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CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE

MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE

MAGNETOHYDRODYNAMICS EQUATIONS

ĽUBOMÍR BAŇAS AND ANDREAS PROHL

Abstract. We propose a convergent implicit stabilized finite element dis-
cretization of the nonstationary incompressible magnetohydrodynamics equa-
tions with variable density, viscosity, and electric conductivity. The discretiza-
tion satisfies a discrete energy law, and a discrete maximum principle for the
positive density, and iterates converge to weak solutions of the limiting prob-
lem for vanishing discretization parameters. A simple fixed point scheme,
together with an appropriate stopping criterion is proposed, which decouples
the computation of density, velocity, and magnetic field, and inherits the above
properties, provided a mild mesh constraint holds. Computational studies are
provided.

1. Introduction

We consider the density-dependent magneto-hydrodynamics equations, which
couples the incompressible Navier-Stokes equation with variable density and viscos-
ity with Maxwell’s equation to describe a viscous, incompressible, and electrically
conducting multi-fluid in a domain Ω ⊂ R

d (d = 2, 3):

(
ρu

)
t
+ div

(
ρu⊗ u

)
− div

(
η(ρ)DDD(u)

)
= −∇p+ ρg +

1

μ
curl b× b ,

divu = 0 ,

ρt + div
(
ρu

)
= 0 ,(1.1)

bt +
1

μ
curl

( 1

ξ(ρ)
curl b

)
= curl (u× b) ,

divb = 0 ,

together with the following boundary and initial conditions,

(1.2)

u = curl b× n = 0 , b · n = 0 on ∂ΩT := (0, T )× ∂Ω ,

u(0, ·) = u0 , b(0, ·) = b0 in Ω , ρ(0,x) = ρ0

=

{
ρ1 > 0 , constant on Ω1 ,
ρ2 > 0 , constant on Ω2 ,

with Ω1 ∪ Ω2 = Ω , meas(Ωi) > 0 .
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Here, u : ΩT → R
d denotes the velocity field, DDD(u) = 1

2

(
∇u + [∇u]�

)
the sym-

metrized velocity gradient, ρ : ΩT → R
+ the density, and p : ΩT → R the hy-

drodynamic pressure of vanishing mean value, i.e.,
∫
Ω
p(·,x) dx = 0. Moreover,

b : ΩT → R
d is the magnetic induction, and g : ΩT → R

d represents a given body
force per unit mass. We allow for a discontinuous density dependent viscosity η(ρ),
and an electric conductivity ξ(ρ), where η, ξ are continuous functions such that

(1.3) 0 < η− ≤ η ≤ η+ , 0 < ξ− ≤ ξ ≤ ξ+ .

The initial datum ρ0 : Ω → R is piecewise constant, positive; as is pointed out in
[11, Section 4.2], choosing ρ0 ≥ 0 is mathematically feasible (also in this work), but
makes the physical relevancy of equation (1.1)4 questionable in zones of vacuum.
Hence, the case of fluids enclosed in a free surface and surrounded by a vacuum
is excluded, while the evolution of a free interface separating two fluids filling Ω is
modelled by (1.1)–(1.2). This problem is mostly relevant in the case d = 3, but
the two-dimensional analogue is interesting as well; see e.g. [17, Remark 2.1] for a
proper definition of involved curl-operators in the case d = 2.

Crucial properties of solutions of (1.1) are nonnegativity, a maximum principle
for ρ, which amounts to

(1.4) ρ1 ≤ ρ ≤ ρ2 a.e. in ΩT ,

as well as the energy law (0 < t < T ):
(1.5)
d

dt

∫
Ω

[ρ|u|2
2

+
|b|2
2μ

]
dx+

∫
Ω

[
η(ρ)|DDD(u)|2 + 1

μ2ξ(ρ)
|curl b|2

]
dx =

∫
Ω

ρg · u dx .

We refer to [11, Chapter 4 and 5] for details regarding the model, and existing
analytical and numerical studies of these equations. A typical application of (1.1)–
(1.2) is to describe the production of aluminium in electrolytic cells. A schematic de-
scription of this experiment uses an electric current which runs downwards through
two horizontal layers of incompressible nonmiscible conducting fluids, and causes a
motion of the interface, depending on the magnetohydrodynamic coupling; see [11,
Chapter 6], and Section 5.

Weak solutions to (1.1)–(1.2) are constructed in [11, Chapter 4] for Ω ⊂ R
3 a

simply connected, regular domain. It is well known that H0(div; Ω) ∩H(curl; Ω)
is continuously embedded into W1,2(Ω) if Ω ⊂ R

3 is a convex polyhedron, or has
a boundary which is C1,1; cf. [15, Section I.3.5] or [1, Section 2.3]. In this work,
we propose fully practical finite element based schemes, whose solutions converge
to weak solutions for vanishing discretization parameters; in particular, this result
holds for Ω ⊂ R

3 a general polyhedral domain. Key tools to accomplish this result
are:

(i) a discrete energy and maximum principle for approximate densities, which
requires stabilization terms in the discrete setting (Lemma 3.1),

(ii) an adapted discrete version (Lemma 3.2) of the compactness result by
R. DiPerna and P.L. Lions [9] for approximate finite element solutions of
(1.1)3; see also Remark 3.1,

(iii) a compactness result of J.L. Lions to control temporal changes of iterates
(see Lemma 3.3), and

(iv) results from corresponding studies for a one-fluid magnetohydrodynamical
fluid flow in [33].
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The paper is organized as follows. Section 2 gathers necessary background ma-
terial. Scheme A is presented in Section 3, where solutions satisfy a discrete energy
law, and corresponding positive densities a discrete maximum principle; a proper
balancing of involved stabilization terms to construct weak solutions of (1.1)–(1.2)
for vanishing discretization parameters is needed. In order to solve the nonlinear
algebraic system, the decoupling iterative Algorithm A is proposed in Section 4;
under a mild mesh constraint, the scheme terminates, and iterates converge towards
solutions of Scheme A provided a suitable stopping parameter approaches zero. In
Section 5, we discuss a practical implementation of the scheme and perform numer-
ical experiments similar to corresponding studies in [11, Chapter 6] for aluminium
electrolysis.

2. Preliminaries

Below, always let Ω ⊂ R
d, for d = 2, 3 be a simply connected, bounded smooth

domain. We use boldface letters for vector-valued functions.

2.1. Functional spaces and notion of weak solution for MHD equations.
Let H

(
div; Ω

)
be the set of vector fields ξξξ ∈ L2(Ω), such that div ξξξ ∈ L2(Ω); the

space is endowed with the norm ‖ξξξ‖H(div) :=
(
‖ξξξ‖2L2 + ‖div ξξξ‖2L2

)1/2
. We introduce

the following subspaces H0

(
div; Ω

)
:=

{
ξξξ ∈ H(div; Ω) : ξξξ · n = 0 on ∂Ω

}
, and

JJJ :=
{
ξξξ ∈ C∞

0 (Ω) : div ξξξ = 0 in Ω
}
,

H :=
{
ξξξ ∈ L2(Ω) : div ξξξ = 0 weakly in Ω , and ξξξ · n = 0 on ∂Ω

}
,

J :=
{
ξξξ ∈ W1,2

0 (Ω) : div ξξξ = 0 a.e. in Ω
}
.

By Helmholtz orthogonal decomposition, a vector field can be written as a unique
sum of its solenoidal and irrotational components, i.e., L2(Ω) = H ⊕ ∇W 1,2(Ω).
Correspondingly, we introduce the space H

(
curl; Ω

)
, which is endowed with the

norm ‖ψψψ‖H(curl) :=
(
‖ψψψ‖2L2 + ‖curlψψψ‖2L2

)1/2
, and subspaces H0

(
curl; Ω

)
:=

{
ψψψ ∈

H(curl; Ω) : ψψψ × n = 0 on ∂Ω
}
, as well as

WWW :=
{
ψψψ ∈ C∞(Ω) : divψψψ = 0 in Ω , ψψψ · n = 0 on ∂Ω

}
,

HHH := H(curl; Ω) ∩H0(div; Ω) ,

X :=
{
ψψψ ∈ HHH : divψψψ = 0 a.e. in Ω

}
.

The space DDD(Ω) of restrictions to Ω of smooth functions DDD(R3) is dense, both
in H(div; Ω) and H(curl; Ω); cf. [1, Proposition 2.3]. For all ψψψ ∈ X, we have
Poincaré’s inequality ‖ψψψ‖L2 ≤ C‖curlψψψ‖L2 for all ψψψ ∈ X, which implies that
‖ · ‖H(curl) and ‖curl(·)‖L2 are equivalent norms on X. The space H0(curl; Ω) ∩
H0(div; Ω) coincides with W1,2

0 (Ω); in contrast, explicit counterexamples illustrate
that H0(div; Ω)∩H(curl; Ω) is continuously embedded into W1,2(Ω) only if Ω ⊂ R

3

is either a convex polyhedron or has a boundary which is C1,1; cf. [15, Section I.3.5]
or [1, Section 2.3]. The embeddings of H(curl; Ω) and H(div; Ω) into L2(Ω) are not
compact; however, C. Weber verified compactness of H0(curl; Ω) and H0(div; Ω)
into L2(Ω) for general Lipschitz polyhedral domains; the following compactness
results may be found in [1, Proposition 3.7] and [36, Proposition 2.3].



1960 ĽUBOMÍR BAŇAS AND ANDREAS PROHL

Lemma 2.1. Let Ω ⊂ R
3 be a Lipschitz polyhedron.

(i) There exists an exponent s ≡ s(Ω) > 1
2 , such that HHH ↪→ Ws,2(Ω) is contin-

uous.
(ii) There exists a parameter δ1 ≡ δ1(Ω) > 0 such that the embedding HHH ↪→

L3+δ1(Ω) is compact.

We need the Aubin-Lions’ compactness result for Bochner spaces; cf. [11, Lemma
2.8].

Lemma 2.2. Let B be a Banach space, and B0 and B1 two reflexive Banach spaces.
Assume B0 � B ⊂ B1. Fix T < ∞, and 1 < p0, p1 < ∞. Then{

v ∈ Lp0
(
0, T ;B0

)
: ∂tv ∈ Lp1

(
0, T ;B1

)}
� Lp0

(
0, T ;B) .

We recall a crucial tool to construct unique distributional solutions ρ : ΩT → R

of the convection equation

(2.1) ρt + div
(
uρ

)
= f in ΩT , ρ(0, ·) = ρ0 ∈ L∞(Ω) ,

for given u ∈ L1
(
0, T ;W1,2

0 (Ω)
)
, and f ∈ L1

(
0, T ;L2(Ω)

)
, which has been derived

by J. DiPerna and P.L. Lions [9], together with the following stability result (see
e.g. [38, Theorem 1.1]).

Lemma 2.3. Let {ρk}∞k=0 ⊂ L∞(
0, T ;L2(Ω)

)
be distributional solutions of(

ρk
)
t
+ uk · ∇ρk + [divuk]ρk = fk in ΩT , ρk(0, ·) =

(
ρk

)
0

in Ω .

Assume that

(i)
{
uk

}
k
⊂ L1

(
0, T ;W1,2

0 (Ω)
)
, that uk → u in L1

(
0, T ;L2(Ω)

)
, and divuk →

divu in L1
(
0, T ;L∞(Ω)

)
, with u ∈ L1

(
0, T ;W1,2

0 (Ω)
)
, and

(ii) fk → f in L1
(
0, T ;L2(Ω)

)
, and

(
ρk)0 → ρ0 in L2(Ω).

Then ρk → ρ in L2
(
0, T ;L2(Ω)

)
, where ρ : ΩT → R is the unique solution of (2.1).

Moreover, this solution has the following properties:

(1) ρ ∈ C
(
[0, T ];L2(Ω)

)
.

(2) If β ∈ C1(R) satisfies β′(t) ≤ C
(
1 + |t|r

)
, for C > 0 and r ≤ 1, then

(2.2)
d

dt

∫
Ω

β(ρ) dx+

∫
Ω

[
[divu]

(
ρβ′(ρ)− β(ρ)

)]
dx =

∫
Ω

fβ′(ρ) dx .

This compactness result is a crucial tool to establish existence of solutions for
the incompressible Navier-Stokes equations with variable density and viscosity [28].
Another compactness result will be useful below to validate strong convergence of
both, velocity and magnetic field iterates in L2(0, T ;L2); cf. e.g. [27, Ch. I, Sec. 5]
for a proof of

Lemma 2.4. Let B0 ⊂ B ⊂ B1 be Banach spaces, B0 and B1 reflexive, with
compact embedding of B0 in B. Let p ∈ (1,∞) and α ∈ (0, 1) be given. Let X be
the space X = Lp(0, T ;B0)∩Wα,p(0, T ;B1) endowed with the natural norm. Then
the embedding of X in Lp(0, T ;B) is compact.
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2.2. Weak solution of (1.1)–(1.2). The definition of weak solutions of (1.1)–(1.2)
below generalizes the one in [11, Definition 4.3] to allow for arbitrary polyhedral
domains Ω ⊂ R

3; solvability will be shown in Section 3 by a practical implicit finite
element based discretization.

Definition 2.1. Fix T > 0. Suppose f ∈ L2
(
0, T ;L2

)
, that u0,b0 ∈ H, and (1.3)

are valid. We call the triple
(
u,b, ρ

)
: ΩT → R

d a weak solution to (1.1)–(1.2) if

(i) u ∈ L∞(
0, T ;H

)
∩ L2

(
0, T ;J

)
, b ∈ L∞(

0, T ;H
)
∩ L2

(
0, T ;X

)
, and ρ ∈

L∞(
ΩT

)
∩ C

(
[0, T ];Lp(Ω)

)
, for all p ≥ 1.

(ii)
(
u,b

)
is weakly continuous for t > 0, with values in

[
H
]2
,

(iii) for all
(
ζζζ,ηηη

)
∈C∞

0

(
[0, T );JJJ

)
×C∞

0

(
[0, T );WWW

)
, and χ∈C∞

0

(
[0, T );C∞

0 (Ω)
)

it holds that∫ T

0

[
−
(
ρu, ζζζt

)
−
(
ρu⊗ u,∇ζζζ

)
+
(
η(ρ)DDD(u),DDD(ζζζ)

)]
dt

=

∫ T

0

[
(ρg, ζζζ) +

( 1
μ
curl b× b, ζζζ

)]
dt+

(
ρ0u0, ζζζ(0, ·)

)
,

∫ T

0

[
−(ρ, χt)− (ρu,∇χ)

]
ds =

(
ρ0, χ(0, ·)

)
,

∫ T

0

[
−
(
b, ηηηt

)
+

1

μ

( 1

ξ(ρ)
curl b, curlηηη

)]
ds

=

∫ T

0

(
curl(u× b), ηηη

)
ds+

(
b0, ηηη(0, ·)

)
.

(iv) for almost every t ∈ [0, T ],

d

dt

∫
Ω

[ρ|u|2
2

+
|b|2
2μ

]
dx+

∫
Ω

[
η(ρ)|DDD(u)|2 + 1

μ2ξ(ρ)
|curl b|2

]
dx ≤

∫
Ω

ρg · u dx .

Weak solutions to problem (1.1)–(1.2) are constructed in [11, Theorem 4.4] for
domains Ω ⊂ R

3 which are either convex, or have a boundary in C1,1.

2.3. Finite element spaces. Let Th be a quasi-uniform triangulation of the polyg-
onal, resp., polyhedral domain Ω ⊂ R

3 into tetrahedra of maximal diameter h > 0,
i.e., Ω =

⋃
K∈Th

K. Throughout this work, let C > 0 denote a generic constant
which does not depend on time and space discretization parameters k, h > 0.

Discrete density space. Let Vh :=
{
ξ ∈ C(Ω) : ξ ∈ P1(K) ∀K ∈ Th

}
, where

P1 is the set of piecewise affine polynomials. We recall the inverse inequality [4,
Lemma 4.5.3], which holds for ξ ∈ Vh,

‖ξ‖W �,q1 ≤ Chm−�+dmin{ 1
q1

− 1
q2

,0}‖ξ‖Wm,q2 ∀ 1 ≤ q1, q2 ≤ ∞ , 0 ≤ m ≤  .

Given the set of nodes Eh = {x� :  ∈ L} of the triangulation Th, the nodal
interpolation operator IVh

: C(Ω,R) → Vh satisfies IVh
ξ(x�) = ξ(x�) for all  ∈ L.

For continuous functions φ, ψ ∈ C(Ω,R) we define

(φ, ψ)h =

∫
Ω

IVh

(
φψ

)
dx =

∑
�∈L

β�φ(x�)ψ(x�) ,

for certain weights β� > 0,  ∈ L. If for each  ∈ L we denote by ϕ� ∈ C(Ω)
the nodal basis function which is Th elementwise affine and satisfies ϕ�(x�) = 1
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and ϕ�(xm) = 0 for all m ∈ L \ {}, then we have β� =
∫
Ω
ϕ� dx. We define

‖ξ‖2h = (ξ, ξ)h, and recall (see [6]) that for all ξ, χ, η ∈ Vh,

‖ξ‖2 ≤ ‖ξ‖2h ≤ (d+ 2)‖ξ‖2 ,(2.3) ∣∣(χ, η)− (χ, η)h
∣∣ ≤ Ch‖χ‖‖η‖H1 .(2.4)

We say that the triangulation Th is strongly acute if for all x� ∈ Eh \ ∂Ω and
all x�′ ∈ Eh \ {x�} there exists Cθ0 > 0 such that (∇ϕx�

,∇ϕx�′ ) ≤ −Cθ0h
d−2. If

d = 2 this holds if and only if every sum of two angles opposite to an interior edge
is bounded by π − θ0, for some θ > 0. For d = 3, a sufficient but not necessary
condition is that every angle between two faces of a tetrahedron is bounded by
π
2 − θ0, for some θ0 > 0; see [24] for further details.

Discrete velocity and pressure spaces. Let Vh :=
[
Ṽh

]3
, where Ṽh is

another W 1,2
0 -conforming finite element space. We define L2(Ω)-, resp., W1,2

0 (Ω)-
orthonormal projections P0

h, resp., P
1
h to Vh,(

z−P0
hz, ξξξ

)
= 0 ∀ξξξ ∈ Vh , resp.,

(
∇[z−P1

hz],∇ξξξ
)
= 0 ∀ξξξ ∈ Vh .

We define the nodal interpolation operator IIIVh
: C(Ω,R3) → Vh, such that

IIIVh
ξξξ :=

∑
z∈Eh

ξξξ(z)ϕz, where {ϕz : z ∈ Eh} denotes the nodal basis of Ṽh.

For j ≥ 0, consider Lh :=
{
Π ∈ L2

0(Ω) : Π ∈ Pj(K) ∀K ∈ Th
}
. The

spaces
(
Vh, Lh

)
are chosen such that the discrete LBB-condition holds, i.e., Vh ⊂

W1,2
0 (Ω,R3) and Lh ⊂ L2

0(Ω) satisfy the discrete inf-sup condition

(2.5) sup
ξξξ∈Vh

(div ξξξ,Π)

‖∇ξξξ‖L2

≥ C ‖Π‖L2 ∀Π ∈ Lh .

Let
Jh :=

{
ξξξ ∈ Vh : (div ξξξ,Π) = 0 for all Π ∈ Lh

}
�⊂ J

be the space of discretely solenoidal functions. Let u ∈ J∩W2,2(Ω) be the solution
of

(∇u,∇ξξξ)− (p, div ξξξ) = (f , ξξξ) ∀ξξξ ∈ W1,2
0 (Ω) .

The solution
(
U, P

)
∈ Jh × Lh of the discretized incompressible Stokes problem(
∇U,∇ξξξ

)
− (P, divξξξ

)
= (f , ξξξ) ∀ξξξ ∈ Vh

satisfies
‖u−U‖L2 + h ‖u−U‖W1,2 ≤ Ch2 ‖u‖W2,2 .

We define L2-, resp., W1,2
0 -orthogonal projections from (subspaces of) J to Jh via(

z−Q0
hz, ξξξ

)
= 0 ∀ξξξ ∈ Jh, resp.,

(
∇[z−Q1

hz],∇ξξξ
)
= 0 ∀ξξξ ∈ Jh .

The following error estimates are standard, (see also [18]) (i = 0, 1),

‖z−Qi
hz‖L2 + h‖∇[z−Qi

hz]‖L2 ≤ Ch2 ‖z‖W2,2 ∀ z ∈ J ∩W2,2(Ω) ,(2.6)

‖z−Qi
hz‖L2 ≤ Ch ‖z‖W1,2 ∀ z ∈ J ∩W1,2(Ω) .(2.7)

The following compatibility condition of spaces

(2.8) Vh ∩ L2
0(Ω) ⊆ Lh

is needed to account for coupling effects in Scheme A given below.
We define the discrete Laplacian Δh : W1,2

0 (Ω) → Vh by

(ΔhW, ξξξ) = −(∇W,∇ξξξ) ∀ξξξ ∈ Vh .
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For W = IIIVh
w, where w ∈ W1,2

0 (Ω) ∩ W2,2(Ω), we obtain by inverse estimate
and standard approximation results,

‖ΔhW‖2 =
(
∇ΔhW,∇[W −w +w]

)
≤ Ch−1‖ΔhW‖Ch‖Δw‖+ ‖ΔhW‖ ‖Δw‖ ≤ C‖ΔhW‖ ‖Δw‖ .(2.9)

The following discrete Sobolev interpolation inequality follows from [18, Lemma
4.4],

(2.10) ‖∇W‖L4 ≤ C‖∇W‖ 4−d
d

(
‖W‖+ ‖ΔhW‖

) d
4 ∀W ∈ Vh .

Discrete magnetic field and multiplier spaces. We use edge elements to
approximate solenoidal functions of Maxwell’s equation, which only enforce con-
tinuity of tangential field components across inter-element boundaries. Below, we
use Nédélec’s first family of spaces (cf. [31]) for the unknown B : ΩT → R

3. For

every K ∈ Th and i ≥ 1, let NNN i(K) =
[
Pi−1(K)

]3 ⊕Di(K), where Di is given by
the homogeneous polynomials p of degree k that satisfy p(x) · x = 0 on K ∈ Th.
Consider then

Ch =
{
ψψψ ∈ H(curl) : ψψψ ∈ NNN i(K) ∀K ∈ Th

}
,

Sh =
{
R ∈ W 1,2(Ω) ∩ L2

0(Ω) : R ∈ Pi(K) ∀K ∈ Th
}
,

where Ch ⊂ H(curl; Ω), and Sh ⊂ W 1,2(Ω) ∩ L2
0(Ω). A well-known example is

i = 1, where Ch =
{
ψψψ ∈ H(curl) : ψψψ = aK +bK ×x on K ∀K ∈ Th

}
. The spaces(

Ch, Sh

)
satisfy the following discrete inf-sup condition,

(2.11) sup
ψψψh∈Ch

(∇R,ψψψ)

‖ψψψ‖H(curl)
≥ C ‖∇R‖L2 ∀R ∈ Sh .

We may define the interpolation RRRh : H(curl; Ω) → Ch, which satisfies for all
z ∈

{
z ∈ W1,2 : curl z ∈ W1,2

}
that ([31, Theorem 5.41])

(2.12) ‖z−RRRhz‖L2 + ‖curl [z−RRRhz]‖L2 ≤ Ch
(
‖z‖W1,2 + ‖curl z‖W1,2

)
.

We introduce the discretely solenoidal function space

Xh :=
{
ψψψ ∈ Ch : (ψψψ,∇R) = 0 for all R ∈ Sh

}
�⊂ X .

We have the L2(Ω)-orthogonal discrete Helmholtz decomposition Ch = Xh ⊕∇Sh,
as well as the discrete Poincaré-Friedrichs inequality ‖ψψψ‖L2 ≤ C‖curlψψψ‖L2 , for
all ψψψ ∈ Xh; cf. [31, Theorem 4.7]. We introduce the L2(Ω)-, resp., H(curl; Ω)-
orthogonal projections to Xh via(
z−R0

hz,ψψψ
)
= 0 ∀ψψψ ∈ Xh, resp.,

(
curl [z−R1

hz], curlψψψ
)
=0 ∀ψψψ∈Xh.

The following estimates ( = 0, 1) may be found in [5, Theorem 3.5] or [39, Lemma
3.4], and [20, Theorem 4.8],

‖z−R�
hz‖L2 + ‖curl [z−R1

hz]‖L2(2.13)

≤ Ch
(
‖z‖W1,2 + ‖curl z‖W1,2

)
∀ z ∈ X ∩W2,2(Ω) ,

‖z−R�
hz‖L2 ≤ Chσ ‖curl z‖L2 ∀ z ∈ X , for some σ = σ(Ω) > 0 .(2.14)
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Another link between the spaces Xh and X is accomplished by the Hodge mapping
H : H(curl; Ω) → X, such that

curlH
(
ψψψ) = curlψψψ ∀ψψψ ∈ H(curl; Ω) .

The following approximation property is shown in [20, Lemma 4.5],
(2.15)

‖z−H
(
z
)
‖L2 ≤ Ch

1
2+σ ‖curl z‖L2 ∀ z ∈ Xh , for some σ = σ(Ω) > 0 .

Lowest-order edge elements are divergence free inside each element. However, a
nonzero divergence in distributional sense arises from discontinuities of the nor-
mal component at inter-element boundaries. Since Xh �⊂ X, the compactness of
bounded sequences {ψψψh}h ⊂ Xh ⊂ H(curl; Ω) is not clear. The following (dis-
crete) compactness property for discretely divergence-free vector fields generalizes
the result by F. Kikuchi in [23]; cf. [20, Theorem 4.9].

Lemma 2.5. Let {ψψψh} ⊂ Xh be a sequence of fields, which is uniformly bounded in
H(curl; Ω). Then there exists a subsequence {ψψψh′}h′ converging weakly in
H(curl; Ω), and strongly in L2(Ω) to a solenoidal function ψψψ ∈ X.

2.4. Time discretization. Given a time-step size k > 0, and a sequence {ϕj}
in some Banach space X, we set dtϕ

j := k−1
{
ϕj − ϕj−1

}
for j ≥ 1. Note that

(dtϕ
j , ϕj) = 1

2dt‖ϕj‖2 + k
2‖dtϕj‖2, if X is a Hilbert space. Piecewise constant

interpolations of {ϕj} are defined for t ∈ [tj , tj+1), and 0 ≤ j ≤ J − 1 by

ϕ+(t) := ϕj+1 , ϕ−(t) := ϕj ,

and a piecewise affine interpolation on [tj , tj+1) is defined by

ϕ(t) :=
t− tj
k

ϕj+1 +
tj+1 − t

k
ϕj .

It follows that ‖ϕ+ − ϕ‖X + ‖ϕ− − ϕ‖X ≤ 2k ‖dtϕ‖X .

3. Scheme A: A fully discrete Scheme with discrete maximum

principle and discrete energy law

To obtain the energy law (1.5), we need to multiply (1.1)1 with u, and (1.1)3 with
1
2 |u|2. We are motivated to construct a numerical scheme which shares properties
(1.4) and (1.5) with the original problem (1.1)–(1.2); however, to use a test function
which is a nonlinear function of the finite element velocity field does not seem to
be a promising strategy. For this reason, the following reformulation is proposed in
[30] in a related context:(

ρu
)
t
+ div

(
ρu⊗ u

)
=

1

2

{
ρut + [ρu · ∇]u+ (ρu)t + div(ρu⊗ u)

}
.

If we take the dot product of the right-hand side with u, integration in space
yields d

dt

∫
Ω

ρ
2 |u|2 dx. We use this idea in the following implicit finite element dis-

cretization of (1.1)–(1.2). Below, we discuss the relevancy of additional stabilization
terms added to allow for positive densities, and a discrete maximum principle. Let
ϕ+ := max{0, ϕ}, and (·, ·)∗ stands for either (·, ·), or (·, ·)h.

Scheme A: Let
(
U0,B0, ρ0

)
∈ Jh × Xh × Vh, such that ρ1 ≤ ρ0 ≤ ρ2, and

α, β1, β2, β3 ≥ 0. For every n ≥ 1, find(
Un, Pn,Bn, Rn, ρn

)
∈ Jh × Lh ×Xh × Sh × Vh
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such that for all
(
χ,W,ψψψ

)
∈ Vh ×Vh ×Ch,(

dtρ
n, χ

)
h
+
(
Un · ∇ρn, χ

)
+

1

2

(
[divUn]ρn, χ

)
+ αhα (∇ρn,∇χ) = 0 ,(3.1)

1

2

{(
ρn−1
+ dtU

n,W
)
∗ +

(
dt[ρ

n
+U

n],W
)
∗ +

(
[ρn−1Un−1 · ∇]Un,W

)
(3.2)

−
(
[ρn−1Un−1 · ∇]W,Un

)}
+
(
ηn−1DDD(Un),DDD(W)

)
+ β1h

−β1
(
divUn, divW

)
+ β2h

β2
(
∇dtU

n,∇W
)
+ β3h

β3
(
ΔhU

n,ΔhW
)
− (Pn, divW)

+
1

μ

(
Bn−1 × curlBn,W

)
=

(
ρn−1gn,W

)
,

(
dtB

n,ψψψ
)
+

1

μ

( 1

ξn−1
curlBn, curlψψψ

)
(3.3)

−
(
Un ×Bn−1, curlψψψ

)
− (∇Rn,ψψψ) = 0 ,

where ηn−1 := η(ρn−1) and ξn−1 := ξ(ρn−1).

In fact, Scheme A comprises two discretization strategies, depending on the
choice of (·, ·)∗. We use several stabilizing terms in the scheme: the one lead by α
allows for the M -matrix property of the stiffness matrix related to (3.1) to validate
(3.6) below; it turns out that improved stability properties for {Un} are needed
for this purpose, which is the reason for the term lead by β2 ≥ 0. Finally, strong
Lp-convergence of {divUn} is needed to properly identify the limit in (3.1), which
is the reason for the third stabilization term lead by β1 ≥ 0; the convergence proof
for the scheme below suggests the corresponding penalization parameter to depend
on h > 0 as well. In order to validate strong L2-convergence of {Un} in the case
d = 3 requires β3 > 0 in the scheme; see Lemma 3.3. This term may be skipped in
the two-dimensional setting Ω ⊂ R

2.
Note that in (3.3), we employ Rn ∈ Sh as a Lagrange multiplier to enforce

the discrete divergence free constraint for computed magnetic fields at finite scales
k, h > 0; the related term actually goes to zero for discretization parameters tending
to zero.

We use numerical integration for the leading term in (3.1) to allow for a discrete
maximum principle for computed densities, without any mesh constraint to hold.
As will be clear from the following analysis (e.g., Step 1 in the proof of Lemma 3.3),
this form of integration couples back with the one for the leading two terms in (3.2);
as we will see later, stability, and monotonicity properties of the scheme are not
affected by the choice of exact or numerical integration for the relevant terms in
(3.2), while necessary compactness properties of velocity iterates of the scheme
require numerical integration in (3.2) as well to be compatible with the formulation
in (3.1); cf. Lemma 3.3.

The following result validates existence of solutions of Scheme A which satisfy
a discrete energy identity (α, β1, β2 ≥ 0). Moreover, provided that meshes are of
strongly acute type, and α, β1, β2 > 0, we validate a discrete maximum princi-
ple for iterates {ρn}n≥0 as well, i.e., the above scheme holds for existing iterates{(

Un, Pn,Bn, Rn, ρn
)}N

n=1
, with ρn−1

+ , resp., ρn+ replaced by ρn−1, resp., ρn in
(3.2).
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Lemma 3.1. Let α, β1, β2, β3 ≥ 0, and
√
β2h

β2
2 ‖∇U0‖ ≤ C. For every n ≥ 1,

there exists a solution
(
Un, Pn,Bn, Rn, ρn

)
∈ Jh × Lh ×Xh × Sh × Vh of (3.1)–

(3.3), which satisfies

1

2
dt

[∥∥√ρn+U
n
∥∥2
∗ + β2h

β2 ‖∇Un‖2 + 1

μ
‖Bn‖2

]
(3.4)

+ ‖
√
ηn−1DDD(Un)‖2 + β1h

−β1‖divUn‖2 + β3h
β3‖ΔhU

n‖2

+
1

μ2 ‖
1√
ξn−1

curlBn‖2

+
k

2

[∥∥√ρn−1
+ dtU

n
∥∥2
∗ + β2h

β2‖∇dtU
n‖2 + ‖dtBn‖2

]
=

∫
Ω

ρn−1gnUn dx ,

1

2
dt‖ρn‖2h +

k

2
‖dtρn‖2h + αhα‖∇ρn‖2 = 0 .(3.5)

Moreover, if (2.8) holds, Th is a strongly acute triangulation, and 0 < α, β2 such

that 0 < α+ β2

2 < 6−d
6 , then

(3.6) 0 < ρ1 ≤ ρn ≤ ρ2 < ∞ (n ≥ 1) ,

provided k, h > 0 are sufficiently small. As a consequence, ρn+, resp., ρ
n−1
+ in (3.2)

may be replaced by ρn, resp., ρn−1.

We use Brouwer’s fixed point theorem to obtain solvability of (3.1)–(3.3) for
every n ≥ 1 in Step 1 of the following proof; we proceed by induction, assuming

(3.7) max
0≤�≤n−1

{
‖ρ�‖2h + ‖

√
ρ�+U

�‖2∗ + β2h
β2‖∇U�‖2 + 1

μ
‖B�‖2

}
≤ C ,

which then leads to the existence of ( ρn,Un,Bn ) ∈ Vh × Jh × Xh. The bounds
in Step 2 of the proof then justify (3.7) for 0 ≤  ≤ n. In Step 3, property (3.6) is
verified, which requires the compatibility assumption (2.8) in part d) of this step

of the proof, and uses the upper uniform bound max0≤n≤N ‖∇Un‖ ≤ Ch−β2
2 .

Proof. 1st Step: Solvability. For every n ≥ 1, consider the continuous mapping
FFFn : Vh × Jh × Xh → Vh × Jh × Xh, which is defined as follows: For given(
ρn−1,Un−1,Bn−1

)
∈ Vh × Jh ×Xh find

(
ρ,U,B

)
∈ Vh × Jh ×Xh such that

FFFn
(
[ρ,U,B], [χ,W,ψψψ]

)
:=

(
FFFn

1

(
[ρ,U], χ

)
,FFFn

2

(
[ρ,U,B],W

)
,FFFn

3

(
[U,B],ψψψ

))�
= 0 ,
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for all
(
χ,W,ψψψ

)
∈ Vh × Jh ×Xh, where

FFFn
1

(
[ρ,U], χ

)
:=

1

k

(
ρ− ρn−1, χ

)
h
+
(
U · ∇ρ, χ

)
+

1

2

(
[divU]ρ, χ

)
+ αhα

(
∇ρ,∇χ

)
= 0 ,

FFFn
2

(
[ρ,U,B],W

)
:=

1

2

{
(
ρn−1
+

k

[
U−Un−1

]
,W)∗ +

1

k

(
[ρ+U− ρn−1

+ Un−1],W
)
∗

+
(
[ρn−1Un−1 · ∇]U,W

)
−
(
[ρn−1Un−1 · ∇]W,U

)}
+
(
ηn−1DDD(U),DDD(W)

)
+ β1h

−β1
(
divUn, divW

)
+ β3h

β3
(
ΔhU,ΔhW

)
+

β2h
β2

k

(
∇[U−Un−1],∇W

)
+

1

μ

(
Bn−1 × curlB,W

)
−
(
ρn−1gn,W

)
,

FFFn
3

(
[U,B],ψψψ

)
:=

1

k

(
B−Bn−1,ψψψ

)
+

1

μ

( 1

ξn−1
curlB, curlψψψ

)
−
(
U×Bn−1, curlψψψ

)
.

By putting [χ,W,ψψψ] = [ρ,U,B] yields

FFFn
(
[ρ,U,B], [ρ,U,B]

)
≥ 1

2k

[
‖ρ‖2h +

1

2
‖
√
ρn−1
+ U‖2∗ + ‖√ρ+U‖2∗ +

β2

2
hβ2‖∇U‖2 + 1

μ
‖B‖2

]
+

β1

hβ1
‖divU‖2

+αhα‖∇ρ‖2 + ‖
√

ηn−1DDD(U)‖2 + β3h
β3‖ΔhU‖2 + 1

μ2 ‖
1√
ξn−1

curlB‖2

− 1

4k

[
2‖ρn−1‖2h + 2‖

√
ρn−1
+ Un−1‖2∗ + β2h

β2‖∇Un−1‖2 + 1

μ
‖Bn−1‖2

]
.

Because of (3.7), the modulus of the negative terms is finite; hence, provided that(
ρ,U,B

)
∈ Vh × Jh × Xh satisfy for a sufficiently large, finite constant Cn ≡

Cn(ρ
n−1,Un−1,Bn−1

)
> 0 that

min
{
‖ρ‖, ‖U‖, ‖B‖

}
≥ Cn ,

we always have FFFn
(
[ρ,U,B], [ρ,U,B]

)
≥ 0. A consequence of Brouwer’s fixed

point theorem [35, p. 37] now implies existence of
(
ρn,Un,Bn

)
∈ Vh × Jh × Xh

which solves Scheme A for every n ≥ 1.
Existence of corresponding (Pn, Rn) ∈ Lh × Sh is then a consequence of (2.5),

(2.11).
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2nd Step: Discrete energy identity. Choose ψψψ = 1
μB

n in (3.3), W = Un in (3.2),

and use(
ρn−1
+ dtU

n,Un
)
∗ +

(
dt[ρ

n
+U

n],Un
)
∗

=
1

k

(
ρn+|Un|2 + ρn−1

+ |Un|2 − 2ρn−1
+ 〈Un−1,Un, 1〉

)
∗

=
1

k

(
ρn+|Un|2 + ρn−1

+ |Un|2 − ρn−1
+ 〈Un−1,Un〉

− ρn−1
+ |Un−1|2 + ρn−1

+ 〈Un−1,Un−1 −Un〉, 1
)
∗

=
1

k

(
ρn+|Un|2 + ρn−1

+ |Un|2 − ρn−1
+

{
|Un|2 + |Un−1|2 − k2|dtUn|2

}
, 1
)
∗

=
(
dt
[
ρn+|Un|2

]
+ kρn−1

+ |dtUn|2, 1
)
∗
.

Adding both resulting equations then yields (3.4).
3rd Step: Discrete maximum principle. Fix n ≥ 1. We verify the M -matrix

property of the sub-system matrix related to (3.1), for given Un : Ω → R
d. Let{

ϕx�

}L

�=1
be the canonical basis of Vh. We employ vectors un = (un

� )
L
�=1, with

Un =
∑L

�=1 u
n
� ϕx�

. We use the mass matrix M :=
{
m��′

}L

�,�′=1
, stiffness matrix

K :=
{
k��′

}L

�,�′=1
, and C(Un) :=

{
cn��′

}L

�,�′=1
, with

m��′ :=
(
ϕx�

, ϕx�′

)
h
, k��′ :=

(
∇ϕx�

,∇ϕx�′

)
,

cn��′ :=
(
Un · ∇ϕx�

, ϕx�′

)
+

1

2

(
[divUn]ϕx�

, ϕx�′

)
,

to restate (3.1) as follows: AAAnun = gn, with

AAAn :=
1

k
M + C(Un) + αhαK ∈ R

L×L , gn� :=
1

k

(
ρn−1, ϕx�

)
(1 ≤  ≤ L) .

The following three steps establish that AAAn is an M -matrix.
a) Nonpositivity of off-diagonal entries of AAAn. Let Th be strongly acute; then

there exists Cθ0 > 0 such that k��′ ≤ −Cθ0h
d−2 < 0 uniformly in h > 0, for any

pair of adjacent nodes. Moreover, m��′ = 0. The remaining entries are bounded by

inverse estimates, local support property of basis functions
{
ϕx�

}L

�=1
, and (3.4),

|cn��′ | ≤ Chd−1‖Un‖L∞ ≤ Chd−1− d
6 ‖Un‖L6 ≤ Chd−1− d

6−
β2
2 .

In order to verify nonpositivity of hαk��′ + c��′(U
n) for neighboring  �= ′, we have

to make sure that

α+ d− 2 < d− 1− d

6
− β2

2
⇔ α+

β2

2
<

6− d

6
.

b) Strict positivity of diagonal entries of AAAn. By evidence, m�� ≥ cθ0h
d, and

k�� ≥ cθ0h
d−2, for some cθ0 > 0. Similar to a), in order to make sure that 1

km�� +

c��
(
Un

)
+αhαk�� > 0, a dimensionality argument leads to α+d−2 < d−1− d

6 −
β2

2 ,
and we may conclude as above.

c) AAAn is strictly diagonal dominant. We again use the fact that the number of
neighboring nodes x�′ ∈ Nh for each x� is bounded independently of h > 0. Hence,
there exists a constant C ≡ C

(
#{′ : (∇ϕx′

�
,∇ϕx�

) �= 0}
)
> 0, such that for
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sufficiently small h > 0, and K̃ =
⋃

K′∩K 
=∅ K
′, for every K ∈ Th,

1

k
Chd + αChα+d−2 − Ch

5d
6 −1−β2

2 > 0 ,

which again implies α+ β2

2 < 6−d
6 .

Hence, from a)–c) we may conclude that AAAn is an M -matrix, which then implies

nonnegativity of
{
ρn

}N

n=1
, by induction.

d) Boundedness of ρ1 ≤ ρn ≤ ρ2. Let ρn := ρn − ρ2. Then, ρn−1 ≤ 0, and we
obtain for Un ∈ Jh:

1

k

(
ρn, χ

)
h
+
(
Un · ∇ρn, χ

)
+

1

2

(
[divUn]ρn, χ

)
+ αhα

(
∇ρn,∇χ

)
=

1

k

(
ρn−1, χ

)
h

∀χ ∈ Vh .

(3.8)

Here, we employ (2.8) to validate (divUn, χ) = 0 for all χ ∈ Vh. Let [χ]+ :=
IVh

(
max{0, χ}

)
, and [χ]− := IVh

(
min{0,Φ}

)
for Φ ∈ Vh. We wish to validate

1

k

∥∥[χ]+∥∥2
h
+ hα

∥∥∇[χ]+
∥∥2 ≤ 1

k

(
[χ]+, χ

)
h
+ αhα

(
∇[χ]+,∇χ

)
+
(
Un · ∇χ, [χ]+

)
+

1

2

(
[divUn]χ, [χ]+

)
∀χ ∈ Vh .(3.9)

This result follows from
(
Un · ∇[χ]+, [χ]+

)
+ 1

2

(
[divUn][χ]+, [χ]+

)
= 0, and AAAn =

{an��′}L�,�′=1 being an M -matrix, for h > 0 sufficiently small, such that

1

k

(
χ− [χ]+, [χ]+

)
h
+
(
Un · ∇

{
χ− [χ]+

}
, [χ]+

)
+
1

2

(
[divUn]

{
χ− [χ]+

}
, [χ]+

)
+ αhα

(
∇
{
χ− [χ]+

}
,∇[χ]+

)
≥ 1

k

(
[χ]−, [χ]+

)
h
+
(
Un · ∇[χ]−, [χ]+

)
+
1

2

(
[divUn][χ]−, [χ]+

)
+ αhα

(
∇[χ]−,∇[χ]+

)
≥

∑
1≤�,�′≤L

an��′ [χ]
+(x�)[χ]

−(x�′) ≥ 0 .

We may also verify (3.9), with negative sign in front of the last term. Now, putting
χ = [ρn]+ in (3.8), noting again that ρn = [ρn]+ + [ρn]−, we obtain by (3.9) that

(3.10)
1

k

∥∥[ρn]+∥∥2
h
+
∥∥∇[ρn]+‖2 ≤ 1

k

(
ρn−1, [ρn]+

)
h
≤ 0 ,

and hence ρn ≤ ρ2, for all n ≥ 0. The lower bound follows immediately from
the M -matrix property of the system matrix for (3.8), where ρn is substituted by
ρn := ρn − ρ1. �

Let
{(

Un, Pn,Bn, Rn, ρn
)}N

n=1
⊂ Jh × Lh × Xh × Sh × Vh be a solution of

Scheme A, such that (3.6) holds; consider the continuous interpolants in time{(
UUU(t, ·), ℘(t, ·),BBB(t, ·), R(t, ·), σ(t, ·)

)}
0≤t≤T

as defined in Section 2.4, and depend-

ing on k, h > 0 in particular. This pentuple solves for every
(
W,ψψψ, χ

)
∈ Jh×Xh×
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Vh, and 0 ≤ t ≤ T ,

(σt, χ)h +
(
UUU+ · ∇σ+, χ

)
+

1

2

(
[divUUU+]σ+, χ

)
+ αhα(∇σ+,∇χ) = 0 ,

1

2

{(
σ−UUU t,W

)
∗ +

(
[σUUU ]t,W

)
∗ +

(
[σ−UUU− · ∇]UUU+,W

)
−
(
[σ−UUU− · ∇]W,UUU+

)}
+
(
η−DDD(UUU+),DDD(W)

)
+ β1h

−β1
(
divUUU+, divW

)
+ β2h

β2
(
∇UUU t,∇W

)
(3.11)

+ β3h
β3
(
ΔhUUU+,ΔhW

)
+

1

μ

(
BBB− × curlBBB+,W

)
= (σ−g+,W) ,

(
BBBt,ψψψ

)
+

1

μ

( 1

ξ−
curlBBB+, curlψψψ

)
−
(
UUU+ ×BBB−, curlψψψ

)
= 0 .

The uniform bounds (3.4) and (3.6) allow for convergent subsequences, and func-
tions

u ∈ L∞(
0, T ;H

)
∩ L2

(
0, T ;J

)
, b ∈ L∞(

0, T ;H
)
∩ L2

(
0, T ;X

)
,(3.12)

ρ ∈ L∞(
0, T ;L∞(Ω)

)
such that for k, h → 0,

UUU±,UUU ∗
⇀ u in L∞(

0, T ;L2
)
,

UUU± ⇀ u in L2
(
0, T ;W1,2

)
,

divUUU± → 0 in L2
(
0, T ;L2(Ω)

)
(for β1 > 0) ,

BBB±,BBB ∗
⇀ b in L∞(

0, T ;L2
)
,(3.13)

BBB± ⇀ b in L2
(
0, T ;H(curl)

)
,

σ±, σ
∗
⇀ ρ in L∞(

0, T ;L∞)
.

The incompressibility of u as stated in (3.12)1 follows from
∫ T

0
(divU+,Π) ds = 0

for all Π(t, ·) ∈ Lh: on putting Π(t, ·) = ILh
χ(t, ·) ∈ Lh for χ ∈ C∞(

[0, T ], C∞(Ω)
)
,

and tending k, h → 0 validates the assertion; strong convergence as stated in (3.13)3
then follows from weak and norm convergence. Also, we use Lemma 2.5 to make
sure in assertion (3.12)2 that b is divergence-free. Moreover, from (3.4) and (3.6)
we may conclude that sequences {UUU}, resp., {UUU±}, as well as {BBB}, resp., {BBB±}, and
{σ}, resp., {σ±} converge to the same limit as k, h → 0, since, for example,

‖UUU −UUU+‖2L2(0,T ;L2) =

N∑
n=1

‖Un −Un−1‖2L2

∫ tn

tn−1

(s− tn
k

)2

ds

=
k3

3

N∑
n=1

‖dtUn‖2L2 ,

(3.14)

which tends to zero for k → 0.

We now detail passing to the limit in equation (3.11)1, under the assumptions
that

(3.15) ρ0 → ρ0 in L2(Ω) and UUU+ → u in L2
(
0, T ;L2(Ω)

)
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for k, h → 0 hold. We remark that (3.15)2 will be shown to hold in Lemma 3.3. Let
Ξ(t, ·) = IVh

χ(t, ·) for every t ∈ [0, T ), and all χ ∈ C∞
0

(
[0, T );C∞

0 (Ω)
)
. Because of

(UUU+ · ∇σ+,Ξ) =
(
div [σ+UUU+],Ξ

)
−
(
[divUUU+]σ+,Ξ

)
we may recast (3.11)1 in the form

(3.16) (σt,Ξ)h − (UUU+σ+,∇Ξ)− 1

2

(
[divUUU+]σ+,Ξ

)
+ αhα(∇σ+,∇Ξ) = 0 .

We integrate over [0, T ], and identify limits term by term. For the first term, we
apply integration by parts, and employ (2.4), the W 1,2-stability of IVh

, and related
convergence properties, and (3.13)6 to conclude that∣∣∣∫ T

0

(σ,Ξt)h − (σ,Ξt) ds
∣∣∣ ≤ Ch ‖σ‖L2(0,T ;L2)‖Ξt‖L2(0,T ;W 1,2)

≤ Ch
{
‖(χ− Ξ)t‖L2(0,T ;W 1,2) + ‖χt‖L2(0,T ;W 1,2)

}
→ 0 (h → 0) .

Because of (3.15)1, (3.13)6, we may then conclude that

−
∫ T

0

(σt,Ξ)h ds →
∫ T

0

(ρ, χt) ds+
(
ρ0, χ(0, ·)

)
(k, h → 0) .

The result ∫ T

0

(UUU+σ+,∇Ξ) ds →
∫ T

0

(uρ,∇χ) ds (k, h → 0)

easily follows from (3.15)2, (3.13)6. We proceed similarly with the third term in
(3.16), by exploiting (3.13)3, in particular.

For the last term in (3.16), we use (3.5) to conclude that

αhα
∣∣∣∫ T

0

(∇σ+,∇Ξ) ds
∣∣∣ ≤ C

√
αh

α
2 ‖∇Ξ‖L2(0,T,L2) → 0 (h → 0) .

Putting things together then validates that ρ is a weak solution of (1.1)3.
As a next step, in order to pass to the limit in terms of (3.11)2, we need to

make sure that densities converge strongly in Lp; in [38, Theorem 5.1], a general
compactness result is shown for solutions of a discrete version of (1.1)3, where a
discontinuous Galerkin method is used. We adapt the arguments given there to our
problem, and also summarize the above results in the following:

Lemma 3.2. Fix T > 0, suppose (2.8), and that 0 < α, β2 are such that 0 <

α + β2

2 < 6−d
6 . Let {UUU}k,h ⊂ L2

(
0, T ;W1,2

0 (Ω)
)
, and {σ}k,h ⊂ L∞(

0, T ;L2(Ω)
)
be

given, such that for all χ ∈ Vh, and n ≥ 1,(
dtρ

n, χ
)
h
+
(
Un · ∇ρn, χ

)
+

1

2

(
[divUn]ρn, χ

)
+ αhα(∇ρn,∇χ) = 0 ,

where ρ0 ∈ Vh, such that hδ‖∇ρ0‖ ≤ C, for some 0 ≤ δ < 1. Suppose that for
k, h → 0 we have ρ0 → ρ0 in L2(Ω), as well as

UUU+ → u in L2
(
0, T ;L2(Ω)

)
, σ+ ∗

⇀ ρ in L∞(
0, T ;L2(Ω)

)
,

and divUUU+ → 0 in L1
(
0, T ;L2(Ω)

)
. Then, ρ : ΩT → R is a unique weak solu-

tion of (1.1)3, which satisfies properties (1.1)–(1.2) of Lemma 2.3, and σ → ρ in
L2

(
0, T ;L2(Ω)

)
for k, h → 0.
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Proof. We verify that limk,h→0 ‖σ‖L2(0,T ;L2(Ω)) = ‖ρ‖L2(0,T ;L2(Ω)); since weak con-
vergence and convergence of norms implies strong convergence in reflexive Banach
spaces, this settles the result of the lemma.

For this purpose, we use the identity (2.2) for ρ : ΩT → R with β(s) = 1
2s

2, and

ρ0 → ρ0 in L2(Ω) to obtain

(3.17)
1

2
‖ρ(t, ·)‖2 =

1

2
‖ρ0‖2 =

1

2
lim inf
h→0

‖ρ0‖2 ,

and after integration over the time interval [0, T ], by using (2.4) together with
hδ‖∇ρ0‖ ≤ C for 0 ≤ δ < 1, we get

(3.18)
1

2
‖ρ‖2L2(0,T ;L2) =

T

2
lim inf
h→0

‖ρ0‖2L2 =
T

2
lim inf
h→0

‖ρ0‖2h .

Once we show that

lim inf
h→0

T

2
‖ρ0‖2h

≥ lim inf
k,h→0

(1
2
‖σ‖2L2(0,T ;L2) +

∫ T

0

∫ s

0

[k
2
‖σt‖2h + αhα‖∇σ+‖2

]
dtds

)
,

(3.19)

we deduce by lower semicontinuity property of norms with respect to weak-star

convergence in L∞(
0, T ;L2(Ω)

)
, and σ

∗
⇀ ρ in L∞(

0, T ;L2(Ω)
)
that

(3.20) ‖ρ‖2L2(0,T ;L2) ≤ lim inf
k,h→0

‖σ‖2L2(0,T ;L2) ≤ ‖ρ‖2L2(0,T ;L2) ,

and the assertion of the lemma follows.
We use the energy identity (3.5) to conclude after twice integrating in time, for

T a point of the net Ik := {tk},

(3.21)
1

2

∫ T

0

‖σ+‖2h ds+
∫ T

0

∫ t

0

[k
2
‖σt‖2h + αhα‖∇σ+‖2

]
dsdt =

T

2
‖ρ0‖2h .

We combine equations (3.21), (3.18) as well as the following bounds which employ
(3.4), (3.5), and (2.4),∫ T

0

‖σ+ − σ‖2h ds ≤ Ck
(
k

∫ T

0

‖σt‖2h ds
)
→ 0

∫ T

0

∣∣∣‖σ‖2 − ‖σ‖2h
∣∣∣ ds ≤ Ch‖σ‖L2(0,T ;L2)‖σ‖L2(0,T ;W 1,2) ≤ Ch1−α

2 → 0

for k, h → 0, in case 1− α
2 > 0, to obtain

1

2
‖ρ‖2L2(0,T ;L2) = lim inf

k,h→0

(1
2

∫ T

0

‖σ+‖2h ds

+

∫ T

0

∫ t

0

[k
2
‖σt‖2h + αhα‖∇σ+‖2

]
dsdt

)

≥ lim inf
k,h→0

(1
2
‖σ‖2L2(0,T ;L2) +

∫ T

0

∫ t

0

[k
2
‖σt‖2h + αhα‖∇σ+‖2

]
dsdt

)
.

(3.22)

This implies (3.19), and for almost every t ∈ [0, T ] we may conclude that

lim inf
k,h→0

∫ t

0

[k
2
‖σt‖2 + αhα‖∇σ+‖2

]
ds = 0

as well. �
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In order to identify limits in each term of (3.11)1−3, we need strong Lp-con-
vergence of the sequence

{(
UUU ,BBB, σ

)}
. For this purpose, we employ Lemma 2.4:

because of the uniform bounds in Lemma 3.1, and Lemma 2.5, by [37] it remains to
show that there exist a constant C > 0 independent of k, h > 0, and some κ ∈ (0, 1)
such that∫ T

δ

[
‖UUU(t, ·)−UUU(t− δ, ·)‖2L2 +BBB(t, ·)−BBB(t− δ, ·)‖2L2

]
dt ≤ Cδκ ∀ δ ∈ [0, T ] .

The proof of the following lemma requires (·, ·)∗ = (·, ·)h in (3.2) of Scheme A, and
β3 > 0 for d = 3.

Lemma 3.3. Let (·, ·)∗ = (·, ·)h in (3.2), suppose (2.8), and choose 0 < α, β1, β2, β3

in Scheme A, such that

0 < α+
β2

2
<

6− d

6
and, moreover, for d = 3 : α ≥ β3

4
.

There exists κ ≡ κ(Ω) > 0 such that iterates
{(

Un,Bn
)}N

n=1
⊂ Jh×Xh of Scheme

A satisfy∫ T

δ

[
‖UUU(t, ·)−UUU(t− δ, ·)‖2L2 + ‖BBB(t, ·)−BBB(t− δ, ·)‖2L2

]
dt ≤ Cδκ ∀ δ ∈ [0, T ] .

A corresponding result for the density dependent incompressible Navier-Stokes
equation in a different numerical setting may be found in [30, pp. 1295–1296].

Proof. Step 1. Control of increments of {Un} ⊂ Jh. Let (·, ·)∗ = (·, ·)h. Rewrite
the leading two terms in equation (3.11)2 as

(
[σUUU ]t,W)h − 1

2

(
σtUUU+,W

)
h
. We use

equation (3.11)1 with χ = IVh
〈UUU+,W〉 to conclude (W ∈ Jh):(

σtUUU+,W
)
h
=

(
σ+UUU+,∇IVh

〈UUU+,W〉
)
+

1

2

(
[divUUU+]σ+, IVh

〈UUU+,W〉
)

− αhα
(
∇σ+,∇IVh

〈UUU+,W〉
)
.(3.23)

Let t = tn ≥ t� ≥ 0 be a point of the net Ik = {tn}n≥0. Integration with respect to
s ∈ (tn−�, tn), and using (3.23) then leads to(

[σUUU ](tn, ·)− [σUUU ](tn−�, ·),W
)
h
+ β1h

−β1

∫ tn

tn−�

(
divUUU+, divW

)
ds

+β2h
β2

(
∇[UUU(tn, ·)−UUU(tn−�, ·)],∇W

)
+ β3h

β3

∫ tn

tn−�

(
ΔhUUU+,ΔhW

)
ds

=
1

2

∫ tn

tn−�

[(
σ+UUU+,∇IVh

〈UUU+,W〉
)
+

1

2

(
[divUUU+]σ+, IVh

〈UUU+,W〉
)

−αhα
(
∇σ+,∇IVh

〈UUU+,W〉
)]

ds(3.24)

−
∫ tn

tn−�

[ 1
μ

(
BBB− × curlBBB+,W

)
− (σ−g+,W)

]
ds

−
∫ tn

tn−�

Ads =: I + ..+ V −
∫ tn

tn−�

Ads ,

where A summarizes the terms three to five in (3.11)2.
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Correspondingly, integrating (3.11)1 with respect to s ∈ (tn−�, tn), and setting
χ = IVh

〈UUU(tn, ·),W〉 leads to

(
σ(tn, ·)− σ(tn−�, ·), 〈UUU(tn, ·),W〉

)
h
=

∫ tn

tn−�

[(
σ+UUU+,∇IVh

〈UUU(tn, ·),W〉
)

+
1

2

(
[divUUU+]σ+, IVh

〈UUU(tn, ·),W〉
)

(3.25)

− αhα
(
∇σ+,∇IVh

〈UUU(tn, ·),W〉
)]

ds =: V I + ..+X .

Subtracting this equation from (3.24) and observing that

(
[σUUU ](tn, ·)− [σUUU ](tn−�, ·),W

)
h
−
(
σ(tn, ·)− σ(tn−�, ·), 〈UUU(tn, ·),W〉

)
h

=
(
σ(tn−�, ·)

[
UUU(tn, ·)−UUU(tn−�, ·)

]
,W

)
h

leads to

(
σ(tn−�)

[
UUU(tn, ·)−UUU(tn−�, ·)

]
,W

)
h
+ β1h

−β1

∫ tn

tn−�

(
divUUU+, divW

)

+β2h
β2
(
∇[UUU(tn, ·)−UUU(tn−�, ·)],∇W

)
+ β3h

β3

∫ tn

tn−�

(
ΔhUUU+,ΔhW

)
ds(3.26)

= I + ..+ V −
∫ tn

tn−�

A ds−
∫ tn

tn−�

[V I + ..+X] ds .

Upon choosing W = UUU(tn, ·)−UUU(tn−�, ·) ∈ Jh, and summing over all steps  ≤ n ≤
N , and using (3.6), the left-hand side dominates

k
N∑

n=�

[
ρ1‖UUU(tn, ·)−UUU(tn−�, ·)‖2h + β2h

β2‖∇[UUU(tn, ·)−UUU(tn−�, ·)]‖2
]

− β1

hβ1
k

N∑
n=�

∣∣∣∫ tn

tn−�

(
divUUU+, div

[
UUU(tn, ·)−UUU(tn−�, ·)

])
ds

∣∣∣(3.27)

−β3h
β3k

N∑
n=�

∣∣∣∫ tn

tn−�

(
ΔhUUU+,Δh[UUU(tn, ·)−UUU(tn−�, ·)]

)
ds

∣∣∣ .
Next, we derive bounds Ctκ� , for some κ > 0 for each term on the right-hand side
of (3.26), after integration in time over [0, T ].

By (3.4), the negative term in (3.27) may then be bounded by

≤ β1

hβ1
k

N∑
n=�

{
‖divUUU(tn, ·)‖+ ‖divUUU(tn−�, ·)‖

}∫ tn

tn−�

‖divUUU+‖ ds

+β3h
β3k

N∑
n=�

{
‖ΔhUUU(tn, ·)‖+ ‖ΔhUUU(tn−�, ·)‖

}∫ tn

tn−�

‖ΔhUUU+‖ ds ≤ Ct� .
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Next, we bound k
∑N

n=�(I + II). For this purpose, interpolate L3 between L2

and W 1,2, and use W 1,2 ↪→ L6 to conclude

I + II ≤ C

∫ tn

tn−�

‖σ+‖L∞‖UUU+‖L3‖∇UUU+‖‖∇[UUU(tn, ·)−UUU(tn−�, ·)]‖ ds

≤ C sup
[0,T ]

‖UUU+‖1/2 k
N∑

n=�

[
‖∇UUU(tn, ·)‖+ ‖∇UUU(tn−�, ·)‖

] ∫ tn

tn−�

‖∇UUU+‖3/2 ds

≤ Ck

N∑
n=0

‖∇UUU+‖
(∫ tn

tn−�

‖∇UUU+‖2 ds
)3/4

t
1/4
� ≤ Ct

1/4
� .

A corresponding estimate for k
∑N

n=1

∫ tn
tn−�

Ads follows accordingly.

The term III in (3.26) requires β3 > 0 for d = 3 in order not to conflict with the
requirement for 0 < α, β2 needed for property (3.6); see Lemma 3.1. We confine to
the case d = 3; summing over  ≤ n ≤ N leads to

αhαk
N∑

n=�

∫ tn

tn−�

∣∣∣(∇σ+,∇IVh
〈UUU+,W〉

)∣∣∣ ds
≤ Cαhαk

N∑
n=�

∫ tn

tn−�

‖∇σ+‖L2

[
‖∇UUU+‖L2‖UUU(tn, ·)−UUU(tn−�, ·)‖L∞

+ ‖UUU+‖L∞‖∇[UUU(tn, ·)−UUU(tn−�, ·)]‖L2

]
ds

≤ C
√
αhα/2t

1/2
� max

�≤n≤N

(
αhα

∫ tn

tn−�

‖∇σ+‖2 ds
)1/2

× k

N∑
n=�

‖∇Un‖5/4L2

(
‖Un‖+ ‖ΔhU

n‖
)3/4

≤ C
√
αt

1/2
� h

α
2 − 3β3

8

(
k

N∑
n=0

‖∇Un‖2
)5/8(

hβ3k
N∑

n=0

‖ΔhU
n‖2

)3/8

.

(3.28)

Here, we use (3.4), (2.10), Hölder, and an inverse inequality. As a consequence, we
need

α

2
≥ 3β3

8
(d = 3) .

In order to control IV , we use property (2.15) of the Hodge mapping H : Xh → X,
for some σ ≡ σ(Ω) > 0. We compute (W = UUU(tn, ·)−UUU(tn−�, ·))

∣∣(BBB− × curlBBB+,W
)∣∣ ≤ ‖BBB− −H(BBB−)‖L2‖curlBBB+‖L2‖W‖L∞

+ ‖H(BBB−)‖L3‖curlBBB+‖L2‖W‖L6 .

We use an inverse estimate for the first term, (2.15), and Lp-interpolation together
with Lemma 2.1 (ii) for the second. Then, there exists 0 < δ2 ≡ δ2(δ1) < 1, such
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that we find the upper bound

≤ C
[
hσ ‖curlBBB−‖L2‖curlBBB+‖L2

+ ‖BBB−‖δ2L2‖BBB−‖1−δ2
H(curl)‖curlBBB

+‖L2

]
‖W‖L6(3.29)

≤ C
[
‖BBB−‖L2 + ‖BBB−‖δ2L2‖curlBBB−‖1−δ2

L2

]
‖curlBBB+‖L2‖∇W‖L2 .

Thanks to the discrete energy law (3.4), we may then conclude as follows:

k

N∑
n=�

∫ tn

tn−�

∣∣(BBB− × curlBBB+,W
)∣∣ ds

≤ Ck
N∑

n=�

∫ tn

tn−�

[
‖curlBBB−‖+ ‖curlBBB+‖

]2−δ2‖∇W‖ ds

≤ C
(
k

N∑
n=�

‖∇W‖
)
t
δ2
2

� max
�≤n≤N

(∫ tn

tn−�

[
‖curlBBB−‖+ ‖curlBBB+‖

]2
ds

) 2−δ2
2

≤ Ct
δ2
2

� .

(3.30)

Putting things together then yields for some κ ≡ κ(Ω) > 0,∫ T

δ

‖UUU(t, ·)−UUU(t− δ, ·)‖2 dt ≤ Cδκ ∀ δ ∈ [0, T ] .

Step 2. Control of increments of {Bn} ⊂ Xh. We proceed similarly to Step 1,
where arguments simplify and we use equation (3.11)3.

Let t = tn > 0 be a point of the net Ik. Integrating (3.11)3 with respect to
s ∈ (tn−�, tn) leads to(
BBB(tn, ·)−BBB(tn−�, ·),ψψψ

)
= −

∫ tn

tn−�

[ 1
μ

( 1

ξ−
curlBBB+, curlψψψ

)
+
(
UUU+×BBB−, curlψψψ

)]
ds .

Upon choosing ψψψ=BBB(tn, ·)−BBB(tn−�, ·)∈Xh, the left-hand side dominates ‖BBB(tn, ·)−
BBB(tn−�, ·)‖2; after summation over  ≤ n ≤ N , terms on the right-hand side may
be bounded as

1

ξ−
k

N∑
n=�

∫ tn

tn−�

(
curlBBB+, curlψψψ

)
ds ≤ Ct�k

N∑
n=�

[
‖curlBBB−‖+ ‖curlBBB+‖

]2 ≤ Ct� ,

thanks to (3.4). We use similar arguments as in the previous step to control the
term IV there.

We use the inverse estimate ‖UUU+‖L∞ ≤ Ch−1/2‖UUU+‖L2 , estimate (2.15), and
Lemma 2.1 (ii) to conclude that∣∣(UUU+ ×BBB−, curlψψψ

)∣∣ ≤ ‖UUU+‖L∞‖BBB− −H(BBB−)‖L2‖curlψψψ‖L2

+‖UUU+‖L6‖H(BBB−)‖L3‖curlψψψ‖L2

≤ C
[
hσ̃‖curlBBB−‖L2 + ‖BBB−‖δ2‖BBB−‖1−δ2

H(curl)

]
‖UUU+‖L6‖curlψψψ‖L2
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for some σ̃ ≡ σ̃(Ω) > 0, and 0 < δ2 ≡ δ2(δ1) < 1. Hence, there exists δ3 ≡
δ3(σ, δ2) > 0, such that∫ T

0

∫ tn

tn−�

∣∣(UUU+ ×BBB−, curlψψψ
)∣∣ ds

≤ Ck

N∑
n=�

∫ tn

tn−�

[
1 + ‖curlBBB−‖+ ‖curlBBB+‖

]2−δ3‖∇UUU+‖ ds

≤ Ct
δ3
2

� k
N∑

n=�

‖∇UUU+‖ max
�≤n≤N

(∫ tn

tn−�

[
‖curlBBB−‖+ ‖curlBBB+‖

]2
ds

) 2−δ3
2 ≤ Ct

δ3
2

� .

Putting things together yields for some existing κ ≡ κ(Ω) > 0 that∫ T

δ

‖BBB(t, ·)−BBB(t− δ, ·)‖2 ds ≤ Cδκ ∀ δ ∈ [0, T ] . �

By Lemma 2.4, we may conclude from Lemma 3.3 compactness of the sequence{(
UUU ,BBB

)}
⊂

[
L2

(
0, T ;L2(Ω,R3)

)]2
if α, β1, β2, β3 > 0, and hence in addition to

(3.13) for k, h → 0,

UUU±,UUU → u in L2
(
0, T ;L2

)
,

BBB±,BBB → b in L2
(
0, T ;L2

)
,(3.31)

σ±, σ → ρ in Lq
(
0, T ;Lq

)
(1 ≤ q < ∞) ,

where property (3.31)3 is a consequence of the uniform bounds for {σ} ⊂
L∞(

0, T ;L∞)
, and Lemma 3.2, together with (3.13)6.

It remains to pass to limits in each of the terms in (3.11)2 and (3.11)3 for k, h → 0,
with (·, ·)∗ = (·, ·)h. We begin with (3.11)2, where W(t, ·) = Q1

hζζζ(t, ·) for every
t ∈ [0, T ), and ζζζ ∈ C∞

0

(
[0, T );JJJ

)
. We rewrite the leading two terms in (3.11)2 as

follows:
1

2

{(
σ−UUU t,W

)
h
+
(
[σUUU ]t,W

)
h

}
=

(
[σUUU ]t,W

)
+
[(
[σUUU ]t,W

)
h
−
(
[σUUU ]t,W

)]
− 1

2

(
σtUUU+,W

)
h
.(3.32)

We independently control terms on the right-hand side:
(i) Last term on thee right-hand side of (3.32). We use (3.23), which has three

terms A1, A2, and A3 on the right-hand side:

A1 =
([

σ+UUU+],∇〈UUU+,W〉
)
+
(
div[σ+UUU+], [IVh

− Id]〈UUU+,W〉
)
=: A11 +A12 .

We easily conclude limk,h→0 A11 =
(
ρu,∇〈u, ζζζ〉

)
from (3.13), (3.31)3,1. We use an

inverse estimate, and a standard approximation result to bound the term A12,

|A12| ≤ ‖div[σ+UUU+]‖‖[IVh
− Id]〈UUU+,W〉‖

≤
(
‖σ+‖L∞‖divUUU+‖+ ‖∇σ+‖‖UUU+‖L∞

)
Ch‖∇〈UUU+,W〉‖

≤
(
h

α
2 ‖∇σ+‖

)
Ch1−�d−α

2 −β2
2

(
h

β2
2 ‖∇UUU+‖

)
‖∇〈UUU+,W〉‖ ,

for any 2 > 0, and 3 = 1
2 . Thanks to (3.4), (3.5), in order to validate

∫ T

0
|A12| ds →

0 for k, h → 0, we have to make sure that 1 − d − α
2 − β2

2 > 0, which is valid in

case we have α+ β2 < 6−d
d , and

√
β2h

β2
2 ‖∇U0‖ ≤ C.
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Identifying limk,h→0

[
|A2|+ |A3|

]
= 0 in (3.23) follows easily from (3.13), (3.31),

and (3.5).
(ii) Difference term on right-hand side of (3.32). We use integration by parts to

conclude that

∣∣∣∫ T

0

(
[σUUU ]t,W

)
h
−
(
[σUUU ]t,W

)
ds

∣∣∣
≤

∫ T

0

∣∣∣(σUUU ,Wt

)
h
−
(
σUUU ,Wt

)∣∣∣ ds
+
∣∣∣(ρ0U0,W(0, ·)

)
h
−
(
ρ0U0,W(0, ·)

)∣∣∣
≤ Ch

∫ T

0

‖σ‖L∞‖U‖L2‖ζζζt‖W1,2 ds

+ Ch‖ρ0‖L∞‖u0‖‖ζζζ‖W1,2 → 0 (k, h → 0) .

(iii) First term on right-hand side of (3.32). We use integration by parts to
conclude

∫ T

0

(
[σUUU ]t,W

)
ds = −

∫ T

0

(
σUUU ,Wt

)
ds−

(
ρ0U0,W(0, ·)

)

→ −
∫ T

0

(
ρu, ζζζt

)
ds−

(
ρ0u0, ζζζ(0, ·)

)
(k, h → 0) .

Putting (i) through (iii) together yields for (3.32),

1

2
lim

k,h→0

∫ T

0

[
(σ−UUU t,W)h +

(
[σUUU ]t,W

)
h

]
ds

=

∫ T

0

[1
2

(
ρu,∇〈u, ζζζ〉

)
−
(
ρu, ζζζt

)]
ds−

(
ρ0u0, ζζζ(0, ·)

)

=
1

2

∫ T

0

[(
[ρu · ∇]u, ζζζ

)
+
(
[ρu · ∇]ζζζ,u

)]
ds

−
∫ T

0

(
ρu, ζζζt

)
ds−

(
ρ0u0, ζζζ(0, ·)

)
.

(3.33)

Passing to the limit in the third and fourth term in (3.11)2 uses strong Lp-conver-
gence of density and velocity iterates given in (3.31)1,3. For example, we find in
a first step for the third term, using (3.31)3, interpolation of L3 between L2 and
W1,2, and Lemma 3.1,

∫ T

0

∣∣∣([{σ− − ρ}UUU− · ∇]UUU+,W
)∣∣∣ ds

≤
(∫ T

0

‖σ− − ρ‖6L6 ds
) 1

6
(∫ T

0

‖UUU−‖3L3 ds
) 1

3

×
(∫ T

0

‖∇UUU+‖2L2 ds
) 1

2 ‖W‖L∞(0,T ;L∞) → 0 ,
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for k, h → 0; in a second step, we employ (3.31)1 to conclude that∫ T

0

∣∣∣([ρ{u−UUU−} · ∇]UUU+,W
)∣∣∣ ds

≤ ‖ρ‖L∞(0,T ;L∞)

(∫ T

0

‖u−UUU−‖2L2 ds
)1/2

×
(∫ T

0

‖∇UUU+‖2L2 ds
)1/2

‖W‖L∞(0,T ;L∞) → 0 ,

for k, h → 0. As a consequence, we find for the third term for k, h → 0,

lim
k,h→0

∫ T

0

(
[σ−UUU− · ∇]UUU+,W

)
ds →

∫ T

0

(
[ρu · ∇]u, ζζζ

)
ds .

A convergence study for the fourth term in (3.11)2 is similar. Passing to the limit
in terms V , V II − IX in equation (3.11)2 follows easily from (3.13), (3.31). We
recall the cancellation of terms from (3.33), and limits of III, IV .

For the sixth term in (3.11)2, we employ (3.4), (2.6) to conclude for 2 > β1,

β1h
−β1

∣∣∣∫ T

0

(
divUUU+, div [W − ζζζ]

)
ds

∣∣∣≤Cβ1h
−β1

2 h‖ζζζ‖L2(0,T ;H2)→0 (k, h→0) .

The limit of the seventh and eighth term in (3.11)2 is zero for β2, β3 ≥ 0, since
for h → 0,

β2h
β2

∣∣∣[− ∫ T

0

(∇UUU ,∇Wt) ds+
(
∇UUU(0, ·),∇W(0, ·)

)]∣∣∣ → 0 ,

and for h → 0,

β3h
β3

∣∣∣∫ T

0

(
ΔhUUU+,ΔhW

)
ds

∣∣∣ ≤ Cβ3h
β3
2

(
h

β3
2 ‖ΔhUUU+‖L2(0,T ;L2)

)
‖ζζζ‖L2(0,T ;L2) → 0 .

Consider now (3.11)3, with ψψψ(t, ·) ≡ R0
hw(t, ·) for every t ∈ [0, T ), and every

w ∈ C∞
0

(
[0, T ),WWW

)
, and integrate the equation over [0, T ]. We employ integration

by parts for the first term to conclude that

−
∫ T

0

(
BBB,ψψψt

)
ds+

1

μ

∫ T

0

1

ξ(σ−)

(
curlBBB+, curlψψψ

)
ds

−
∫ T

0

(
UUU+ ×BBB−, curlψψψ

)
ds =

(
B0,ψψψ(0, ·)

)
.

Passing to the limit in each of the terms now easily follows from (3.13)5, (3.31)
(first two terms), (3.31)1 (third term), and B0 ⇀ b0 in L2(Ω).

The results of this section are summarized in the following

Theorem 3.1. Let T ≡ kN > 0, and Th be a strongly acute triangulation of a
bounded polyhedral domain Ω ⊂ R

3, and let (2.8) be valid. Let (·, ·)∗ = (·, ·)h.
Choose α, β1, β2, β3 > 0, such that

(A1) 0 < 2α+ β2 < 6−d
3 , 0 < β1 < 2, and in case d = 3 and α ≥ β3

4 ,

(A2)
√
h‖∇ρ0‖+

√
β2h

β2
2 ‖∇U0‖ ≤ C .
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For every k, h > 0 sufficiently small, there exists a pentuple{(
Un, Pn,Bn, Rn, ρn

)}N

n=1
⊂ Jh × Lh ×Xh × Sh × Vh

which solves Scheme A, and satisfies (3.4), (3.5), and (3.6). Tending k, h → 0,
where

ρ0 → ρ0 in L2(Ω) ,
(
U0,B0 ) ⇀

(
u0,b0 ) in

[
L2(Ω)

]2
,

there exist a convergent subsequence, and(
u,b, ρ

)
∈
[
L∞(0, T ;H)

]2 × L∞(
0, T ;L∞(Ω)

)
,

such that

UUU ∗
⇀ u in L∞(

0, T ;L2
)
, BBB ∗

⇀ b in L∞(
0, T ;L2

)
, σ

∗
⇀ ρ in L∞(

0, T ;L∞)
.

Moreover,
(
u,b, ρ

)
is a weak solution to (1.1)–(1.2).

Remark 3.1. In [30], a convergent discretization of the incompressible Navier-Stokes
equations with variable density and viscosity (i.e., problem (1.1)1−3, with b = 0) is
proposed. In order to balance the conflicting requirements of stability, consistency,
and nonnegativity of the density, the key ingredients of the given discontinuous
Galerkin scheme are

(i) piecewise constant approximations of the density giving rise to a monotone
scheme to validate (3.6),

(ii) velocity fields which have average divergence equal to zero on each ele-
ment and satisfy divUUU+ → 0 in L2

(
ΩT ), which is needed to conclude

strong L2(ΩT ) convergence of approximate densities. A proper scenario
[30, Thm. 3.7] are velocity-pressure spaces which satisfy (2.5), and where
the pressure space contains piecewise constant functions (Crouzeix-Raviart
elements); cf. also [30, Sec. 4].

A complementary scenario is given in this work, where different stabilizing terms
are used in the continuous Galerkin method (3.1)–(3.2), and key ingredients of the
scheme are

(i′) the M -matrix property of the stiffness matrix related to (3.1), where
element-wise affine, globally continuous density approximations are used.
Here, the compatibility assumption (2.8) is needed to balance ansatz spaces
of both, pressure and density,

(ii′) a stabilization term in (3.2) is inserted to conclude divUUU+ → 0 in L2(ΩT ).
In turn, velocity-pressure spaces which respect (2.5) with continuous pres-
sure functions (e.g., Taylor-Hood elements, MINI element) are admitted.
A proper balancing strategy of stabilization parameters given in (A1)–(A2)
of Theorem 3.1 is needed to adjust the conflicting discretization and stabi-
lization effects, and hence conclude convergence.

4. Algorithm A: A simple fixed point scheme to solve Scheme A

The fully discrete Scheme A requires solving a nonlinear coupled system for every
n ≥ 1. Usually, iterative strategies are employed, which typically go along with a
loss of desirable properties for computed iterates, such as the discrete energy iden-
tity, and the discrete maximum principle for computed densities in the present case.
In fact, the specific iterative scheme has to satisfy a contraction principle to validate
convergence to a (unique) limit which solves Scheme A, which is clearly harder to
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satisfy than the requirements needed in Section 3 to validate solvability of Scheme
A by Brouwer’s fixed point theorem. For practicability, a thresholding criterion has
to be supplemented as well to stop the iteration at every time level, which is based
on evaluating incremental updates in proper norms. Thresholding criteria have to
be properly chosen to make sure that such approximations of solutions to Scheme
A eventually converge to weak solutions.

In [33, Section 3], a corresponding program has been realized for the one-fluid
magnetohydrodynamics problem, which comes from formally setting ρ ≡ 1 in (1.1):
it is shown in [33, Theorem 3.2] that sufficient for the proposed iterative scheme

to satisfy a contraction property are choices k ≤ C̃hδ, where δ = 2 (d = 2), and
δ = 4 (d = 3). Clearly, we may not expect a less restrictive mesh constraint in the
present case. We draw the following conclusions from [33]:

(i) The nonlinear coupling of b and u in equations (1.1)1 and (1.1)4 is strong,
and

(ii) H(curl; Ω)-conforming discretizations for the magnetic field have limited
stability properties (cf. Lemma 2.1), which is the reason for the above
restrictive (sufficient) mesh-constraints to validate the contraction property.

In order to obtain less restrictive mesh constraints which are sufficient for a con-
traction property in the present context, we propose two changes of Scheme A:

(a) We replace Xh ⊂ H(curl; Ω) in Scheme A by

X̃h :=
{
ψψψ ∈ C(Ω) : ψψψ ∈ P1(K) ∀K ∈ Th

}
⊂ W1,2(Ω) ,

and delete the Lagrange multiplier Rn ∈ Sh from this scheme; see e.g. [16],

and [11, Sections 3.3 and 3.4]. Note that ‖b‖L6 ≤ C‖b‖W1,2 , for all b ∈ X̃h,
as opposed to Lemma 2.1 (ii).

(b) We add the stabilization term γhγ(∇dtB
n,∇ψψψ) to the left-hand side of

(3.3).

The convergence analysis below holds for convex polyhedral domains.

Remark 4.1. It is immediate to adapt the results in Section 3 to the modified
Scheme A, when (a) and (b) hold; Theorem 3.1 remains valid, for Ω ⊂ R

3 now a
convex polyhedron.

The following fixed point algorithm decouples the computation of iterates, and
amounts to successively solving three linear problems in every step indexed by
n ≥ 1.

Algorithm A. Choose α, β1, β2, β3, γ > 0, and a threshold parameter θ > 0.

Let
(
ρ0,U0,B0

)
∈ Vh × Jh × X̃h, and set n := 1.

1. Set ρn,0 := ρn−1, Un,0 := Un−1, Bn,0 := Bn−1, and  = 0.
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2. Let  ≥ 1. Compute
(
ρn,�,Un,�, Pn,�,Bn,�

)
∈ Vh × Jh × Lh × X̃h such that

for all
(
χ,W,ψψψ

)
∈ Vh ×Vh × X̃h,(ρn,� − ρn−1

k
, χ

)
h
+
(
Un,�−1 · ∇ρn,�, χ

)
+

1

2

(
[divUn,�−1]ρn,�, χ

)
(4.1)

+ αhα
(
∇ρn,�,∇χ

)
= 0 ,

1

2

{(
ρn−1U

n,� −Un−1

k
,W

)
h
+
(ρn,�−1Un,� − ρn−1Un−1

k
,W

)
h

(4.2)

+
(
[ρn−1Un−1 · ∇]Un,�,W

)
−

(
[ρn−1Un−1 · ∇]W,Un,�

)}
+
(
ηn−1DDD(Un,�),DDD(W)

)
+ β1h

−β1
(
divUn,�, divW

)
+ β2h

β2

(
∇Un,� −Un−1

k
,∇W

)
+ β3h

β3

(
ΔhU

n,�,ΔhW
)
− (Pn,�, divW)

+
1

μ

(
Bn−1 × curlBn,�−1,W

)
=

(
ρn−1gn,W

)
,

(Bn,� −Bn−1

k
,ψψψ

)
+

1

μ

( 1

ξn−1
curlBn,�, curlψψψ

)
(4.3)

+ γhγ
(
∇Bn,� −Bn−1

k
,∇ψψψ

)
−

(
Un,�−1 ×Bn−1, curlψψψ

)
= 0 .

3. Stop if

1

h
‖Un,�−1 −Un,�‖h + ‖div(Un,�−1 −Un,�)‖+ 1

2k
‖ρn,�−1 − ρn,�‖L∞

+
1

μ
‖curl [Bn,�−1 −Bn,�]‖L∞ + ‖Un,�−1 −Un,�‖L∞ ≤ θ.(4.4)

Set ρn := ρn,�+1, Un := Un,�+1, Bn := Bn,�+1, update n ← n + 1 and go to Step
1.

4. Set  ← + 1, and go to Step 2.

It will turn out from the subsequent analysis, that choosing α, β1, β2, β3, γ > 0 al-
lows for a discrete maximum principle to hold for positive iterates {ρn,�}�≥0. More-
over, the combination of W1,2-conforming finite elements for the magnetic field b,
and stabilization terms only requires a mild mesh constraint (4.5) to validate a con-
traction principle; at the same time, iterates of Algorithm A {

(
ρn,�,Un,�,Bn,�

)
}�≥0

are obtained in a fully decoupled manner. For simplicity, we confine to the case
d = 3.

Theorem 4.1. Let Ω ⊂ R
3 be a convex polyhedral domain. Suppose that all as-

sumptions in Theorem 3.1 hold, that γ > 0, and h
γ
2 ‖∇B0‖ ≤ C. Let{(

ρn,�,Un,�, Pn,�,Bn,�
)}

1≤n≤N

�≥0

be a solution to Algorithm A. For every n ≥ 1, the above mapping to update(
ρn,�−1,Un,�−1,Bn,�−1

)
→

(
ρn,�,Un,�,Bn,�

)
( ≥ 1)
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is a contraction, provided that k, h > 0 are sufficiently small and satisfy

(4.5) C̃k
[
h−(1+γ) + h−(α+3β2) + hα−(1+2β2) + kh− 5

2β2 + h−( γ
2+β2)

]
≤ 1

2
.

Then, the fixed-point Algorithm A terminates for every n ≥ 1, and corresponding

unique iterates
{
ρn,�n ,Un,�n ,Bn,�n

}
∈ Vh×Jh×X̃h satisfy the following perturbed

versions of the discrete energy laws:

1

2
max

1≤n≤N

[
‖
√
ρnUn‖2h + β2h

β2‖∇Un‖2 + 1

μ
‖Bn‖2 + γhγ‖∇Bn‖2

]
(4.6)

+
k2

2

N∑
n=1

[
‖
√
ρn−1dtU

n‖2h + β2h
β2‖∇dtU

n‖2

+ ‖dtBn‖2 + γhγ‖∇dtB
n‖2

]

+ k
N∑

n=1

[
‖
√
ηn−1DDD(Un)‖2 + β1h

−β1‖divUn‖2 + β3h
β3‖ΔhU

n‖2

+
1

μ2 ‖
1√
ξn−1

curlBn‖2
]

≤ 1

2

[
‖
√
ρ0U0‖2h + β2h

β2‖∇U0‖2 + 1

μ
‖B0‖2 + γhγ‖∇B0‖2

]

+ θk

N∑
n=1

[(
‖Un‖h + ‖Bn‖+ 1

)
‖Un‖h + ‖Bn−1‖‖curlBn‖

]

+ k

N∑
n=1

∣∣(ρn−1gn,Un
)∣∣ ,

1

2
max

1≤n≤N
‖ρn‖2h +

k2

2

N∑
n=1

‖dtρn‖2h + αhαk

N∑
n=1

‖∇ρn‖2(4.7)

≤ 1

2
‖ρ0‖2h + Cθk

N∑
n=1

‖ρn‖ ,

and positive iterates {ρn,�n}n ⊂ Vh satisfy the discrete maximum principle (3.6).
Moreover, (

ρn,�n ,Un,�n ,Bn,�n
)
→

(
σn,Vn,Cn

)
(θ → 0)

for every n ≥ 1, where
{(

σn,Vn,Cn
)}N

n=1
⊂ Vh × Jh × X̃h solves Scheme A,

and overall (subsequence) convergence of
{(

ρn,�n ,Un,�n ,Bn,�n
)}N

n=1
towards weak

solutions of (1.1)–(1.2) for k, h, θ → 0 is valid.

We argue by induction over n ≥ 1 to verify this result.

Proof. Step 1: Solvability for every (n,  ) ≥ 0. We first consider a modified version

of Algorithm A, where ρn,�−1 in the second term in (4.2) is changed to ρn,�−1
+ .

Let n ≥ 1, and suppose that ρ1 ≤ ρn−1 ≤ ρ2, and

(4.8) ‖
√
ρn−1Un−1‖h + ‖Bn−1‖+

√
β2h

β2
2 ‖∇Un−1‖+√

γh
γ
2 ‖∇Bn−1‖ ≤ C̃ .
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Choose
(
χ,W,ψψψ

)
=

(
ρn,�,Un,�, 1

μB
n,�

)
in (4.1)–(4.3) to obtain

Xn,� :=
1

4k

[
‖ρn,�‖2h + ‖

√
ρn−1Un,�‖2h + ‖

√
ρn,�−1
+ Un,�‖2h

+ β2h
β2‖∇Un,�‖2 + 1

μ
‖Bn,�‖2 + γhγ‖∇Bn,�‖2

]
+ αhα‖∇ρn,�‖2

+ β3h
β3‖ΔhU

n,�‖2 + β1k
−β1‖divUn,�‖2 + ‖

√
ηn−1DDD(Un,�)‖2

+
1

μ2 ‖
1√
ξn−1

curlBn,�‖2

≤ 1

k

[
‖ρn−1‖2h + ‖

√
ρn−1Un−1‖2h + β2h

β2‖∇Un−1‖2 + 1

μ
‖Bn−1‖2

]
− 1

μ
I ,

where, by inverse inequality, (2.3) and (4.8),

I :=
(
Bn−1 × curlBn,�−1,Un,�

)
+
(
Un,�−1 ×Bn−1, curlBn,�

)
≤ Ch−1‖Bn−1‖2L6

[ k

ρ1
‖curlBn,�−1‖2 + ξ+μ

2‖Un,�−1‖2h
]

+
1

2

[ 1

4k
‖
√
ρn−1Un,�‖2h +

1

μ2 ‖
1√
ξn−1

curlBn,�‖2
]

≤ Ch−(1+γ)
[ k

ρ1
‖curlBn,�−1‖2 + μ2ξ+‖Un,�−1‖2h

]
+
1

2

[ 1

4k
‖
√
ρn−1Un,�‖2h +

1

μ2 ‖
1√
ξn−1

curlBn,�‖2
]
.

In order to validate 1
2Xn,� ≤ 1

k C̃+ 1
4Xn,�−1 for all  ≥ 1, we have to make sure that

Ch−(1+γ) k

ρ1
≤ 1

16μ2ξ−
and Ch−(1+γ)μ2ξ+ ≤ ρ1

16k
.

Then, we may conclude recursively that for all  ≥ 1,

‖ρn,�‖2h + ‖
√
ρn−1Un,�‖2h + ‖

√
ρn,�−1
+ Un,�‖2h + β2h

β2‖∇Un,�‖2

+ γhγ‖∇Bn,�‖2 + 1

μ
‖Bn,�‖2

+ k
[
αhα‖∇ρn,�‖2 + ‖

√
ηn−1DDD(Un,�)‖2 + 1

μ
‖ 1√

ξn−1
curlBn,�‖2

+ β1h
−β1‖divUn,�‖2 + β3h

β3‖ΔhU
n,�‖2

]
≤ 16C̃ ,

(4.9)

where C̃ > 0 is the constant used in (4.8). This result also validates existence of
unique solutions for Algorithm A by Lax-Milgram theorem.

Step 2: Positivity of density iterates, and discrete maximum principle for every
(n,  ) ≥ 0. It holds that

(4.10) ρ1 ≤ ρn,� ≤ ρ2 ∀ (n,  ) ≥ 0 .

This property can be shown as in Step 3 of the proof of Lemma 3.1, by using (4.9).
As a consequence, we may drop the initial change of the second term in (4.2) in

Step 1, where ρn,�−1 was replaced by ρn,�−1
+ to verify (4.9).
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Step 3: Contraction property. Fix n ≥ 1. Let En,�
ϕ := ϕn,� − ϕn,�−1, for ϕ ∈{

U,B, P, ρ
}
, and suppose that ρ1 ≤ ρn−1 ≤ ρ2, as well as (4.8). Then, for all(

χ,W,ψψψ
)
∈ Vh × Jh × X̃h,

1

k

(
En,�

ρ , χ
)
h
+
(
Un,�−2 · ∇En,�

ρ , χ
)

+
1

2

(
[divUn,�−2]En,�

ρ , χ
)
+ αhα

(
∇En,�

ρ ,∇χ
)

= −
(
En,�−1

U ∇ρn,�, χ
)
− 1

2

(
[divEn,�−1

U ]ρn,�, χ
)
,

1

2

{
1

k

(
ρn−1En,�

U ,W
)
h
+

1

k

(
ρn,�−2En,�

U + En,�−1
ρ Un,�,W

)
h

+
(
[ρn−1Un−1 · ∇]En,�

U ,W
)

−
(
[ρn−1Un−1 · ∇]W,En,�

U

)}
−
(
En,�

P , divW
)

+ β1h
−β1

(
divEn,�

U , divW
)
+ β3

(
ΔhE

n,�
U ,ΔhW

)
+
(
ηn−1DDD(En,�

U ),DDD(W)
)
+ β2

hβ2

k
(∇En,�

U ,∇W)

+
1

μ

(
Bn−1 × curlEn,�−1

B ,W
)
= 0 ,

1

k

(
En,�

B ,ψψψ
)
+

1

μ

( 1

ξn−1
curlEn,�

B , curlψψψ
)
+

γhγ

k

(
∇En,�

B ,∇ψψψ
)

−
(
En,�−1

U ×Bn−1, curlψψψ
)
= 0 .

(4.11)

Choose
(
χ,W,ψψψ

)
=

(
En,�

ρ ,En,�
U ,En,�

B

)
to obtain

1

k

{
‖En,�

ρ ‖2h +
1

2
‖
√
ρn−1En,�

U ‖2h +
1

2
‖
√
ρn,�−2En,�

U ‖2h + ‖En,�
B ‖2

+ β2h
β2‖∇En,�

U ‖2 + γhγ‖∇En,�
B ‖2

}
+ αhα‖∇En,�

ρ ‖2 + η−‖DDD(En,�
U )‖2

+
1

μ
‖ 1√

ξn−1
curlEn,�

B ‖2 + β1h
−β1‖divEn,�

U ‖2 + β3h
β3‖ΔhE

n,�
U ‖2

≤ C
(
‖En,�−1

U ‖‖∇ρn,�‖L∞‖En,�
ρ ‖+ ‖∇En,�−1

U ‖‖ρn,�‖L∞‖En,�
ρ ‖

)
+ Cξ+μ‖Bn−1‖2L3

(
‖∇En,�

U ‖2L2 + ‖∇En,�−1
U ‖2L2

)
(4.12)

+
1

8μ
‖ 1√

ξn−1
curlEn,�−1

B ‖2 + 1

2μ
‖ 1√

ξn−1
curlEn,�

B ‖2

− 1

2k

(
En,�−1

ρ Un,�,En,�
U

)
h
.

A critical term is the last one, which is the main motivation to use mass lumping
for the leading two terms in (4.2), which allows to benefit from (4.11)1 directly.
However, we remark that this is not necessary for the arguments to follow, and
exact integration of the leading two terms in (4.2) could be treated as well by the
following argument: additional terms could then be controlled by (2.4), together
with derivative terms on the left-hand side of (4.12).
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We use (4.11)1 to bound the last term as

− 1

k

(
En,�−1

ρ , 〈Un,�,En,�
U 〉

)
h
=

(
〈Un,�−3,∇En,�−1

ρ 〉, IVh
〈Un,�,En,�

U 〉
)

+
1

2

(
[divUn,�−3]En,�−1

ρ , IVh
〈Un,�,En,�

U 〉
)

+ αhα
(
∇En,�−1

ρ ,∇IVh
〈Un,�,En,�

U 〉
)

+
(
En,�−2

U ∇ρn,�−1, IVh
〈Un,�,En,�

U 〉
)

+
1

2

(
[divEn,�−2

U ]ρn,�−1, IVh
〈Un,�,En,�

U 〉
)

≤ C‖∇Un,�−3‖‖∇En,�−1
ρ ‖‖∇Un,�‖‖∇En,�

U ‖
+ αhα‖∇En,�−1

ρ ‖L2

(
‖∇Un,�‖L2‖En,�

U ‖L∞ + ‖Un,�‖L∞‖∇En,�
U ‖L2

)
+ Cρ

− 1
4

1 h−(
β2
4 +2

β2
2 )‖

√
ρn−1Un,�‖1/2

(
h

β2
4 ‖∇Un,�‖1/2

)
(
h

β2
2 ‖∇En,�−2

U ‖
)(
h

β2
2 ‖∇En,�

U ‖
)
,

thanks to (4.10), the continuous embedding W 1,2 ↪→ L6, and interpolation of L3

between L2 and W 1,2, as well as integration by parts in the last but one term in
front of the inequality sign, and inverse estimates. We may then proceed by

≤ Ch−3
β2
2 −α

2

(
h

β2
2 ‖∇Un,�−3‖

)(
h

α
2 ‖∇En,�−1

ρ ‖
)(
h

β2
2 ‖∇Un,�‖

)(
h

β2
2 ‖∇En,�

U ‖
)

+ αh
α
2 −2

β2
2 − 1

2

(
h

α
2 ‖∇En,�−1

ρ ‖
)(
h

β2
2 ‖∇Un,�‖

)(
h

β2
2 ‖∇En,�

U ‖
)

+ Cρ
− 1

4
1 h−(

β2
4 +2

β2
2 )‖

√
ρn−1Un,�‖3/2

(
h

β2
4 ‖∇Un,�‖1/2

)
(
h

β2
2 ‖∇En,�−2

U ‖
)(
h

β2
2 ‖∇En,�

U ‖
)
.

We employ (4.9) to conclude that

≤ Ck
[
h−3β2−α + hα−1−2β2

](
hα‖∇En,�−1

ρ ‖2
)
+

1

2k
β2h

β2‖∇En,�
U ‖2

+ Ckh− 5
2β2

(
hβ2‖∇En,�−2

U ‖2
)
.

By using this estimate in (4.12) requires

(4.13) Ck
[
h−3β2−α + hα−1−2β2 + h− 5

2β2
]
≤ 1

2

to allow for a contraction property. For the first two terms on the right-hand side
of (4.12), we find an upper bound

≤ Ch−1
(
‖En,�−1

U ‖2h + ‖En,�
ρ ‖2

)
+

η

4
‖DDD(En,�

U )‖2 + C‖En,�
ρ ‖2h ,

which requires discretization parameters k, h ≥ 0 such that

(4.14) k ≤ Ch

to validate the contraction property.
For the third term on the right-hand side of (4.12), we obtain as an upper bound

≤ Ch− γ
2 −β2‖Bn−1‖

(
h

γ
2 ‖∇Bn−1‖

)[(
β2h

β2‖∇En,�
U ‖2

)
+
(
β2h

β2‖∇En,�−1
U ‖2

)]
.
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Similarly, a sufficient condition to obtain the contraction property is

(4.15) Ckh−( γ
2+β2) ≤ 1

2
.

Putting things together in (4.12) yields the contraction property of Algorithm A
for values k, h > 0 which satisfy (4.14), (4.13), (4.15).

Step 4: Overall convergence. The previous step shows that Algorithm A termi-
nates. Hence, for every θ > 0, and every n ≥ 1, there exists n := (n, θ) < ∞, such

that the stopping criterion is met. In particular, solutions
{(

ρn,Un, Pn,Bn
)}N

n=1
,

with each

ρn := ρn,�n , Un := Un,�n , Pn := Pn,�n , Bn := Bn,�n

satisfy Scheme A, with modified right-hand sides in (3.1):(
[Un −Un,�n−1] · ∇ρn, χ

)
+

1

2

(
[div (Un −Un,�n−1)]ρn, χ

)
,

≤
(
Ch−1‖Un −Un,�n−1‖+ ‖div (Un −Un,�n−1)‖

)
‖χ‖;

(4.16)

in (3.2):

1

2k

(
[ρn − ρn,�n−1]Un,W

)
+
(
Bn−1 × curl [Bn −Bn,�n−1],W

)
≤

[ 1

2k
‖ρn − ρn,�n−1‖L∞‖Un‖+ ‖curl (Bn −Bn,�n−1)‖L∞‖Bn−1‖

]
‖W‖ ,

(4.17)

and (
dtB

n,ψψψ
)
+

1

μ

( 1

ξn−1
curlBn, curlψψψ

)
+ γhγ

(
∇dtB

n,∇ψψψ
)

−
(
Un ×Bn−1, curlψψψ

)
=

(
[Un −Un,�n−1]×Bn−1, curlψψψ

)
,

(4.18)

where the right-hand side may be bounded by ‖Un−Un,�n−1‖L∞‖Bn−1‖‖curlψψψ‖.
The remaining assertions of the theorem now easily follow from the results in Sec-
tion 3; in particular, the perturbed energy estimates (4.6), (4.7) hold, which justifies

assumption (4.8) in Step 1, for some finite C̃ ≡ C̃(T ) > 0. �

5. Computational experiments

In this section we give details about the practical implementation of the numeri-
cal method analyzed in the previous sections and present a number of computations
in 3D.

5.1. Numerical implementation. If not mentioned otherwise, the following
physical parameters were constants in our experiments: the viscosity η = 10−3,
the permeability μ = μ0 = 1.25 × 10−6, and the gravitational acceleration g =
(0, 0,−10). Given the physical densities of the two respective fluids ρ1, ρ2, we
define ρmax = max{ρ1, ρ2}, and denote nondimensional densities ρ̃1 = ρ1/ρmax,
ρ̃2 = ρ2/ρmax. The nondimensional mean density is defined as ρ̃∗ = 0.5(ρ̃1+ρ̃2). For
computational convenience the density and the pressure are scaled in the following
text without explicit change of the notation, i.e., ρn ≡ ρn/ρmax and Pn ≡ Pn/ρmax,
n ≥ 0. As we use locally adapted unstructured meshes in some of the numerical
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experiments, by h we understand an elementwise constant mesh size indicator func-
tion h(x)|K = hK , where hK denotes the diameter of the mesh element K ∈ Th.
Further, we allow for nonuniform time steps, and implicitly assume that k ≡ kn on
a given time level n.

5.1.1. Navier-Stokes equations. We employ the following stabilized variational for-
mulation for the solution of the Navier-Stokes equations in the numerical experi-
ments

1

2

{(
ρn−1U

n,� −Un−1

k
,W

)
+
(ρn,�−1Un,� − ρn−1Un−1

k
,W

)
+
(
[ρn−1Un−1 · ∇]Un,�,W

)
−
(
[ρn−1Un−1 · ∇]W,Un,�

)}
+

η

ρmax

(
DDD(Un,�),DDD(W)

)
+
(h
k
∇(Un,� −Un−1),∇W

)
+

1

μ ρmax

(
Bn−1 × curlBn,�−1,W

)
− (Pn,�, divW)

=
(
ρn,�−1gn,W

)
(divUn,�, ϕ) = 0 ,

(5.1)

with W ∈ Vh, ϕ ∈ Vh . We used a P2/P1 Taylor-Hood finite element method for
the approximation of the above variational formulation, i.e., continuous piecewise
quadratic finite element functions for the velocity, and continuous piecewise affine
functions for the pressure. We found that the inclusion of the stabilization term(

h
k∇(Un,� − Un−1),∇W

)
in the above formulation (i.e., the β2-term from (4.2)

with β2 = 1) was essential to obtain a solution without spurious oscillations; see
also Remark 5.1.

We consider two types of boundary conditions for the velocity field, the homo-
geneous Dirichlet boundary condition (“no slip”) and a “slip” boundary condition

(5.2) U · n = 0 and
η

ρmax

(DDD(U)n− Pn) · ti = 0, i = 1, 2 on ∂Ω,

where ti, i = 1, 2 are two unit vectors orthogonal to n.

Remark 5.1 (Stabilization of the Navier-Stokes equations). In general, some sort of
stabilization is necessary to obtain a meaningful numerical solution of the Navier-
Stokes equations. The β1 and β3 stabilization terms in (3.2) and (4.2) are included
mainly for theoretical reasons. The β1 and β3 terms have similar counterparts in
more established SUPG-type stabilization techniques; cf., e.g. [10]. In practice all
stabilization contributions need to be carefully balanced, which is nontrivial in the
present setting, and exceeds the scope of the present work. We have obtained sat-
isfactory results with the formulation (5.1) which only includes the β2 stabilization
term from (4.2). For simplicity, we have not considered the remaining β1 and β3

terms in our computations and conclude that further numerical tests are needed to
investigate this issue.

The saddle point system corresponding to (5.1) takes the following form:

(5.3)

(
A B
C 0

)(
U
P

)
=

(
f
g

)
.

We solve the above linear system by a multigrid method with a Vanka-type smoother.
Below, we give a brief description of the method, for more details about Vanka-
type multigrid solvers for Navier-Stokes equations see, e.g., [22] and the references
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Figure 1. Local smoothing patches in 2D for the Vanka smoother
(left) and the edge element smoother (right); degrees of freedom
(•) associated with the vertex (�).

therein; for an introduction to multigrid methods see, e.g. [20]. A general multigrid
method consists of four basic components: a grid hierarchy, grid transfer operators,
a smoother, and a coarse grid solver. The hierarchy of nested grids is constructed
automatically from a given macro triangulation by recursive mesh refinement and
coarsening routines included in the finite element package Albert [34] that provides
a base for our finite element code. The grid transfer operators are induced by the
natural embedding of the finite elements spaces associated with the grid hierarchy.
A multigrid smoother is usually a Gauss-Seidel type iteration, however the standard
Gauss-Seidel method cannot be applied directly to the system (5.3). Vanka-type
smoothers can be considered as block Gauss-Seidel methods with local blocks(

Aj Bj

Cj 0

)(
U
P

)
j

=

(
f
g

)
j

,

where the vector of local unknowns (U, P )j consists of one pressure degree of free-
dom {P}j and all velocity degrees of freedom {U}k associated to a nonzero entry
in the j-th row of matrix C, i.e., Cjk > 0. Typically, such a block consists of all
velocity degrees of freedom that are connected to a local element patch associated
with the corresponding pressure degree of freedom; see Figure 1 (left) for a 2D
situation. One Vanka-type smoothing iteration is a loop over all pressure degrees
of freedom (vertices), where for each vertex the above local system is constructed
and solved exactly. The linear system on the coarsest grid, i.e., the grid associated
with the macro triangulation, is solved approximately by at most 10 iterations of
the Vanka smoother.

5.1.2. Maxwell’s equations. The magnetic field is computed from(Bn,� −Bn−1

k
,ψψψ

)
+

1

μ

( 1

ξn−1
curlBn,�, curlψψψ

)
−
(
Un,�−1 ×Bn−1, curlψψψ

)
= 0 ,

(5.4)

where ψψψ ∈ Xh, and Xh is the space of lowest order edge elements. The simplified
formulation (5.4) is obtained eliminating the Lagrange multiplier Rn,l from (4.3).
Such a simplification is justified if Ω is a convex polyhedron (see [11, Chapter 3.3.1]),
which is the case in all our experiments. No stabilization was necessary in the
formulation (5.4); cf. [10]. An additional reason for not including the stabilization
term in (5.4) is that it could have a negative effect on the discrete divergence
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free condition as it is inconsistent with the continuous formulation of Maxwell’s
equations; see also Remark 5.2 below. The conductivity is an elementwise constant
function: ξn−1|K ≡ ξ(ρ̃1) if ρn−1(xK) > ρ̃∗ and ξn−1|K ≡ ξ(ρ̃2) otherwise, where
xK is the barycenter of the element K ∈ Th. The algebraic system associated with
(5.4) is solved by a multigrid method with a patch smoother from [3]; see also [21].
The construction of the edge element smoother is similar to the Vanka smoother
described previously. One iteration of the edge element smoother consists of a loop
over all vertices, where the local system associated with a given vertex contains all
degrees for freedom (edges) that are connected to the vertex; see Figure 1 (right)
for a 2D example.

Remark 5.2 (Divergence of magnetic field). The discrete approximation of Maxwell’s
equations (5.4) does not preserve the zero divergence of the magnetic field, i.e.,
divBn,� �= 0 in general. A good error indicator for the divergence free condition is
the residual type quantity

Ediv ≡

⎛
⎝ ∑

χ∈Sh≡Vh

(Bn,�,∇χ)2

⎞
⎠

1/2

.

The worst case scenario for all our experiments was Ediv = O(10−3).

Remark 5.3 (Lagrange vs. edge elements for Maxwell’s equations). The theoreti-
cal analysis from Section 4 suggests that the W1,2-conforming finite element spaces
might have better numerical properties than theH(curl)-conforming edge elements.
However, we found that the algebraic system resulting from a discretization of
Maxwell’s equations by quadratic finite elements was extremely difficult to solve
iteratively for discontinuous conductivity. Following [14] we added a regularization

term 1
μ

(
1

ξn−1 divB
n,�, divψψψ

)
to the Lagrange element formulations of (5.4), (4.3);

however, the modification proved to be inefficient for a discontinuous conductivity.
The same holds for the γ stabilization term from (4.3), which in addition has a
negative effect on the divergence-free constraint. On the other hand, the edge el-
ements multigrid solver proved to be robust with respect to discontinuities in the
conductivity; cf. [20]. Moreover, in contrast to the above conjecture motivated
from theory, we observe no significant differences in the convergence of the fixed-
point iterations for both types of finite element spaces; on average, five iterations
were sufficient in order to satisfy the stopping criterion (5.6). Based on our expe-
rience and the above arguments, we conclude, that the edge elements seem to be a
preferable choice for practical applications with discontinuous coefficients.

5.1.3. Density. The evolution of the density is computed from

(5.5)
(ρn,� − ρn−1

k
, χ

)
h
+
(
Un,�−1 · ∇ρn,�, χ

)
+
(
αρ(U

n,�−1)∇ρn,�,∇χ
)
= 0 .

The stabilization
(
αρ(U

n,�−1)∇ρn,�,∇χ
)
is crucial in order to obtain solutions free

of spurious oscillations. An upwind scheme is obtained if we take the stabilization
parameter as follows αρ(U)|K = hK

2 ‖U‖L∞(K). The above upwind scheme is a
practical generalization of the original α-term from (4.1) with α = 1. The upwind
stabilization can be overdiffusive which is a drawback in applications where the
evolution of interfaces is of interest. In the numerical experiments, (5.5) is solved
by an algebraic flux correction scheme from [26], [25] where the parameter αρ|K
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is chosen adaptively on the algebraic level. The algebraic flux correction schemes
retain the advantages of the upwind stabilization such as the mass conservation, and
monotonicity while producing solutions with less numerical diffusion. Note, that
we have dropped the source term

(
[divUn,�−1]ρn,�, χ

)
in the formulation (5.5), as

this had no observable influence on the properties of the scheme. Moreover, we
found it numerically preferable to enforce mass conservation on the algebraic level
within the framework of the algebraic flux correction scheme.

The discrete fluid interface for a given density approximation ρn is defined as
Γn
I = {x ⊂ Ω; ρn(x) = ρ̃∗}. Further, we consider the discrete interfacial region

Ωn
I =

⋃
{K; ∃ (xi ∈ Eh) ⊂ K such that ρ̃2 < ρn(xi) < ρ̃1} .

Note, that either ρn = ρ̃1 or ρn = ρ̃2 on Ω \Ωn
I . Ideally, the width of the interfacial

region Ωn
I should stay nearly uniform throughout the whole computation. However,

the numerical diffusion and the variations of the velocity across Ωn
I may ultimately

lead to a distortion of the width of the interfacial region. To correct this unwanted
“smearing” effect we propose the following postprocessing step combined with mesh
adaptation at the end of every time step.
Postprocessing step:

• Loop over all vertices xi ∈ Eh:
(1) create a local patch P(xi) =

⋃
{K; xi ⊂ K} of elements sharing the

vertex xi;
(2) if P(xi) ∩ Γn

I = ∅ and if ρn(xi) > ρ̃∗(< ρ̃∗), then set ρn(xi) =
max{ρ̃1, ρ̃2}(min{ρ̃1, ρ̃2}) and mark for coarsening all K∗ ∈ P(xi) for
which hK∗ < hmax;

(3) if P(xi) ∩ Γn
I �= ∅, mark for refinement all K∗ ∈ P(xl) for which

K∗ ∩ Γn
I �= ∅ and hK∗ > hmin;

• refine/coarsen the mesh:

The prescribed parameters hmin, hmax define the minimum and maximum mesh
sizes, respectively. We choose hmin = 1/32 to ensure that the mesh is sufficiently
fine in the interfacial region Ωn

I in order to properly resolve the interface Γn
I , while

the maximum mesh size is chosen hmax = 1/8 for better efficiency; see Figure 3.
The postprocessing step ensures that the width of the interfacial region remains
approximately constant throughout the whole computations; see e.g., Figure 2.

Remark 5.4 (Postprocessing and mass conservation). Without the postprocessing
our method is mass conservative; however, the postprocessing inevitably leads to
small changes in total mass. The relative mass error for the Rayleigh-Taylor in-
stability experiment 5.2 was around 0.5 percent and around 10−4 percent for the
two-fluid magnetohydrodynamics experiments 5.4. In general, there should be no
need to perform the artificial postprocessing step if the computations were per-
formed on sufficiently fine meshes. However, additional mesh refinement would
render our 3D computations prohibitively expensive.

We use adaptive time stepping according to a local CFL number CFL :=
kmaxK∈Th

‖Un‖L∞(K) h
−1
K . The time step size k is chosen in such a way that

CFL < TOLCFL. The time steps in the numerical experiments were in the range
0.005 ≤ k ≤ 0.1 for TOLCFL = 0.8.
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Figure 2. Density at x = 0.5 at times t = 0, 4, 14, 20.

Figure 3. Fluid interface and mesh at x = 0.5 at time t = 0, 4, 14, 20.

Instead of (4.4), we employ a more practical stopping criterion for the fixed point
iterations in Algorithm A,

(5.6) ‖ρn,�−1 − ρn,�‖L∞ + ‖Bn,�−1 −Bn,�‖L∞ + ‖Un,�−1 −Un,�‖L∞ ≤TOL ,

with TOL = 10−8. Note, that on a discrete level (5.6) implies that (4.4) is satisfied
with θ = C(h, k)TOL.

The complete adaptive algorithm for a fixed time level n can be summarized as
follows:

• Compute ρn, Un, Bn: employ Algorithm A with stopping criterion (5.6)
and with (4.1), (4.2), (4.3) replaced by (5.5), (5.1), (5.4).

• Adapt time step: set CFL = kmaxK∈Th
‖Un‖L∞(K) h

−1
K ; if CFL >

TOLCFL set k := 0.7k else, if CFL < 0.01TOLCFL set k := 1.5k.
• Perform the postprocessing step.
• Proceed to the next time level, set n := n+ 1.

As is mentioned in Remark 5.3, we observe no significant dependence of the number
of the fixed-point iterations on the ratio between the time step and the mesh size
in the numerical experiments. However, it may not be expected that this property
of the numerical algorithm remains true for smaller mesh sizes.

5.2. Rayleigh-Taylor instability. The following example is to test the perfor-
mance of the two-fluid solver without the electromagnetic effects, i.e., we set B ≡ 0.
Rayleigh-Taylor instabilities are created when a heavy fluid is placed upon a lighter
one and when the initial equilibrium state is perturbed. The computational domain
is a unit cube. We take ρ1 = 2235 kg/m3, ρ2 = 10−3ρ1. For the velocity we use
the slip boundary condition (5.2), and zero initial condition. The evolution of the
fluid density at x = 0.5 is given in Figure 2, and the evolution of the fluid interface
together with the evolution of the adaptive mesh can be seen in Figure 3.
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A1
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J

External conductors

Figure 4. Experimental setup.

⊗200 kA

A2 B250kA

A1 B150kA

Figure 5. Velocity at z = 0.25 at time t = 5 (left) and the pre-
dicted result (right).

5.3. Single fluid magnetohydrodynamics. In order to test the magnetohydro-
dynamic part of the code we perform single fluid experiments similar to the ex-
periments from [10]. The computational domain Ω is a 2 × 1 × 1 brick. There is
a homogeneous electric current J = −(0, 0, 200) kA flowing through the compu-
tational domain. In addition, two linear conductors carrying electric current are
placed near the domain Ω; see Figure 4. The boundary condition for the magnetic
field is obtained by computing the field generated by the electric current in the brick
and in the external conductors using the Biot-Savart law. For the velocity we use
a homogeneous Dirichlet boundary condition. We consider two configurations for
the external conductors. The Figures 5 and 6 show the different configurations and
their effect on the velocity field together with the expected results. Our transient
computations qualitatively agree with the results from [10] which were obtained
from a static model.

5.4. Two-fluid magnetohydrodynamics. In the next three experiments we
study the evolution of an interface between two conducting fluids. The physical
parameters for the two fluids are chosen close to those from [13], [32] in order to
mimic the processes during aluminium electrolysis.

The domain Ω in the first experiment is a unit cube. We use the slip boundary
condition (5.2) for the velocity field. For the magnetic field we use a nonlinear
Neumann type boundary condition, we set

n×
(

1

μξ(ρ)
curl b− u× b

)
= (0, 0,−0.5)
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⊗200 kA

A2 B225kA

A1 B125kA

Figure 6. Velocity at z = 0.25 at time t = 5 (left) and the pre-
dicted result (right).

Figure 7. Fluid interface at time t = 0, 2, 7, 10.

Figure 8. Magnitude of the magnetic field at time t = 0.1, 2, 7, 10.

on the horizontal walls, and

n×
(

1

μξ(ρ)
curl b− u× b

)
= 0

on the top and bottom walls of the cube. Note, that the above choice of boundary
condition represents a Dirichlet boundary condition for the normal component of
the electric field e = 1

μξ(ρ)curl b−u×b. Both, the magnetic field and the velocity

are zero at the beginning of the experiment. Initially, the lighter fluid (cryolite)
with ρ1 = 2090 kg/m3 and ξ1 = 10−3 × μ−1

0 is placed on top of the heavier fluid

(liquid aluminium) with ρ2 = 2235 kg/m3, ξ2 = 0.1 × μ−1
0 . The described initial

configuration of the two fluids represent an equilibrium if magnetic effects are ne-
glected. The nonhomogeneous boundary condition on the vertical walls induces a
strong magnetic field in the parts of the domain occupied by fluid with high con-
ductivity, i.e., the liquid aluminium; see Figure 8 and Figure 10. In effect, a velocity
field is created by the magnetic field, Figure 9. The flow is stronger in the liquid
aluminium, and causes a deformation of the initially straight interface between the
two fluids; see Figure 7.
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Figure 9. Velocity at x+ y = −1 at time t = 0.1, 2, 7, 10.

Figure 10. Magnetic field at z = 0.25 at time t = 0.1, 2, 7, 10.

Figure 11. Fluid interface at time t = 0, 2, 3, 4.

Figure 12. Velocity at z = 0.5 at time t = 1, 2, 3, 4.

The setup of the second experiment is based on the first single fluid experiment
from Section 5.3; see Figure 4. Similarly, as in the previous two-fluid experiment,
the domain Ω is occupied by two fluids with densities ρ1 = 2090 kg/m3, ρ2 =
2235 kg/m3. The fluids are initially separated by a straight interface; see Figure 11.
To demonstrate the ability of our method to deal with large conductivity jumps,
we take ξ1 = 10−5 × μ−1

0 , ξ2 = 0.1 × μ−1
0 . We consider zero initial conditions

for both the magnetic field and the velocity. A homogeneous Dirichlet boundary
condition (“no slip”) is prescribed for the velocity. The boundary condition for the
magnetic field is obtained in the same fashion as in the single fluid case, i.e., from
the Biot-Savart using the prescribed values of the electric current flowing through
the domain and the external conductors; see Figure 5 (right). The evolution of
the fluid interface is depicted in Figure 11. The evolutions of the velocity and the
magnetic field at z = 0.5 are displayed in Figures 12 and 13, respectively.
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Figure 13. Magnetic field at z = 0.5 at time t = 1, 2, 3, 4.

Figure 14. Interface at time t = 0, 2, 11, 14, 18, 20, 24, 27 for
bz = 0.1.

In the final experiment we study the oscillations of the cryolite/aluminium in-
terface, the so called “metal pad roll instabilities”; cf. [11], [32]. The parameters
for the computations are as follows: ρ̃1 = 0.935, ρ̃2 = ρmax = 1, μ = 1, ξ1 = 10−4,
ξ2 = 1. The domain Ω is a unit cube. The computations were performed on a uni-
form mesh with h = 1/16 with fixed time step k = 0.1. For the magnetic field we
prescribe the following initial condition B0(x) = (y−0.5,−(x−0.5), 0). The initial
condition roughly corresponds to a magnetic field created by a uniform vertical elec-
tric current curlB0 = (0, 0,−2). For the velocity we prescribe the slip boundary
condition and the initial condition is zero. To create an initial disturbance of the
interface we set g = (0,−10 sin(0.0556π),−10 cos(0.0556π)) for 0 ≤ t ≤ 1, which is
equivalent to “tilting” of the domain by an angle of ≈ 10◦. The boundary condition
for the magnetic field is n×B|∂Ω = n×B0|∂Ω for 0 ≤ t ≤ 1. For t > 1 the gravity
is set straight, i.e., g = (0, 0,−10) and a uniform magnetic field Bz = (0, 0, bz) is
superimposed to the magnetic field created by the electric current, i.e., the bound-
ary condition is changed to n×B|∂Ω = n× (B0+Bz)|∂Ω for 1 < t ≤ 25. We found
that the oscillations were stable for bz = 0.1 and became unstable for the increased
background magnetic field bz = 0.2. We display the position of the interface at
various times for bz = 0.1 in Figure 14. Similarly, as in [11], we observe a forma-
tion of loops in the perturbed current curlB− curlB0, which is predicted by the
theoretical explanations of the rolling phenomenon; see Figure 15.
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Figure 15. Streamlines of the perturbed current curlB−curlB0

at time t = 22.3. The current flows from right to left.
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[13] J.-F. Gerbeau, T. Lelièvre, and C. Le Bris. Simulations of MHD flows with moving interfaces,

J. Comput. Phys. 184, pp. 163–191 (2003). MR1961974 (2003k:76158)
[14] D.T. Graves, D. Trebotich, G.H. Miller, P. Colella. An efficient solver for the equations of

resistive MHD with spatially-varying resistivity, J. Comput. Phys. 227, pp. 4797–4804 (2008).
MR2414835

http://www.ams.org/mathscinet-getitem?mr=1626990
http://www.ams.org/mathscinet-getitem?mr=1626990
http://www.ams.org/mathscinet-getitem?mr=1393572
http://www.ams.org/mathscinet-getitem?mr=1393572
http://www.ams.org/mathscinet-getitem?mr=1754719
http://www.ams.org/mathscinet-getitem?mr=1754719
http://www.ams.org/mathscinet-getitem?mr=1278258
http://www.ams.org/mathscinet-getitem?mr=1278258
http://www.ams.org/mathscinet-getitem?mr=1759906
http://www.ams.org/mathscinet-getitem?mr=1759906
http://www.ams.org/mathscinet-getitem?mr=0391741
http://www.ams.org/mathscinet-getitem?mr=0391741
http://www.ams.org/mathscinet-getitem?mr=1941397
http://www.ams.org/mathscinet-getitem?mr=1941397
http://www.ams.org/mathscinet-getitem?mr=878688
http://www.ams.org/mathscinet-getitem?mr=878688
http://www.ams.org/mathscinet-getitem?mr=1022305
http://www.ams.org/mathscinet-getitem?mr=1022305
http://www.ams.org/mathscinet-getitem?mr=1800155
http://www.ams.org/mathscinet-getitem?mr=1800155
http://www.ams.org/mathscinet-getitem?mr=2289481
http://www.ams.org/mathscinet-getitem?mr=2289481
http://www.ams.org/mathscinet-getitem?mr=2121575
http://www.ams.org/mathscinet-getitem?mr=2121575
http://www.ams.org/mathscinet-getitem?mr=1961974
http://www.ams.org/mathscinet-getitem?mr=1961974
http://www.ams.org/mathscinet-getitem?mr=2414835
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