) ≤
∫ t

0

∣∣c2(·, s)− c1(·, s)
∣∣
L∞(R)

∣∣v2x(·, s)∣∣L∞(R)
ds .

Similarly, we prove the inequality v̄1 ≥ v2 which leads to

v2(x, t)− v1(x, t) ≥ −
∫ t

0

∣∣c2(·, s)− c1(·, s)
∣∣
L∞(R)

∣∣v1x(·, s)∣∣L∞(R)
ds .

We conclude that∣∣v2 − v1
∣∣
L∞(R×[0,T ])

≤
∫ T

0

∣∣c2(·, s)− c1(·, s)
∣∣
L∞(R)

max
(∣∣v1x(·, s)∣∣L∞(R)

,
∣∣v2x(·, s)∣∣L∞(R)

)
ds . �

3. Properties of the non-local velocity

The goal of this section is to prove the following estimate, which will be used in
Section 4.
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Proposition 3.1 (Estimate on the difference of integer parts in the continuous
case). Let ρ1 ∈ C (R) such that:

i)

(20) ρ1(x+ 1) = ρ1(x) + P, where P ∈ N \ {0};

ii) there exist constants B ≥ b > 0 such that b ≤ ρ1x ≤ B in the distribution
sense.

Let ρ2 ∈ L∞
loc (R) satisfying (20). Then,

(21)
∣∣E (ρ2)− E

(
ρ1
)∣∣

L1
unif(R)

≤ 2

b

(
P +

∣∣ρ2 − ρ1
∣∣
L∞(R)

) ∣∣ρ2 − ρ1
∣∣
L∞(R)

.

Remark 3.2. Note that if
∣∣ρ2 − ρ1

∣∣
L∞(R)

≤ 1 ≤ P , then the previous estimate (21)

becomes ∣∣E (ρ2)− E
(
ρ1
)∣∣

L1
unif(R)

≤ 4P

b

∣∣ρ2 − ρ1
∣∣
L∞(R)

.

We will use this estimate later.

This result is the generalization of Lemma 4.2 in [3] to the case of several dis-
locations where the characteristic function ρi > 0 is replaced with the floor part
E(ρi).

To do the proof of Proposition 3.1 we need to introduce the following notation.
We denote Λ =

∣∣ρ2 − ρ1
∣∣
L∞(R)

, and we assume that Λ ∈ (0,+∞) (other cases

are trivial). For k ∈ Z, we denote, for i = 1, 2,

Ei
k = {x ∈ R, ρi (x) < k + 1}.

First, we remark that since ρ1x ≥ b > 0 and ρ1 is continuous, there exists a unique
ak ∈ R such that ρ1 (ak) = k + 1 and we have E1

k = (−∞, ak). We will use the
following lemma for the proof of Proposition 3.1.

Lemma 3.3 (Estimate of the distance between the sets E1
k and E2

k). With the
notations introduced above and the assumptions of Proposition 3.1, we have

E1
k − Λ

b
⊂ E2

k ⊂ E1
k +

Λ

b
.

Proof of Lemma 3.3. The main idea in this proof is to use the minoration of the
gradient of the function ρ1, i.e. ρ1x ≥ b > 0.

Let us first check that E1
k − Λ

b ⊂ E2
k . Let x ∈ E1

k − Λ
b . Then, x < ak − Λ

b , i.e.

Λ < b (ak − x). Since ρ1x ≥ b > 0 and ak − x > 0, we have

ρ1 (ak)− ρ1 (x) ≥ b (ak − x) ,

which implies (by definition of Λ)

k + 1 = ρ1(ak) > ρ1(x) + Λ ≥ ρ2(x)

and therefore

k + 1 > ρ2(x) .

Thus, x ∈ E2
k for every x ∈ E1

k − Λ
b and therefore E1

k − Λ
b ⊂ E2

k (see Figure 2). The
second inclusion can be proved similarly. �
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2
0 x

8

−8

−2

ρ1(x) = 4x

ρ2(x) =
1

2
sin(2πx + 2) + 4x

ρ1(x), ρ2(x)

Figure 2. Example of functions ρ1 and ρ2 satisfying (20)

Proof of Proposition 3.1. The main idea in this proof is to bound the function∣∣E (ρ2 (x))− E
(
ρ1 (x)

)∣∣ by the characteristic functions of the sets E2
k � E1

k. We

then bound its L1
unif-norm.

From the definition of Ei
k, for i = 1, 2, we remark that Ei

k−1 ⊂ Ei
k then

E
(
ρi (x)

)
= k if x ∈ Ei

k \ Ei
k−1, for i = 1, 2. We can write

E
(
ρi (x)

)
=
∑
k∈N

1(Ei
k)

c (x)−
∑

k∈Z\N
1Ei

k
(x) .

Then,

E
(
ρ2 (x)

)
−E

(
ρ1 (x)

)
=
∑
k∈N

(
1(E2

k)
c (x)− 1(E1

k)
c (x)

)
−
∑

k∈Z\N

(
1E2

k
(x)− 1E1

k
(x)
)
.

Therefore,∣∣E (ρ2 (x))− E
(
ρ1 (x)

)∣∣ ≤
∑
k∈N

1(E2
k)

c�(E1
k)

c (x) +
∑

k∈Z\N
1E2

k�E1
k
(x) a.e.,

∣∣E (ρ2 (x))− E
(
ρ1 (x)

)∣∣ ≤∑
k∈Z

1E2
k�E1

k
(x) a.e.,(22)

where E2
k � E1

k =
(
E2

k \ E1
k

)
∪
(
E1

k \ E2
k

)
=
(
E2

k

)c �
(
E1

k

)c
. By Lemma 3.3,∣∣E2

k � E1
k

∣∣ ≤ 2Λ
b . Then, we estimate for every x ∈ R with I(x) = (x− 1

2 , x+ 1
2 ).

(23)
∣∣E (ρ2)− E

(
ρ1
)∣∣

L1(I(x))
≤
∑
k∈Z

∣∣I(x) ∩ (E2
k � E1

k

)∣∣ ≤ N ′ 2Λ

b
,
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where

N ′ = Card
{
k ∈ Z,

∣∣I(x) ∩
(
E2

k � E1
k

)∣∣ �= 0
}
.

Let us assume that there exists k ∈ Z such that
∣∣I(x) ∩

(
E2

k � E1
k

)∣∣ �= 0. Then

there exists x1 ∈ I(x) such either x1 ∈
(
E1

k \ E2
k

)
or x1 ∈

(
E2

k \ E1
k

)
. In the second

case (x1 ∈
(
E2

k \ E1
k

)
), one can check easily in Figure 2 that the number of k is less

than P +
∣∣ρ2 − ρ1

∣∣
L∞(R)

. Therefore

(24) N ′ ≤ P +
∣∣ρ2 − ρ1

∣∣
L∞(R)

.

Taking the supremum on x ∈ R, we get∣∣E (ρ2)− E
(
ρ1
)∣∣

L1
unif(R)

≤ 2

b

(
P +

∣∣ρ2 − ρ1
∣∣
L∞(R)

) ∣∣ρ2 − ρ1
∣∣
L∞(R)

.

�

We recall the following result (we refer to [5] for a proof).

Lemma 3.4 (Norm of the product of convolution). For every f ∈ L1
unif(R) and

g ∈ L∞
int(R), the convolution product f � g is bounded and satisfies

(25) |f � g|L∞(R) ≤ |f |L1
unif(R)

|g|L∞
int(R)

.

We now present some properties of the non-local velocity.

Lemma 3.5 (Properties of the non-local velocity). Recall that cint[u](x, t) =
c0 � (E(u(·, t))− P ·) (x) is a convolution on R. We assume that c0 is a kernel
in W 1,1(R) ∩ L∞

int(R) satisfying
∫
R
c0(x) dx = 0. Then we have the following prop-

erties:

(1) The convolution cint is well defined if ux ≥ 0 a.e. and if u(x + 1, t) =
u(x, t) + P with P ∈ N \ {0};

(2) The function cint, moreover, is 1-periodic in space, i.e. cint[u](x + 1, t) =
cint[u](x, t). We also have cint ∈ L∞ ((0, T ),W 1,∞(R)

)
, i.e. more precisely∣∣cint[u](·, t)∣∣

L∞(R)
≤ P

∣∣c0∣∣
L1(R)

and
∣∣cintx [u](·, t)

∣∣
L∞(R)

≤ P
∣∣(c0)x∣∣L1(R)

;

(3) If there exists A > 0 such that |u(x, t)− u(x, s)| ≤ A |t− s| for a.e. t, s ∈
(0, T ) and ux ≥ b a.e., then cint is Lipschitz continuous in time with Lips-
chitz constant 4AP

b

∣∣c0∣∣
L∞

int(R)
, i.e.

∣∣cint(x, t)− cint(x, s)
∣∣ ≤ 4AP

b

∣∣c0∣∣
L∞

int(R)
|t− s| .

Proof of Lemma 3.5.

(1) From u(x+1, t) = u(x, t)+P , we deduce that E (u(x+ 1, t)) = E (u(x, t))+
P and E (u(x+ 1, t))−P (x+1) = E (u(x, t))−Px. Since

∫
R
c0(x) dx = 0,(

c0 � P
)
(x)=0, then c0�(E (u(·, t))− P ·) (x+1)=c0�(E (u(·, t))− P ·) (x).

Point 1, therefore, is proved.
(2) Since u(x+ 1, t) = u(x, t) + P and ux ≥ 0 for a.e. (x, t) ∈ R× [0,+∞), we

have

u(0, t) ≤ u(x, t) ≤ u(1, t) = u(0, t) + P for all (x, t) ∈ [0, 1[×[0,+∞) .
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Passing to the floor part, for x ∈ [0, 1[ we obtain

E (u(0, t)) ≤ E (u(x, t)) ≤ E (u(0, t)) + P .

Then

−P ≤ 0 ≤ E (u(x, t))− E (u(0, t)) ≤ P,

and then |E (u(x, t))− E (u(0, t))| ≤ P for every x ∈ [0, 1[ and every t ≥ 0 .
We remark first that c0 � E(u(·, t))(x) = c0 � (E (u(·, t) )− E (u(0, t) ) ) (x)

because

∫
R

c0(x) dx = 0. Then

c0 � (E(u(·, t))− P ·) (x) =
∫
R

dy c0(x− y) (E (u(y, t))− Py − E (u(0, t)))

=
∑
k∈Z

∫ k+1

k

dy c0(x− y) (E (u(y, t))− Py − E (u(0, t)))

=
∑
k∈Z

∫ 1

0

dy c0(x− y − k) (E (u(y + k, t))− P (y + k)− E (u(0, t)))

=
∑
k∈Z

∫ 1

0

dy c0(x− y − k) (E (u(y, t))− Py − E (u(0, t))) .

Since E (u(y, t))− E (u(0, t)) ≤ P for y ∈ [0, 1[, we deduce

c0 � (E(u(·, t))− P ·) (x) ≤
∑
k∈Z

∫ 1

0

dy P (1− y)c0(x− y − k)

≤ P

∫
R

dy c0(x− y) = P

∫
R

dy′c0(y′)

≤ P
∣∣c0∣∣

L1(R)
,

where for the last inequality we have used that c0(−x) = c0(x) for all x ∈ R

and
∫
R
c0(x) dx = 0. We now show that cintx is bounded on R × (0, T ).

Indeed, cintx = (c0)x � E(u). Similarly, we get∣∣cintx

∣∣
L∞(R)

≤ P
∣∣(c0)x∣∣L1(R)

.

(3) We now prove the Lipschitz continuity in time of cint. Let x ∈ R, 0 < t, s <
T . Then we have∣∣cint[u](x, t)− cint[u](x, s)

∣∣ =
∣∣c0 � (E (u(·, t))− E (u(·, s))) (x)

∣∣
≤
∣∣c0∣∣

L∞
int(R)

|E (u(·, t))− E (u(·, s))|L1
unif(R)

≤ 4P

b

∣∣c0∣∣
L∞

int(R)
|u(·, t)− u(·, s)|L∞(R)

≤ 4AP

b

∣∣c0∣∣
L∞

int(R)
|t− s| ,

where we have used successively Lemma 3.4, Proposition 3.1 (see Remark
3.2) and the Lipschitz continuity of u we assumed to hold. �



1548 A. GHORBEL AND R. MONNEAU

4. Proof of Theorem 1.3

We prove Theorem 1.3 in two main steps. In a first step (see Subsection 4.1),
we prove existence and uniqueness for short time, using a fixed point theorem. In
a second step (see Subsection 4.2), we extend the result for all time by repeating
the argument on successive time intervals. We need to recall Lemma 2.8 of Barles
[7].

Lemma 4.1. Let H be a continuous Hamiltonian. If u ∈ C(Ω̄× [0, T ]) is a subso-
lution (respectively, a supersolution) of the problem

(26)
∂u

∂t
+H(x, t,Du) = 0 in Ω× (0, T ),

then u is a subsolution (respectively, a supersolution) of the problem

(27)
∂u

∂t
+H(x, t,

∂u

∂x
) = 0 in Ω× (0, T ].

This lemma will be applied for H(x, t, ∂u∂x ) = c[u](x, t)
∣∣∂u
∂x

∣∣, where u is a solution

on (0, T ), u ∈ W 1,∞
loc (R× [0, T ]) and c[u] ∈ C (R× [0, T ]).

4.1. Short time existence and uniqueness of the solution. For cext satisfying
(3) and c0 satisfying (5), we denote

(28) K =
∣∣cext∣∣

L∞(R)
+ P

∣∣c0∣∣
L1(R)

.

Consider four constants satisfying 0 < b1 < b0 < B0 < B1, and for T > 0, we set

XT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u ∈ W 1,∞

loc (R× [0, T ))

∣∣∣∣∣∣∣∣∣

u(x+ 1, t) = u(x, t) + P for (x, t) ∈ R× [0, T ),

0 < b1 ≤ ux ≤ B1 a.e. on R× [0, T ),

|ut| ≤ KB1 a.e. on R× [0, T )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Clearly, XT − Px is a closed set of the Banach space W 1,∞(R × [0, T )). We want
to establish that there exists a unique solution u ∈ XT of the problem
(29)⎧⎨
⎩

∂u

∂t
(x, t) =

(
cext(x) + c0 � (E (u(·, t))− P ·) (x)

) ∂u
∂x

(x, t) in R× (0, T ),

u(x, 0) = u0(x) on R ,

where u0 satisfies assumptions (6). For any u ∈ XT such that u(x, 0) = u0(x), we
consider the continuous viscosity solution v of the problem
(30)⎧⎪⎨
⎪⎩

∂v

∂t
(x, t) = (cext(x) + c0 � (E (u(·, t))− P ·) (x)) ∂v

∂x
(x, t) on R× (0, T ) ,

v(x, 0) = u0(x) on R .

The main idea, in this section, is to show that the map

ϕ : XT −→ XT ,
u �−→ ϕ(u) = v viscosity solution of (30)

is well defined and has a unique fixed point.
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We will first show that ϕ is well defined for T small enough, and then show that
ϕ is a contraction. Let us define

(31) L =
∣∣cextx

∣∣
L∞(R)

+ P
∣∣c0x∣∣L1(R)

and T ∗ =
1

L
min

(
ln

(
B1

B0

)
, ln

(
b0
b1

))
.

1) ϕ(XT ) ⊂ XT for 0 < T ≤ T ∗. We first remark that the solution v of
(30) is given by Proposition 2.2. Indeed this proposition applies because
our initial condition satisfies its assumptions and the velocity c(x, t) =
cext(x) + c0 � E(u(·, t))(x) is in W 1,∞(R × [0, T ]) by Lemma 3.5 and the
definition of XT .

We will now check that v ∈ XT for T small enough. By Lemma 3.5,
assertion (2), we know that

∣∣cint∣∣
L∞(R)

≤ P
∣∣c0∣∣

L1(R)
and

∣∣cintx

∣∣
L∞(R)

≤
P
∣∣(c0)x∣∣L1(R)

. Therefore

|c| ≤ K =
∣∣cext∣∣

L∞(R)
+ P

∣∣c0∣∣
L1(R)

and

|cx| ≤ L =
∣∣cextx

∣∣
L∞(R)

+ P
∣∣c0x∣∣L1(R)

.

By the a priori estimates for the eikonal equation (Proposition 2.2), we see
that the function v satisfies for a.e. (x, t) ∈ R× [0, T )⎧⎪⎪⎨

⎪⎪⎩
|vx(x, t)| ≤ B0e

Lt = B(t),

vx(x, t) ≥ b0e
−Lt = b(t),

|vt(x, t)| ≤ |c|L∞(R×[0,T )) B(t)

and we have B(T ∗) ≤ B1 and b(T ∗) ≥ b1 with the definition of T ∗ in (31).
By Lemma 3.5, assertion (2), we know that c(x + 1, t) = c(x, t). Let

w(x, t) = v(x+ 1, t)− P . Then w(x, 0) = u0(x+ 1)− P = u0(x) = v(x, 0).
Then by the space periodicity of the velocity c and the fact that the eikonal
equation “does not see the constants”, we deduce that w is still a viscosity
solution of (30). By the uniqueness of the solution we get that w(x, t) =
v(x, t), and therefore v(x + 1, t) = v(x, t) + P . We deduce that v ∈ XT if
T ≤ T ∗.

2) ϕ has a unique fixed point. Let us define T0 by

(32) T0 = min

(
1

|cextx |L∞(R) + P |(c0)x|L1(R)

,
1

8P |c0|L∞
int(R)

)
min

(
ln

b0
b1

,
b1
B1

)
.

Indeed, the following proposition shows that ϕ is a contraction.

Proposition 4.2 (Contraction). Let vi = ϕ(ui) for i = 1, 2. If ui ∈ XT for
i = 1, 2, and if∣∣u2 − u1

∣∣
L∞(R×[0,T ))

≤ P , then

∣∣v2 − v1
∣∣
L∞(R×[0,T ))

≤ 1

2

∣∣u2 − u1
∣∣
L∞(R×[0,T ))

for all T ∈ [0, T0] .

A corollary of this contraction property is

Proposition 4.3 (Short time existence and uniqueness of the solution). We assume
that cext and c0 satisfy (3) and (5) and that u0 satisfies (6). There then exists a
unique continuous viscosity solution u ∈ XT0

of (29).
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To finish this subsection, we will first prove Proposition 4.3 and then Proposition
4.2.

Proof of Proposition 4.3. Note that we can write

[0, T0] =
⋃

k=0,...,N−1

[
kT0

N
,
(k + 1)T0

N

]
,

where N will be large enough and fixed later. Let us denote τk =
[
kT0

N , (k+1)T0

N

]
for k ∈ {0, . . . , N − 1}.

Step 1. Let u1, u2 ∈ XT0
such that u1(x, 0) = u2(x, 0) = u0(x). For all

t ∈ τ0, and for all x ∈ R, we compute

(33)

∣∣u2(x, t)− u1(x, t)
∣∣ ≤ ∣∣u2(x, t)− u2(x, 0)

∣∣+ ∣∣u1(x, 0)− u1(x, t)
∣∣

≤ 2KB1 |t|

≤ 2KB1
T0

N

≤ 1 ≤ P

if we choose N ≥ 2KB1T0. Then Proposition 4.2 holds, i.e. ϕ is a contrac-
tion on XT0

N
. Since XT0

− Px is a closed subset of a Banach space then

by the Banach-Picard fixed point theorem, there exists a unique solution
u ∈ XT0

N
such that u = ϕ(u), i.e. u is a solution of (29) on τ0 = [0, T0

N ].

Step 2. First we remark that the solution u∈XT0
N

belongs toW 1,∞
loc

(
R×[0, T0

N ]
)

by the a priori bounds on ux and ut defining XT0
N
. Second, we then apply

Step 1 again with the new initial condition u0(·) := u
(
·, T0

N

)
and get a

solution v ∈ XT0
. We then define

u(·, t) = v

(
·, t− T0

N

)
for t ∈ τ1.

Third by construction, u is a viscosity solution on
(
0, T0

N

)
∪
(
T0

N , 2T0

N

)
and

by Lemma 4.1, we see that it also satisfies the viscosity inequalities at time
T0

N , and therefore u is a viscosity solution of (29) on
(
0, 2T0

N

)
.

Step 3. We repeat the previous argument on the time intervals τk, k =
2, . . . , N , and get the existence of a viscosity solution u of (29) on the
time interval (0, T0).

Step 4. Uniqueness. Let us assume that we have two solutions u1 and u2

of (29) on (0, T0), with u1 �= u2 and let us define T ∗
0 < T0 such that u1 = u2

on [0, T ∗
0 ] and

∀ δ > 0, ∃ tδ ∈ [T ∗
0 , T

∗
0 + δ] ∩ [T ∗

0 , T0] such that u2(·, tδ) �= u1(·, tδ).

Again applying Step 1 with initial condition u0(·) := u1 (·, T ∗
0 ) = u2 (·, T ∗

0 ),
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we get by the contraction property that (ui = ϕ(ui), i = 1, 2)

∣∣u2 − u1
∣∣
L∞(R×[0,T∗

0 +δ))
≤ 1

2

∣∣u2 − u1
∣∣
L∞(R×[0,T∗

0 +δ))

for δ ≤ T0

N
and T ∗

0 + δ ≤ T0 (using (33)). Contradiction. �

Proof of Proposition 4.2. Let vi = ϕ(ui) for i = 1, 2. By the stability result (Propo-
sition 2.3), we have∣∣v1 − v2

∣∣
L∞(R×[0,T ])

≤
∫ T

0

∣∣c2(·, s)− c1(·, s)
∣∣
L∞(R)

max
(∣∣v1x(·, s)∣∣L∞(R)

,
∣∣v2x(·, s)∣∣L∞(R)

)
ds,

where ci(x, t) = cext(x) +
(
c0 � E(ui(·, t))

)
(x). By Lemma 3.4, we have∣∣c2 − c1

∣∣
L∞(R×[0,T ))

≤
∣∣c0∣∣

L∞
int(R)

∣∣E(u2)− E(u1)
∣∣
L∞([0,T ), L1

unif(R))
.

By Proposition 3.1 and Remark 3.2, we know that

∣∣E(u2)− E(u1)
∣∣
L∞([0,T ), L1

unif(R))
≤ 4P

b

∣∣u2 − u1
∣∣
L∞(R×[0,T ))

,

then combining Proposition 4.2 and Lemma 3.4, we obtain

∣∣v1 − v2
∣∣
L∞(R×[0,T ])

≤ 4P T
B

b

∣∣c0∣∣
L∞

int(R)

∣∣u2 − u1
∣∣
L∞(R×[0,T ))

.

We set T ∗∗ = 1
8P |c0|L∞

int
(R)

b
B . For T0 = inf(T ∗, T ∗∗), the following holds: for T ≤ T0:

∣∣v2 − v1
∣∣
L∞(R×[0,T ))

≤ 1

2

∣∣u2 − u1
∣∣
L∞(R×[0,T ))

. �

4.2. Long time existence of the viscosity solution: Proof of Theorem 1.3.

Proof of Theorem 1.3. We will repeat this short time result on a sequence of time
intervals of lengths Tn decreasing to zero, such that

∑
n∈N

Tn = +∞. We will do
the proof in three steps.
Step 1. We rephrase the result of Proposition 4.3. We proved in the previous
subsection that given an initial data u0 such that

0 < b0 ≤ u0
x ≤ B0

and b1, B1 (which will be specified later) such that

0 < b1 < b0 < B0 < B1 and
b0
b1

=
B1

B0
,

there exists a unique viscosity solution u of problem (29) up to time T0 satisfying

0 < b1 ≤ ux ≤ B1 on R× [0, T0),

where T0 is defined by

(34) T0 = A min

{
lnμ0,

1

μ2
0

b̄0

}
,
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = min

{
1

|cextx |L∞(R) + P |c0x|L1(R)

,
1

8P |c0|L∞
int(R)

}
,

μ0 =
b0
b1

=
B1

B0
> 1, and

b̄0 =
b0
B0

< 1.

For given b0 and B0, in order to equalize the two terms in the infimum of (34), we
choose μ0 such that lnμ0 = 1

μ2
0
b̄0, in other words, μ0 is fixed by the relation

b̄0 = μ2
0 lnμ0

and it determinates b1 and B1 as a function of b0, B0. Therefore, we have

(35) T0 = A lnμ0.

Step 2. Definition of the recurrence. We apply successively this reasoning
on time intervals of length Tn which will be specified below. So, for n ≥ 1, for
bn+1, Bn+1 (which will be specified later) there exists a unique solution of the
problem (29) up to time T0 + T1 + · · ·+ Tn, where

μn =
bn

bn+1
=

Bn+1

Bn
> 1 for 0 < bn+1 < bn < Bn < Bn+1,(36)

b̄n =
bn
Bn

< 1 and μn is fixed by b̄n = μ2
n lnμn,(37)

Tn = A lnμn.(38)

Step 3. Divergence of the series
∑

n∈N
Tn.

Proposition 4.4. With previous notation and the choice of the sequence (μn)n,
the series

∑
n∈N

Tn diverges.

This ends the proof of Theorem 1.3. �

In the rest of this subsection, we will prove Proposition 4.4. Before proving this
proposition we need preliminary results. First, we remark by (36) that

b̄n+1 =
bn+1

Bn+1
=

1

μ2
n

b̄n,

and then by (37) and (38) we get

(39) lnμn = μ2
n+1 lnμn+1 and Tn = A lnμn.

The recurrence relation defining the sequence (μn)n can be inverted as μn+1 =
G(μn) with μn > 1. Introducing

εn = μn − 1 > 0 ,

we can rewrite μn+1 = G(μn) as

(40) εn+1 = F (εn),

where by the implicit function theorem F ∈ C2
((
− 1

2e ,+∞
)
;R
)
and satisfies

(41) F (0) = 0, F ′(0) = 1, F ′′(0) = −4, and F ′ > 0.

We have the following lemma.



NON-LOCAL TRANSPORT EQUATION 1553

Lemma 4.5 (Subsolution for the sequence). Let F ∈ C2 ([0,+∞) ;R) satisfying
(41). For a ≥ 0, let

σ(a) =

∫ 1

0

dt (F ′′(ta)− F ′′(0)) (1− t)

and

a0 = sup

{
a ≥ 0 : inf

[0,a]
σ ≥ −2

}
.

Then a0 > 0. Let ρa(t) be the solution of

(42)

{
ρ′a(t) = −4ρ2a(t),

ρa(0) = a .

If a ∈ [0, a0], then for all t ≥ 0, we have

(43) ρa(t+ 1) ≤ F (ρa(t)) .

Corollary 4.6 (A lower bound on the sequence (εn)n). Under the assumptions of
Lemma 4.5, we consider a sequence (εn)n > 0 satisfying εn+1 = F (εn). If for an
integer k, we have 0 < εk ≤ a0, then for all n ≥ 0 we have

εk+n ≥ ρ(n),

where ρ = ρεk .

Proof of Corollary 4.6. Since ρ is decreasing in t (ρ′(t) < 0), ρ(n) ≤ ρ(0) = εk.
Applying (43) and using the fact that F is increasing, we get

ρ(n) ≤ F (ρ(n− 1)) ≤ · · · ≤ Fn (ρ(0)) = Fn (εk) = εk+n. �

Proof of Lemma 4.5. We set φ(t) = F (ta). Using the Taylor formula with integral
remainder, we have

φ(1) = φ(0) + φ′(0) +

∫ 1

0

dt φ′′(t)(1− t)

= φ(0) + φ′(0) +
φ′′(0)

2
+

∫ 1

0

dt (φ′′(t)− φ′′(0))(1− t)

with φ′′(t) = F ′′(ta)a2. Then setting σ(a) =
∫ 1

0
(F ′′(ta)− F ′′(0)) (1− t) dt, we get

σ ∈ C0([0,+∞),R) and F (a) = a− 2a2 + a2σ(a). Thus,

F (ρ(t))− ρ(t+ 1) = ρ(t)− 2ρ2(t) + ρ2(t)σ (ρ(t))− ρ(t+ 1)

≥ ρ(t)− ρ(t+ 1)− 4ρ2(t)

because ρ(t) ∈ [0, a0] from the assumption of the lemma (and the fact that ρ is
decreasing in t), which guarantees σ (ρ(t)) ≥ −2. We now estimate

ρ(t)− ρ(t+ 1) =

∫ t+1

t

−ρ′(s) ds

=

∫ t+1

t

4ρ2(s) ds ≥ 4ρ2(t) .

We deduce that F (ρ(t))− ρ(t+ 1) ≥ 0. �
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Proof of Proposition 4.4. Let us first remark that
∑

n≥0 Tn =
∑

n≥0 lnμn

= ln
∏

n≥0(1 + εn) ≥ ln
(
1 +

∑
n≥0 εn

)
. We will now show that

∑
n≥0 εn diverges.

If it is not the case, then εk −→ 0 when k → ∞, and so for k large enough we have
εk ≤ a0. Therefore, by Corollary 4.6, we know that εk+n ≥ ρ(n− 1) for all n ∈ N

and ρ(t) = 1
1
a+4t

. We deduce that

∑
n≥0

εn ≥
∑
n≥1

ρ(n) ≥
∫ +∞

1

ρ(t) dt =

∫ +∞

1

1
1
a + 4t

dt = +∞ .

Then the series
∑

n≥0 εn diverges and
∑

n≥0 Tn also diverges. �

5. Preliminary results for the discrete local problem

As explained in Subsection 1.2, we construct a numerical scheme for the non-
local equation by explicitly discretising the time variable by an Euler scheme and
the space variable by an upwind scheme. We first study the case of a local equation
whose gradient satisfies ∂u

∂x ≥ 0. This leads us to study the following local transport
equation:

(44)

⎧⎪⎨
⎪⎩

∂u

∂t
(x, t) = c(x, t)

∂u

∂x
(x, t) in R× (0, T ) ,

u(x, 0) = u0(x) on R .

Given a mesh size Δx, Δt and a lattice Id =
{
(iΔx, nΔt); i ∈ Z, n ≤ T

Δt

}
, (xi, tn)

denotes the node (iΔx, nΔt) and vn = (vni )i the values of the numerical approxi-
mation of the continuous solution u(xi, tn). We consider an explicit Euler scheme
in time, i.e.

(45) vn+1
i = vni +ΔtHd (v

n, i) ,

where the discrete Hamiltonian is chosen so that the scheme is upwind; precisely
we choose

Hd (v
n, i) =

{
cni D

+
x v

n
i if cni ≥ 0,

cni D
−
x v

n
i if cni < 0,

with

D+
x v

n
i =

vni+1 − vni
Δx

, D−
x v

n
i =

vni − vni−1

Δx
,

and cni is the discrete velocity.
We assume the following CFL condition for the local problem

(46) Δt ≤ Δx

supi,n |cni |
.

For the reader’s convenience, we recall some useful results proved in [2, 3]. We
first recall a discrete gradient estimate from above whose proof is given in [2].

Lemma 5.1 (Discrete gradient estimate from above). If for some B0 > 0 we have∣∣∣v0
i+1−v0

i

Δx

∣∣∣ ≤ B0 , ∀ i ∈ Z, and Bn+1 = Bn
(
1 + 2Δt supj∈Z

∣∣∣ cnj+1−cnj
Δx

∣∣∣), then
∣∣∣∣vni+1 − vni

Δx

∣∣∣∣ ≤ Bn ∀ i ∈ Z, ∀n ∈ N .

In the following, we also need a discrete gradient estimate from below.
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Lemma 5.2 (Discrete gradient estimate from below). If for some b0 > 0 we have
v0
i+1−v0

i

Δx ≥ b0 , ∀ i ∈ Z, and bn+1 = bn
(
1− 2Δt supj∈Z

∣∣∣ cnj+1−cnj
Δx

∣∣∣) with

(47) Δt <
1

2 supj∈Z

∣∣∣ cnj+1−cnj
Δx

∣∣∣ ,
then

vni+1 − vni
Δx

≥ bn , ∀ i ∈ Z, ∀n ∈ N .

Proof of Lemma 5.2. First, let us remark that bn ≥ 0 because of the condition
Δt < 1

2 supj∈Z

∣∣∣∣ cnj+1−cnj
Δx

∣∣∣∣
. Let wn

i = vni−1 + bnΔx. By assumption, we have wn
i ≤

vni , ∀ i ∈ Z. In order to show that wn+1
i ≤ vn+1

i for all i ∈ Z, we check that wn is

a discrete subsolution i.e. wn+1
i − (wn

i +ΔtHd (w
n, i)) ≤ 0. Indeed,

wn+1
i − (wn

i +ΔtHd (w
n, i))

= vn+1
i−1 + bn+1Δx−

(
vni−1 + bnΔx+ΔtHd (w

n, i)
)

=
(
bn+1 − bn

)
Δx+Δt (Hd(v

n, i− 1)−Hd(w
n, i))

=
(
bn+1 − bn

)
Δx+Δt

(
Hd(v

n, i− 1)−Hd(v
n
·−1, i)

)
.

If cni and cni−1 have the same sign, we assume that they are non-negative (the proof
is similar when they are non-positive), then

wn+1
i − (wn

i +ΔtHd (v
n, i))

= −2bnΔtΔx supj∈Z

∣∣∣ cnj −cnj−1

Δx

∣∣∣+Δt
(
cni−1 − cni

)
D+

x v
n
i

= −2bnΔt supj∈Z

∣∣cnj − cnj−1

∣∣− (cni − cni−1)ΔtD+
x v

n
i−1

≤ −bnΔt
(
2 supj∈Z

∣∣cnj − cnj−1

∣∣+ cni − cni−1

)
≤ 0 .

Therefore, wn is a discrete subsolution and then wn+1
i ≤ vn+1

i for all i ∈ Z. If cni
and cni−1 do not have the same sign (we refer the reader to the end of the proof
of Lemma 5.1 in [3]), the conclusion prevails because of the following estimate for
a, b ≥ 0: ∣∣cni a− cni−1b

∣∣ ≤ max(a, b)max
(
|cni | ,

∣∣cni−1

∣∣)
≤ max(a, b)

∣∣cni − cni−1

∣∣
≤ max(a, b)

∣∣∣ cni −cni−1

Δx

∣∣∣Δx .

This achieves the proof of Lemma 5.2. �

We introduce the grid ITd =
{
(iΔx, nΔt); i ∈ Z, n ≤ NT = T

Δt

}
. We recall the

following numerical stability result, whose proof is given in [3, 2].

Proposition 5.3 (Numerical stability). We consider v1,n and v2,n two numerical
solutions of the following monotone scheme (with the same initial condition)

(48) vl,n+1
i = vl,ni +ΔtHd

(
vl,n, i

)
,
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where

Hd

(
vl,n, i

)
=

{
cl,ni D+

x v
l,n
i if cl,ni ≥ 0,

cl,ni D−
x v

l,n
i if cl,ni < 0,

for l = 1, 2, ∀ i ∈ Z, ∀ n ∈ N.

Then there exists a constant C > 0, depending on the discrete gradient estimates
on v1 and v2, such that

(49) sup
IT
d

∣∣∣v1,n+1
i − v2,n+1

i

∣∣∣ ≤ CT sup
IT
d

∣∣∣c1,ni − c2,n
∣∣∣ .

6. Preliminary result for the discrete non-local problem

We will prove the analogue of Proposition 3.1 in the framework of discrete solu-
tions. We will use this result in Section 7.

Proposition 6.1 (Estimate of the difference of integer parts in the discrete case).
Consider a discrete function v1 such that

(50) v1i+K = v1i + P where P ∈ N \ {0} and K =
1

Δx
∈ N \ {0} .

Assume that there exist two constants B ≥ b > 0 such that for every i ∈ Z we have

b ≤
v1i+1 − v1i

Δx
≤ B .

Then for all discrete functions v2 satisfying (50), we get

supi∈Z

∑
j∈Ji=[i,i+K[

∣∣E(v2j )− E(v1j )
∣∣Δx

≤ 2
(
P + supi∈Z

∣∣v2i − v1i
∣∣) ( 1

b supi∈Z

∣∣v2i − v1i
∣∣+Δx

)
.

Remark 6.2. Note that if supi∈Z

∣∣v2i − v1i
∣∣ ≤ 1, then

sup
i∈Z

∑
j∈Ji=[i,i+K[

∣∣E(v2j )− E(v1j )
∣∣Δx ≤ 4P

(
1

b
sup
i∈Z

∣∣v2i − v1i
∣∣+Δx

)
.

This result is the discrete analogue of Proposition 3.1. This is also the generaliza-
tion of Lemma 5.5 in [3] to the case of several dislocations where the characteristic
function vl > 0 is replaced with the floor part E(vl).

For the proof of Proposition 6.1 we need to introduce the following notation.
We denote Λ′ = supj∈Z

∣∣v2j − v1j
∣∣, and we assume that Λ′ ∈ (0,+∞) (other cases

are trivial). For m ∈ Z and for l = 1, 2, we denote El
m =

{
j ∈ Z : vlj < m+ 1

}
.

First, we remark that since
v1
i+1−v1

i

Δx ≥ b > 0, there exists the greatest integer j0 ∈ Z

such that v1j0 < m + 1 and we have E1
m = {j ∈ Z : j ≤ j0}. We will use the

following lemma for the proof of Proposition 6.1.

Lemma 6.3 (Estimate for the distance between the sets E1
m and E2

m). Under the
notation above and the assumptions of Proposition 6.1, we have

E1
m − E

(
Λ′

bΔx

)
− 1 ⊂ E2

m ⊂ E1
m + E

(
Λ′

bΔx

)
+ 1 .
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Proof of Lemma 6.3. The main idea in this proof is to use the discrete gradient
estimate from below. We will estimate in two steps the distance between E1

m and
E2

m.

Step 1. We have E1
m −E

(
Λ′

bΔx

)
− 1 ⊂ E2

m. Indeed, let j ∈ E1
m −E

(
Λ′

bΔx

)
− 1.

Then, j ≤ j0 −E
(

Λ′

bΔx

)
− 1 i.e. j0− j ≥ E

(
Λ′

bΔx

)
+1 > Λ′

bΔx i.e. (j0 − j)bΔx ≥ Λ′.

Since
v1
j0

−v1
j

(j0−j)Δx ≥ b and j0 − j > 0, we have

v1j0 − v1j ≥ (j0 − j)bΔx > Λ′,

which implies (by definition of Λ′)

m+ 1 > v1j0 > v1j + Λ′ ≥ v2j

and therefore v2j < m+ 1. Thus, j ∈ E2
m.

Step 2. We have E2
m ⊂ E1

m + E
(

Λ′

bΔx

)
+ 1. Similarly, considering j ∈(

E1
m + E

(
Λ′

bΔx

)
+ 1
)c

we prove that j ∈
(
E2

m

)c
. Indeed, j > j0 + E

(
Λ′

bΔx

)
+ 1,

then j ≥ j0 + 1 + E
(

Λ′

bΔx

)
+ 1 implies j − (j0 + 1) ≥ E

(
Λ′

bΔx

)
+ 1 > Λ′

bΔx , i.e.

(j − (j0 + 1))bΔx > Λ′. Since
v1
j−v1

j0+1

(j−(j0+1))Δx ≥ b and j − (j0 + 1) > 0, we have

v1j − v1j0+1 ≥ (j − (j0 + 1))bΔx > Λ′,

which implies (by definition of Λ′)

v2j ≥ v1j − Λ′ > v1j0+1 ≥ m+ 1 .

Then we have j ∈
(
E2

m

)c
and therefore

(
E1

m + E
(

Λ′

bΔx

)
+ 1
)c

⊂
(
E2

m

)c
. �

Proof of Proposition 6.1. The main idea in this proof is to bound the quantity∣∣E (v2j )− E
(
v1j
)∣∣ by the characteristic functions the sets E2

m � E1
m. We then

bound the discrete analogue of its L1
unif-norm.

From the definition of El
m, for l = 1, 2, we remark that El

m−1 ⊂ El
m. Then

E(vlj) = m for any j ∈ El
m \ El

m−1, for l = 1, 2. We define

1A(j) =

{
1 if j ∈ A ⊂ Z ,
0 if not.

Then we can write

E(vlj) =
∑
m∈N

1(El
m)c(j)−

∑
m∈Z\N

1El
m
(j) .

Similarly to (22) in the proof of Proposition 3.1, we get∣∣E(v2j )− E(v1j )
∣∣ ≤ ∑

m∈Z

1E2
m�E1

m
(j).
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Let us fix i ∈ Z and define Ji = [i, i+K[. Then the discrete analogue of L1
unif-norm

of E(v2)− E(v1) satisfies∑
j∈Ji

∣∣E(v2j )− E(v1j )
∣∣ ≤

∑
j∈Z

∑
m∈Z

1Ji
(j)1(E2

m�E1
m)(j)

≤
∑

m∈Z

∣∣Ji ∩ (E2
m � E1

m

)∣∣
≤ 2N ′

(
Λ′

bΔx + 1
)
,

where N ′ = Card
{
m ∈ Z,

∣∣Ji ∩
(
E2

m � E1
m

)∣∣ �= 0
}

and where we have used the

fact that the measure
∣∣E2

m � E1
m

∣∣ ≤ 2
(
E
(

Λ′

bΔx

)
+ 1
)
≤ 2

(
Λ′

bΔx + 1
)
. Similarly to

(24) in the proof of Proposition 3.1, we get

N ′ ≤ P + sup
i∈Z

∣∣v2i − v1i
∣∣ .

We then conclude that

sup
i∈Z

∑
j∈Ji

∣∣E(v2j )− E(v1j )
∣∣Δx ≤ 2

(
P + sup

i∈Z

∣∣v2i − v1i
∣∣)(1

b
sup
i∈Z

∣∣v2i − v1i
∣∣+Δx

)
.

�

7. Proof of Theorem 1.5

In this section, we first recall how to get an error estimate between the continuous
solution and the discrete solution for a general non-local transport equation for some
T̄ > 0. We are inspired by the work of [2].

7.1. An abstract error estimate. We consider the continuous viscosity solution
u of a general non-local transport equation

(51)

⎧⎪⎨
⎪⎩

∂u

∂t
(x, t) = c[u](x, t) ∂u

∂x (x, t) in R× (0, T̄ ),

u(x, 0) = u0(x) on R.

We recall that the non-local velocity c[u] belongs to L∞((0, T̄ ),W 1,∞(R)) and that
the solution u is Lipschitz continuous. We will consider a discrete solution v satis-
fying

(52) v = GΔ ◦ cΔ(v),
where this abstract scheme will be made precise below.

For 0 < T ≤ T̄ and given a mesh Δ = (Δx,Δt), we denote EΔ
T = R

Z×{0,...,NT },
NT is the floor part of T

Δt , the space of discrete functions defined on

ITd = {(iΔx, nΔt), i ∈ Z, n ≤ NT } .
We consider two subsets of EΔ

T :

UΔ
T =

{
w ∈ EΔ

T such that

∣∣∣∣wn
i+1 − wn

i

Δx

∣∣∣∣ ≤ B0eLT and
wn

i+1 − wn
i

Δx
≥ b0e−LT

}

and

V Δ
T =

{
c ∈ EΔ

T such that |cni | ≤ K and

∣∣∣∣cni+1 − cni
Δx

∣∣∣∣ ≤ L ∀ i ∈ Z, ∀ n ≤ NT

}
.
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We also consider two operators:

GΔ : V Δ
T −→ UΔ

T

c �−→ v
and

cΔ : UΔ
T −→ V Δ

T

w �−→ cΔ(w),

where cΔ is an approximation of the non-local velocity. For c ∈ V Δ
T , v = GΔ(c) is

defined by

(53) v0i = u0(xi), vn+1
i = vni +Δt cni ×

{
D+

x v
n
i if cni ≥ 0,

D−
x v

n
i if cni < 0.

We are looking for a solution to (52). Our goal is to give an abstract error estimate
between the continuous solution u and the discrete solution v. To this end, we
need to introduce a long series of assumptions. Our error estimate will be given in
Theorem 7.1. We make the following assumptions.

(A1) CFL condition.

Δt ≤ Δx

supi∈Z |ci(vn)|
.

(A2) (u)Δ ∈ UΔ
T , where (u)Δ is the restriction of the continuous solution u of

(51) to ITd .

(A3) (c)Δ ∈ V Δ
T , where (c)Δ is the restriction of the non-local velocity c[u] to

ITd .
(A4) UΔ

T and V Δ
T are equi-Lipschitz and equibounded, respectively, in the sense

that there is a constant K such that, for every mesh Δ,

(54)
∣∣D+

x w
∣∣ ≤ K, |c| ≤ K, for every w ∈ UΔ

T , c ∈ V Δ
T .

(A5)

(55) GΔ(V Δ
T ) ⊂ UΔ

T for every T .

(A6) The discrete velocity cΔ is stationary. That is, there is a map c̄Δ such
that

(56) c̄Δ(w(·, tn)) = cΔ(w)(·, tn) .

(A7)

(57) cΔ(UΔ
T ) ⊂ V Δ

T for every T .

(A8) Stability of the operator GΔ (see Proposition 5.3).
There is a constant K > 0 such that for every mesh Δ satisfying the CFL
condition (A1), for every T and every c1, c2 ∈ V Δ

T ,

(58) sup
IT
d

∣∣GΔ(c2)−GΔ(c1)
∣∣ ≤ KT sup

IT
d

|c2 − c1| .

(A9) Consistency of the discrete velocity cΔ.
There is a constant K > 0 such that for every mesh Δ and every T ,

(59) sup
IT
d

∣∣c[u]− cΔ(uΔ)
∣∣ ≤ KΔx,

where u is the solution of (51) and uΔ = (u)Δ is the restriction of u to ITd .
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(A10) Stability of the discrete velocity cΔ.
There is a constant K > 0 such that for every mesh Δ, for every T ≤ T̄ ,
and every w1, w2 ∈ UΔ

T ,

(60) sup
IT
d

∣∣cΔ(w1)− cΔ(w2)
∣∣ ≤ K

(
sup
IT
d

|w2 − w1|+Δx

)
.

We have the following abstract error estimate (see [3, 2]).

Theorem 7.1 (An abstract error estimate for a short time). Let us consider T̄ > 0
and Δx + Δt ≤ 1. Let us assume that (A1)–(A10) hold for any T ≤ T̄ and that
there exists a unique continuous solution u of (51) on [0, T̄ ]. There then exists a
constant K ′ > 0, depending on |cext|L∞(R), P ,

∣∣c0∣∣
L1(R)

, the bound constants of

D+
x v

n
i , D

−
x v

n
i and

∣∣(u0)x
∣∣
L∞(R)

, and there exists a constant 0 < T̄ ∗ ≤ T̄ with T̄ ∗

only depending on T̄ and K ′, such that for every T ≤ T̄ ∗ we have

sup
IT
d

|u− v| ≤ K ′√Δx if Δx ≤ T̄ ∗

K ′ .

7.2. Application of the abstract error estimate: Proof of Theorem 1.5.
We check successively assumptions (A1) to (A10).

(1) We assume the CFL condition (12) which implies (A1) and (47) because

supj∈Z

∣∣cnj+1 − cnj
∣∣ ≤ supj∈Z

∣∣cnj+1

∣∣+ supj∈Z

∣∣cnj ∣∣
≤ 2 supj∈Z

∣∣cnj ∣∣
≤ 2 |c|L∞(R×(0,+∞))

≤ 2
(
|cext|L∞(R) + P

∣∣c0∣∣
L1(R)

)
,

which will allow us to apply Lemma 5.2.
Here we will apply Theorem 7.1 with T̄ = T0 given in (32) and with

T1 = T̄ ∗, C = K ′ given by Theorem 7.1. We recall the following notations
(see (28) and (31)):

K =
∣∣cext∣∣

L∞(R)
+ P

∣∣c0∣∣
L1(R)

and L =
∣∣cextx

∣∣
L∞(R)

+ P
∣∣c0x∣∣L1(R)

.

(2) By Proposition 2.2 we have (u)
Δ ∈ UΔ

T , where u is the solution of (51).

(3) It is clear that (c)
Δ ∈ V Δ

T , where c = c[u] given by (2) for the solution u of
(51).

(4) It is also clear that, by definition, the sets UΔ
T and V Δ

T are equi-Lipschitz
and equi-bounded, respectively.

(5) We now check that GΔ(V Δ
T ) ⊂ UΔ

T . Let c ∈ V Δ
T . By Lemma 5.1 we have∣∣∣∣GΔ(c)ni+1 −GΔ(c)ni

Δx

∣∣∣∣ =
∣∣∣∣vni+1 − vni

Δx

∣∣∣∣ ≤ Bn .

Moreover,

Bn = Bn−1

(
1 + Δt sup

i∈Z

∣∣∣∣∣c
n−1
i+1 − cn−1

i

Δx

∣∣∣∣∣
)

≤ Bn−1(1 + LΔt) ≤ Bn−1eLΔt .
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We deduce that Bn ≤ B0eLnΔt ≤ B0eLT . Therefore,∣∣∣∣GΔ(c)ni+1 −GΔ(c)ni
Δx

∣∣∣∣ ≤ B0eLT .

Similarly, by Lemma 5.2, we have

GΔ(c)ni+1 −GΔ(c)ni
Δx

≥ b0 e−LT .

Thus, GΔ(c) ∈ UΔ
T for all c ∈ V Δ

T , and then GΔ(V Δ
T ) ⊂ UΔ

T for all T .
(6) We now consider the discrete non-local velocity given in (9), (10):

cint,Δ = cint,ni =
∑
l∈Z

c0i−l E(vnl )Δx , c0i =
1

Δx

∫
Ii

c0(x) dx

with Ii = (xi − Δx
2 , xi +

Δx
2 ). It is clearly stationary. We recall from [3]

that cint,ni can be written as the continuous convolution

cint,ni = c0 � E(v#)(xi),

where v# is the piecewise constant lifting of v

(61) v# =
∑
i

vi1Ii .

Obviously cexti is stationary. Therefore cΔ is stationary.
(7) We now check that cΔ

(
UΔ
T

)
⊂ V Δ

T . Indeed, for all v ∈ UΔ
T , we have

∣∣cΔ(v)∣∣ ≤ K,
∣∣D+cΔ(v)

∣∣ ≤ ∣∣∣∣ ∂∂x (c0 � E(v#)
)∣∣∣∣

L∞(R)

≤ L .

Therefore cΔ
(
UΔ
T

)
⊂ V Δ

T .
(8) The assumption (A7) holds by Proposition 5.3.
(9) Consistency of the discrete velocity cint,Δ. We estimate:

sup
i∈Z

∣∣∣cint,Δi (uΔ)(·, tn)− c[u](xi, tn)
∣∣∣

≤ sup
x∈R

∣∣c0 � E(uΔ
#)(·, tn)− c0 � E(u)(·, tn)

∣∣
≤

∣∣c0∣∣
L∞

int(R)
|E(u#)(·, tn)− E(u)(·, tn)|L1

unif(R)

≤ 4P

b

∣∣c0∣∣
L∞

int(R)
|u#(·, tn)− u(·, tn)|L∞(R) .

Then cint,Δ is consistent.
(10) Stability of the discrete velocity cint,Δ. We estimate∣∣∣cint,Δi (w1)− cint,Δi (w2)

∣∣∣ = ∣∣∣c0 � E(w1
#)(xi)− c0 � E(w2

#)(xi)
∣∣∣

≤
∣∣c0∣∣

L∞
int(R)

∣∣∣E(w1
#)− E(w2

#)
∣∣∣
L1

unif(R)

≤ 4P
∣∣c0∣∣

L∞
int(R)

(
1

b
sup
i∈Z

∣∣w1
i − w2

i

∣∣+Δx

)
,

where we have used in the last time Proposition 6.1.

Finally, we apply Theorem 7.1 and we obtain Theorem 1.5.
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8. Example of a simulation

In this section, we provide some numerical simulations showing the behavior of
the solution and the dislocations dynamics through obstacles.

We start by an initial data u0(x) = 2x. The velocity is chosen as

c[u](x, t) = A+ B sin(2kπx) + c0 � E(u(·, t))(x),

with A = 1.2, B = 1, the number of obstacles is k = 2, the kernel c0 is the one of

Peierls Nabarro given by (4) with μb2

2π(1−ν) = 1 and ζ = 0.1. We choose Δx = 0.0099

and Δt = 0.00263. Numerically, we work on the interval for x ∈
[
− 1

2 ,
1
2

]
.

In Figure 3, we represent the solution u(x, t) as a function of x ∈
[
− 1

2 ,
1
2

]
for

different values of t = 0, 2, 4, 8. In this figure we see that the gradient of the solution
remains numerically in time bounded from above and from below, even if the lower
bound of the gradient is very small. In Figure 4 we represent the trajectories of the
dislocations x(t) (here there are two dislocations) with the time on the vertical axis
and the space on the horizontal one. We recall that the positions of dislocations
correspond to the jumps of the floor part of the solution. In Figure 4 we see that
the dislocations slow down on the obstacles. Finally, we remark numerically on
Figure 3 that the gradient of the solution is far from zero in the regions where we
take the floor part of the solution, which is a good behavior for this simulation. We
can even say that we can localize the dislocations by the strong variations of the
solution.

-8

-6

-4

-2

 0

-0.4 -0.2  0  0.2  0.4

so
lu

tio
n

x

t=0

t=2

t=4

t=8

Figure 3. Behavior of the solution in time
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Figure 4. Dislocations dynamics through obstacles
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