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OPTIMIZATION ALGORITHM FOR RECONSTRUCTING

INTERFACE CHANGES OF A CONDUCTIVITY INCLUSION

FROM MODAL MEASUREMENTS

HABIB AMMARI, ELENA BERETTA, ELISA FRANCINI, HYEONBAE KANG,
AND MIKYOUNG LIM

Abstract. In this paper, we propose an original and promising optimization
approach for reconstructing interface changes of a conductivity inclusion from
measurements of eigenvalues and eigenfunctions associated with the transmis-
sion problem for the Laplacian. Based on a rigorous asymptotic analysis, we
derive an asymptotic formula for the perturbations in the modal measurements
that are due to small changes in the interface of the inclusion. Using fine gradi-
ent estimates, we carefully estimate the error term in this asymptotic formula.
We then provide a key dual identity which naturally yields to the formulation
of the proposed optimization problem. The viability of our reconstruction ap-
proach is documented by a variety of numerical results. The resolution limit
of our algorithm is also highlighted.

1. Introduction

Let Ω be a smooth domain and D an inclusion contained in Ω whose boundary
is also assumed to be smooth. Shape deformation of D causes a perturbation of
modal parameters. The aim of this paper is to show how this information can be
used to reconstruct the unknown deformation. For doing so, we rigorously derive
an asymptotic formula for the perturbations in the eigenvalues of the transmission
problem for the Laplacian that are due to small deformations of the interface of an
inclusion. Based on this formula, we design an efficient reconstruction algorithm
from modal measurements. Our algorithm consists of minimizing a functional whose
minimizer yields certain geometric properties of the unknown inclusion. It naturally
follows from a key identity that is in some sense dual to the asymptotic formula.
Numerical experiments showing the viability of our algorithm are presented.

Our asymptotic formula for the perturbations in the eigenvalues due to changes
of the shape of the inclusionD that is inside a background domain Ω is in connection
with the more classical ones established under variation of the background domain
Ω. There have been several interesting works on the eigenvalue perturbation prob-
lem under variation of the domain since the seminal formula of Hadamard [12]. See
for example the works by Garabedian and Schiffer [10], Kato [13], Sanchez Hubert
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and Sanchez Palencia [20], and Kozlov [14]. Convergence results for the eigenval-
ues and eigenvectors under boundary variations have also been proved by abstract
methods as, for example, those from [21, 22, 23].

Our results in this paper extend those established in the context of small volume
inclusions as well as those for the conductivity interface problem. In fact, on one
hand, in a series of recent papers [8, 6, 4, 5], we have derived high-order asymptotic
expansions of the eigenvalue perturbations due to the presence of small inclusions
and used them for locating the inclusions and identifying some of their geometric
features. On the other hand, in [7], we have derived high-order terms in the asymp-
totic expansions of the boundary perturbations of steady-state voltage potentials
resulting from small perturbations of the shape of a conductivity inclusion. Based
on these derivations, we have designed an effective algorithm to determine some
geometric features of the shape perturbation of the inclusion based on boundary
measurements.

In this paper, the asymptotic formula for the perturbations in the modal mea-
surements that are due to small changes in the interface of an inclusion is original.
Fine gradient estimates are used for its derivation. Indeed, careful estimates of the
error term in this formula are provided and a systematic way for deriving the dual
identity that yields to the optimization problem is presented. The case of multiple
eigenvalues is rigorously handled as well.

The paper is organized as follows. In the next section we derive an asymptotic
formula for the eigenvalue perturbations due to shape deformation. We provide in
Section 3 a functional whose minimizer yields the interface of the inclusion. For
doing so, we provide a key dual identity which naturally yields to the formulation of
the proposed optimization problem. In Section 4, we consider the case of a multiple
eigenvalue. In Section 5, we perform numerical experiments to test the viability
of the algorithm. Many applications of our results in this paper are expected,
especially in structural vibration testing [19].

2. Asymptotic formula

Throughout this paper, let Ck,α denote the Hölder space which consists of func-
tions having derivatives up to order k and such that the kth derivative is Hölder con-
tinuous with exponent α, where 0 < α ≤ 1. Let Ω ⊂ R

2 be a bounded domain with
C2,1 boundary and let D be an open subset of Ω such that dist(∂Ω, ∂D) ≥ d0 > 0.
The boundary ∂D of D is also assumed to be C2,1. Suppose that the conductivity
(or the dielectric constant) of the background is γe while that of the inclusion D is
γi. So the conductivity profile denoted by γD is given by

(1) γD = γeχΩ\D + γiχD,

where χD is the characteristic function of D. Let (u0, ω
2
0) be a solution of the

following eigenvalue problem:

(2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γD∇u0) = −ω2
0u0 in Ω,

γD
∂u0

∂ν
= 0 on ∂Ω,∫

Ω

u2
0 = 1.
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Let

(3) ue
0 = u0|Ω\D and ui

0 = u0|D.

Then along the interface ∂D, the following transmission conditions hold:

(4)

⎧⎨
⎩

ui
0 = ue

0

γi
∂ui

0

∂ν
= γe

∂ue
0

∂ν

on ∂D,

where ∂
∂ν denotes the normal derivative with respect to the outward unit normal

to ∂D. The first condition in (4) represents the continuity of the potential while
the second one represents the flux. We emphasize that since ui

0 and ue
0 are C1,α for

some 0 < α < 1, as will be proven in the next section, these conditions hold in the
pointwise sense. From the first condition, we also have

(5)
∂ui

0

∂τ
=

∂ue
0

∂τ
(=

∂u0

∂τ
),

where ∂
∂τ denotes the tangential derivative along ∂D.

In this section as well as in the next one, we will assume that ω2
0 is a simple

eigenvalue. This will make our arguments more readable. In Section 4 we will state
our result in the case of multiple eigenvalues.

Now let us consider Dε an ε-perturbation of the domain D with

∂Dε =

{
x̃ : x̃ = x+ εh(x)ν(x), x ∈ ∂D

}
,

where ν(x) is the unit outer normal vector to ∂D at x, h ∈ C1,1(∂D) with ‖h‖C1,1 ≤
H for some positive constant H, and ε is a positive small parameter.

Let γDε
= γeχΩ\Dε

+ γiχDε
and consider the following eigenvalue problem on

the perturbed domain:

(6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γDε
∇uε) = −ω2

εuε in Ω,

γDε

∂uε

∂ν
= 0 on ∂Ω,∫

Ω

u2
ε = 1.

Our main result in this section is the following theorem.

Theorem 2.1. Let ω2
0 be a simple eigenvalue of (2). Then there exists a simple

eigenvalue of (6), denoted by ω2
ε , such that ω2

ε → ω2
0 as ε → 0, and the following

asymptotic expansion holds:
(7)

ω2
ε − ω2

0 = −ε(γi − γe)

∫
∂D

h(x)

((
∂ue

0

∂τ
(x)

)2

+
γe
γi

(
∂ue

0

∂ν
(x)

)2
)
dσx +O(ε1+β)

for some β > 0, where (u0, ω
2
0) is the solution to (2).

It is worth noting that if h has a constant sign on ∂D, then there exists ε0 > 0
such that for ε < ε0, ω

2
ε − ω2

0 has the same sign as (γe − γi)h.
We will prove Theorem 2.1 using Osborn’s result in [17] concerning estimates

for the eigenvalues of a sequence of self-adjoint compact operators. More precisely,
let X be a real Hilbert space and let T : X → X and Tε : X → X be compact,
self-adjoint linear operators such that {Tε}ε>0 are collectively compact and Tε → T



1760 H. AMMARI ET AL.

pointwise as ε → 0. Let μ0 be a nonzero eigenvalue of T with multiplicity m. Then,
for ε small, Tε has a set of m eigenvalues (counted according to their multiplicity)
such that μj

ε → μ0 for each j = 1, . . . ,m, as ε → 0. Let μ̄ε = 1
m

∑m
j=1 μ

j
ε. If

{u0,1, u0,2, . . . , u0,m} is an orthonormal basis for Ker(T − μ0I), then there exists a
constant C (independent of ε) such that

(8)

∣∣∣∣∣∣μ0 − μ̄ε −
1

m

m∑
j=1

〈(T − Tε)u0,j , u0,j〉

∣∣∣∣∣∣ ≤ C

∥∥∥∥(T − Tε)|Ker(T−μ0I)

∥∥∥∥
2

X→X

,

where the right-hand side of (8) denotes the operator norm of T−Tε on the subspace
Ker(T − μ0I) ⊂ X. Moreover, for each j = 1, . . . ,m, there is an eigenfunction uε,j

corresponding to μj
ε, such that ‖uε,j‖X = 1, and

(9) ‖uε,j − u0,j‖X ≤ C

∥∥∥∥(T − Tε)|Ker(T−μ0I)

∥∥∥∥
X→X

.

If μ0 is a simple eigenvalue, for ε small, there is a simple eigenvalue με for Tε

such that

(10)
∣∣∣μ0 − με − 〈(T − Tε)u0, u0〉

∣∣∣ ≤ C
∥∥∥(T − Tε)(u0)

∥∥∥2
X
.

Furthermore, let uε be the eigenfunction corresponding to με such that ‖uε‖X = 1,
then

‖uε − u0‖X ≤ C‖(T − Tε)(u0)‖X .

Let us consider X = {f ∈ L2(Ω) :
∫
Ω
f = 0} with the usual inner product of

L2(Ω) and T : X → X the linear operator given by Tf = v0 where v0 is the solution
to

(11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γD∇v0) = f in Ω,

γD
∂v0
∂ν

= 0 on ∂Ω,∫
Ω

v0 = 0.

We define Tε : X → X similarly, i.e., by Tεf = vε, where vε is the solution to

(12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γDε
∇vε) = f in Ω,

γDε

∂vε
∂ν

= 0 on ∂Ω,∫
Ω

vε = 0.

Then T and Tε are compact self-adjoint operators. We now prove that {Tε}ε≥0,
(T0 = T ) are collectively compact and that Tε → T pointwise as ε → 0.

(i) {Tε}ε≥0 are collectively compact, i.e. {Tεf : ‖f‖X ≤ 1, ε ≥ 0} is sequen-
tially compact: If v ∈ {Tεf : ‖f‖X ≤ 1, ε ≥ 0}, then from energy estimates
and the Poincaré inequality we have that ‖v‖H1(Ω) ≤ C where C is indepen-

dent of ε. Since H1(Ω) is compactly embedded in L2(Ω), this guarantees
that {Tεf : ‖f‖X ≤ 1, ε ≥ 0} is sequentially compact in L2(Ω).
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(ii) Tε → T pointwise as ε → 0 in X: For f ∈ X, let vε = Tεf and v0 = Tf .
Then, for any w ∈ H1(Ω),∫

Ω

γDε
∇vε · ∇w = −

∫
Ω

fw

and ∫
Ω

γD∇v0 · ∇w = −
∫
Ω

fw.

Hence, choosing w = vε − v0 and subtracting these two equations we get∫
Ω

(γDε
∇vε − γD∇v0) · ∇(vε − v0) = 0,

which gives∫
Ω

γDε
∇(vε − v0) · ∇(vε − v0) = −

∫
Ω

(γDε
− γD)∇v0 · ∇(vε − v0).

Hence

‖∇(vε − v0)‖2L2(Ω) ≤ C‖∇v0‖L2(Dε�D)‖∇(vε − v0)‖L2(Ω),

where � denotes the symmetric difference, which implies

‖∇(vε − v0)‖L2(Ω) ≤ C‖∇v0‖L2(Dε�D).

It then follows by the Poincaré inequality that

(13) ‖vε − v0‖H1(Ω) ≤ C‖∇v0‖L2(Dε�D).

Finally, using the last inequality and the fact that |Dε�D| → 0 as ε → 0
and that ∇v0 ∈ L2(Ω) we obtain that Tε → T pointwise as ε → 0 in L2(Ω).

We can now apply Osborn’s result to conclude that, for small ε, there is an
eigenvalue με of Tε such that με → μ0 and

(14)
∣∣∣μ0 − με − 〈(Tε − T )u0, u0〉

∣∣∣ ≤ C‖(Tε − T )u0‖2L2(Ω),

where u0 is such that Tu0 = μ0u0 and
∫
Ω
u2
0 = 1. (Note that the compatibility

condition
∫
Ω
u0 = 0 is also satisfied). Moreover,

(15) ‖uε − u0‖L2(Ω) ≤ C‖(Tε − T )u0‖L2(Ω),

where uε is the eigenfunction corresponding to με such that
∫
Ω
u2
ε = 1. The eigen-

functions u0 and uε solve, respectively, the problems

(16)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ · (γD∇u0) =
u0

μ0
in Ω,

γD
∂u0

∂ν
= 0 on ∂Ω,∫

Ω

u2
0 = 1

and

(17)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ · (γDε
∇uε) =

uε

με
in Ω,

γDε

∂uε

∂ν
= 0 on ∂Ω,∫

Ω

u2
ε = 1.
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Let us now consider some regularity facts on the functions uε and u0. From [16],
it follows that, for some α ∈ (0, 1), u0 ∈ C1,α(D̄) ∩ C1,α(Ω\D̄) and

(18) ‖u0‖C1,α(D̄) ≤ C(‖u0‖L2(Ω) + ‖u0‖L∞(Ω)),

where C = C(γe, γi,Ω, D, μ0, α) and analogously, since dist(∂Ω, ∂D) ≥ d0 > 0,

(19) ‖u0‖C1,α(Ωd0/2\D) ≤ C(‖u0‖L2(Ω) + ‖u0‖L∞(Ω)),

where C = C(γe, γi,Ω, D, μ0, d0, α) and Ωd0/2 = {x ∈ Ω : dist(x, ∂Ω) > d0/2}.
Note that the right-hand sides in (18) and (19) are bounded by C‖u‖L∞(Ω). Re-
calling that u0 is the solution of a homogeneous Neumann problem we have, by
global estimates for weak solutions of elliptic equations in divergence form with
bounded coefficients (De Giorgi-Nash method, cf. [11, Theorem 8.24]), that

(20) ‖u0‖L∞(Ω) ≤ C‖u0‖L2(Ω).

It then follows from (18) and (19) that

‖u0‖C1,α(D̄) ≤ C‖u0‖L2(Ω),

where C = C(γe, γi,Ω, D, μ0) and

‖u0‖C1,α(Ωd0/2\D) ≤ C‖u0‖L2(Ω),

where C = C(γe, γi,Ω, D, μ0, d0). Since ‖u0‖L2(Ω) = 1, we have that

(21) ‖u0‖C1,α(D̄) ≤ C

and

(22) ‖u0‖C1,α(Ωd0/2\D) ≤ C.

Similarly, we get for uε,

(23) ‖uε‖C1,α(D̄ε) ≤ C,

where C = C(γe, γi,Ω, D, μ0, H, α) and

(24) ‖uε‖C1,α(Ωd0/2\Dε) ≤ C,

where here C = C(γe, γi,Ω, D, μ0, d0, H, α). It is worth emphasizing that the con-
stant C in all four of the above estimates is independent of ε.

Let us now evaluate the right-hand side of inequality (15). We know that Tu0 =
μ0u0 and Tεu0 = ṽε, where ṽε is the solution to

(25)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γDε
∇ṽε) = u0 in Ω,

γDε

∂ṽε
∂ν

= 0 on ∂Ω,∫
Ω

ṽε = 0.

Since u0 satisfies (16), we may use exactly the same argument as the one for deriving
(13) to show that

‖ṽε − μ0u0‖H1(Ω) ≤ C‖∇u0‖L2(Dε�D).

It then follows from (21) and (22) that

‖ṽε − μ0u0‖H1(Ω) ≤ C|Dε�D|1/2.
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Observe that ṽε − μ0u0 is a solution to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γDε
∇(ṽε − μ0u0)) = μ0∇ · ((γD − γDε

)∇u0) in Ω,

γDε

∂(ṽε − μ0u0)

∂ν
= 0 on ∂Ω,∫

Ω

(ṽε − μ0u0) = 0.

Applying Lemma A.1 in [2] for V = {v ∈ H1(Ω) :
∫
Ω
v = 0}, φ = ṽε − μ0u0 and

F = μ0(γD − γDε
)∇u0 we then get

‖ṽε − μ0u0‖L2(Ω) ≤ C|Dε�D|1/2+η,

for some η > 0 where C = C(γe, γi, μ0,Ω, H, η) but is otherwise independent of ε.
Hence we have

(26) ‖(Tε − T )u0‖L2(Ω) ≤ Cε1/2+η

and from (15)

(27) ‖uε − u0‖L2(Ω) ≤ Cε1/2+η.

Furthermore, observing that ‖ṽε‖H1(Ω) ≤ ‖u0‖L2(Ω) and using the gradient esti-
mates of [16], we obtain

(28) ‖ṽε‖C1,α(D̄ε) ≤ C

and analogously

(29) ‖ṽε‖C1,α(Ωd0/2\Dε) ≤ C,

where C = C(γe, γi,Ω, D, μ0, d0, H, α).
As in (3), let us put

ṽeε := ṽε|Ω\Dε
and ṽiε := ṽε|Dε

.

The following lemma holds.

Lemma 2.2. Let α > 0 be the same Hölder exponent as in (29). There exists a
constant C independent of ε such that

(30) ‖∇(ṽeε − μ0u
e
0)‖L∞(∂Dε\D) + ‖∇(ṽiε − μ0u

i
0)‖L∞(∂Dε∩D) ≤ Cε

α
2α+2 ,

where C = C(γe, γi,Ω, D, μ0, d0, H, α).

Proof. Let 2ε < d < d0/2 and let Ωε
d = {x ∈ Ω\(D ∪Dε) : dist(x, ∂(Ω\D ∪Dε)) >

d}. Since ∇(ṽε − μ0u0) is harmonic in Ω\D ∪ Dε we may apply the mean value
theorem to points y ∈ Ωε

d:

∇(ṽeε − μ0u
e
0)(y) =

1

|Bd/2|

∫
Bd/2(y)

∇(ṽε − μ0u0)dx

to get

‖∇(ṽeε − μ0u
e
0)‖L∞(Ωε

d)
≤ Cd−1‖∇(ṽε − μ0u0)‖L2(Ω)

≤ Cd−1ε1/2.(31)

Now, let y ∈ ∂Dε\D and let yd denote the closest point to y in the set Ωε
d. By (29)

we obtain

(32) |∇ṽeε(y)−∇ṽeε(yd)| ≤ Cdα.
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Combining (31) and (32) gives

|∇(ṽeε − μ0u
e
0)(y)| ≤ |∇ṽeε(y)−∇ṽeε(yd)|+ |∇ṽeε(yd)−∇(μ0u

e
0)(yd)|

+|∇μ0u
e
0(yd)−∇μ0u

e
0(y)|

≤ C(dα + d−1ε1/2).

Here we also used the gradient estimates for u0. By choosing d = ε
1

2(α+1) we get

‖∇(ṽeε − μ0u
e
0)‖L∞(∂Dε\D) ≤ Cε

α
2α+2 .

In a similar way one can prove that

‖∇(ṽiε − μ0u
i
0)‖L∞(∂Dε∩D) ≤ Cε

α
2α+2

to complete the proof of the lemma. �

We are now ready to compute the term 〈(T − Tε)u0, u0〉 in (14). We proceed
with

〈(T − Tε)u0, u0〉 = 〈μ0u0 − ṽε, u0〉

= μ0

∫
Ω

u2
0 −

∫
Ω

u0ṽε

= −μ0

∫
Ω

(γDε
− γD)∇ṽε · ∇u0

= −μ0

∫
Dε\D

(γi − γe)∇ṽiε · ∇ue
0 + μ0

∫
D\Dε

(γi − γe)∇ṽeε · ∇ui
0.

Let xt := x+th(x)ν(x) for x ∈ ∂D and t ∈ [0, ε]. Then the Jacobian determinant
of the change of variables (x, t) ∈ ∂D × [0, ε] �→ xt ∈ Dε�D is |h(x)|+ O(ε) for ε
small enough, and hence we get

(33)

−μ0

∫
Dε\D

(γi − γe)∇ṽiε · ∇ue
0dx

= −μ0

∫ ε

0

∫
∂D∩{h>0}

h(x)(γi − γe)∇ṽiε(xt) · ∇ue
0(xt) dσx dt+O(ε2)

and

(34)

μ0

∫
D\Dε

(γi − γe)∇ṽeε · ∇ui
0 dx

= −μ0

∫ ε

0

∫
∂D∩{h<0}

h(x)(γi − γe)∇ṽeε(xt) · ∇ui
0(xt) dσx dt+O(ε2).

Using the gradient estimates (21), (22), (28), and (29), we have for t ∈ [0, ε],

∇ṽiε(xt) · ∇ue
0(xt) = ∇ṽiε(xε) · ∇ue

0(xε) +O(εα)

=
∂ṽiε
∂τ

(xε)
∂ue

0

∂τ
(xε) +

∂ṽiε
∂ν

(xε)
∂ue

0

∂ν
(xε) +O(εα)

=
∂ṽeε
∂τ

(xε)
∂ue

0

∂τ
(xε) +

γe
γi

∂ṽeε
∂ν

(xε)
∂ue

0

∂ν
(xε) +O(εα).



RECONSTRUCTION FROM MODAL MEASUREMENTS 1765

Here we used the transmission conditions (4) and (5). We then use (22) and (30)
to get

∇ṽiε(xt) · ∇ue
0(xt) = μ0

∂ue
0

∂τ
(xε)

∂ue
0

∂τ
(xε) + μ0

γe
γi

∂ue
0

∂ν
(xε)

∂ue
0

∂ν
(xε) +O(ε

α
2α+2 )

= μ0
∂ue

0

∂τ
(x)

∂ue
0

∂τ
(x) + μ0

γe
γi

∂ue
0

∂ν
(x)

∂ue
0

∂ν
(x) +O(ε

α
2α+2 ).

It then follows from (33) that

(35)

−μ0

∫
Dε\D

(γi − γe)∇ṽiε · ∇ue
0dx

= −μ2
0ε(γi − γe)

∫
∂D∩{h>0}

h

[(
∂ue

0

∂τ

)2

+
γe
γi

(
∂ue

0

∂ν

)2
]
dσ +O(ε1+β),

where β = α
2α+2 .

Analogously, we get from (34) that

(36)

μ0

∫
D\Dε

(γi − γe)∇ṽeε · ∇ui
0dx

= −μ2
0ε(γi − γe)

∫
∂D∩{h<0}

h

[(
∂ui

0

∂τ

)2

+
γi
γe

(
∂ui

0

∂ν

)2
]
dσ +O(ε1+β)

= −μ2
0ε(γi − γe)

∫
∂D∩{h<0}

h

[(
∂ue

0

∂τ

)2

+
γe
γi

(
∂ue

0

∂ν

)2
]
dσ +O(ε1+β),

where the last equality follows from the transmission conditions (4) and (5).
It now follows from (35) and (36) that for ε small enough,

〈(T − Tε)u0, u0〉

= −μ2
0ε(γi − γe)

∫
∂D

h

[(
∂ue

0

∂τ

)2

+
γe
γi

(
∂ue

0

∂ν

)2
]
dσ +O(ε1+β).

In view of (10) and (26), we finally obtain

με − μ0 = −μ2
0ε(γi − γe)

∫
∂D

h

[(
∂ue

0

∂τ

)2

+
γe
γi

(
∂ue

0

∂ν

)2
]
dσ +O(ε1+β)

for some β > 0. Since μ0, με are negative we can set μ−1
0 = −ω2

0 and μ−1
ε = −ω2

ε .
With this substitution and simple manipulations we get (7) and Theorem 2.1 is
proved.

3. Reconstruction method

In order to reconstruct the perturbation εh from modal measurements, a first
idea is to minimize the difference between the measured and the computed eigen-
values by using a least-square approach. This yields a laborious reconstruction
algorithm which may not converge if we start away from the solution. Another
idea, which sounds more attractive is to take advantage of the smallness of ε and
minimize over εh the quantity∣∣∣∣ω2

ε − ω2
0 + (γi − γe)

∫
∂D

εh(x)

[(
∂ue

0

∂τ
(x)

)2

+
γe
γi

(
∂ue

0

∂ν
(x)

)2
]
dσx

∣∣∣∣.
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A problem with this approach is that oscillations in h cannot be determined effec-
tively. This comes from the fact that the application

(37) h(x) �→
∫
∂D

h(x)

[(
∂ue

0

∂τ
(x)

)2

+
γe
γi

(
∂ue

0

∂ν
(x)

)2
]
dσx

acts like a filter.
In this section, we rigorously establish a reconstruction formula for the function

h which allows us to determine h with better resolution by less filtering of oscilla-
tions. Based on this dual formula, we then formulate the reconstruction of h as an
optimization problem.

3.1. Dual asymptotic formula. Let u0 be the eigenfunction of (2). For g ∈
L2(∂Ω) satisfying

∫
∂Ω

gu0 = 0, let wg be the solution to

(38)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γD∇wg) = −ω2
0wg in Ω,

γD
∂wg

∂ν
= g on ∂Ω,∫

Ω

wgu0 = 1.

Multiplying the first equation in (38) by uε and integrating over Ω, we get from the
divergence theorem ∫

∂Ω

guε + ω2
0

∫
Ω

wguε =

∫
Ω

γD∇uε · ∇wg.

Since
∫
∂Ω

gu0 = 0 and

ω2
ε

∫
Ω

wguε =

∫
Ω

γDε
∇uε · ∇wg,

we obtain∫
∂Ω

g(uε − u0) + (ω2
0 − ω2

ε)

∫
Ω

wguε = −
∫
Ω

(γDε
− γD)∇uε · ∇wgdx.

By Theorem 2.1 we have that for ε small enough, ω2
0 − ω2

ε = O(ε). Furthermore,
since uε → u0 in L2(Ω) as ε → 0, we derive

(39)

∫
∂Ω

g(uε−u0)+(ω2
0−ω2

ε)

∫
Ω

wgu0 = −
∫
Ω

(γDε
−γD)∇uε ·∇wgdx+O(ε1+β),

for some β > 0.
We now prove the following theorem in the same way as in the previous section.

The asymptotic formula in the theorem can be regarded as a dual formula to that
of ω2

ε − ω2
0 . It plays a key role in our reconstruction procedure.

Theorem 3.1. The following asymptotic formula holds as ε → 0:∫
∂Ω

g(uε − u0) + (ω2
0 − ω2

ε)

∫
Ω

wgu0

= ε(γi − γe)

∫
∂D

h(x)

(
∂ue

0

∂τ
(x)

∂we
g

∂τ
(x) +

γe
γi

∂ue
0

∂ν
(x)

∂we
g

∂ν
(x)

)
dσx +O(ε1+β)

for some β > 0.
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Proof. In view of (39), it suffices to show that∫
Ω

(γDε
− γD)∇uε · ∇wg(40)

= −(γi − γe)ε

∫
∂D

h(x)

(
∂ue

0

∂τ
(x)

∂we
g

∂τ
(x) +

γe
γi

∂ue
0

∂ν
(x)

∂we
g

∂ν
(x)

)
dσx

+O(ε1+β).

To prove the lemma we use the gradient estimates for uε (see (23) and (24)).
We can show that the same kind of estimates hold for wg:

(41) ‖wg‖C1,α(D̄) ≤ C

and

(42) ‖wg‖C1,α(Ωd0/2\D) ≤ C.

Noting that (wg − u0) belongs to the subspace of H1(Ω) orthogonal to u0, these
estimates follow immediately from [16] since on one hand, the operator ∇·γD∇+ω2

0

in Ω with Neumann boundary conditions on ∂Ω is well-posed on the subspace of
H1(Ω) orthogonal to u0, and on the other hand, u0 itself satisfies such estimates.

Proceeding similarly as we did for estimating
∫
Dε\D ∇ṽiε · ∇ue

0dx in the previous

section, we have∫
Ω

(γDε
− γD)∇uε · ∇wg

=

∫
Dε\D

(γi − γe)∇ui
ε · ∇we

g −
∫
D\Dε

(γi − γe)∇ue
ε · ∇wi

g.

Changing variables and using the gradient estimates for uε and wg we obtain∫
Dε\D

(γi − γe)∇ui
ε · ∇we

gdx

=

∫ ε

0

∫
∂D∩{h>0}

h(x)(γi − γe)∇ui
ε(xε) · ∇we

g(xε) dσx dt+O(ε1+β),

and analogously∫
D\Dε

(γi − γe)∇ue
ε · ∇wi

gdx

=

∫ ε

0

∫
∂D∩{h<0}

(−h(x))(γi − γe)∇ue
ε(xε) · ∇wi

g(xε) dσx dt+O(ε1+β).

Using the transmission conditions, we get∫
Dε\D

(γi − γe)∇ui
ε · ∇we

gdx(43)

= ε

∫
∂D∩{h>0}

h(x)(γi − γe)

(
∂ue

ε

∂τ
(xε)

∂we
g

∂τ
(xε) +

γe
γi

∂ue
ε

∂ν
(xε)

∂we
g

∂ν
(xε)

)
dσx

+O(ε1+β)
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and ∫
D\Dε

(γi − γe)∇ue
ε · ∇wi

gdx(44)

= −ε

∫
∂D∩{h<0}

h(x)(γi − γe)

(
∂ui

ε

∂τ
(xε)

∂wi
g

∂τ
(xε) +

γi
γe

∂ui
ε

∂ν
(xε)

∂wi
g

∂ν
(xε)

)
dσx

+O(ε1+β).

In order to replace uε with u0 in (43) and (44), we shall show that

(45) ‖∇(ue
ε − ue

0)‖L∞(∂Dε\D) + ‖∇(ui
ε − ui

0)‖L∞(∂Dε∩D) ≤ Cε
α

2α+2

for some constant C independent of ε, following the same arguments as those in
the proof of Lemma 2.2.

For doing so, let 2ε < d < d0/2 and let Ωε
d = {x ∈ Ω\(D∪Dε) : dist(x, ∂(Ω\D∪

Dε) > d}. Since θε = ∇(uε − u0) is the solution of the following equation in
Ω\D ∪Dε,

Δθε − μεθε = (με − μ0)∇u0,

then we may apply Theorem 8.17 of [11] to obtain

‖∇(ue
ε − ue

0)‖L∞(Ωε
d)

≤ C(‖∇(uε − u0)‖L2(Ω) + |με − μ0|‖∇u0‖L2(Ω)).

Using the energy estimates and the fact that |με − μ0| ≤ Cε we get

‖∇(ue
ε − ue

0)‖L∞(Ωε
d)

≤ C

d

√
ε.

Now, let y ∈ ∂Dε\D and let yd denote the closest point to y in the set Ωε
d. From

(23) and (24) it follows that

(46) |∇ue
ε(y)−∇ue

ε(yd)| ≤ Cdα,

which yields

|∇(ue
ε − ue

0)(y)| ≤ |∇ue
ε(y)−∇ue

ε(yd)|+ |∇ue
ε(yd)−∇ue

0(yd)|
+|∇ue

0(yd)−∇ue
0(y)|

≤ C(dα + d−1ε1/2) .

Here we also used the gradient estimates for u0. By choosing d = ε
1

2(α+1) we get

‖∇(ue
ε − ue

0)‖L∞(∂Dε\D) ≤ Cε
α

2α+2 .

In a similar way one can prove that

‖∇(ui
ε − ui

0)‖L∞(∂Dε∩D) ≤ Cε
α

2α+2 .

Finally, inserting this into (43) and (44) and using the gradient estimates for u0

we get∫
Dε\D

(γi − γe)∇ui
ε · ∇we

gdx

= ε

∫
∂D∩{h>0}

h(x)(γi − γe)

(
∂ue

0

∂τ
(x)

∂we
g

∂τ
(x) +

γe
γi

∂ue
0

∂ν
(x)

∂we
g

∂ν
(x)

)
dσx + O(ε1+β)
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and∫
D\Dε

(γi − γe)∇ue
ε · ∇wi

gdx

= −ε

∫
∂D∩{h<0}

h(x)(γi − γe)

(
∂ui

0

∂τ
(x)

∂wi
g

∂τ
(x) +

γi
γe

∂ui
0

∂ν
(x)

∂wi
g

∂ν
(x)

)
dσx +O(ε1+β).

Applying the transmission conditions (4) and (5) once more, summing up the two
integrals and inserting the sum into (39) we obtain (40). This completes the proof.

�

3.2. Optimization problem. In view of Theorem 3.1, the reconstruction method
is rather apparent. With the measurements (ω2

ε − ω2
0 , (uε − u0)|∂Ω) and a finite

number of linearly independent functions g1, . . . , gL on ∂Ω satisfying
∫
∂Ω

glu0dσ =
0, define the functional J(h) by

J(h) :=

L∑
l=1

∣∣∣∣
∫
∂Ω

gl(uε − u0) + (ω2
0 − ω2

ε)

∫
Ω

wglu0

− ε

∫
∂D

h(x)(γi − γe)

(
∂ue

0

∂τ
(x)

∂we
gl

∂τ
(x) +

γe
γi

∂ue
0

∂ν
(x)

∂we
gl

∂ν
(x)

)
dσx

∣∣∣∣
2

.

The method for reconstructing the shape deformation is to minimize J(h) over h. If
the small parameter ε is known, then by minimizing J(h) over h we can reconstruct
h. If ε is unknown, we may consider the functional J as a function of εh instead of
h to obtain the deformation εh.

It is worth emphasizing that the integral

ε

∫
∂D

h(x)

(
∂ue

0

∂τ
(x)

∂we
g

∂τ
(x) +

γe
γi

∂ue
0

∂ν
(x)

∂we
g

∂ν
(x)

)
dσx

filters less oscillations in h than the one in (37) because of the flexibility we have
in choosing wg and therefore, minimizing J(h) allows better reconstruction of h.

The best choice of g1, . . . , gL is such that the functions

vg =
∂ue

0

∂τ

∂we
g

∂τ
+

γe
γi

∂ue
0

∂ν

∂we
g

∂ν
for g = g1, . . . , gL

on ∂D are highly oscillating. To formalize this, introduce the operator Λ defined for
g ∈ V (∂Ω) = {g ∈ L2(∂Ω) :

∫
∂Ω

gu0 = 0} by Λ(g) = wg|∂D, where wg is the solution
to (38). The best choice is then to take {g1, . . . , gL} as a basis of the image space of
Λ∗Λ, where Λ∗ : L2(∂D) → V (∂Ω) is the adjoint of Λ. Indeed, the only changes that
we can reconstruct are linear combinations of vg|∂D for g ∈ Image(Λ∗Λ). Indeed,
the reconstruction is robust with respect to noise in measurements and errors in
the a priori knowledge of the reference inclusion. For this, see [3].

Nevertheless, since computing Image(Λ∗Λ) is costly, we just take our numerical
examples Ω and D to be disks and the functions g1, . . . , gL to be cosine and sine
functions. Note that if there is an index i for which the ith Fourier coefficients
of vgl |∂D, l = 1, . . . , L are all zero, then the ith Fourier coefficient of h cannot be
reconstructed by our algorithm.
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4. The case of a multiple eigenvalue

In this section we consider the case of a multiple eigenvalue. We first derive
an averaged approximation formula for a multiple eigenvalue. This is based on
a standard argument from [17, 13] that the mean of the cluster resulting from
the eigenvalue splitting of converging eigenvalues better approximates the limit
eigenvalue than any of the individual eigenvalues from the cluster. Then we provide
a reconstruction formula for the interface changes that has the same general form
as the one in the simple eigenvalue case.

Let ω2
0 denote an eigenvalue of the problem for (2) with geometric multiplicity m

and let {u0,j}j=1,...,m be L2-orthonormal eigenfunctions corresponding to ω2
0 . Let

(ωj
ε)

2 be the eigenvalues of problem (6) for ε > 0 that are generated by splitting
from ω2

0 and let uj
ε be the associated eigenfunction (normalized with respect to L2)

such that uj
ε → u0,j as ε → 0.

Then, by (8) and (9) and proceeding similarly as in the proof of Theorem 2.1 we
get the following result.

Theorem 4.1. As ε → 0, the following asymptotic expansion holds:

1

ω2
0

− 1

m

m∑
j=1

1

(ωj
ε)2

= −ε(γi − γe)

mω4
0

m∑
j=1

∫
∂D

h(x)

(
(
∂ue

0,j

∂τ
(x))2 +

γe
γi

(
∂ue

0,j

∂ν
(x))2

)
dσx +O(ε1+β),

for some β > 0.

Using Theorem 4.1, we can adapt the algorithm described in the previous section
to reconstruct the shape deformation in the case of a multiple eigenvalue. For
g ∈ L2(∂Ω) satisfying

∫
∂Ω

gu0,j = 0 for j = 1, . . . ,m, let wg be the solution to

(47)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · (γD∇wg) = −ω2
0wg in Ω,

γD
∂wg

∂ν
= g on ∂Ω,∫

Ω

wgu0,j = 1, j = 1, . . . ,m.

The method for reconstructing the shape deformation in the case of a multiple
eigenvalue ω2

0 is to minimize the functional J(h) over h where J is given by

J(h) :=

L∑
l=1

∣∣∣∣ 1m
m∑
j=1

∫
∂Ω

gl(u
j
ε − u0,j)−

1

m

m∑
j=1

(ωj
ε)

2 + ω2
0

− ε

m

m∑
j=1

∫
∂D

h(x)(γi − γe)

(
∂ue

0,j

∂τ
(x)

∂we
gl

∂τ
(x)+

γe
γi

∂ue
0,j

∂ν
(x)

∂we
gl

∂ν
(x)

)
dσx

∣∣∣∣
2

,

where g1, . . . , gL are linearly independent functions.

5. Numerical examples

We now present numerical examples of the shape deformation reconstruction
method described in the previous section. In the following examples, the back-
ground domain Ω is assumed to be the unit disk centered at the origin and the
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(unperturbed) inclusion D is the disk centered at (0,−0.2) with radius 0.4. We fix
the conductivities:

γe = 1 and γi = 1.5.

In order to acquire (simulated) data, we use a boundary integral method. Let Sω
D

and Dω
D be the single and double layer potentials on ∂D defined by the fundamental

(outgoing) solution Γω(x) = − i
4H

(1)
0 (ω|x|) to the operator Δ + ω2:

Sω
D[ϕ](x) =

∫
∂D

Γω(x− y)ϕ(y)dσ(y), x ∈ R
2,

Dω
D[ϕ](x) =

∫
∂D

∂Γω(x− y)

∂νy
ϕ(y)dσ(y), x ∈ R

2 \ ∂D,

for ϕ ∈ L2(∂D). Here H
(1)
0 is the Hankel function of the first kind and order 0.

We define analogously Sω
Ω and Dω

Ω to be the single and double layer potentials
on ∂Ω.

Given the scalar ω the solution u0 to (2) can be represented as

(48) u0(x) =

{
S

ω√
γi

D [ϕ](x), x ∈ D,

Sω
D[ψ](x) +Dω

Ω[f ](x), x ∈ Ω \ D̄,

where f = u0|∂Ω and (ϕ, ψ) ∈ L2(∂D) × L2(∂D) is a solution to the following
integral equation:

(49)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S
ω√
γi

D [ϕ] = Sω
D[ψ] +Dω

Ω[f ] on ∂D,

γi
∂

∂ν
(S

ω√
γi

D [ϕ])i =
∂

∂ν
(Sω

D[ψ] +Dω
Ω[f ])

e on ∂D,

Sω
D[ψ] + (Dω

Ω[f ])
i = f on ∂Ω.

Note that ω = ω0 is an eigenvalue of (2) if and only if (49) has a nontrivial solution.
The computations of the eigenvalues and the eigenfunctions on the boundary

∂Ω are performed numerically with an accuracy much higher than ε because oth-
erwise this would affect dramatically the reconstruction algorithm by making the
reconstruction of h inaccurate.

The function wgl is calculated for

(50) gl = al + bl cos θ + cl sin(l + 1)θ + dl cos(l + 1)θ, 1 ≤ l ≤ L (= 8),

where al, bl, cl, dl are constants chosen for gl to satisfy the normalization condition
in (47). Again, problem (47) has to be solved very accurately in order to insure a
quality of the solution to the auxiliary problem (47) enough to have an accurate
reconstruction of h.

We simulate the reconstruction method for the perturbation function h given by

h(θ) = 1− 2 sin(jθ), j = 0, 3, 6, 9, and ε = 0.02, 0.04.

As j increases, the oscillations in h become higher and the reconstruction problem
more difficult to solve.

In the reconstruction algorithm h is approximated as follows:

h(θ) ≈ h0 +
9∑

p=1

(h2p−1 cos pθ + h2p sin pθ) =:
18∑
p=0

hpΦp(θ),
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where

Φ0(θ) = 1,Φ2p−1(θ) = cos pθ, Φ2p(θ) = sin pθ, p = 1, . . . , 9.

For 1 ≤ j ≤ 2, 1 ≤ l ≤ 8, and 0 ≤ p ≤ 18, define a matrix Ms as

Ms(2(j − 1) + l, p)

:= ε(k − 1)

∫
∂D

Φp(x)

(
∂ue

0,j

∂τ
(x)

∂we
gl

∂τ
(x) +

1

k

∂ue
0,j

∂ν
(x)

∂we
gl

∂ν
(x)

)
dσx,

where s = 1 and s = 2, respectively, stand for the first and third eigenvalues.
Similarly, let the measurement vector Bs for s = 1, 2 be defined by

Bs(2(j − 1) + l) =

∫
∂Ω

gl(u
j
ε − u0,j)dσx − ((ωj

ε )
2 − ω2

0).

For s = 1, 2, we obtain the coefficients hs
p using the formula

(hs
0, . . . , h

s
18) =

(
MT

s Ms + δI19
)−1

MT
s Bs,

where I19 is the 19× 19 identity matrix and the regularization parameter δ is one
of the following numbers 1, 0.1, 0.01, 0.001.

Now, to combine the first and third eigenvalue and eigenvector measurements
we stack the two matrices M1 and M2 and the vectors B1 and B2 vertically, and
compute new coefficients h3

p for h by

(h3
0, . . . , h

3
18)

=
(
Stack(M1,M2)

TStack(M1,M2) + δI19
)−1

Stack(M1,M2)
TStack(B1, B2).

Note that a similar formula could be derived if the eigenvalue is more than double.

Example 1. In this example, h(θ) = 1 − 2 sin(jθ), j = 0, 3, 6, 9, and ε = 0.02.
Here and in the following examples, we assume that ε is known and reconstruct h.
In Figure 1, h is approximated from the data corresponding to the first eigenvalue in
the first column, and second eigenvalue in the second column, and first and second
eigenvalues in the third column. The regularization parameter δ is taken to be
equal to 0.001 except for j = 3 and 6 on the third column. In these two exceptional
cases, δ is chosen to be 0.1. Figure 1 shows that first eigenvalue measurements work
very well for not highly oscillating perturbations h, but it is not enough for higher
oscillatory perturbation. This clearly indicates the resolution limit of our algorithm
and shows that it is a function of the modal measurements we use. However, the
quality of image is increased when second eigenvalue measurements are used as
well.

Example 2. In this example, h(θ) = 1 − 2 sin(jθ), j = 0, 3, 6, 9, and ε = 0.04.
Regularization parameter δ is 1 for all cases in this example. Reconstruction results
are shown in Figure 2.

Example 3. The example in Figure 3 shows the reconstruction of an inclusion
which is shifted 0.2 to the right. First eigenvalue measurements are used, and
regularization parameter δ is 0.01. In this example, the obtained image is very
close to the real one.
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Example 4. The example in Figure 4 shows the reconstruction of an inclusion
which is perturbed and shifted to the right, i.e., D is perturbed as εh(θ) = 0.02(1−
2 sin 6θ) and then shifted 0.2 to the right. Regularization parameter δ is 1. In this
example we used the first and third eigenvalues.
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Figure 1. The solid whitest curves represent the inclusions, which
are perturbations of disks, given by the dashed curves. The darkest
curves are the reconstructed inclusions. The perturbation is given
by εh where ε = 0.02.
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Figure 2. Reconstruction result when ε = 0.04.
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Figure 3. Reconstruction of a shifted inclusion.
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Figure 4. Reconstruction of a perturbed and shifted inclusion
using the first eigenvalue (on the left), the third eigenvalue (in the
middle) and both the first and the third eigenvalues (on the right).

6. Concluding remarks

In this paper we have introduced an optimization procedure for reconstruct-
ing interface changes of an inclusion from modal measurements. Our procedure
takes advantage of the smallness of the changes. It is based on the dual asymp-
totic formula in Theorem 3.1. We have presented numerical experiments that show
that our reconstruction procedure from eigenvalue measurements works pretty well
for reconstructing perturbations of the interface. We have also pointed out the
resolution limit of our procedure and observed how it increases as the used eigen-
frequency increases. Indeed, we have showed that multi-modal measurements yield
better reconstruction than those obtained by only one pair of modal parameters.
Very recently, all of the results of this paper have been extended to linear elasticity
in [1].

To conclude this paper, we make a few remarks. We first note that Theorem
2.1 may be used to compute the shape derivative of objective functionals involving
eigenvalues of (2). Recall that if we consider the perturbation under the map θ,
then

Dθ =

{
x+ θ(x) : x ∈ D

}
,

where θ ∈ W 1,∞(R2,R2) is such that ||θ||W 1,∞ < 1, then the shape derivative of an
objective functional J(D) at D is defined as the Fréchet differential of θ �→ J(Dθ)
at 0, which depends only on θ · ν on the boundary ∂D.

Indeed, based again on Theorem 2.1, the level set approach developed by Osher
and Santosa in [18] for solving the acoustic drum problem can be immediately
generalized to the inclusion problem infD J(D). See, for instance, [5, 3].

Finally, it would be interesting to study the limit of (7) as γe tends to 0. In
this case, ω2

ε/γi and ω2
0/γi approach the Neumann eigenvalues for Dε and D, re-

spectively. Recall that the formula for the Neumann eigenvalue perturbation due
to small deformation of the boundary is well known and the leading-order term is
given by

(51) ε

(∫
∂D

h |∇v0|2 dσ − ω2
0

∫
∂D

h |v0|2 dσ

)
,

where v0 is the (normalized) Neumann eigenfunction. See, for example, Section 5.6
in [20]. It would be interesting to show rigorously that the first-order term of the
expansion of ω2

ε/γi − ω2
0/γi in (7) converges to the one in (51) as γe → 0.
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