THE SMALLEST PERRON NUMBERS

QIANG WU

Abstract

A Perron number is a real algebraic integer α of degree $d \geq 2$, whose conjugates are α_{i}, such that $\alpha>\max _{2 \leq i \leq d}\left|\alpha_{i}\right|$. In this paper we compute the smallest Perron numbers of degree $d \leq 24$ and verify that they all satisfy the Lind-Boyd conjecture. Moreover, the smallest Perron numbers of degree 17 and 23 give the smallest house for these degrees. The computations use a family of explicit auxiliary functions. These functions depend on generalizations of the integer transfinite diameter of some compact sets in \mathbb{C}

1. Introduction

Let $\boldsymbol{\alpha}$ be an algebraic integer of degree d, whose conjugates are $\boldsymbol{\alpha}_{1}=\boldsymbol{\alpha}$, $\boldsymbol{\alpha}_{2}, \ldots, \boldsymbol{\alpha}_{d}$ and

$$
P=X^{d}+b_{1} X^{d-1}+\cdots+b_{d-1} X+b_{d}
$$

its minimal polynomial. A Perron number, which was defined by Lind [N1, is a real algebraic integer $\boldsymbol{\alpha}$ of degree $d \geq 2$ such that $\boldsymbol{\alpha}>\max _{2 \leq i \leq d}\left|\boldsymbol{\alpha}_{i}\right|$. Any Pisot number or Salem number is a Perron number. From the Perron-Frobenius theorem, if A is a nonnegative integral matrix which is aperiodic, i.e. some power of A has strictly positive entries, then its spectral radius $\boldsymbol{\alpha}$ is a Perron number. Lind has proved the converse, that is to say, if $\boldsymbol{\alpha}$ is a Perron number, then there is a nonnegative aperiodic integral matrix whose spectral radius is $\boldsymbol{\alpha}$. Lind [LN2] has investigated the arithmetic of the Perron numbers. The set of Perron numbers is closed under addition and multiplication. Moreover, if $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ are Perron numbers and $\boldsymbol{\alpha}_{3}=\boldsymbol{\alpha}_{1} \boldsymbol{\alpha}_{2}$, then $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} \in Q\left(\boldsymbol{\alpha}_{3}\right)$. He has also shown that every Perron number can be factored into a finite product of irreducible Perron numbers, and that there are only finitely many such factorizations.

The Perron numbers and their applications were also studied by many people such as D. Boyd [BO1, [BO2], A. Dubickas DU1, DU2, D. Lind [LN1, [LN2] and A. Schinzel SC.

Lind [LN1 conjectured that the smallest Perron number of degree $d \geq 2$ should have minimal polynomial $X^{d}-X-1$. Boyd [BO1] has computed all smallest Perron numbers of degree $d \leq 12$, and Lind's conjecture turns out to be true if $d=2,3,4,6,7,8,10$, but false if $d>3$ and $d \equiv 3$ or $d \equiv 5 \bmod 6$. So in BO1, we have

[^0]Conjecture (Lind-Boyd). The smallest Perron number of degree $d \geq 2$ has minimal polynomial

$$
\begin{array}{rrr}
X^{d}-X-1 \text { if } d \not \equiv 3,5 & \bmod 6, \\
\left(X^{d+2}-X^{4}-1\right) /\left(X^{2}-X+1\right) \text { if } d \equiv 3 & \bmod 6, \\
\left(X^{d+2}-X^{2}-1\right) /\left(X^{2}-X+1\right) \text { if } d \equiv 5 & \bmod 6 .
\end{array}
$$

For a given degree d, let $B>1$ be a bound sufficiently large to assure that there exists at least one Perron number $\boldsymbol{\alpha} \leq B$. In Boyd's computations, this bound was taken to be $B=(2+1 / d)^{1 / d}$ for $d \geq 3$ because $B^{d}-B-1>0$. Then let $S_{k}=\sum_{i=1}^{d} \boldsymbol{\alpha}_{i}^{k}$ for $k \geq 1$. Since all $\left|\boldsymbol{\alpha}_{i}\right| \leq \boldsymbol{\alpha} \leq B$, we have $\left|S_{k}\right| \leq d B^{k}$ for $k \geq 1$. These numbers are related to the coefficients of P by Newton's relation:

$$
\begin{equation*}
S_{k}+S_{k-1} b_{1}+\ldots+S_{1} b_{k-1}+k b_{k}=0 \tag{1.1}
\end{equation*}
$$

for $k \geq 1$ with $b_{k}=0$ for $k>d$. The numbers S_{k} also satisfy the following inequalities BO1]:

$$
\begin{equation*}
S_{2 k} \geq \frac{2}{d} S_{k}^{2}-d B^{2 k} \tag{1.2}
\end{equation*}
$$

for $k \geq 1$. The numbers S_{k}, with $S_{1} \leq 0$, are computed for $1 \leq i \leq d$ and this gives a large set R_{d} of polynomials where R_{d} denotes, as in Boyd [BO1, the set of P satisfying $S_{1} \leq 0,(1.1)$ and (1.2) for $k \leq d$. Let $n>d$, then R_{n} denotes the set of P in R_{d} satisfying $b_{d} \neq 0$ and (1.1) for $k \leq n$. Then the numbers S_{k} are computed by induction for $k>d$ and for each k we keep only those polynomials with $\left|S_{k}\right| \leq d B^{k}$. Then for $n=3 d$ we get a reduced set $R_{3 d}$ of polynomials. By this method Boyd has, for $d=12$ with $B=1.0631 \gtrsim(2+1 / 12)^{1 / 12}$,

$$
\begin{array}{rll}
\left|R_{12}\right|=415,682,220 & \left|R_{23}\right|=37,019 & \left|R_{35}\right|=4,931 \\
\left|R_{13}\right|=23,746,503 & \left|R_{24}\right|=28,277 & \left|R_{36}\right|=4,435
\end{array}
$$

for only 30 irreducible polynomials. The last step is to keep only irreducible polynomials which are not cyclotomic and we get all algebraic integers of degree d with $\max _{1 \leq i \leq d}|\boldsymbol{\alpha}| \leq B$ and so we have the smallest Perron number.

In this paper we compute all smallest Perron numbers of degree $d \leq 24$. We follow Boyd's strategy but we give better bounds for the numbers S_{k} and more efficient relations between S_{k} and $S_{2 k}$ than (1.2) with a family of explicit auxiliary functions. These functions are related to a generalization of the integer transfinite diameter. This hugely speeds up the search. For example, we have, for $d=12$,

$$
\begin{array}{lll}
\left|R_{12}\right|=950,484 & \left|R_{23}\right|=7,367 & \left|R_{35}\right|=1,892 \\
\left|R_{13}\right|=211,761 & \left|R_{24}\right|=6,861 & \left|R_{36}\right|=1,679 .
\end{array}
$$

The computing time for $d=12$ is a few seconds on a 2.8 Ghz PC.
We denote the house of $\boldsymbol{\alpha}$ by

$$
|\boldsymbol{\alpha}|=\max _{1 \leq i \leq d}\left|\boldsymbol{\alpha}_{i}\right| .
$$

Remark. In [RW, G. Rhin and the author have computed all the algebraic integers with smallest house of degree ≤ 28. Since here, we follow the same strategy, but with greater bounds B, we can use the same list of polynomials for the auxiliary functions for the bounds of $\left|S_{k}\right|$ to find the smallest Perron number. But for degree 22 , the computing time becomes 50 hours and for degree 23 it will be more than

TABLE 1. List of all Perron numbers $\boldsymbol{\alpha}$ of degree $13 \leq d \leq 24$ with $\boldsymbol{\alpha} \leq(2+1 / d)^{1 / d}$ and their minimal polynomials.

d	$\boldsymbol{\alpha}$	$(2+1 / d)^{1 / d}$	polynomial P
13	$1.057050 \ldots$	$1.057832 \ldots$	$X^{13}-X-1$
14	$1.052710 \ldots$	$1.053393 \ldots$	$X^{14}-X-1$
15	$1.047595 \ldots$	$1.049585 \ldots$	$\left(X^{17}-X^{4}-1\right) /\left(X^{2}-X+1\right)$
	$1.048984 \ldots$		$X^{15}-X-1$
16	$1.045751 \ldots$	$1.046284 \ldots$	$X^{16}-X-1$
17	$1.039302 \ldots$	$1.043393 \ldots$	$\left(X^{19}-X^{2}-1\right) /\left(X^{2}-X+1\right)$
	$1.042917 \ldots$		$X^{17}-X-1$
18	$1.040414 \ldots$	$1.040842 \ldots$	$X^{18}-X-1$
19	$1.038188 \ldots$	$1.038573 \ldots$	$X^{19}-X-1$
20	$1.036193 \ldots$	$1.036543 \ldots$	$X^{20}-X-1$
21	$1.033665 \ldots$	$1.034716 \ldots$	$\left(X^{23}-X^{4}-1\right) /\left(X^{2}-X+1\right)$
	$1.034397 \ldots$		$X^{21}-X-1$
22	$1.032770 \ldots$	$1.033063 \ldots$	$X^{22}-X-1$
23	$1.029320 \ldots$	$1.031559 \ldots$	$\left(X^{25}-X^{2}-1\right) /\left(X^{2}-X+1\right)$
	$1.031291 \ldots$		$X^{23}-X-1$
24	$1.029939 \ldots$	$1.030186 \ldots$	$X^{24}-X-1$

800 hours of CPU time. For degree 24, the computing time would certainly be too large. So we need to improve the bounds for $\left|S_{k}\right|$ by using better auxiliary functions. Using the improvement of our algorithm given by V. Flammang [FL, we get many new polynomials Q_{j} in the auxiliary function of greater degree as we explain in Section 2c and decrease the computing time for degree 23 down to 20 hours.

We give in Table 1 all Perron numbers of degree $13 \leq d \leq 24$ with $\boldsymbol{\alpha} \leq(2+$ $1 / d)^{1 / d}$ and their minimal polynomials, and we verify that all the smallest Perron numbers of degree $13 \leq d \leq 24$ satisfy the Lind-Boyd conjecture. We also get all algebraic integers $\boldsymbol{\alpha}$ of degree $d \leq 24$, which are not a root of unity, with $|\boldsymbol{\alpha}| \leq(2+1 / d)^{1 / d}$. The complete list may be obtained on request to the author (for $d=24$ see Table 4 in Section 3). The computing time, for example, for $d=24$, is 358 hours on a 2.8 Ghz PC.

We also had in RW, for $d=29,(d \equiv 5 \bmod 6)$, a small Perron number whose minimal polynomial is

$$
\frac{X^{31}-X^{2}-1}{X^{2}-X-1}
$$

We expect that this provides an algebraic integer $\boldsymbol{\alpha}$ of degree 29 of smallest house $(\widehat{\boldsymbol{\alpha}}=1.023383 \ldots)$. Then it would satisfy the Lind-Boyd conjecture. So we have the following

Conjecture. The smallest Perron number of degree $d \geq 17, d \equiv 5 \bmod 6$ and d is a prime number, gives the smallest house.

In Section 2, we explain how to use explicit auxiliary functions to give bounds for S_{k}, and relations between S_{k} and $S_{2 k}$. We explain the relations between explicit auxiliary functions and integer transfinite diameter. Section 3 is devoted to the final computation to get the smallest Perron numbers of degree $d \leq 24$.

TABLE 2

k	1	2	3	4	5	6	7	8	9	13	17	23	33	48	60	72
$B N_{k}$	3	5	6	8	9	10	12	14	15	21	28	37	60	97	140	203
$B C_{k}$	24	25	26	27	27	28	29	30	31	35	39	47	64	100	142	204

2. The bounds for S_{k} With the explicit auxiliary functions

a. The explicit auxiliary functions for the bounds for S_{k}.

Compared with Boyd's strategy, the main improvement of the calculation is to compute bounds of S_{k} which replace the classical bounds $\left|S_{k}\right| \leq d(2+1 / d)^{k / d}$ for $1 \leq k \leq 3 d$ by using a family of explicit auxiliary functions. For small k, this method improves drastically the classical bounds. In Table 2 we give an example of the two kinds of bounds for some values of k for degree $d=24$. $B N_{k}$ denotes the new bound of S_{k} and $B C_{k}$ is the classical one. We define the explicit auxiliary function f by the formula

$$
\begin{equation*}
f(z)=-\operatorname{Re}(z)-\sum_{1 \leq j \leq J} e_{j} \log \left|Q_{j}(z)\right| \tag{2.1}
\end{equation*}
$$

where z is a complex number, the numbers e_{j} are positive real numbers and the polynomials Q_{j} are nonzero elements of $\mathbb{Z}[X]$. The numbers e_{j} are always chosen to get the best auxiliary function. We denote by m the minimum of $f(z)$ for $|z| \leq B$. Since the function f is harmonic in this disk outside the union of small disks around the roots of the polynomials Q_{j}, this minimum is taken on $|z|=B$.

We have

$$
\sum_{1 \leq i \leq d} f\left(\boldsymbol{\alpha}_{i}\right) \geq m d
$$

and

$$
-S_{1} \geq d m+\sum_{1 \leq j \leq J} e_{j} \log \left|\prod_{1 \leq i \leq d} Q_{j}\left(\boldsymbol{\alpha}_{i}\right)\right|
$$

$\prod_{1 \leq i \leq d} Q_{j}\left(\boldsymbol{\alpha}_{i}\right)$ is equal to the resultant of P and Q_{j}. If we assume now that the polynomial P does not divide any polynomial Q_{j}, then this is a nonzero integer. Therefore,

$$
\begin{equation*}
S_{1} \leq-d m \tag{2.2}
\end{equation*}
$$

We give, for example, in Table 3 the list of polynomials Q_{j} and the numbers e_{j} which are used in the auxiliary function for S_{1} for $d=24$. With this auxiliary function, we have $-S_{1} \geq-3.85392590$, i.e. $S_{1} \leq 3$ as in Table 2 .

By symmetry, the same inequality is valid for $-S_{1}$. If we replace B by B^{k} and the numbers $\boldsymbol{\alpha}_{i}$ by the numbers $\pm \boldsymbol{\alpha}_{i}{ }^{k}$ we get upper bounds for $\pm S_{k}$.
b. The explicit auxiliary functions which give relations between S_{k} and $S_{2 k}$.

In Boyd BO1, we have the classical relation (1.2) between S_{k} and $S_{2 k}$. Here we exploit the relations between S_{k} and $S_{2 k}$ that will be given by explicit auxiliary functions of the following type:

$$
\begin{equation*}
f(z)=\operatorname{Re}\left(z^{2}\right)-e_{0} \operatorname{Re}(z)-\sum_{1 \leq j \leq J} e_{j} \log \left|Q_{j}(z)\right| \tag{2.3}
\end{equation*}
$$

Table 3. List of Q_{j} and e_{j} in the auxiliary function for S_{1} for $d=24 . d_{j}=\operatorname{deg} Q_{j}$, and the coefficient of Q_{j} are written from degree 0 to d_{j}.

e_{j}	d_{j}	Coefficients of Q_{j}												
0.60641770	1	-1	1											
0.27754798	2	1	-1	1										
0.05030884	2	1	0	1										
0.10381486	4	1	-1	1	-1	1								
0.00590394	4	1	0	0	0	1								
0.01086250	4	1	0	-1	0	1								
0.04953738	6	1	-1	1	-1	1	-1	1						
0.00749535	6	1	0	0	-1	0	0	1						
0.00661499	6	1	0	0	1	0	0	1						
0.01545423	8	1	-1	0	1	-1	1	0	-1	1				
0.00246685	8	2	-4	4	-2	1	-1	2	-2	1				
0.01273706	9	1	-1	1	-1	1	0	-1	2	-2	1			
0.00767717	10	1	-2	3	-3	2	-1	2	-3	3	-2	1		
0.00052989	10	1	-1	1	-1	1	-1	2	-3	3	-2	1		
0.00102170	10	2	-4	5	-4	2	-1	2	-3	3	-2	1		
0.00481569	12	1	-2	2	-1	1	-1	1	-1	1	-1	2	-2	1
0.00148998	14	3	-10	19	-25	25	-19	12	-7	5	-5	6	-6	5
		-3	1											
0.00161833	14	2	-5	7	-7	7	-7	7	-6	5	-5	6	-6	5
		-3	1											
0.00014458	15	1	-1	1	-3	6	-8	10	-10	8	-6	4	-1	-1
		2	-2	1										
0.00014745	16	2	-6	11	-14	13	-8	2	4	-8	9	-7	3	2
		-5	5	-3	1									
0.00063289	16	4	-17	39	-63	83	-95	98	-92	79	-62	47	-37	31
		-25	17	-8	2									
0.00095988	20	-3	12	-27	45	-66	93	-132	184	-242	292	-320	314	-271
		199	-117	47	-4	-12	11	-5	1					
0.00477448	22	3	-12	23	-24	7	25	-58	78	-79	65	-42	17	4
		-16	18	-13	8	-7	9	-10	8	-4	1			

where the numbers e_{j} and the polynomials Q_{j} are as in paragraph a. If m is the minimum of $f(z)$ for $|z| \leq B$, by the same argument as in paragraph a, we get

$$
S_{2}-e_{0} S_{1} \geq m d
$$

If we assume that S_{1} has the value $\boldsymbol{\sigma}$, then $S_{2} \geq d m+e_{0} \boldsymbol{\sigma}$. We optimize the numbers e_{0}, \ldots, e_{J} to get a maximal value of $d m+e_{0} \boldsymbol{\sigma}$. Therefore, we get a lower bound for S_{2} depending on the value of $\boldsymbol{\sigma}$. This gives a better bound than the one which was given in paragraph a if we take $\boldsymbol{\sigma}$ close to its upper bound. If we replace in (2.3), $e_{0} \operatorname{Re}(z)$ by $-e_{0} \operatorname{Re}(z)$, we get the same lower bound for S_{2} when S_{1} has the value $-\boldsymbol{\sigma}$. We may also replace $\operatorname{Re}\left(z^{2}\right)$ by $-\operatorname{Re}\left(z^{2}\right)$ and get upper bounds for S_{2}. Then replacing B by B^{k} we get bounds for $S_{2 k}$ when S_{k} has values which are close to its bounds.
c. Relations between explicit auxiliary functions and integer transfinite diameter.

If, inside the auxiliary function of (2.1), we replace the real numbers e_{j} by rational numbers, we may write

$$
f(z)=-\operatorname{Re}(z)-\frac{t}{h} \log |H(z)|
$$

where H is in $\mathbb{Z}[X]$ of degree h and t is a positive real number. We want to get a function f whose minimum m in $|z| \leq B$ is as large as possible. That is to say that we seek a polynomial $H \in \mathbb{Z}[X]$ such that

$$
\sup _{|z| \leq B}|H(z)|^{t / h} e^{\operatorname{Re}(z)} \leq e^{-m}
$$

Now, if we suppose that t is fixed, say $t=1$, it is clear that we need to get an effective upper bound for the quantity

$$
\begin{equation*}
t_{\mathbb{Z}, \boldsymbol{\varphi}}(|z| \leq B)=\liminf _{\substack{h \geq 1 \\ h \rightarrow \infty}}^{\left.\inf _{\substack{H \in \mathbb{Z}[X] \\ \operatorname{deg} H=h}} \sup _{|z| \leq B}|H(z)|^{t / h} \boldsymbol{\varphi}(z)\right)} \tag{2.4}
\end{equation*}
$$

in which we use the weight $\varphi(z)=e^{\operatorname{Re}(z)}$. To get an upper bound for $t_{\mathbb{Z}, \boldsymbol{\varphi}}(|z| \leq B)$, it is sufficient to get an explicit polynomial $H \in \mathbb{Z}[X]$ and then to use the sequence of the successive powers of H.

This is a generalization of the integer transfinite diameter. For any $h \geq 1$ we say that a polynomial H (not always unique) is an integer Chebyshev polynomial if the quantity $\sup _{|z| \leq B}|H(z)|^{t / h} \varphi(z)$ is minimum. With the author's algorithm WU, we compute polynomials H of degree less than 30 and take their irreducible factors as polynomials Q_{j}. For example, for the bound of $\left|S_{1}\right|$ of smallest Perron number of degree 24 , we start with the polynomials $X-1$ and $X^{2}-X+1$. With the semi-infinite linear programming method that was introduced into number theory by C. J. Smyth [SM], we get the best e_{1} and e_{2}. We then have $f_{1}(z)=-\operatorname{Re}(z)-$ $e_{1} \log |z-1|-e_{2} \log \left|z^{2}-z+1\right|$. We deduce the value of $t_{1}=e_{1} \operatorname{deg}(X-1)+$ $e_{2} \operatorname{deg}\left(X^{2}-X+1\right)$. Now, we search for a polynomial Q of fixed degree d (say 25), such that $H(z)=(z-1)^{\left[d e_{1} / t_{1}\right]}\left(z^{2}-z+1\right)^{\left[d e_{2} / t_{1}\right]} Q(z)$ is small on $|z| \leq B$. We take a finite set of points z_{i} in $|z| \leq B$ containing all the local minima of $f_{1}(z)$. LLL will give polynomials Q_{j} such that all $H\left(z_{i}\right)$ are small. We optimize the function

$$
f_{2}(z)=-\operatorname{Re}(z)-e_{1} \log |z-1|-e_{2} \log \left|z^{2}-z+1\right|-\sum_{j} e_{j} \log \left|Q_{j}\right|
$$

We keep only Q_{j} when $e_{j} \neq 0$. Then we have a new bound of $\left|S_{1}\right|$ which is better than the previous one. We repeat LLL and optimization of the auxiliary function and finally we have the function in Table 2. More details can be found in [FRSE], RW] and FL.

With this method, for $d=24$, we find 143 polynomials Q_{j} for the family of explicit auxiliary functions for S_{k} for all $1 \leq k \leq 72$, and the largest degree of the polynomials Q_{j} is 22 . We have used 125 polynomials for the relations (2.3) and 94 polynomials if we replace $e_{0} \operatorname{Re}(z)$ by $-e_{0} \operatorname{Re}(z)$. So we have a set of 341 different polynomials, and this set contains 35 of the 42 polynomials used in RW.

TABLE 4. List of the minimal noncyclotomic polynomials of algebraic integers of degree 24 with small house.

house of P	polynomial P
$1.017730 \ldots$	$X^{24}+X^{16}-1$
$1.022651 \ldots$	$X^{24}-X^{20}+X^{12}-X^{8}+1$
$1.024177 \ldots$	$X^{24}+X^{8}-1$
$1.024596 \ldots$	$X^{24}+X^{21}+X^{12}-X^{6}+1$
$1.025758 \ldots$	$\left(X^{28}+X^{2}+1\right) /\left(\boldsymbol{\Phi}_{3} \boldsymbol{\Phi}_{6}\right)$
$1.027157 \ldots$	$\left(X^{30}+X^{15}-X^{3}+1\right) /\left(\boldsymbol{\Phi}_{4} \boldsymbol{\Phi}_{12}\right)$
$1.027482 \ldots$	$\left(X^{26}-X+1\right) / \boldsymbol{\Phi}_{6}$
$1.028309 \ldots$	$X^{24}+X^{20}+X^{16}+1$
$1.028513 \ldots$	$X^{24}-X^{6}+1$
$1.029302 \ldots$	$X^{24}-X^{12}+2$
$1.029312 \ldots$	$X^{24}+X^{21}+X^{18}+X^{15}+1$
$1.029354 \ldots$	$\left(X^{27}-X^{14}+X-1\right) /\left(\boldsymbol{\Phi}_{1} \boldsymbol{\Phi}_{4}\right)$
$1.029841 \ldots$	$X^{24}+X+1$
$1.029939 \ldots$	$X^{24}-X-1$ Perron
$1.030138 \ldots$	$X^{24}-X^{4}+1$

3. The final computation

For all algebraic integers with $|\boldsymbol{\alpha}| \leq(2+1 / d)^{1 / d}$, we have the bounds of S_{k} for k from 1 to $3 d$. Now we follow Boyd's strategy BO1 to compute the coefficients of the polynomial P with $b_{1} \geq 0$.

As in Section 1, for $d=24$, we have $\left|R_{24}\right|=12,132,432,709,704$ and $\left|R_{72}\right|=$ 33,132 . Moreover, we refine some steps as follows in our computation:

We take $\left|b_{d}\right|= \pm 1, \pm 2$, because $b_{d} \in \mathbb{Z}$ and

$$
\left|b_{d}\right|=\prod_{j=1}^{d}\left|\boldsymbol{\alpha}_{j}\right| \leq B^{d} \leq 2+\frac{1}{d}
$$

Moreover, by Corollary 2 of Matveev [MAT], we know that, for any algebraic integer $\boldsymbol{\alpha}$ of degree d, if

$$
\begin{equation*}
|\boldsymbol{\alpha}| \leq \exp \left(\frac{\ln \left(d+\frac{1}{2}\right)}{d^{2}}\right) \tag{3.1}
\end{equation*}
$$

then $\boldsymbol{\alpha}$ is a root of unity. So we eliminate, by the Schur-Cohn algorithm MAR, any polynomial P of $R_{3 d}$ which satisfies the condition (3.1). We obtain 48 polynomials for $d=24$. Then we use Pari PA to eliminate any polynomial with a cyclotomic factor, get all the irreducible polynomials, and compute explicitly their roots.

Then we find all irreducible polynomials of degree d which satisfy $\boldsymbol{\alpha} \boldsymbol{\alpha} \leq(2+$ $1 / d)^{1 / d}$, so we have all smallest Perron numbers for $d \leq 24$, and also all algebraic integers $\boldsymbol{\alpha}$ with small house $\left(\leq(2+1 / d)^{1 / d}\right)$. We list in Table 4 all the minimal polynomials of degree 24 of algebraic integers which are not a root of unity with small house that we get by our computations. We give only one polynomial if there exist several polynomials which have the same house. Here $\boldsymbol{\Phi}_{1}=X-1$, $\boldsymbol{\Phi}_{3}=X^{2}+X+1, \boldsymbol{\Phi}_{4}=X^{2}+1, \boldsymbol{\Phi}_{6}=X^{2}-X+1$ and $\boldsymbol{\Phi}_{12}=X^{4}-X^{2}+1$ are cyclotomic polynomials.

QIANG WU
As in WU, Section 2, when we use the auxiliary functions, we suppose that the polynomial P does not divide any polynomial $Q_{j}\left(\pm X^{k}\right)$ for $k \leq 3 d$ (i.e. $\pm \boldsymbol{\alpha}_{i}^{k}$ is not a zero of Q_{j} for all j and k). So it is necessary to add to the list of Table 4 the nonprimitive polynomials P obtained as polynomials $Q_{j}\left(\pm X^{k}\right)$ whose house is less than $(2+1 / d)^{1 / d}$ where $d=k \operatorname{deg} Q_{j}$. For example, if $Q_{j}=X^{2}-2 X+2$, then all the polynomials $X^{2 k}-2 X^{k}+2$ whose house $\leq(2+1 / 2 k)^{1 / 2 k}$ have to be added to the list.

Acknowledgement

This work would not have been possible without the precious help of Professor Georges Rhin, I am very much indebted to him.

References

[BO1] D. W. Boyd, The maximal modulus of an algebraic integer, Math. Comp. 45 (1985), 243-249. MR790657 (87c:11097)
[BO2] D. W. Boyd, Perron units which are not Mahler measures, Ergodic Theory Dynam. Systems 6 (1986), 485-488. MR873427|(88e:11100)
[DU1] A. Dubickas, Some Diophantine properties of the Mahler measure, Math. Notes 72 (2002), 763-767. MR 1964142 (2004b:11148)
[DU2] A. Dubickas, On numbers which are Mahler measures, Monatsh. Math. 141 (2004), 119126. MR2037988(2005a:11164)
[FL] V. Flammang, Trace of totally positive algebraic integers and integer transfinite diameter, Math. Comp. 78 (2009), 1119-1125. MR2476574
[FRSE] V. Flammang, G. Rhin and J.M. Sac-Épée, Integer transfinite diameter and polynomials of small Mahler measure, Math. Comp. 75 (2006), 1527-1540. MR2219043|(2007d:11138)
[LN1] D. Lind, Entropies and factorizations of topological Markov shifts, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 219-222. MR 707961 (84j:54010)
[LN2] D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynamical Systems 4 (1984), 283-300. MR 766106 (86c:58092)
[MAR] M. Marden, Geometry of polynomials, Second edition. Mathematical Surveys, no. 3, Amer. Math. Soc., Providence, Rhode Island (1966). MRMR0225972 (37:1562)
[MAT] E.M. Matveev, On the size of algebraic integers, Math. Notes 49 (1991), 437-438. MR 1119233 (92g:11070)
[PA] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, GP-Pari version 2.1.6, 2002.
[RW] G. Rhin, Q. Wu, On the smallest value of the maximal modulus of an algebraic integer, Math. Comp. 76 (2007), 1025-1038. MR2291848 (2007m:11146)
[SC] A. Schinzel, A class of algebraic numbers, Tatra Mt. Math. Publ. 11 (1997), 35-42. MR1475503 (98i:11089)
[SM] C. J. Smyth, The mean values of totally real algebraic integers, Math. Comp. 42 (1984), 663-681. MR 736460 ($86 \mathrm{e}: 11115$)
[WU] Q. Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), 901-911. MR1954974 (2003m:11111)

Department of Mathematics, Southwest University of China, 2 Tiansheng Road Beibei, 400715 Chongqing, China

E-mail address: qiangwu@swu.edu.cn

[^0]: Received by the editor June 9, 2009 and, in revised form, August 21, 2009.
 2010 Mathematics Subject Classification. Primary 11C08, 11R06, 11Y40.
 Key words and phrases. Algebraic integer, maximal modulus, Perron numbers, explicit auxiliary functions, integer transfinite diameter.

 This Project was supported by the Natural Science Foundation of Chongqing grant CSTC no. 2008BB0261.

