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A LOCAL MIN-MAX-ORTHOGONAL METHOD

FOR FINDING MULTIPLE SOLUTIONS

TO NONCOOPERATIVE ELLIPTIC SYSTEMS

XIANJIN CHEN AND JIANXIN ZHOU

Abstract. A local min-max-orthogonal method together with its mathemat-
ical justification is developed in this paper to solve noncooperative elliptic
systems for multiple solutions in an order. First it is discovered that a non-
cooperative system has the nature of a zero-sum game. A new local char-
acterization for multiple unstable solutions is then established, under which
a stable method for multiple solutions is developed. Numerical experiments
for two types of noncooperative systems are carried out to illustrate the new
characterization and method. Several important properties for the method are
explored or verified. Multiple numerical solutions are found and presented with
their profiles and contour plots. As a new bifurcation phenomenon, multiple
asymmetric positive solutions to the second type of noncooperative systems
are discovered numerically but are still open for mathematical verification.

1. Introduction

Involving two or more components (particles, molecules, species, etc.), nonlinear
differential systems (e.g., the nonlinear Schrödinger systems) are known to have
many applications. In study of pattern formation, stability/instability, and other
evolution dynamics, standing solitary wave or steady state solutions are of great
interest to many researchers. More often, those differential systems result in certain
semilinear elliptic systems, of which three types have drawn much attention recently
[4, 5, 6, 8, 9, 10, 11, 15] due to their wide application background. They are the
cooperative system

(1.1)

{
−Δu(x) = Gu(x, u(x), v(x)), x ∈ Ω,
−Δv(x) = Gv(x, u(x), v(x)), x ∈ Ω,

with energy functional

(1.2) J(u, v) =

∫
Ω

[
1

2
(|∇u(x)|2 + |∇v(x)|2)−G(x, u(x), v(x))

]
dx,

the noncooperative system

(1.3)

{
−Δu(x) = Gu(x, u(x), v(x)), x ∈ Ω,
−Δv(x) = −Gv(x, u(x), v(x)), x ∈ Ω,
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with energy functional

(1.4) J(u, v) =

∫
Ω

[
1

2
(|∇u(x)|2 − |∇v(x)|2)−G(x, u(x), v(x))

]
dx,

and the Hamiltonian type system

(1.5)

{
−Δu(x) = Gv(x, u(x), v(x)), x ∈ Ω,
−Δv(x) = Gu(x, u(x), v(x)), x ∈ Ω,

with energy functional

(1.6) J(u, v) =

∫
Ω

[∇u(x) · ∇v(x)−G(x, u(x), v(x))]dx,

where Ω is a bounded open domain in R
N (N ≥ 1), G : Ω×R

2 → R is of class C1 in
the variables (u, v) ∈ R

2 with gradient ∇G = (Gu, Gv) and satisfies some growth
conditions. Here, zero Dirichlet or Neumann boundary conditions are assumed.
Certain qualitative results for those systems including the existence or multiplicity
of their solutions have been established under some suitable assumptions; see [7,
8, 9, 10, 11, 15] and the references therein. As a subsequent paper to [5, 6], we
continue developing some computational theory and methods to solve those systems
for their multiple solutions in an order.

Example 1.1. The Gross-Pitaevskii system [4, 10, 13]

(1.7) i
∂Φj

∂t
= ΔΦj − Vj(x)Φj − μj |Φj |2Φj −

∑
i �=j

βij |Φi|2Φj , j = 1, 2, ...,m

has been widely used to describe multi-species Bose-Einstein condensations (BEC)
in m different hyperfine spin states on the corresponding condensate wave functions
Φj , where Vj is the magnetic trapping potential for the jth hyperfine spin state, the
constants μi and βij are the intraspecies and interspecies scattering lengths which
represent the interactions between “like” and “unlike” particles, respectively; e.g.,
βij > 0 (< 0) means repulsive (attractive) interaction between the ith and jth
particles. To find its solitary wave solutions of the form Φj = e−iλjtuj(x), one
may transform system (1.7) into the elliptic system

(1.8) −Δuj + (Vj(x) + λj)uj + μju
3
j +

∑
i �=j

βiju
2
iuj = 0, j = 1, ...,m.

Here, λj ’s are some positive constants. When m = 2, it is easy to see that system
(1.8) is cooperative if βijβji > 0, for which some numerical results can be found
in [4]; while system (1.8) becomes noncooperative if βijβji < 0, for which there
is no efficient or reliable numerical method available so far for finding its multiple
nontrivial solutions.

Since cooperative systems have already been studied in [5, 6] and many Hamil-
tonian type systems can actually be converted into noncooperative ones by change
of variables, we will focus on noncooperative systems in this work.

Next, to see why our local min-orthogonal method (LMOM) developed in [5, 6]
for the cooperative case cannot be applied to the noncooperative case, let us explain
an essential difference between these two systems.

Let H be a real Hilbert space with inner product 〈·, ·〉 and φ ∈ C1(H,R). A
point u0 ∈ H is a critical point of φ if φ′(u0) = 0 where φ′ is the first Fréchet
derivative of φ. Obviously, any local extremum of φ is a critical point. Critical
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points that are not local extrema of φ are called saddle points. The Morse index
(MI) of a critical point u0 of φ is the dimension of the maximum negative definite
subspace of φ′′(u0) in H. When φ is of the form

(1.9) φ(u) =
1

2
〈Au,u〉+ b(u)

where A : H → H is an invertible self-adjoint linear operator and b is a nonlinear
functional with compact gradient ∇b ∈ C(H,H), φ is called strongly indefinite if
both the positive and negative eigenspaces of A are infinite-dimensional; φ is called
positive (semi-positive) definite if the dimension of the negative eigenspace of A is
zero (finite).

It is obvious that if φ is strongly indefinite, so is −φ. In this case, the Morse index
of every critical point of both φ and −φ is infinite and hence provides no help for
one to find those critical points [1, 2]. This also implies that a strongly indefinite
functional is neither bounded from above nor from below, not even modulo any
finite-dimensional subspace [12].

Taking (1.9) into account, one sees that the linear operator, denoted by Ac, in
functional (1.2) for the cooperative case and the linear operator, denoted by Anc,
in functional (1.4) for the noncooperative case are, respectively,

(1.10) Ac =

[
−Δ 0
0 −Δ

]
, Anc =

[
−Δ 0
0 Δ

]
.

For both cases, the term b(u) =
∫
Ω
G(x, u, v)dx has a compact gradient if it does not

grow too rapidly, e.g., it satisfies some subcritical growth condition [7, 8], see also
condition (F1) in Section 4.1. Hence, functional (1.2) is positive definite and has
critical points with a finite Morse index; while functional (1.4) is strongly indefinite
and each of its critical points has an infinite Morse index.

By [5, 6], if a critical point u∗ found is nondegenerate, there exists a finite-
dimensional support L with dim(L) =MI(u∗) − 2. Since the functional J in (1.4)
is strongly indefinite and MI(u∗) = ∞, a finite-dimensional support L for LMOM
does not exist; see also Theorem 4.2. Hence, LMOM cannot be applied to solve
noncooperative systems. In fact, there is no reliable numerical method available so
far for solving such strongly indefinite problems.

To further motivate our new method, let us view the two components u and v as
two players in a two-person game and define their objective functions respectively
by

f(u, v) =

∫
Ω

[
1

2
|∇u(x)|2 −G(x, u(x), v(x))]dx = J(u, v)± α(v),(1.11)

g(u, v) =

∫
Ω

[
1

2
|∇v(x)|2 − (±)G(x, u(x), v(x))]dx = ± (J(u, v) + β(u)) ,(1.12)

where α(w) = β(w) = − 1
2

∫
Ω
|∇w(x)|2dx, the functional J is as in (1.2) and the

sign is “+” for the cooperative case (1.1), and the functional J is as in (1.4) and
the sign is “−” for the noncooperative case (1.3). Then, (u∗, v∗) is a solution to
system (1.1) or (1.3) iff (u∗, v∗) solves the system

(1.13) f ′
u(u, v) = 0, g′v(u, v) = 0.

Obviously, the term ±α(v) can be viewed as a constant to the player u and so can
the term ±β(u) to the player v. Thus, J(u, v) and ±J(u, v) are the essential parts
of their objective functions, respectively.



2216 XIANJIN CHEN AND JIANXIN ZHOU

For the cooperative system (1.1), the essential parts of the two players’ objective
functions are the same, i.e., J(u, v). So it is quite natural to call system (1.1)
cooperative in the sense of game theory. In this case, the objective functions f and
g are positive definite in u and v, respectively, and a solution (u∗, v∗) to system
(1.1) can be found through a two-person game

(1.14)

{
u∗ = argminu∈N (u∗) f(u, v

∗),
v∗ = argminv∈N (v∗) g(u

∗, v),

where N (u∗),N (v∗) are some open neighborhoods of u∗, v∗, respectively. On the
other hand, for the noncooperative system (1.3), the essential parts of the two
players’ objective functions f, g are respectively J(u, v) and −J(u, v), where J is
as in (1.4). Hence, a solution (u∗, v∗) to system (1.3) can be found by a two-person
zero-sum game

(1.15)

{
u∗ = argminu∈N (u∗) f(u, v

∗)
v∗ = argminv∈N (v∗) g(u

∗, v)
⇐⇒

{
u∗ = argminu∈N (u∗) J(u, v

∗)
v∗ = argmaxv∈N (v∗) J(u

∗, v)

or equivalently by a local saddle point problem

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗), ∀u ∈ N (u∗), v ∈ N (v∗).

Of course, it becomes much more complicated as multiple solutions are concerned.
However, the discovery of the nature of a zero-sum game for problem (1.3) leads
us to develop a new local saddle point characterization and a new stable numerical
method, which hereafter is called a local min-max-orthogonal method (LMMOM),
for finding multiple saddle points to certain strongly indefinite functionals. This
method is the first one of its kind so far.

This paper is organized as follows. In Section 2, we establish a local min-max-
orthogonal characterization for saddle points to strongly indefinite functionals of the
form (1.4). In Section 3, we develop a numerical method for saddle points of infinite
Morse index. In the final section, we carry out numerical experiments on two types
of noncooperative systems to illustrate this new characterization and method. We
also verify certain important properties (e.g., existence, differentiability, separation)
that are closely related to our method.

2. A local min-max-orthogonal characterization

For i = 1, 2, let Hi be a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖, let Li be a closed subspace of Hi and let Hi = Li ⊕ L⊥

i be its orthogonal
decomposition. Denote H = H1 × H2, L = L1 × L2. Thus L⊥

1 × L⊥
2 = L⊥ and

H = L ⊕ L⊥. Denote SB = {u ∈ B : ‖u‖ = 1} for any closed subspace B of
Hi (i = 1, 2) or H and let [Li, v] = {tv + w|w ∈ Li, t ∈ R}, ∀v ∈ SL⊥

i
, i = 1, 2.

Assume J ∈ C1(H,R) and denote by ∇J ≡ (∂1J, ∂2J) its gradient.

Definition 2.1 ([6]). The set-valued mapping P : SL⊥ → 2H is the L-⊥ mapping
of J if for each v = (v1, v2) ∈ SL⊥

P (v) =
{
u ∈ [L1, v1]× [L2, v2] : ∂1J(u)⊥[L1, v1], ∂2J(u)⊥[L2, v2]

}
.

A single-valued mapping p : SL⊥ → H is called an L-⊥ selection of J if p(v) ∈ P (v),
∀v ∈ SL⊥ . For a given w ∈ SL⊥ , if such p is locally defined in N (w) ∩ SL⊥

where N (w) is some neighborhood of w, then p is called a local L-⊥ selection of
J at w; in addition, if p(v) is a local maximum of J in [L1, v1] × [L2, v2] for each
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v = (v1, v2) ∈ N (w) ∩ SL⊥ , then such p is called a local peak selection of J w.r.t.
L at w.

The notion of a local peak selection is introduced to find a local mountain pass
solution or to design a local min-max method in the literature. Here it is clear that
a local peak selection of J w.r.t. L at w is a local L-⊥ selection of J at w.

Lemma 2.1. For every unit vector w in a Hilbert space (X, ‖ · ‖), it follows that

‖v‖
‖w ± v‖ ≤

∥∥∥ w ± v

‖w ± v‖ − w
∥∥∥ ≤ 2‖v‖

‖w ± v‖ , ∀v ∈ X with v⊥w.

The following lemma is crucial in establishing a local characterization for multiple
saddle points of strongly indefinite functionals of the form (1.4) and a stepsize rule
in the LMMOM. Note that the opposite signs/directions in (i)–(ii) and w(j)(s) (j =
1, 2) below reveal a new search process for game-type saddle points in numerical
computation.

Lemma 2.2. Let J ∈ C1(H,R), let L be a closed subspace of H and w = (w1, w2) ∈
SL⊥ with w1 �= 0, w2 �= 0. Assume that p is a local L-⊥ selection of J and
continuous at w. Write p(w) ≡ (p1(w), p2(w)) = (t1w1, t2w2) + wL ∈ H, where
wL ∈ L and t1, t2 ∈ R with t1t2 �= 0. If d ≡ (d1, d2) = ∇J(p(w)) �= 0, then ∃s0 > 0
such that for each 0 < s ≤ s0, we have

(i) J(p(w(1)(s)))− J(p(w)) < −|t1|
4

||d1|| ||w(1)(s)− w|| ≤ −|t1|
8

s||d1||2 < 0,

if d1 �= 0;

(ii) J(p(w(2)(s)))− J(p(w)) >
|t2|
4

||d2|| ||w(2)(s)− w|| ≥ |t2|
8

s||d2||2 > 0,

if d2 �= 0,

where w(1)(s) = w−sign(t1)s(d1,0)
||w−sign(t1)s(d1,0)|| ∈ SL⊥ , w(2)(s) = w+sign(t2)s(0,d2)

||w+sign(t2)s(0,d2)|| ∈ SL⊥ .

Proof. (i) First, by the definition of p, we have di⊥[Li, wi], i = 1, 2. Then we have

w(1)(s) ≡ (w
(1)
1 (s), w

(1)
2 (s)) = (

w1 − sign(t1)sd1√
1 + s2‖d1‖2

,
w2√

1 + s2‖d1‖2
) → w = (w1, w2)

as s → 0. Since p is continuous at w, p(w(1)(s)) → p(w) as s → 0. On the other
hand, for each s near zero,

p(w(1)(s)) ≡ (p1(w
(1)(s)), p2(w

(1)(s))) = (t̃1(s)w
(1)
1 (s), t̃2(s)w

(1)
2 (s)) + wL(s)

for some scalars t̃1(s), t̃2(s) and some wL(s) ∈ L. Thus t̃i(s) → ti as s → 0, i = 1, 2.
With t1t2 �= 0, we have sign(t̃1(s)) = sign(t1), |t̃1(s)| > |t1|/2 when s is small.

Since J ∈ C1(H,R), by the definition of p, di⊥[Li, wi], i = 1, 2, we have d2⊥w
(1)
2 (s)

and d2⊥p2(w
(1)(s)). Thus

J(p(w(1)(s)))− J(p(w))

= 〈∇J(p(w)), p(w(1)(s))− p(w)〉+ o(‖p(w(1)(s))− p(w)‖)
= 〈d1, p1(w(1)(s))〉+ o(‖p(w(1)(s))− p(w)‖).
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Then

〈d1, p1(w(1)(s))〉

= 〈d1, t̃1(s)w(1)
1 (s)〉 = 〈d1, t̃1(s)

w1 − sign(t1)sd1√
1 + s2‖d1‖2

〉 (since wL(s) ∈ L)

= 〈d1,
−sign(t1)t̃1(s)sd1√

1 + s2‖d1‖2
〉 = −sign(t1)t̃1(s)s√

1 + s2‖d1‖2
‖d1‖2 (since d1⊥[L1, w1])

= −sign(t̃1(s))t̃1(s)s√
1 + s2‖d1‖2

‖d1‖2 = − |t̃1(s)|s√
1 + s2‖d1‖2

‖d1‖2.

Since p(w(1)(s)) → p(w) as s → 0, when s is small, we have

J(p(w(1)(s)))− J(p(w))

=
−|t̃1(s)|s‖d1‖2√

1 + s2‖d1‖2
+ o(‖p(w(1)(s))− p(w)‖) < −|t1|s‖d1‖2

2
√
1 + s2‖d1‖2

.(2.1)

By Lemma 2.1, we have

(2.2)
s‖d1‖
2

≤ s‖d1‖√
1 + s2‖d1‖2

≤
∥∥∥ w − sign(t1)s(d1, 0)

‖w − sign(t1)s(d1, 0)‖
− w

∥∥∥ ≤ 2s‖d1‖√
1 + s2‖d1‖2

when s > 0 is sufficiently small. Combining (2.1) and (2.2) yields

〈∇J(p(w)), p(w(1)(s))− p(w)〉 < −|t1|
4

‖d1‖
2s‖d1‖√

1 + s2‖d1‖2

≤ −|t1|
4

‖d1‖
∥∥∥ w − sign(t1)s(d1, 0)

‖w − sign(t1)s(d1, 0)‖
− w

∥∥∥ = −|t1|
4

‖d1‖ · ‖w(1)(s)− w‖

≤ −|t1|
8

s‖d1‖2

when s is sufficiently small. Taking (2.1) into account, we conclude that ∃s0 > 0
s.t. (i) holds true ∀0 < s ≤ s0. Finally, by similar arguments as above, one can
prove (ii). �

Now we are ready to establish a local game-type saddle point characterization
of multiple saddle points to strongly indefinite functional J in (1.4).

Theorem 2.1. Let J ∈ C1(H,R) be a strongly indefinite functional of form (1.4),
w̄ = (w̄1, w̄2) ∈ SL⊥ . Assume that p(·) = (p1(·), p2(·)) is a local L-⊥ selection of J
at w̄ s.t.

(i) p is continuous at w̄,
(ii) dist(p1(w̄), L1) > 0 and dist(p2(w̄), L2) > 0.

If there exists an open neighborhood U × V ⊂ L⊥ of (w̄1, w̄2) s.t.

(2.3) J(p( (w̄1,w2)
‖(w̄1,w2)‖)) ≤ J(p(w̄1, w̄2)) ≤ J(p( (w1,w̄2)

‖(w1,w̄2)‖ )), ∀(w1, w2) ∈ U × V,

then p(w̄) is a critical (saddle) point of J in H.

Proof. Suppose, by contradiction, (d1, d2) ≡ ∇J(p(w̄)) �= 0. We have either (a)
d1 �= 0 or (b) d2 �= 0. By definition, we may write p(w̄) = (p1(w̄), p2(w̄)) =
(t1w̄1, t2w̄2) + wL for some scalars t1, t2 and some wL ∈ L. Then condition (ii)
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implies that w̄1 �= 0, w̄2 �= 0 and t1t2 �= 0. By Lemma 2.2, there is s0 > 0 such that
when 0 < s ≤ s0, we have

J(p(w(1)(s))) < J(p(w̄))− 1

4
|t1| ‖d1‖ ‖w(1)(s)− w̄‖ < J(p(w̄)) if d1 �= 0,

J(p(w(2)(s))) > J(p(w̄)) +
1

4
|t2| ‖d2‖ ‖w(2)(s)− w̄‖ > J(p(w̄)) if d2 �= 0,

where

w(1)(s) ≡ (w
(1)
1 (s), w

(1)
2 (s)) =

w̄ − sign(t1)s(d1, 0)

||w̄ − sign(t1)s(d1, 0)||

=
(w̄1 − sign(t1)sd1, w̄2)√

1 + s2‖d1‖2
∈ SL⊥ ,

w(2)(s) ≡ (w
(2)
1 (s), w

(2)
2 (s)) =

w̄ + sign(t2)s(0, d2)

||w̄ + sign(t2)s(0, d2)||
,

=
(w̄1, w̄2 + sign(t2)sd2)√

1 + s2‖d2‖2
∈ SL⊥ .

In either case, it violates (2.3) when s is small. �
Note that the game-type saddle point characterization in (2.3) has extended the

notion of a zero-sum game as well as the saddle point definition in game theory. If

introducing a solution set M =
{
p(w) : w ∈ SL⊥

}
, which naturally generalizes

the notion of the Nehari manifold (wherein L = {0}), we may call p(w̄) a saddle
point (actually a game-type saddle point) of J on M. With this in mind, instead
of finding saddle points of J in H, we actually look for saddle points of J on M.
Here, the function p(·) is introduced in order to find multiple nontrivial solutions.

There are some variations of Lemma 2.2 based on which different stepsize rules
can be derived. The following is one of such variations.

Lemma 2.3. Under the assumptions in Lemma 2.2, it follows that

(i) J(p(w(1)(s1)))− J(p(w)) < −|t1|
4

||d1|| · ||w(1)(s1)− w|| ≤ −|t1|
8

s1||d1||2 < 0,

if d1 �= 0;

(ii) J(p(w))− J(p(w(2)(s2))) < −|t2|
4

||d2|| · ||w(2)(s2)− w|| ≤ −|t2|
8

s2||d2||2 < 0,

if d2 �= 0;

∀0 < s1 ≤ s̄1, 0 < s2 ≤ s̄2 for some s̄1, s̄2 > 0, where

w(1)(s1) =
w − sign(t1)s1(d1, 0)

||w − sign(t1)s1(d1, 0)||
∈ SL⊥ ,

w(2)(s2) =
w + sign(t2)s2(0, d2)

||w + sign(t2)s2(0, d2)||
∈ SL⊥ .

Corollary 2.1. With the notation and assumptions in Lemma 2.2, if we let
j = arg max

k∈{1,2}
‖dk‖, then there exists s̄ > 0 such that

J(p(w(2)(s)))− J(p(w(1)(s))) >
|tj |
8

s||dj ||2 ≥ |tj |
16

s||d||2, ∀0 < s ≤ s̄.

Proof. Follows from Lemma 2.2 and the fact 2||dj ||2 ≥ ‖d‖2 = ‖d1‖2 + ‖d2‖2. �
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3. A local min-max-orthogonal algorithm

Initialize: L1 ×  L2, ε > 0

Choose an initial k = 1, wk = (wk
1, wk

2) ∈ L1
⊥ x L2

⊥

Compute θk = (θk
1, θk 

2) = p(wk) and dk = (dk
1, dk

2) = ∇ J(θk)

wk+1 ← wk(s1, s2); k ← k+1 max{||dk
1||, ||d

k
2||} < ε

yes

no

Output θk; stop. 

Find wk(s1, s2) = 
(wk−sign(t k

0)s1dk
1,wk

2+sign(rk
0)s2dk

2)

||(wk
1−sign(t k

0)s1dk
1,wk

2+sign(rk
0)s2dk

2)||

Figure 1. Flow chart of the local min-max-orthogonal algorithm.

Based on the local game-type saddle point characterization in Theorem 2.1 and
the stepsize rule in Lemma 2.3, we present a new local min-max-orthogonal method
(LMMOM):

Algorithm 3.1. Local Min-Max-Orthogonal Method (LMMOM)

Step 0: Set L = L1 × L2 = span{u1, ..., um} × span{v1, ..., vn}, a tolerance
ε > 0, and choose a control parameter λ s.t. 0 < λ < 1. Set k = 1.

Step 1: Choose an initial direction wk = (wk
1 , w

k
2 ) ∈ SL⊥

1 ×L⊥
2

with wk
1 �= 0,

wk
2 �= 0. Compute

p1(w
k) =

∑m
i=1 t

k
i ui + tk0w

k
1 ∈ [L1, w

k
1 ]\L1 (i.e., tk0 �= 0),

p2(w
k) =

∑n
i=1 r

k
i vi + rk0w

k
2 ∈ [L2, w

k
2 ]\L2 (i.e., rk0 �= 0),

where p(wk) = (p1(w
k), p2(w

k)) is an L-⊥ selection of J at wk, tki and rkj
(i = 0, . . . ,m, j = 0, . . . , n) are solved locally from the (m+n+2) equations

〈∂1J(p(wk)), wk
1〉 = 0, 〈∂1J(p(wk)), ui〉 = 0, i = 1, . . . ,m,

〈∂2J(p(wk)), wk
2〉 = 0, 〈∂2J(p(wk)), vj〉 = 0, j = 1, . . . , n

in (m+ n+ 2) variables.
Step 2: Set θk = p(wk) and compute the gradient dk = (dk1 , d

k
2) = ∇J(θk).

Step 3: If max{||dk1 ||, ||dk2 ||} ≤ ε, Output θk, Stop; otherwise, Goto Step 4.
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Step 4 (Update the search direction by the stepsize rule): Find

(3.1) wk+1 ≡ (wk+1
1 , wk+1

2 ) = φ(s1, s2) ≡
(wk

1(s1), w
k
2(s2))

‖(wk
1(s1), w

k
2(s2))‖

where wk
1 (s1) = wk

1 −sign(tk0)s1d
k
1 , w

k
2 (s2) = wk

2 +sign(rk0 )s2d
k
2 , and s̄1, s̄2

are determined by the following stepsize rule.
(i) First, initialize the stepsizes s̄1 = s̄2 = 0.
(ii) If ||dk1 || > ε, then

s̄1 = max
i∈N

{ λ

2i

∣∣∣2i > ||dk1 ||, J(p(φ(
λ

2i
, 0)))− J(p(wk)) < −|tk0 |

4
||dk1 || · ||φ(

λ

2i
, 0)− wk||

}
;

If ||dk2 || > ε, then

s̄2 = max
i∈N

{ λ

2i

∣∣∣2i > ||dk2 ||, J(p(wk))− J(p(φ(0,
λ

2i
))) < −|rk0 |

4
||dk2 || · ||φ(0,

λ

2i
)− wk||

}
.

Here (tk0 , t
k
1 , . . . , t

k
m, rk0 , r

k
1 , . . . , r

k
n) is used as an initial guess to evalu-

ate p(φ( λ
2i , 0)) and/or p(φ(0, λ

2i )) in the same way as in Step 1.

Step 5: Compute p(wk+1) with the same initial guess as in Step 4. Set

k ← k + 1. Goto Step 2.

Remark 3.1. (a) A flow chart of Algorithm 3.1 is shown in Figure 1 wherein the
stepsizes s̄1, s̄2 are determined by Step 4 of Algorithm 3.1 and satisfy

(3.2) s̄1

{
> 0, if ‖dk1‖ > ε,
= 0, if ‖dk1‖ ≤ ε,

s̄2

{
> 0, if ‖dk2‖ > ε,
= 0, if ‖dk2‖ ≤ ε.

Thus Algorithm 3.1 produces two byproducts, {wk,1} and {wk,2}, given by

(3.3) wk,1 =

{
φ(s̄1, 0), if ‖dk1‖ > ε,
wk, if ‖dk1‖ ≤ ε,

wk,2 =

{
φ(0, s̄2), if ‖dk2‖ > ε,
wk, if ‖dk2‖ ≤ ε,

where φ is defined in (3.1). Then from Step 4 of Algorithm 3.1, one can see that

J(p(wk,2)) ≥ J(p(wk)) ≥ J(p(wk,1)), ∀k.

(b) The algorithm usually starts with L = {0} × {0} with which a first solution
W1 = (u1, v1) is found. Then we may set L = span{u1} × span{v1} to find a new
solution W2 = (u2, v2). As L is gradually expanded by newly found solutions Wk,
more solutions can be found in a partial order defined by the dimension of L.

A symmetry, if available, can also be used to reduce L and make the algo-
rithm more efficient. The algorithm can also be followed by Newton’s method with
Armijo’s stepsize rule to speed up local convergence. See [14] for more details.

4. Applications to noncooperative systems

In this section, we apply our method (i.e., the LMMOM) to solve two types of
noncooperative systems for multiple solutions and verify some of their important
properties.
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4.1. Noncooperative systems of definite type. Consider noncooperative ellip-
tic systems of the form [7, 8, 9, 11, 15]{

−Δu = λu− δv +Gu(x;u, v) x ∈ Ω,
−Δv = δu+ γv −Gv(x;u, v) x ∈ Ω,

u = v = 0, x ∈ ∂Ω,(4.1)

where Ω ⊂ R
N (N ≥ 1), γ ≤ λ, δ > 0. The nonlinear term G(x;U) ∈ C1(Ω×R

2;R)
(in the variables U = (u, v) ∈ R

2) satisfies the following conditions [7, 8]

(F1) |∇G(x, U)| ≤ c(1 + |U |ξ−1), ∀U ∈ R
2, a.e. x ∈ Ω, for some c > 0 and

2 ≤ ξ < 2N
N−2 if N ≥ 3 or 2 ≤ ξ < +∞ if N = 1, 2; (subcritical),

(F2) lim inf
|U|→∞

U · ∇G(x;U)− 2G(x;U)

|U |μ ≥ a > 0 uniformly a.e. x ∈ Ω with μ >

N(ξ − 2)/2 if N ≥ 3 or μ > ξ − 2 if N = 1, 2; (nonquadratic),

(F3) G(x;U) ≥ 0, ∀U ∈ R
2, lim

|U|→0

G(x;U)

|U |2 = 0 uniformly a.e. x ∈ Ω.

If we let H = L2(Ω)× L2(Ω), denoting ∇G = (Gu, Gv) and

A =

[
λ −δ
δ γ

]
, R =

[
1 0
0 −1

]
, −�Δ =

[
−Δ 0
0 −Δ

]
,

then (4.1) becomes

LU = ∇G(x;U)

where L : D(L) ⊂ H → H is a self-adjoint operator given by LU = R(−�Δ − A)U
and

D(L) = W 2,2(Ω,R2) ∩W 1,2
0 (Ω,R2).

Problem (4.1) was particularly studied in [7, 8]. As pointed out in [8], the
following asymptotic noncrossing conditions

(F+
4 ) λk−1 < lim inf

|U|→∞

2G(x;U)

|U |2 ≤ lim sup
|U|→∞

2G(x;U)

|U |2 ≤ λk unif. a.e. x ∈ Ω,

(F−
4 ) λk−1 ≤ lim inf

|U|→∞

2G(x;U)

|U |2 ≤ lim sup
|U|→∞

2G(x;U)

|U |2 < λk unif. a.e. x ∈ Ω,

or crossing conditions

(F5) G(x;U) ≥ 1

2
λk−1|U |2 a.e. x ∈ Ω, ∀U ∈ R

2,

(F6) lim sup
|U|→0

2G(x;U)

|U |2 ≤ α < λk < β ≤ lim inf
|U|→∞

2G(x;U)

|U |2 unif. a.e.x ∈ Ω,

where λk−1 < λk are two consecutive eigenvalues of the operator L, were used to
assure the existence of nonzero solutions to (4.1). In some sense, the assumption
G(x;U) ≥ 0, ∀U ∈ R

2 in (F3) is a necessity for conditions (F±
4 ) or (F5)–(F6). Mean-

while, other authors [3, 9, 15] proved that such an assumption may be weakened
by, e.g., G(x; 0, v) ≥ 0, for a.e. x ∈ Ω, v ∈ R, under which the existence results can
still be obtained.
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Remark 4.1. Due to G(x;U) ≥ 0 in (F3), system (4.1) is called a noncoopera-
tive system of definite type. In Section 4.2, we will consider an indefinite type
noncooperative system where G(x;U) changes sign.

Example 4.1. As a typical problem studied in [3, 7, 8, 9, 15], we choose N = 2
(i.e., Ω ⊂ R

2) and G(x;u, v) ≡ G(u, v) = 1
p+1 |u|p+1+ 1

q+1 |v|q+1 with p, q > 1. Then

(4.1) becomes{
−Δu = λu− δv + |u|p−1u x ∈ Ω,
−Δv = δu+ γv − |v|q−1v x ∈ Ω,

u = v = 0, x ∈ ∂Ω.(4.2)

For this particular example, one sees that conditions (F1)–(F3) are satisfied. Let
H = H1

0 (Ω) ×H1
0 (Ω) and ‖ · ‖ be its norm, i.e., ‖(u, v)‖2 =

∫
Ω
(|∇u|2 + |∇v|2)dx,

∀(u, v) ∈ H. Then, weak solutions of (4.2) are critical points of the following
C2-functional on H:

(4.3) J(u, v) =
1

2

∫
Ω

[
(|∇u|2−|∇v|2)−(λu2−2δuv−γv2)−2(

|u|p+1

p+ 1
+
|v|q+1

q + 1
)
]
dx.

Now we define the solution set

(4.4) M̃ =
{
(u, v) ∈ H : ∂J/∂u⊥u, ∂J/∂v⊥ v

}
where ∇J = (∂J∂u ,

∂J
∂v ) is the gradient of J . Clearly, M̃ contains all critical points

of J . Next, we verify or state some basic properties of J in (4.3) which are closely
related to the LMMOM and our numerical computations. For simplicity, from now
on, we denote

∫
Ω
by

∫
.

Proposition 4.1. Any critical point of J in (4.3) has an infinite Morse index.

Proposition 4.2. For J in (4.3) and ∀(u, v) ∈ M̃, it follows that

J(u, v) =

∫ [
(
1

2
− 1

p+ 1
)|u|p+1 + (

1

2
− 1

q + 1
)|v|q+1

]
dx ≥ 0.

Consequently, (0, 0) ∈ M̃ is the least energy saddle point of J with J(0, 0) = 0.

Proof. For every point (u, v) ∈ M̃, the conditions ∂J
∂u⊥u and ∂J

∂v⊥v lead to∫
|∇u|2dx =

∫ [
λu2 − δuv + |u|p+1

]
dx,∫

|∇v|2dx =

∫ [
γv2 + δuv − |v|q+1

]
dx.

(4.5)

Plugging them into (4.3) and since p, q > 1, we obtain

J(u, v) =

∫ [
(
1

2
− 1

p+ 1
)|u|p+1 + (

1

2
− 1

q + 1
)|v|q+1

]
dx ≥ 0. �

If denoting by σ1 the first eigenvalue of −Δ on H1
0 (Ω), then we have

Proposition 4.3. For any critical point (ū, v̄) �= (0, 0) of J , it follows that

(i) ū �= 0, v̄ �= 0 and
(ii) if γ < σ1, then

∫
ūv̄dx > 0.
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Proof. (i) is trivial. For (ii), by the second equation in (4.5), we have

δ

∫
ūv̄dx =

∫
|∇v̄|2dx− γ

∫
v̄2dx+

∫
|v̄|q+1dx.

Then (ii) follows via the Poincaré inequality. �

Property (ii) in Proposition 4.3 can help us select an initial guess (u, v) for our
method. The next lemma further confirms the existence and differentiability of an
L-⊥ selection p̃ of J in (4.3) when L = {0} × {0}.

Lemma 4.1. Assume γ ≤ λ < σ1. For every unit vector (ū, v̄) with
∫
ūv̄dx �= 0,

there exists a differentiable local peak selection p̃ of J w.r.t. L = {0} × {0} around

(ū, v̄) such that p̃(ū, v̄) = (t̄ū, s̄v̄) and t̄
s̄

∫
ūv̄dx > 0 for some t̄, s̄.

Proof. By definition, an L-⊥ selection p(ū, v̄) = (tū, sv̄) is solved from the nonlinear
system

∂J

∂t
(tū, sv̄) = t(

∫
[|∇ū|2 − λū2]dx) + δs

∫
ūv̄dx− |t|p−1t

∫
|ū|p+1dx = 0,(4.6)

∂J

∂s
(tū, sv̄) = s(

∫
[γv̄2 − |∇v̄|2]dx) + δt

∫
ūv̄dx− |s|q−1s

∫
|v̄|q+1dx = 0(4.7)

for a nonzero solution (t, s) (i.e., ts �= 0), where J is defined in (4.3). Denote

a0 = δ

∫
ūv̄dx, a1 =

∫
[|∇ū|2 − λū2]dx,(4.8)

a2 =

∫
|ū|p+1dx, b1 =

∫
[|∇v̄|2 − γv̄2]dx, b2 =

∫
|v̄|q+1dx.(4.9)

By our assumptions, we have a1, a2, b1, b2 > 0. Then, (4.7) gives

(4.10) t =
b1s+ b2|s|q−1s

a0
.

Since we seek nonzero solutions of (4.6)–(4.7), plugging (4.10) into (4.6) yields

(4.11) (b1 + b2|s|q−1)
a1
a0

+ a0 −
∣∣∣b1s+ b2|s|q−1s

a0

∣∣∣p−1 (b1 + b2|s|q−1)

a0
a2 = 0.

Define, for each s ∈ [0,∞),

ψ(s) = [b1 + b2|s|q−1]
a1
a0

+ a0 −
∣∣∣b1s+ b2|s|q−1s

a0

∣∣∣p−1 [b1 + b2|s|q−1]

a0
a2.

Clearly, ψ is continuous with ψ(0) = b1a1

a0
+ a0, ψ(s) ≈ −|s|pq−1 bp2a2

|a0|p−1a0
(when s

is sufficiently large). We then see that ψ(0)ψ(∞) < 0 because a1, a2, b1, b2 are all
positive. Thus by the mean value theorem, there exists s̄ > 0 such that ψ(s̄) = 0.

Plugging s̄ into (4.10) gives t̄ = (b1+b2|s̄|q−1)s̄
a0

�= 0 since b1 + b2|s̄|q−1 > 0. Thus,

(4.12)
t̄

s̄
δ

∫
ūv̄dx =

t̄

s̄
a0 = b1 + b2|s̄|q−1 > 0, or

t̄

s̄

∫
ūv̄dx > 0 since δ > 0.
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Next, we show that p̃(ū, v̄) = (t̄ū, s̄v̄) is a local maximum of J in the subspace
span{ū} × span{v̄}; i.e., we verify that the Hessian matrix

(4.13)

Q =

[
∂2J(tū,sv̄)

∂t2
∂2J(tū,sv̄)

∂t∂s
∂2J(tū,sv̄)

∂s∂t
∂2J(tū,sv̄)

∂s2

] ∣∣∣∣∣
(t,s)=(t̄,s̄)

=

[
a1 − a2p|t̄|p−1 a0

a0 −b1 − b2q|s̄|q−1

]
is negative definite. Since (t̄, s̄) solves (4.6)–(4.7), we have

(4.14) a1 = − s̄

t̄
a0 + a2|t̄|p−1, b1 =

t̄

s̄
a0 − b2|s̄|q−1.

Substituting (4.14) into (4.13) gives

Q =

[
− s̄

t̄ a0 − a2(p− 1)|t̄|p−1 a0
a0 − t̄

s̄a0 − b2(q − 1)|s̄|q−1

]
.(4.15)

Since a2, b2 > 0, p, q > 1, (4.12) implies that the diagonal elements of Q are
negative and the determinant |Q| > a2b2(p − 1)(q − 1)|t̄|p−1|s̄|q−1 > 0. Thus Q
is negative definite. Consequently, p̃(ū, v̄) = (t̄ū, s̄v̄) is a local maximum of J in
span{ū} × span{v̄}.

Finally, we show that such p̃ can be extended locally as a differentiable local
peak selection of J around (ū, v̄). Consider the equations

(4.16)

{
F1(u, v, t, s) ≡ ∂J

∂t (tu, sv) = 0,

F2(u, v, t, s) ≡ ∂J
∂s (tu, sv) = 0,

and define a matrix function

Q(u, v, t, s) ≡ ∂(F1, F2)

∂(t, s)
=

[
∂2

∂t2 J(tu, sv)
∂2

∂t∂sJ(tu, sv)

∂2

∂s∂tJ(tu, sv)
∂2

∂s2 J(tu, sv)

]
.(4.17)

Obviously, (ū, v̄, t̄, s̄) solves (4.16) and Q(u, v, t, s)
∣∣∣
(u,v,t,s)=(ū,v̄,t̄,s̄)

= Q. Since

|Q| > 0, by the implicit function theorem, there exists an open neighborhood
N (ū, v̄) of (ū, v̄) such that for every (u, v) ∈ N (ū, v̄) ∩ SL⊥ , (4.16) can be uniquely
solved for (t(u, v), s(u, v)), where t(u, v), s(u, v) are differentiable functions of (u, v)
with (t(ū, v̄), s(ū, v̄)) = (t̄, s̄). Hence a differentiable local L-⊥ selection p̃ with
p̃(ū, v̄) = (t̄ū, s̄v̄) is well defined in N (ū, v̄) ∩ SL⊥ . With J ∈ C2, it follows
that Q(t(u, v), s(u, v)) ≡ Q(u, v, t, s) is continuous in N (ū, v̄) ∩ SL⊥ . Since Q
is strictly negative definite and Q(t(ū, v̄), s(ū, v̄)) = Q, one can conclude that
Q(t(u, v), s(u, v)) is strictly negative definite, ∀(u, v) ∈ N (ū, v̄) ∩ SL⊥ . Therefore,
such p̃ is also a local peak selection of J w.r.t. L. The lemma is thus proved. �

For a general L = L1 × L2 ⊂ H, define the solution set

M =
{
p̃(u, v) �= (0, 0) : (u, v) ∈ SL⊥

}
.

In particular, for L = {0} × {0}, denote the solution set

M0 =
{
p̃(u, v) �= (0, 0) : ‖(u, v)‖ = 1

}
.
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Clearly, M ⊆ M0 ⊆ M̃, ∀L ⊂ H, where M̃ is defined in (4.4). Here the trivial
solution (0, 0) is excluded from the solution set M or M0. Next, we verify property
(ii) in Theorem 2.1 which insures that solutions found by our method are nontrivial.

Theorem 4.1. Assume λ, γ < σ1. Then there exists a constant α > 0 such that

(4.18) dist(M0, (0, 0)) ≥ α > 0.

Consequently, (0, 0) /∈ M0.

Proof. We start the proof by defining

M′ =
{
p̃(u, v) ≡ (tu, sv) : tu �= 0, ‖(u, v)‖ = 1

}
.

Clearly, M′ ⊆ M0. To prove M0 = M′, we verify that tū = 0 implies sv̄ = 0
for every L-⊥ selection p̄(ū, v̄) = (tū, sv̄) of J w.r.t. L = {0} × {0}. For each unit
vector (ū, v̄) ∈ H, assume p̄(ū, v̄) is an L-⊥ selection of J with L = {0} × {0}. By
(4.7), tū = 0 gives

(4.19) s
(∫

(|∇v̄|2 − γv̄2)dx+ |s|q−1

∫
|v̄|q+1dx

)
= 0

from which we have either s = 0 or
∫
(|∇v̄|2 − γv̄2)dx + |s|q−1

∫
|v̄|q+1dx = 0.

By the Poincaré inequality, γ < σ1 implies
∫
(|∇v̄|2 − γv̄2)dx > 0, ∀v̄ �= 0. Thus∫

(|∇v̄|2 − γv̄2)dx+ |s|q−1
∫
|v̄|q+1dx = 0 if and only if v̄ = 0. Hence tū = 0 implies

sv̄ = 0. Thus p̃(u, v) ∈ M′ for every p̃(u, v) ∈ M0, i.e., M0 ⊆ M′. So, M0 = M′.
Next, for each p̃(ū, v̄) = (tū, sv̄) ∈ M0 = M′, (4.6) gives

(4.20) |t|p−1

∫
|ū|p+1dx =

∫
[|∇ū|2 − λū2]dx+

s

t
δ

∫
ūv̄dx.

Note that
s

t
δ

∫
ūv̄dx ≥ 0 due to (4.12), wherein t̄, s̄ are replaced by t, s, respectively.

Hence

c0|t|p−1

[∫
|∇ū|2dx

] p+1
2

≥ |t|p−1

∫
|ū|p+1dx

≥
∫
(|∇ū|2 − λū2)dx ≥ (1− λ

σ1
)

∫
|∇ū|2dx(4.21)

or equivalently

(4.22) |t|
(∫

|∇ū|2dx
)1/2

≥
(

1

c0
(1− λ

σ1
)

) 1
p−1

> 0

for some constant c0 > 0 independent of ū via the Poincaré and Sobolev inequalities.

Setting α = ( 1
c0

− λ
c0σ1

)
1

p−1 gives

dist(p̃(ū, v̄), (0, 0)) ≥ |t|
(∫

|∇ū|2dx
)1/2

≥ α > 0, ∀p̃(ū, v̄) ∈ M0,

from which it follows that dist(M0, (0, 0)) ≥ α > 0. �
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As proved in [5, 6], if w̄ is a local minimum of J(p̃(·)) on SL⊥ , then MI(p̃(w̄)) ≤
dim(L) + 2. LMOM is designed to find such local minima. When J is strongly
indefinite, each critical point p̃(w̄) has an infinite Morse index. Thus, w̄ must be a
saddle point of J(p̃(·)) on SL⊥ and hence cannot be found by LMOM. Instead, the
new method LMMOM is designed to find such type of saddle points. This assertion
can also be stated as follows:

Theorem 4.2. Let L = L1×L2 ⊂ H with dim(L) < ∞ and let p be a differentiable
L-⊥ selection of J in (4.3) at w̄ = (ū, v̄) ∈ SL⊥ such that pi(w̄) /∈ Li, i = 1, 2, where
p(w̄) = (p1(w̄), p2(w̄)). If, in addition, ∇J(p(w̄)) = 0, then w̄ is a saddle point of
J(p(·)) on SL⊥ . Consequently, p(w̄) is a saddle point of J on M.

4.1.1. Numerical experiments. In this section, we apply the LMMOM to find mul-
tiple solutions to problem (4.2). We choose p = q = 3, λ = γ = −0.5, δ = 5
and two different domains: a square Ω1 = (−1, 1) × (−1, 1) ⊂ R

2 and a disk
Ω2 = {x ∈ R

2 : |x| < 1.4}.
For each (u, v) ∈ H, the gradient d ≡ (d1, d2) = ∇J(u, v) of J in (4.3) can be

found as follows. Since for every φ = (φ1, φ2) ∈ H we have

〈d, φ〉H =

∫
∇d · ∇φdx = −

∫
(Δd1φ1 +Δd2φ2) dx ≡ d

dt

∣∣
t=0

J((u, v) + tφ)

=

∫ [
(−Δu− λu+ δv − |u|p−1u)φ1 + (Δv + δu+ γv − |v|q−1v)φ2

]
dx.(4.23)

Thus, d satisfies the following two linear elliptic equations

(4.24)

{
Δd1 = Δu+ λu− δv + |u|p−1u x ∈ Ω,
Δd2 = −(Δv + δu+ γv − |v|q−1v) x ∈ Ω,

d1 = d2 = 0, x ∈ ∂Ω,

which can be solved by a finite-element or boundary-element solver, e.g., the MAT-
LAB subroutine ASSEMPDE as used in our numerical experiments.

In our experiments, 32768 (resp. 18432) triangle elements are used on Ω1 (resp.
Ω2). In both cases, the tolerance ε = 10−4. Figures 2-3 (resp. Figures 4-5) display
both the profiles (left) and contour (right) plots of the first few solutions to system
(4.2) on Ω1 (resp. Ω2). For both positive solutions depicted in Figure 2(a) and
4(a), L = {0} × {0}. All the sign-changing solutions in the figures are found by
using symmetries (i.e., applying the Haar projection, see also [5]) while setting
L = {0} × {0}. The sign-changing solutions in Figures 2-3 may also be found by
using nontrivial L’s, e.g., L = span{u1} × span{v1} can be used to find the sign-
changing solution shown in Figure 2(b), where (u1, v1) is the first solution found
on Ω1; see also Figure 2(a). Figure 6 (resp. Figure 7) shows the convergence of the
energy gap |J(p(wk,2))− J(p(wk,1))| (top), the gradient norm ‖dk‖ (top), and the
energy J(p(wk)) (bottom) in computing the positive solution to system (4.2) on Ω1

(resp. Ω2); see also Figure 2(a) (resp. Figure 4(a)). Here, k is the iteration number,
wk,i (i = 1, 2) are the two byproducts as defined in (3.3). The starting point for
our iteration is u0 = v0 = (1− x2

1)(1− x2
2) (resp. u0 = v0 = (1.42 − x2

1 − x2
2)) with

x = (x1, x2) ∈ Ω1 (resp. x = (x1, x2) ∈ Ω2). From Figures. 6 and 7, one sees that
at the final iteration ‖dk‖2 ≈ |J(p(wk,2))−J(p(wk,1))| for both cases, which agrees
with our estimate established in Corollary 2.1.
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Figure 6. Convergence test on the positive solution (see also Fig-
ure 2(a)) to system (4.2) with p = q = 3, λ = γ = −0.5, δ = 5,Ω =
(−1, 1)2: convergence of the energy gap |J(p(wk,2)) − J(p(wk,1))|
and the gradient norm ‖dk‖ (top), convergence of the energy
J(p(wk)) (bottom). The x-axis (k) represents the iteration num-
ber.

4.2. Noncooperative systems of indefinite type. In this section we consider
a noncooperative system of the form (4.1) where the nonlinear term G(x;u, v) is
indefinite (i.e., sign-changing). Due to this indefinite nature, none of the existence
results in [3, 7, 8, 9, 15] is applicable. However, we have numerically found several
solutions to such systems and discovered some interesting phenomena.

Example 4.2. Choose N = 2 (or Ω ⊂ R
2) and G(x;u, v) ≡ G(u, v) = 1

p+1 |u|p+1 −
1

q+1 |v|q+1 with p, q > 1. System (4.1) becomes

(4.25)

{
−Δu = λu− δv + |u|p−1u, x ∈ Ω,
−Δv = δu+ γv + |v|q−1v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

to which the associated energy functional

(4.26) J(u, v) =
1

2

∫
Ω

[
(|∇u|2 − |∇v|2)− (λu2 − 2δuv − γv2)

]
dx−

∫
Ω

G(u, v)dx

is well defined in H = H1
0 (Ω)×H1

0 (Ω) and of class C2(H,R).
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Figure 7. Convergence test on the positive solution (see also Fig-
ure 4(a)) to system (4.2) with p = q = 3, λ = γ = −0.5, δ =
5,Ω = {x ∈ R

2 : |x| < 1.4}: convergence of the energy gap
|J(p(wk,2))−J(p(wk,1))| and the gradient norm ‖dk‖ (top), conver-
gence of the energy J(p(wk)) (bottom). The x-axis (k) represents
the iteration number.

One sees that for this particular example, both the asymptotic noncrossing con-
ditions (F±

4 ) and crossing conditions (F5)–(F6) in Section 4.1 fail due to

lim inf
|(u,v)|→∞

2G(x;u, v)

|(u, v)|2 = −∞, lim sup
|(u,v)|→∞

2G(x;u, v)

|(u, v)|2 = ∞ and lim sup
|(u,v)|→0

2G(x;u, v)

|(u, v)|2 = 0.

Proposition 4.4. Any critical point of J in (4.26) has an infinite Morse index.

Proposition 4.5. For every critical point (u, v) of J in (4.26), it follows that

J(u, v) =

∫
Ω

[
(
1

2
− 1

p+ 1
)|u|p+1 + (

1

q + 1
− 1

2
)|v|q+1

]
dx.

Proof. Refer to the proof of Proposition 4.2. �
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For this type of noncooperative system, so far we cannot give a general result on
the existence of a local L-⊥ selection (which eventually boils down to the existence
of nontrivial solutions to a system of nonlinear algebraic equations and hence is
very difficult to solve). Instead, similar to Theorem 4.1, we establish a separation
result for the case L = {0} × {0}. As before, let σ1 be the first eigenvalue of −Δ
on H1

0 (Ω) and M0 be the solution set

M0 =
{
p̃(u, v) �= (0, 0) : ‖(u, v)‖ = 1

}
.

Theorem 4.3. Assume δ > 0, λ, γ < σ1. Then there exists some α > 0 such that

(4.27) dist(M0, (0, 0)) ≥ α > 0.

Consequently (0, 0) /∈ M0 and solutions to system (4.25) found by the LMMOM
are nontrivial.

Proof. For convenience, we borrow some notation used in equations (4.8)–(4.9),
namely,

a0 = δ

∫
ūv̄dx, a1 =

∫
[|∇ū|2 − λū2]dx, a2 =

∫
|ū|p+1dx,

b1 =

∫
[|∇v̄|2 − γv̄2]dx, b2 =

∫
|v̄|q+1dx

for every unit vector (ū, v̄) ∈ H. By definition, if p̃ is an L-⊥ selection of J in (4.26)
with respect to L = {0} × {0}, then p̃(ū, v̄) = (tū, sv̄) with (0, 0) �= (t, s) ∈ R

2

satisfies the system

∂J

∂t
(tū, sv̄) = ta1 + sa0 − |t|p−1ta2 = 0,(4.28)

∂J

∂s
(tū, sv̄) = ta0 − sb1 + |s|q−1sb2 = 0.(4.29)

Thus it suffices to prove that ∃α > 0 s.t. ‖p̃(ū, v̄)‖ = ‖(tū, sv̄)‖ ≥ α, for any
p̃(ū, v̄) ∈ M0.

We have two cases: (i) a0 = 0 and (ii) a0 �= 0.
Case (i): One can see that equations (4.28) and (4.29) are actually decoupled.

The fact ‖(ū, v̄)‖ = 1 implies that at least one component of the vector (ū, v̄) must
be nonzero. Then, using the Poincaré and Sobolev inequalities and following the
lines in the proof of Lemma 4.1, one can easily complete the proof for this case.

Case (ii): Clearly, ū �= 0, v̄ �= 0. Then, a2, b2 > 0. By the Poincaré inequality,
a1, b1 > 0. Multiplying (4.28) by t and (4.29) by s, and then subtracting one from
another yields

(4.30) t2a1− |t|p+1a2+ s2b1− |s|q+1b2 = 0 or t2a1+ s2b1 = |t|p+1a2+ |s|q+1b2.

With ‖ū‖22 =
∫
|∇ū|2dx and ‖v̄‖22 =

∫
|∇v̄|2dx, applying the Poincaré and

Sobolev inequalities gives

cp|t|p+1‖ū‖p+1
2 ≥ |t|p+1

∫
|ū|p+1dx = |t|p+1a2,(4.31)

cq|s|q+1‖v̄‖q+1
2 ≥ |s|q+1

∫
|v̄|q+1dx = |s|q+1b2(4.32)
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and

t2a1 = t2
∫
[|∇ū|2 − λū2]dx ≥ t2(1− λ

σ1
)‖ū‖22,(4.33)

s2b1 = s2
∫
[|∇v̄|2 − γv̄2]dx ≥ s2(1− γ

σ1
)‖v̄‖22,(4.34)

for some constants (independent of ū and v̄) cp, cq > 0, which, together with (4.30),
lead to

cp|t|p+1‖ū‖p+1
2 + cq|s|q+1‖v̄‖q+1

2 ≥ |t|p+1a2 + |s|q+1b2(4.35)

≥ t2(1− λ

σ1
)‖ū‖22 + s2(1− γ

σ1
)‖v̄‖22 ≥ min

{
1− λ

σ1
, 1− γ

σ1

}
‖(tū, sv̄)‖2.

With the fact ‖tū‖p+1
2 ≤ ‖(tū, sv̄)‖q+1 and ‖sv̄‖q+1

2 ≤ ‖(tū, sv̄)‖q+1, we obtain

(cp + cq)(‖(tū, sv̄)‖p+1 + ‖(tū, sv̄)‖q+1) ≥ cp‖tū‖p+1
2 + cq‖sv̄‖q+1

2(4.36)

≥ min

{
1− λ

σ1
, 1− γ

σ1

}
‖(tū, sv̄)‖2

or

(‖(tū, sv̄)‖p−1 + ‖(tū, sv̄)‖q−1) ≥ 1

cp + cq
min

{
1− λ

σ1
, 1− γ

σ1

}
.

Since p, q > 1 and cp, cq, σ1, γ, λ are independent of ū, v̄, we conclude that ∃α > 0
s.t.

‖p̃(ū, v̄)‖ = ‖(tū, sv̄)‖ ≥ α, ∀p̄(ū, v̄) ∈ M0. �(4.37)

Similarly, the gradient d ≡ (d1, d2) = ∇J(u, v) of J in (4.26) is solved from the
following two linear elliptic equations

(4.38)

{
Δd1 = Δu+ λu− δv + |u|p−1u x ∈ Ω,
Δd2 = −(Δv + δu+ γv + |v|q−1v) x ∈ Ω,

d1 = d2 = 0, x ∈ ∂Ω.

At the end of this section, we present the first few numerical solutions to system
(4.25) with λ = −0.5, γ = −1, δ = 0.5 on the domains: Ω1 = (−2, 2)2,Ω2 = (−3, 3)2

and Ω3 = a disk of radius 3. For all cases, L = {0} × {0}; meanwhile, symmetries
have been used particularly to find the sign-changing solutions shown in Figures 9–
11 as well as the nonradial positive solution shown in Figure 10(b) in order to make
our method more efficient [14].

On Ω1, we found a unique positive solution which is symmetric w.r.t. both x- and
y-axes and two sign-changing solutions. Their profiles are similar to the solutions
of system (4.25) on Ω2 as shown in Figures 9(a), 9(b) and 10(a), respectively, and
therefore are omitted here.

On Ω2, we surprisingly found two asymmetric positive solutions to system (4.25)
as shown in Figure 8(a)-(b) with relatively smaller energy than that of the sym-
metric positive one shown in Figure 9(a). Due to the symmetry of the problem,
any asymmetric solution becomes a new solution after a rotation by π

2 , π,
3
2π. Since

there is no explicit appearance of the space variable x in system (4.25), such asym-
metric positive solutions do not exist for its analogous single equation problem due
to the well-known Gidas-Ni-Nirenberg theorem. To further confirm this new phe-
nomenon and eliminate a possible corner effect of the domain Ω2, we repeated our
experiments on Ω3. Besides the radial positive solution and the sign-changing so-
lution as shown in Figure 11, we found an asymmetric positive solution as depicted
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in Figure 10(b). Since such an asymmetric solution is always a solution after a
rotation by any angle, we actually obtained a one-parameter family of degenerate
asymmetric positive solutions.
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Figure 10. Profiles and contours of a second sign-changing so-
lution (a) to system (4.25) with λ = −0.5, γ = −1, δ = 0.5,Ω =
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Figure 11. Profiles and contours of a radial positive solution
(a) and a sign-changing solution (b) to system (4.25) with λ =
−0.5, γ = −1, δ = 0.5,Ω = a disk of radius 3. The dashed circle
indicates the domain boundary.

In conclusion, we have developed a mathematically justified numerical method
to solve noncooperative systems for their multiple solutions in an order and carried
out numerical experiments in solving systems (4.2) and (4.25) on both square and
radial domains. In particular, asymmetric positive solutions to system (4.25) are
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numerically found, possibly as a result of a bifurcation from the symmetric posi-
tive ones w.r.t. the domains. Hopefully, this new numerical finding will promote
some theoretical verification on such phenomenon. In a subsequent paper, we will
continue to study this new method including its convergence analysis.
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