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EQUATIONS FOR THE MODULAR CURVE X1(N) AND

MODELS OF ELLIPTIC CURVES WITH TORSION POINTS

HOURIA BAAZIZ

Abstract. We describe an algorithm for constructing plane models of the
modular curve X1(N) and discuss the resulting equations when N ≤ 51.

Introduction

Let N ≥ 2 be an integer. Recall that the modular curve X1(N) (with cusps
removed) parametrizes isomorphism classes of pairs (E,P ) where E is an elliptic
curve and P a torsion point of order N on E. Two such pairs (E,P ) and (E′, P ′)
are isomorphic if there exists an isomorphism φ : E → E′ such that φ(P ) = P ′.
Reichert [8] gave equations for X1(N) when N = 11 and 13 ≤ N ≤ 18. Lecacheux
[6] and Washington [10] gave equations for X1(13) and X1(16), respectively, in con-
nection with the construction of families of cyclic extensions of Q. In [2], Darmon
discusses X1(25) from a similar point of view. However, their methods do not eas-
ily generalize to arbitrary values of N . Ishida and Ishii [3] developed methods to
find equations for X1(N) for abritrary N by explicitly constructing two modular
functions that together generate the function field of X1(N); they list the equations
obtained when N ≤ 20. Yang [9] gave a method for constructing generators of func-
tion fields by using products constructed from generalized Dedekind η functions.
In his paper, Yang gives explicit models for X1(N) when N = 11 and 13 ≤ N ≤ 22.
However, apart from Reichert, these authors do not show how to recover an explicit
model for the pair (E,P ) from the corresponding point on their model of X1(N).

The purpose of this paper is to present a new algorithm for obtaining equations
for X1(N) which at the same time enables one to keep track explicitly of the
corresponding pairs (E,P ). Our approach is similar to that of Reichert, in that we
use division polynomials to characterize elliptic curves with the equation

(E) y2 + (a1x+ a3)y = x3 + a2x
2

on which the point (0, 0) is torsion and of given order N ≥ 4. As is well known,
division polynomials can be calculated quickly by a recursive procedure, a variant of
which is recalled in §2. It turns out that these division polynomials are divisible by
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high powers of a3, which is also a factor of the discriminant of the elliptic curve, and
removing this power of a3 results in considerable simplification (see Lemma 2.3).
Every elliptic curve of the form (E) is isomorphic to one with model

y2 + ((1 + g)x+ f)y = x3 + fx2

via an isomorphism taking (0, 0) to (0, 0) (see Proposition 1.3). When (0, 0) is of
order N , the coefficients f and g can be viewed as modular forms on Γ1(N) and one
shows that they generate the field of modular functions C(X1(N)) on X1(N) (see
§3, and in particular equations (3.1) and (3.2), for explicit formulae for f and g in
terms of Weierstrass ℘-functions). Simplifying the division polynomials gives a first

equation Φ
(f,g)
N (f, g) = 0 for X1(N). The fact that the division polynomials satisfy

recurrence relations implies that the polynomials Φ
(f,g)
N can also be calculated using

recursive formulae and this is explained in detail in the second half of §3. However,
these equations are of considerably larger degree than those already given by pre-
vious authors. In §4, we define, in terms of f and g, two other pairs of modular
functions {s, t} and {q, r} on Γ1(N) each of which generates C(X1(N)) and results
in an equation of smaller degree. All these equations have rational coefficients,
which we normalize (up to sign) by assuming they have integral coefficients that
are mutually coprime. Table 1 enables one to compare the resulting equations for
N ≤ 15. The pair {q, r} gives the best results and, when N ≤ 22, can be compared
with the equations given by Ishida and Ishii [3] (pp. 316–317) and Yang [9] (page
506). In general, our equations would appear to be of smaller degree than theirs in
the two variables individually but of slightly higher total degree. However it seems
interesting to have equations which are of small degree in one of the functions, as
this gives a better upper bound on the gonality of the curve (see the end of §5).

We have calculated the resulting equations for all N ≤ 51. As we shall see,
this can easily be done using recursive procedures based on using the recurrence
relations (2.3), (2.4), and (2.5) below. (Alternatively one could use (3.7) and (3.8)
and (2.5).) Since the equations quickly become large, it seems pointless to present
the equations written out in full. When N approaches 50, each of the equations
obtained would occupy roughly a page. When N = 50, the equation in terms of q
and r is of degree 23 in r and 32 in q and of total degree 48 (see Table 3) and the
absolute value of the largest coefficient is 109037417.

The remaining table, Table 2, presents some particularly simple equations for
X1(N) for 11 ≤ N ≤ 20 and expresses the functions u and v used in terms s and t.

1. Some elliptic functions

Let K be a field and let E be an elliptic curve over K. Then E has a Weierstrass
model

(1.1) y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6, ai ∈ K, i ∈ {1, 2, 3, 4, 6}.

Suppose that E(K) contains a point P = (a, b) other than the origin O. Then,
replacing x by x− a and y by y − b, we can suppose that P = (0, 0). This implies
that a6 = 0. Thus, every pair (E,P ) consisting of an elliptic curve E over K and
a point P ∈ E(K) other than the origin can be represented as

(1.2) y2 + (a1x+ a3)y = x3 + a2x
2 + a4x, P = (0, 0).
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Lemma 1.1. Suppose that (1.2) defines an elliptic curve and that P is a torsion
point.

(1) If P is of order N ≥ 3, then a3 �= 0 and, after a change of coordinates, we
can suppose that a4 = 0.

(2) If a3 �= 0 and a4 = 0, then P is of order 3 if and only if a2 = 0.

Proof. (1) Let Q �= O be a point with x(Q) = 0. Then y(Q)2+a3y(Q) = 0, so that
if a3 = 0, then Q = P and so x has no zero other than P . Thus x must have a zero
of order 2 at P and therefore P is of order 2, contrary to our hypothesis. Hence
a3 �= 0, and one checks easily that substituting y+ a4

a3
x for y leads to a model with

a4 = 0.
(2) Suppose that a4 = 0. Let Q �= O be a point with y(Q) = 0. Then x(Q)3 +

a2x(Q)2 = 0, so a2 = 0 if and only if the only possibility for Q is P . Hence P is of
order 3 if and only if a2 = 0. �

From now on, we consider pairs (E,P ) represented by

(1.3) y2 + (a1x+ a3)y = x3 + a2x
2, a2a3 �= 0, P = (0, 0).

Lemma 1.1 implies that if P = (0, 0) is a point of order N ≥ 4, then (E,P ) is
isomorphic to a pair of the form (1.3). The discriminant of this model is

Δ(E) = a23(−a2a
4
1 + a3a

3
1 − 8a22a

2
1 + 36a3a2a1 − 16a32 − 27a23).

We always tacitly suppose (1.3) does define an elliptic curve, so that Δ(E) �= 0.

Lemma 1.2. Let (E,P ) and (E′, P ′) be the pairs with equations

(E) : y2 + (a1x+ a3)y = x3 + a2x
2, a2a3 �= 0, P = (0, 0), and(1.4)

(E′) : y2 + (a′1x+ a′3)y = x3 + a′2x
2, a′2a

′
3 �= 0, P ′ = (0, 0).(1.5)

Then (E,P ) and (E′, P ′) are K-isomorphic if and only if there exists λ ∈ K× such
that a′i = λiai for every i ∈ {1, 2, 3}. When this is the case, λ is unique.

Proof. If such a λ exists, then (x, y) �→ (λ2x, λ3y) is an isomorphism from (E,P )
to (E′, P ′). A K-isomorphism φ from the elliptic curve E to E′ sends (x, y) to
(λ2x+ r, λ3y+ux+ v), for some λ ∈ K×, u, v ∈ K. Since we want φ(0, 0) = (0, 0),
we must have r = v = 0. Since the coefficients of x in E and E′ vanish, we must
have u = 0. Thus φ must be of the form (x, y) �→ (λ2x, λ3y). This implies that
a′i = λiai for i ∈ {1, 2, 3}. Since a′2 = λ2a2 and a′3 = λ3a3 and a2a3a

′
2a

′
3 �= 0, we

must have λ = a′3a2/a3a
′
2. Hence λ is unique. �

Proposition 1.3. Suppose that N ≥ 4. Then every K-isomorphism class of pairs
(E,P ) with E an elliptic curve over K and P ∈ E(K) a torsion point of order N
contains a unique model of the form

(1.6) y2 + ((1 + g)x+ f)y = x3 + fx2, P = (0, 0),

with f ∈ K×, g ∈ K.

Proof. If we put f = a32/a
2
3, g = (a1a2 − a3)/a3, then y2 + (a1x+ a3)y = x3 + a2x

2

becomes isomorphic to y2 + ((1 + g)x + f)y = x3 + fx2, via x �→ (a2/a3)
2x,

y �→ (a2/a3)
3y. Since a2a3 �= 0, we have f �= 0.

If the isomorphism class also contains
(
y2 +((1+ g′)x+ f ′)y = x3 + f ′x2, (0, 0)

)
with f ′ ∈ K× and g′ ∈ K, then, considering the coefficients of y and of x2,
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Lemma 1.2 implies that there exists λ ∈ K× such that f ′ = λ2f and f ′ = λ3f .
Since f �= 0, we deduce that λ = 1. �

For the rest of this section we suppose thatK = C. Our purpose is to parametrize
the model (1.3) using elliptic functions associated to the lattice Ω = {

∫
γ

dx
2y+a1x+a3

|
γ ∈ H1(E(C),Z)}. To be more precise, fixing z0 ∈ C/Ω, we want to describe
explicitly the isomorphism ξ : C/Ω → E(C) such that ξ(z0) = P . If Ω is any lattice
in C, we recall the Weierstrass elliptic function

(1.7) ℘(z) = ℘(z,Ω) =
1

z2
+

∑
ω∈Ω
ω �=0

( 1

(z − ω)2
+

1

ω2

)
.

It satisfies the differential equation

(1.8) ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

where

(1.9) g2 = g2(Ω) = 60
∑
ω∈Ω
ω �=0

1

ω4
, g3 = g3(Ω) = 140

∑
ω∈Ω
ω �=0

1

ω6

are the usual Eisenstein series, as well as the duplication formula

(1.10) ℘(2z) = −2℘(z) +
1

4

℘′′(z)2

℘′(z)2
.

Completing the square of the equation (1.3), we get

Y 2 = 4x3 + (4a2 + a21)x
2 + 2a1a3x+ a23

with Y = 2(y + 1
2 (a1x+ a3)). Replacing x by X − 1

12 (a
2
1 + 4a2), we get

(1.11) Y 2 = 4X3 − g2X − g3, g32 − 27g23 �= 0

and this curve is parametrized by X = ℘(z), Y = ℘′(z).
It is useful to write

(1.12) a =
1

12
(a21 + 4a2),

so that

g2 =
1

12
(a41 + 8a21a2 − 24a1a3 + 16a22) = 12a2 − 2a1a3,

g3 = −(23a3 − 2a1a3a+ a23).
(1.13)

The point P = (0, 0) corresponds to the point (a, a3) on the curve Y 2 = 4X3 −
g2X − g3, so that the condition ξ(z0) = P means that

(1.14) a = ℘(z0), a3 = ℘′(z0).

Since a3 �= 0, the first equation of (1.13) implies

(1.15) a1 =
12a2 − g2

2a3
=

12℘(z0)
2 − g2

2℘′(z0)
=

℘′′(z0)

℘′(z0)
,

where the last equation follows by differentiating (1.8) and replacing z by z0. These
equations together with (1.12) enable one to determine a2.

Summing up the previous discussion, we obtain the following result.
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Theorem 1.4. Let Ω be a lattice in C and let z0 ∈ C be such that 2z0 /∈ Ω. Define
the elliptic functions

(1.16) a1(z) =
℘′′(z)

℘′(z)
, a2(z) = 3℘(z)− 1

4

℘′′(z)2

℘′(z)2
, a3(z) = ℘′(z),

so that ℘(z) = (a1(z)
2 + 4a2(z))/12. Then the elliptic curve

(1.17) y2 + (a1(z0)x+ a3(z0))y = x3 + a2(z0)x
2

is parametrized by the elliptic functions

(1.18) x(z) = ℘(z)− ℘(z0), y(z) =
1

2

(
℘′(z)− a1(z0)x(z)− a3(z0)

)
and we have

(
x(z0), y(z0)

)
= (0, 0).

Conversely, any pair of the form (1.3) can be parametrized in this way using
the lattice Ω = {

∫
γ

dx
2y+a1x+a3

| γ ∈ H1(E(C),Z)}, the point z0 being the unique

solution (mod Ω) of (1.14).

Recall that the divisor of a non-zero elliptic function f with period lattice Ω is
the formal sum

∑
x∈C/Ω vx(f)[x], where vx(f) is the order of the zero (or of the

pole counted negatively) of f at any z ∈ C whose class (mod Ω) is x. (Since C/Ω
is compact, vx(f) vanishes outside a finite set.) The order of f is the non-negative
integer

∑
x max(vx(f), 0).

Proposition 1.5. The divisors of the functions a2, a3, and a1a2 − a3 are given by

div(a2) =
∑
3x=0
x�=0

[x]− 2
∑
2x=0

[x], div(a3) =
∑
2x=0,
x�=0

[x]− 3[0],

div(a1a2 − a3) =
∑
4x=0
2x�=0

[x]− 3
∑
2x=0

[x].

Proof. The case of a3(z) = ℘′(z) is well known. In the case a2(z), we use the
duplication formula (1.10) to obtain

(1.19) a2(z) = −℘(2z) + ℘(z),

from which the result follows easily since ℘(z) is an even function. Similarly, a
calculation using (1.8) and (1.10) shows that

(1.20) a1(z)a2(z)− a3(z) = ℘′(2z)

from which the last result follows. �

Corollary 1.6. Let F and G be the elliptic functions defined by

F (z) = F (z,Ω) =
a2(z)

3

a3(z)2
, G(z) = G(z,Ω) =

a1(z)a2(z)− a3(z)

a3(z)
.

Then

div(F ) = 3
∑
3x=0
x�=0

[x]− 8
∑
2x=0
x�=0

[x],(1.21)

div(G) =
∑
4x=0
2x�=0

[x]− 4
∑
2x=0
x�=0

[x].(1.22)
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2. Division polynomials

We return to the model (1.3), viewing x, a1, a2, and a3 as indeterminates, and
work in the ring A = Z[x, a1, a2, a3, y] where y satisfies the equation

y2 + (a1x+ a3)y = x3 + a2x
2.

By Euclidian division, every element of A can be written uniquely in the form
P + Qy, with P , Q ∈ Z[x, a1, a2, a3]. For every integer n ≥ 1, we consider the
n-division element ψn of A defined recursively by

ψ1 = 1, ψ2 = a1x+ a3 + 2y,

ψ3 = 3x4 + (4a2 + a21)x
3 + 3a1a3x

2 + 3a23x+ a23a2,

ψ4 = ψ2(2x
6 + (a21 + 4a2)x

5 + 5a3a1x
4 + 10a23x

3 + 10a23a2x
2

+ (a23a2a
2
1 − a33a1 + 4a23a

2
2)x+ a33a2a1 − a43),

and

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1, if n ≥ 2,(2.1)

ψ2ψ2n = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1), if n ≥ 3.(2.2)

Furthermore, define φn and ωn by

φn = xψ2
n − ψn+1ψn−1, 2ψnωn = ψ2n − ψ2

n(a1φn + a3ψ
2
n).

One checks by induction that ψn, ωn, φn ∈ A for all n.

Theorem 2.1. Let E be an elliptic curve of model (1.3). The point P = (x0, y0)
on E is of order dividing n if and only if ψn(x0, y0) = 0. If this is not the case, we

have nP =
( φn(x0, y0)

ψn(x0, y0)2
,
ωn(x0, y0)

ψn(x0, y0)3

)
.

Furthermore, if we assign to x, y, a1, a2, and a3, respectively, the weights 2, 3,
1, 2, and 3 and view Z[x, y, a1, a2, a3] as a graded ring, then ψn, φn, and ωn are
homogeneous with respective weights n2 − 1, 2n2, and 3n2.

Proof. This is a variant of the well-known formulae for curves of the form y2 =
x3 + Ax+ B, which are discussed for example in Cassels [1]. See also Lercier and
Morain [7]. �

We shall only be interested in this result when P = (0, 0) and from now on,
we write ψn for ψn(0, 0) and similarly for φn and ωn. Thus ψn, φn, and ωn are
homogeneous elements of Z[a1, a2, a3] of respective weights n2 − 1, 2n2, and 3n2.

We find

(2.3) ψ1 = 1, ψ2 = a3, ψ3 = a23a2, ψ4 = a43(a1a2 − a3),

as well as the relations

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1, if n ≥ 2,

a3ψ2n = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1), if n ≥ 3.

(2.4)

Furthermore, for all n ≥ 2 we have,

(2.5) φn = −ψn+1ψn−1, 2ψnωn = ψ2n − ψ2
n(a1φn + a3ψ

2
n).
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Corollary 2.2. Let P be the point (0, 0) on the elliptic curve (1.3) and let n ≥ 2
be an integer. Then nP = O if and only if ψn = 0. When this is not the case, we
have nP =

(
φn

ψ2
n
, ωn

ψ3
n

)
.

The relations (2.3), (2.4), and (2.5) are easy to implement and enable one to
calculate ψn and the coordinates of nP quickly by induction. In practice, it is
useful to be able to substitute various polynomials for a1, a2, and a3. The following
lemma shows that ψn is divisible by a high power of a3, and we can improve the
implementation by removing it.

Lemma 2.3. Let va3
(n) be the exponent of the power of a3 dividing ψn. Then

(2.6) va3
(n) =

{
n2

4 , n even,
n2−1

4 , n odd.

Proof. When n ≤ 4, this is clear from (2.3). In general, write ζn = a
−v∗

a3
(n)

3 ψn,
where v∗a3

(n) is defined to be the right hand side of (2.6). Then, from (2.4):

(2.7) ζ2n+1 =

{
a3ζn+2ζ

3
n − ζn−1ζ

3
n+1 if n is even,

ζn+2ζ
3
n − a3ζn−1ζ

3
n+1 if n is odd

for all n ≥ 2 while, if n ≥ 3, then

(2.8) ζ2n = ζn(ζn+2ζ
2
n−1 − ζn−2ζ

2
n+1).

Since ζ1 = ζ2 = 1, ζ3 = a2, and ζ4 = a1a2 − a3, we deduce by induction that
ζn ∈ Z[a1, a2, a3] for all n, in other words that va3

(n) ≥ v∗a3
(n) for all n. To

prove equality, it suffices to prove that the constant term ζn(0) of ζn, when viewed
as a polynomial in a3 with coefficients in Z[a1, a2], is non-zero. In fact, writing
εn = (−1)n(n−1)/2, we find that

ζ2n+1(0) = εna
n(n+1)/2
2 , for all n ≥ 0.

and, when n ≥ 1, that ζ2n(0) is of the form

ζ2n(0) = εn−1

�n−1
2 �∑

i=0

cn,ia
n−1−2i
1 a

n(n−1)/2+i
2 ,

where the cn,i lie in Z and cn,0 = 1 for all n. Again, this can be checked by induction
using the equations obtained by substituting a3 = 0 in (2.7) and (2.8). �

Since a3 is of weight 3, we see that ζn is of weight 1
4n

2 − 1 or n2−1
4 according

as to whether n is even or odd. This represents a considerable improvement. For
example, a6253 divides ψ50, while ζ50 is of weight 624 and therefore of degree at
most 208 in a3. Thus, it is better to implement (2.7) and (2.8) rather than (2.4).
Using (2.5), one can calculate the power of a3 dividing φn and ωn and speed up
the computation of nP when nP �= O.

However, as we shall see in the next section, further simplification is possible in
the case needed for calculating equations for X1(N).
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3. A first equation for X1(N)

Fix an integer N ≥ 4. Let H denote the upper half plane {τ ∈ C | �(τ ) > 0}.
If τ ∈ H, we denote by Ωτ the lattice in C with basis (τ, 1). When i ∈ {1, 2, 3},
we write ai(τ ) for ai(1/N,Ωτ ) where z �→ ai(z,Ω) is the elliptic function used in
Theorem 1.4. We write f(τ ) = F (1/N,Ωτ ) and g(τ ) = G(1/N,Ωτ ), where F and
G are the functions defined in Corollary 1.6. Thus by (1.19) and (1.20),

f(τ ) =
(℘(1/N,Ωτ )− ℘(2/N,Ωτ ))

3

℘′(1/N,Ω)2
,(3.1)

g(τ ) =
℘′(2/N,Ωτ )

℘′(1/N,Ωτ )
.(3.2)

Lemma 3.1. Let ψn ∈ Z[a1, a2, a3] be the homogeneous polynomial introduced in
§2. Then

(3.3) ψN

(
a1(τ ), a2(τ ), a3(τ )

)
= 0 for all τ ∈ H.

Proof. This follows from Theorem 1.4 and Corollary 2.2. �

Theorem 3.2. Let N ≥ 4 be an integer.

(1) The functions f and g are modular functions on Γ1(N) and generate the
field of all modular functions on Γ1(N).

(2) We have

(3.4) ψN (1 + g, f, f) = 0.

Proof. It is well known that the functions τ �→ ℘(1/N,Ωτ ), τ �→ ℘′(1/N,Ωτ ), and
τ �→ ℘′′(1/N,Ωτ ) are modular forms on Γ1(N) of weights 2, 3, and 4. It follows
that ai(τ ), i ∈ {1, 2, 3}, is an (a priori meromorphic) modular form of weight i.
Hence f and g are modular functions on Γ1(N). To see that f and g generate
C(X1(N)), we think of meromorphic functions on the compact Riemann surface
X1(N). Recall that if X is any compact Riemann surface and S a subset of the
field C(X) of meromorphic functions on X, then S generates C(X) if and only if
there exists a non-empty open subset U of X such that whenever P and Q are two
points of U such that ϕ(P ) = ϕ(Q) for all ϕ ∈ S, then P = Q. We apply this
by taking X = X1(N) and U = X1(N) with the cusps removed, S = {f, g}; the
assertion now follows from Proposition 1.3. This proves (1), and (2) follows from
Lemma 3.1 and Proposition 1.3. �

Remark 3.3. As the referee pointed out to us, the functions ai(τ ) are in fact every-
where holomorphic modular forms (i.e., including at the cusps). To see this, we use
the well-known fact that the functions τ �→

(
℘(k)(z,Ωτ )

)
z=1/N

are holomorphic for

all k ≥ 0. Since a3(τ ) = ℘′(1/N,Ωτ ), this already implies that a3 is holomorphic.
To prove that a1 and a2 are holomorphic, one notes that

3℘(1/N,Ωτ )− 1
4a1(τ )

2 = a2(τ ) = ℘(1/N,Ωτ )− ℘(2/N,Ωτ ),

where the second equality follows from (1.19). This implies that a2 and a21 are
holomorphic. Since a1 is meromorphic and its square is holomorphic, we conclude
that a1 is itself holomorphic.
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We can use Theorem 3.2 to obtain a plane affine model of X1(N) as follows. We
know that if y2+((1+g)x+f)y = x3+fx2 is an elliptic curve and P = (0, 0), then
NP = O if and only if ψN (1+ g, f, f) = 0. The discriminant of the elliptic curve is
−f3(16f2+(8g2−20g−1)f+g(g+1)3). Hence we can remove from ψN (1+g, f, f)

any common factor with this discriminant. Write Ψ
(f,g)
N ∈ Z[f, g] for the polynomial

thus obtained, normalizing it up to sign by supposing the coefficients to be coprime.

Also, if M divides N , then MP = O implies NP = O, so that Ψ
(f,g)
M divides Ψ

(f,g)
N .

Thus Ψ
(f,g)
N has a factorisation

(3.5) Ψ
(f,g)
N =

∏
M |N

Φ
(f,g)
M ,

where Φ
(f,g)
M (f, g) vanishes if and only if the order of (0, 0) is exactly M . Then

Theorem 3.2 implies that Φ
(f,g)
N = 0 is the equation of an affine plane model of

X1(N).
By Lemma 2.3, we know that fva3

(ψn) divides ψn(1+ g, f, f). In fact, we can do
better than this.

Theorem 3.4. Let

(3.6) v∗f (n) =

⎧⎪⎨
⎪⎩
3k2 if n = 3k,

3k2 + 2k if n = 3k + 1,

3k2 + 4k + 1 if n = 3k + 2.

Then for all n ≥ 1, we have Ψ
(f,g)
n = f−v∗

f (n)ψn(1 + g, f, f) (up to sign).

Proof. Let θn = f−v∗
f (ψn)ψn(1 + g, f, f). We have to show that Ψ

(f,g)
n = θn for all

n ≥ 1. Using (2.3) and (2.4), we find that

(3.7) θ1 = θ2 = θ3 = 1, θ4 = g, θ5 = g − f

and, when N ≥ 6, that

(3.8) θN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ3n(θ3n+2θ
2
3n−1 − θ3n−2θ

2
3n+1) if N = 6n,

fθ3n+2θ
3
3n − θ3n−1θ

3
3n+1 if N = 6n+ 1,

θ3n+1

(
fθ3n+3θ

2
3n − θ3n−1θ

2
3n+2

)
if N = 6n+ 2,

θ3n+3θ
3
3n+1 − θ3nθ

3
3n+2 if N = 6n+ 3,

θ3n+2

(
θ3n+4θ

2
3n+1 − fθ3nθ

2
3n+3

)
if N = 6n+ 4,

θ3n+4θ
3
3n+2 − fθ3n+1θ

3
3n+3 if N = 6n+ 5.

We deduce that θn ∈ Z[f, g] for all n. Indeed, if n ≤ 5, this follows from (3.7), and
for larger values of n it follows from (3.8) by induction.

To conclude, we need to show that θn is prime to the discriminant

−f3(16f2 + (8g2 − 20g − 1)f + g(g + 1)3)

of the elliptic curve

y2 + ((1 + g)x+ f)y = x3 + fx2

and that the coefficients of θn are coprime. We first show that f does not divide θn
by showing that the constant term θn(0) of θn, viewed as a polynomial in f with
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coefficients in Z[g], is non-zero (compare with the proof of Lemma 2.3). In fact, we
find
(3.9)

θN (0) =

⎧⎨
⎩εm

∑m
i=1 (−1)igm(m+1)/2−i = εm−1g

m(m−1)/2 g
m + 1

g + 1
if N = 3m,

εmgm(m+1)/2 if N = 3m+ 1 or if N = 3m+ 2,

where again εm = (−1)m(m−1)/2. This can be proved by induction on N using the
formulae obtained by substituting f = 0 in (3.7) and (3.8).

To see that 16f2 + (8g2 − 20g − 1)f + g(g + 1)3 does not divide θn, we observe
that if it did, then g(g + 1)3 would divide θn(0), which is not the case as follows
from (3.9). Finally, (3.9) also shows that ±1 appears as a coefficient in θn and this
concludes the proof. �

It follows from this discussion that the relations (3.7) and (3.8) give a recursive

procedure enabling one to calculate Ψ
(f,g)
N , and hence Φ

(f,g)
N , in principle for any

N ≥ 1. The first column of Table 1 shows Φ
(f,g)
N for all N , 4 ≤ N ≤ 15.

4. Improving the equation for X1(N)

It is natural to ask whether other choices of generators of C(X1(N)) give rise to

simpler equations, say of lower degree than Φ
(f,g)
N . In general, if two elements x and

y of C(X1(N)) generate C(X1(N)), we denote by Φ
(x,y)
N a polynomial of smallest

degree such that Φ
(x,y)
N (x, y) = 0 (this is defined only up to a non-zero constant

multiple). In particular, if x and y generate C(X1(N)), then Φ
(x,y)
N = 0 is a plane

affine model of X1(N).
In particular, one can ask whether such generators can be defined in terms of

f and g in a uniform way, say by formulae that are independent of N . That this
is the case was first observed experimentally, and we know of no really satisfac-
tory explanation for why the following choices work or why they produce simpler
equations than similar substitutions that were tried.

Before going further, we record the following lemma.

Lemma 4.1. Let F and G denote the elliptic functions used in Corollary 1.6. Then

div(G− F ) =
∑
5x=0
x�=0

[x]− 8
∑
2x=0
x�=0

[x],

div(G2 −G+ F ) =
∑
6x=0

2x�=0,3x�=0

[x]− 8
∑
2x=0
x�=0

[x],

div(G3 −GF + F 2) =
∑
7x=0
x�=0

[x]− 16
∑
2x=0
x�=0

[x],

div((F + 1)G2 − 3FG+ 2F 2) =
∑
8x=0
4x�=0

[x]− 16
∑
2x=0
x�=0

[x].



EQUATIONS FOR X1(N) AND TORSION 2381

Proof. By Corollary 1.6, the polar divisor of a monomial F kG� (k ≥ 0, � ≥ 0
integers) is (8k + 4�)

∑
2x=0
x�=0

[x]. Consider for example the case of G2 −G+ F . By

what has just been said, the polar divisor of this function is supported by the three
points x1, x2, x3 of order 2 and is of the form a[x1] + b[x2] + c[x3] with a, b, and
c positive and not exceeding 8. Hence G2 −G+ F is of order at most 24. On the
other hand, G2 − G + F vanishes at the points of order 6 on C/Ω. This can be

deduced from the fact that Φ
(f,g)
6 = g2 − g + f (see Table 1). Since there are 24

points of order 6, we deduce that the order of G2 − G + F is at least 24. Hence
there are no other zeros or poles and div(G2 − G + F ) is as stated in the lemma.
A similar argument works in the other cases. �

We return to our discussion of equations of X1(N). Suppose that N ≥ 6. Then
the lemma implies that g − f does not vanish identically on X1(N) and the same
is true for g by Corollary 1.6. Hence t = f/g and s = g2/(f − g) are well-defined
functions on X1(N) and we can solve for f and g to obtain f = t(t − 1)s and
g = (t− 1)s. Thus s and t generate C(X1(N)) when N ≥ 6.

The second column of Table 1 gives Φ
(s,t)
N for all N , 6 ≤ N ≤ 15.

Further calculations suggested another choice of generators. Let

(4.1) r =
t− 1

s+ 1
, q =

(s+ 1)(t− 1)

t+ s
.

In terms of f and g, we have

(4.2) r =
(f − g)2

g(g2 − g + f)
, q =

(g2 − g + f)(f − g)

g3 − fg + f2
.

Using Lemma 4.1, we see that q and r are well-defined whenever N ≥ 8, and we
can solve for t and s to obtain t = q(r+ 1) + 1 and s = q(r+ 1)/r− 1. Thus q and
r are a set of generators of C(X1(N)) whenever N ≥ 8. We find that

f =
q(1 + r)(1 + q + qr)(q + qr − r)

r
, g =

(q2 − q)r2 + (2q2 − q)r + q2

r
,

which enables one to write down the equation of the corresponding elliptic curve.

Again, the right hand column of Table 1 gives the polynomial Φ
(q,r)
N for N ,

8 ≤ N ≤ 15.

Remark 4.2. As indicated above, we have no complete explanation as to why the
pairs of generators {f, g}, {s, t}, and {q, r} give rise successively to simpler equa-
tions for X1(N). We remark that, as in the work of most previous authors, the
modular functions appearing in the equations have their divisor supported by the
cusps and are therefore modular units (see for example [4]). Also, simple com-
binations of our functions are modular units. For example, s, t, and also s + 1,
t − 1, and s + t are modular units when N ≥ 8 and we have r = (t − 1)/(s + 1),
q = (s+1)(t−1)/(t+s). Then q+1 and r−q are also modular units when N ≥ 10.
All this can be checked using Lemma 4.1.
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5. Comments on the tables

We present three tables giving information concerning the equations for X1(N)
that we have obtained. In each of the tables, the first column indicates the value
of N under consideration and the second, headed g, recalls the genus of X1(N).

To find the equations, we first computed ψN (1 + g, f, f) using the recurrence
relations (2.3), (2.4), and (2.5) together with the relations −N

2 P = N
2 P when N

is even and −N−1
2 P = N+1

2 P when N is odd. (An alternative would have been to

implement (3.7) and (3.8) and then use (2.5).) From this we determined Φ
(f,g)
N by

removing common factors with ψM (1 + g, f, f) when M is a proper divisor of N

and with the discriminant of the curve. We then calculated Φ
(s,t)
N by substituting

f = t(t− 1)s, g = (t− 1)s in Φ
(f,g)
N and removing redundant factors. We obtained

Φ
(q,r)
N from Φ

(s,t)
N in a similar manner. Note that it is extremely important to

remove the redundant factors from ψN (1+g, f, f) before substituting. For example,
by Theorem 3.4, we know that f833 divides ψ50(1 + g, f, f), so that substituting
f = t(t − 1)s would result in a useless factor of (t − 1)833 which, when expanded,

would competely swamp Φ
(f,g)
50 (1 + (t− 1)s, t(t− 1)s, t(t− 1)s).

As already indicated, the three final columns of Table 1 give the equations for
X1(N) for the sets of generators {f, g}, {s, t}, and {q, r} for those values of N
between 4 and 15 for which both members of the set are defined, an empty entry
indicating that this is not the case. It shows clearly, for the values of N indicated,
the simplification obtained in passing from the set {f, g} to the set {s, t} and then
on to {q, r}. Further calculations reveal similar simplifications for larger values of
N .

The third column of Table 2 lists models of X1(N), 11 ≤ N ≤ 20, most of which
are well known. These equations are given in terms of two functions u and v; the last
two columns give s and t in terms of u and v. These equations were mostly found

by trial and error by trying various subtitutions in Φ
(s,t)
N . Substituting for s and t in

the coefficients of the elliptic curve y2+(1+(t−1)sx+t(t−1)s)y = x3+t(t−1)sx2

gives the equation of the corresponding elliptic curve in terms of u and v.

Since the polynomials Φ
(q,r)
N are obtained by a recursive procedure as explained

above and which is easy to implement and since they quickly become large as N
grows, it seems pointless to present tables of them here. So, in Table 3, we list the

degrees degr Φ
(q,r)
N and degq Φ

(q,r)
N as well as the total degree degtotal Φ

(q,r)
N of Φ

(q,r)
N

for every N from 16 to 51.
Recall that the gonality of an irreducible projective algebraic curve X is the

smallest degree of a surjective morphism from X to the projective line. It is also
the smallest possible value of the degree in terms of one of the variables of a plane
affine equation of X. In particular, if γ(N) denotes the gonality of X1(N), then

min
(
degr Φ

(q,r)
N , degq Φ

(q,r)
N

)
is an upper bound for γ(N). However this bound is

not always the best possible; for example the degrees in u and v of the equations
in Table 2 are also upper bounds, and these are sometimes smaller.
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Table 1. The polynomials Φ
(f,g)
N , Φ

(t,s)
N , Φ

(q,r)
N , 4 ≤ N ≤ 15.

N g Φ
(f,g)
N Φ

(t,s)
N Φ

(q,r)
N

4 0 g

5 0 g − f

6 0 g2 − g + f s + 1

7 0 g3 − fg + f2 t + s

8 0 (f + 1)g2 − 3fg + 2f2 (s + 2)t − 1 q + 1

9 0 g5 − g4 + (f + 1)g3 t − (s2 + s + 1) r − q

−3fg2 + 3f2g − f3

10 0 g5 + fg4 − 3fg3 (s2 + 3s + 1)t + s2 (q2 + q − 1)r

+(3f2 + f)g2 − 2f2g + f3 +q(q + 2)

11 1 fg7 − (3f + 1)g6 + 3f(f + 2)g5 t2 + s(s2 + 3s + 4)t − s r2 + q2r + (q2 + q)

−9f2g4 + f2(4f − 1)g3

+3f3g2 − 3f4g + f5

12 0 g6 − (f − 1)g4 − 5fg3 (s + 3)t2 + (s − 3)t (q + 2)r + 1

+f2(f + 10)g2 − 9f3g + 3f4 +s2 + 1

13 2 g10 + f2g9 − 6f(f + 1)g8 t3− r2 − (q3 + q2 − 1)r

+f(5f2 + 21f + 3)g7 (s4 + 5s3 + 9s2 + 4s + 2)t2 −q(q + 1)2

−f(24f2 + 13f + 1)g6 +(s3 + 6s2 + 3s + 1)t + s3

+3f2(f + 2)(3f + 1)g5

−15f3(f + 1)g4 + 4f4(f + 5)g3

−15f5g2 + 6f6g − f7

14 1 fg9 − 3fg8 + (4f2 + 6f + 1)g7 (s3 + 5s2 + 6s + 1)t2 (q3 + 2q2 − q − 1)r2

−f(f2 + 17f + 10)g6 −(s4 + 3s3 + 6s2 + 7s + 1)t +q(3q + 2)r

+f(16f2 + 30f + 1)g5 +s −q2(q + 1)

−5f2(f2 + 8f + 1)g4

+5f3(5f + 2)g3 − 2f4(3f + 5)g2

+f5(5g − f)

15 1 g13 + (f − 1)g12 + (f2 − 3f + 1)g11 t3+ r2+

−(3f2 + 2f + 1)g10 s(s4 + 7s3 + 18s2 + 19s + 10)t2 q(q − 1)(q2 + 3q + 3)r

+(7f3 + 19f2 + 8f + 1)g9 +s(s4 + 4s3 − 5s − 5)t +q2(q2 + 3q + 3)

−f(36f2 + 37f + 9)g8 +s(s4 + s3 + s2 + s + 1)

+f2(18f2 + 73f + 36)g7 − 2f3(31f + 37)g6

+f3(19f2 + 81f − 1)g5 − 5f4(9f − 1)g4

+10f5(f − 1)g3 + 10f6g2 − 5f7g + f8
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Table 3. Degree in r, in q and total degree of Φ
(q,r)
N , 16 ≤ N ≤ 51.

N g degr Φ
(q,r)
N degq Φ

(q,r)
N degtotal Φ

(q,r)
N N g degr Φ

(q,r)
N degq Φ

(q,r)
N degtotal Φ

(q,r)
N

16 2 3 3 5 34 21 11 16 23

17 5 4 5 8 35 25 15 21 32

18 2 3 4 6 36 17 11 16 23

19 7 5 6 10 37 40 18 24 37

20 3 3 5 6 38 28 14 20 29

21 5 5 7 11 39 33 18 24 37

22 6 4 7 11 40 25 16 20 32

23 12 7 9 14 41 51 22 30 45

24 5 6 7 11 42 25 15 20 30

25 12 8 11 16 43 57 24 33 49

26 10 7 9 15 44 36 19 25 39

27 13 8 12 17 45 41 23 31 47

28 10 7 10 15 46 45 21 29 44

29 22 11 15 22 47 70 29 39 59

30 9 8 9 15 48 37 19 28 41

31 26 13 17 26 49 69 31 42 64

32 17 10 14 21 50 48 23 32 48

33 21 12 17 26 51 65 30 41 62
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