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THE SMALLEST PERRON NUMBERS

QIANG WU

Abstract. A Perron number is a real algebraic integer α of degree d ≥ 2,
whose conjugates are αi, such that α > max2≤i≤d |αi|. In this paper we com-
pute the smallest Perron numbers of degree d ≤ 24 and verify that they all
satisfy the Lind-Boyd conjecture. Moreover, the smallest Perron numbers of
degree 17 and 23 give the smallest house for these degrees. The computa-
tions use a family of explicit auxiliary functions. These functions depend on
generalizations of the integer transfinite diameter of some compact sets in C

1. Introduction

Let α be an algebraic integer of degree d, whose conjugates are α1 = α,
α2, . . . ,αd and

P = Xd + b1X
d−1 + · · ·+ bd−1X + bd,

its minimal polynomial. A Perron number, which was defined by Lind [LN1], is
a real algebraic integer α of degree d ≥ 2 such that α > max2≤i≤d |αi|. Any
Pisot number or Salem number is a Perron number. From the Perron-Frobenius
theorem, if A is a nonnegative integral matrix which is aperiodic, i.e. some power
of A has strictly positive entries, then its spectral radius α is a Perron number.
Lind has proved the converse, that is to say, if α is a Perron number, then there
is a nonnegative aperiodic integral matrix whose spectral radius is α. Lind [LN2]
has investigated the arithmetic of the Perron numbers. The set of Perron numbers
is closed under addition and multiplication. Moreover, if α1, α2, α3 are Perron
numbers and α3 = α1α2, then α1, α2 ∈ Q(α3). He has also shown that every
Perron number can be factored into a finite product of irreducible Perron numbers,
and that there are only finitely many such factorizations.

The Perron numbers and their applications were also studied by many people
such as D. Boyd [BO1], [BO2], A. Dubickas [DU1], [DU2], D. Lind [LN1], [LN2]
and A. Schinzel [SC].

Lind [LN1] conjectured that the smallest Perron number of degree d ≥ 2 should
have minimal polynomial Xd − X − 1. Boyd [BO1] has computed all smallest
Perron numbers of degree d ≤ 12, and Lind’s conjecture turns out to be true if
d = 2, 3, 4, 6, 7, 8, 10, but false if d > 3 and d ≡ 3 or d ≡ 5 mod 6. So in [BO1], we
have
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Conjecture (Lind-Boyd). The smallest Perron number of degree d ≥ 2 has min-
imal polynomial

Xd −X − 1 if d �≡ 3, 5 mod 6,

(Xd+2 −X4 − 1)/(X2 −X + 1) if d ≡ 3 mod 6,

(Xd+2 −X2 − 1)/(X2 −X + 1) if d ≡ 5 mod 6.

For a given degree d, let B > 1 be a bound sufficiently large to assure that there
exists at least one Perron number α ≤ B. In Boyd’s computations, this bound
was taken to be B = (2 + 1/d)1/d for d ≥ 3 because Bd − B − 1 > 0. Then let

Sk =
∑d

i=1 α
k
i for k ≥ 1. Since all |αi| ≤ α ≤ B, we have |Sk| ≤ dBk for k ≥ 1.

These numbers are related to the coefficients of P by Newton’s relation:

(1.1) Sk + Sk−1b1 + . . .+ S1bk−1 + kbk = 0

for k ≥ 1 with bk = 0 for k > d. The numbers Sk also satisfy the following
inequalities [BO1]:

(1.2) S2k ≥ 2

d
S2
k − dB2k

for k ≥ 1. The numbers Sk, with S1 ≤ 0, are computed for 1 ≤ i ≤ d and this
gives a large set Rd of polynomials where Rd denotes, as in Boyd [BO1], the set
of P satisfying S1 ≤ 0, (1.1) and (1.2) for k ≤ d. Let n > d, then Rn denotes the
set of P in Rd satisfying bd �= 0 and (1.1) for k ≤ n. Then the numbers Sk are
computed by induction for k > d and for each k we keep only those polynomials
with |Sk| ≤ dBk. Then for n = 3d we get a reduced set R3d of polynomials. By
this method Boyd has, for d = 12 with B = 1.0631 � (2 + 1/12)1/12,

|R12| = 415, 682, 220 |R23| = 37, 019 |R35| = 4, 931

|R13| = 23, 746, 503 |R24| = 28, 277 |R36| = 4, 435

for only 30 irreducible polynomials. The last step is to keep only irreducible poly-
nomials which are not cyclotomic and we get all algebraic integers of degree d with
max1≤i≤d |α| ≤ B and so we have the smallest Perron number.

In this paper we compute all smallest Perron numbers of degree d ≤ 24. We
follow Boyd’s strategy but we give better bounds for the numbers Sk and more
efficient relations between Sk and S2k than (1.2) with a family of explicit auxiliary
functions. These functions are related to a generalization of the integer transfinite
diameter. This hugely speeds up the search. For example, we have, for d = 12,

|R12| = 950, 484 |R23| = 7, 367 |R35| = 1, 892

|R13| = 211, 761 |R24| = 6, 861 |R36| = 1, 679.

The computing time for d = 12 is a few seconds on a 2.8Ghz PC.
We denote the house of α by

α = max
1≤i≤d

|αi|.

Remark. In [RW], G. Rhin and the author have computed all the algebraic integers
with smallest house of degree ≤ 28. Since here, we follow the same strategy, but
with greater bounds B, we can use the same list of polynomials for the auxiliary
functions for the bounds of |Sk| to find the smallest Perron number. But for degree
22, the computing time becomes 50 hours and for degree 23 it will be more than



THE SMALLEST PERRON NUMBERS 2389

Table 1. List of all Perron numbers α of degree 13 ≤ d ≤ 24 with
α ≤ (2 + 1/d)1/d and their minimal polynomials.

d α (2 + 1/d)1/d polynomial P
13 1.057050 . . . 1.057832 . . . X13 −X − 1
14 1.052710 . . . 1.053393 . . . X14 −X − 1
15 1.047595 . . . 1.049585 . . . (X17 −X4 − 1)/(X2 −X + 1)

1.048984 . . . X15 −X − 1
16 1.045751 . . . 1.046284 . . . X16 −X − 1
17 1.039302 . . . 1.043393 . . . (X19 −X2 − 1)/(X2 −X + 1)

1.042917 . . . X17 −X − 1
18 1.040414 . . . 1.040842 . . . X18 −X − 1
19 1.038188 . . . 1.038573 . . . X19 −X − 1
20 1.036193 . . . 1.036543 . . . X20 −X − 1
21 1.033665 . . . 1.034716 . . . (X23 −X4 − 1)/(X2 −X + 1)

1.034397 . . . X21 −X − 1
22 1.032770 . . . 1.033063 . . . X22 −X − 1
23 1.029320 . . . 1.031559 . . . (X25 −X2 − 1)/(X2 −X + 1)

1.031291 . . . X23 −X − 1
24 1.029939 . . . 1.030186 . . . X24 −X − 1

800 hours of CPU time. For degree 24, the computing time would certainly be
too large. So we need to improve the bounds for |Sk| by using better auxiliary
functions. Using the improvement of our algorithm given by V. Flammang [FL],
we get many new polynomials Qj in the auxiliary function of greater degree as we
explain in Section 2c and decrease the computing time for degree 23 down to 20
hours.

We give in Table 1 all Perron numbers of degree 13 ≤ d ≤ 24 with α ≤ (2 +
1/d)1/d and their minimal polynomials, and we verify that all the smallest Perron
numbers of degree 13 ≤ d ≤ 24 satisfy the Lind-Boyd conjecture. We also get
all algebraic integers α of degree d ≤ 24, which are not a root of unity, with
α ≤ (2+1/d)1/d. The complete list may be obtained on request to the author (for
d = 24 see Table 4 in Section 3). The computing time, for example, for d = 24, is
358 hours on a 2.8Ghz PC.

We also had in [RW], for d = 29, (d ≡ 5 mod 6), a small Perron number whose
minimal polynomial is

X31 −X2 − 1

X2 −X − 1
.

We expect that this provides an algebraic integer α of degree 29 of smallest house
(α = 1.023383 . . .). Then it would satisfy the Lind-Boyd conjecture. So we have
the following

Conjecture. The smallest Perron number of degree d ≥ 17, d ≡ 5 mod 6 and d
is a prime number, gives the smallest house.

In Section 2, we explain how to use explicit auxiliary functions to give bounds for
Sk, and relations between Sk and S2k. We explain the relations between explicit
auxiliary functions and integer transfinite diameter. Section 3 is devoted to the
final computation to get the smallest Perron numbers of degree d ≤ 24.
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Table 2

k 1 2 3 4 5 6 7 8 9 13 17 23 33 48 60 72

BNk 3 5 6 8 9 10 12 14 15 21 28 37 60 97 140 203

BCk 24 25 26 27 27 28 29 30 31 35 39 47 64 100 142 204

2. The bounds for Sk with the explicit auxiliary functions

a. The explicit auxiliary functions for the bounds for Sk.
Compared with Boyd’s strategy, the main improvement of the calculation is to

compute bounds of Sk which replace the classical bounds |Sk| ≤ d(2 + 1/d)k/d for
1 ≤ k ≤ 3d by using a family of explicit auxiliary functions. For small k, this
method improves drastically the classical bounds. In Table 2 we give an example
of the two kinds of bounds for some values of k for degree d = 24. BNk denotes
the new bound of Sk and BCk is the classical one. We define the explicit auxiliary
function f by the formula

(2.1) f(z) = −Re(z)−
∑

1≤j≤J

ej log |Qj(z)|

where z is a complex number, the numbers ej are positive real numbers and the
polynomials Qj are nonzero elements of Z[X]. The numbers ej are always chosen to
get the best auxiliary function. We denote by m the minimum of f(z) for |z| ≤ B.
Since the function f is harmonic in this disk outside the union of small disks around
the roots of the polynomials Qj , this minimum is taken on |z| = B.

We have ∑
1≤i≤d

f(αi) ≥ md

and

−S1 ≥ dm+
∑

1≤j≤J

ej log

∣∣∣∣∣∣
∏

1≤i≤d

Qj(αi)

∣∣∣∣∣∣ .∏
1≤i≤d Qj(αi) is equal to the resultant of P and Qj . If we assume now that the

polynomial P does not divide any polynomial Qj , then this is a nonzero integer.
Therefore,

(2.2) S1 ≤ −dm.

We give, for example, in Table 3 the list of polynomials Qj and the numbers
ej which are used in the auxiliary function for S1 for d = 24. With this auxiliary
function, we have −S1 ≥ −3.85392590, i.e. S1 ≤ 3 as in Table 2.

By symmetry, the same inequality is valid for −S1. If we replace B by Bk and
the numbers αi by the numbers ±αi

k we get upper bounds for ±Sk.

b. The explicit auxiliary functions which give relations between Sk and S2k.

In Boyd [BO1], we have the classical relation (1.2) between Sk and S2k. Here
we exploit the relations between Sk and S2k that will be given by explicit auxiliary
functions of the following type:

(2.3) f(z) = Re(z2)− e0Re(z)−
∑

1≤j≤J

ej log |Qj(z)|
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Table 3. List of Qj and ej in the auxiliary function for S1 for
d = 24. dj = degQj , and the coefficient of Qj are written from
degree 0 to dj .

ej dj Coefficients of Qj

0.60641770 1 -1 1
0.27754798 2 1 -1 1
0.05030884 2 1 0 1
0.10381486 4 1 -1 1 -1 1
0.00590394 4 1 0 0 0 1
0.01086250 4 1 0 -1 0 1
0.04953738 6 1 -1 1 -1 1 -1 1
0.00749535 6 1 0 0 -1 0 0 1
0.00661499 6 1 0 0 1 0 0 1
0.01545423 8 1 -1 0 1 -1 1 0 -1 1
0.00246685 8 2 -4 4 -2 1 -1 2 -2 1
0.01273706 9 1 -1 1 -1 1 0 -1 2 -2 1
0.00767717 10 1 -2 3 -3 2 -1 2 -3 3 -2 1
0.00052989 10 1 -1 1 -1 1 -1 2 -3 3 -2 1
0.00102170 10 2 -4 5 -4 2 -1 2 -3 3 -2 1
0.00481569 12 1 -2 2 -1 1 -1 1 -1 1 -1 2 -2 1
0.00148998 14 3 -10 19 -25 25 -19 12 -7 5 -5 6 -6 5

-3 1
0.00161833 14 2 -5 7 -7 7 -7 7 -6 5 -5 6 -6 5

-3 1
0.00014458 15 1 -1 1 -3 6 -8 10 -10 8 -6 4 -1 -1

2 -2 1
0.00014745 16 2 -6 11 -14 13 -8 2 4 -8 9 -7 3 2

-5 5 -3 1
0.00063289 16 4 -17 39 -63 83 -95 98 -92 79 -62 47 -37 31

-25 17 -8 2
0.00095988 20 -3 12 -27 45 -66 93 -132 184 -242 292 -320 314 -271

199 -117 47 -4 -12 11 -5 1
0.00477448 22 3 -12 23 -24 7 25 -58 78 -79 65 -42 17 4

-16 18 -13 8 -7 9 -10 8 -4 1

where the numbers ej and the polynomials Qj are as in paragraph a. If m is the
minimum of f(z) for |z| ≤ B, by the same argument as in paragraph a, we get

S2 − e0S1 ≥ md.

If we assume that S1 has the value σ, then S2 ≥ dm + e0σ. We optimize the
numbers e0, . . . , eJ to get a maximal value of dm+ e0σ. Therefore, we get a lower
bound for S2 depending on the value of σ. This gives a better bound than the one
which was given in paragraph a if we take σ close to its upper bound. If we replace
in (2.3), e0Re(z) by −e0Re(z), we get the same lower bound for S2 when S1 has
the value −σ. We may also replace Re(z2) by −Re(z2) and get upper bounds for
S2. Then replacing B by Bk we get bounds for S2k when Sk has values which are
close to its bounds.
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c. Relations between explicit auxiliary functions and integer transfinite diameter.

If, inside the auxiliary function of (2.1), we replace the real numbers ej by
rational numbers, we may write

f(z) = −Re(z)− t

h
log |H(z)|

where H is in Z[X] of degree h and t is a positive real number. We want to get a
function f whose minimum m in |z| ≤ B is as large as possible. That is to say that
we seek a polynomial H ∈ Z[X] such that

sup
|z|≤B

|H(z)|t/heRe(z) ≤ e−m.

Now, if we suppose that t is fixed, say t = 1, it is clear that we need to get an
effective upper bound for the quantity

(2.4) tZ,ϕ(|z| ≤ B) = lim inf
h≥1
h→∞

inf
H∈Z[X]
degH=h

sup
|z|≤B

|H(z)|t/hϕ(z)

in which we use the weight ϕ(z) = eRe(z). To get an upper bound for tZ,ϕ(|z| ≤ B),
it is sufficient to get an explicit polynomial H ∈ Z[X] and then to use the sequence
of the successive powers of H.

This is a generalization of the integer transfinite diameter. For any h ≥ 1 we say
that a polynomial H (not always unique) is an integer Chebyshev polynomial if the
quantity sup|z|≤B |H(z)|t/hϕ(z) is minimum. With the author’s algorithm [WU],
we compute polynomials H of degree less than 30 and take their irreducible factors
as polynomials Qj . For example, for the bound of |S1| of smallest Perron number
of degree 24, we start with the polynomials X − 1 and X2 − X + 1. With the
semi-infinite linear programming method that was introduced into number theory
by C. J. Smyth [SM], we get the best e1 and e2. We then have f1(z) = −Re(z) −
e1 log |z − 1| − e2 log |z2 − z + 1|. We deduce the value of t1 = e1 deg(X − 1) +
e2 deg(X

2 −X + 1). Now, we search for a polynomial Q of fixed degree d (say 25),
such that H(z) = (z− 1)[de1/t1](z2− z+1)[de2/t1]Q(z) is small on |z| ≤ B. We take
a finite set of points zi in |z| ≤ B containing all the local minima of f1(z). LLL
will give polynomials Qj such that all H(zi) are small. We optimize the function

f2(z) = −Re(z)− e1 log |z − 1| − e2 log |z2 − z + 1| −
∑
j

ej log |Qj |.

We keep only Qj when ej �= 0. Then we have a new bound of |S1| which is better
than the previous one. We repeat LLL and optimization of the auxiliary function
and finally we have the function in Table 2. More details can be found in [FRSE],
[RW] and [FL].

With this method, for d = 24, we find 143 polynomials Qj for the family of
explicit auxiliary functions for Sk for all 1 ≤ k ≤ 72, and the largest degree of the
polynomials Qj is 22. We have used 125 polynomials for the relations (2.3) and 94
polynomials if we replace e0Re(z) by −e0Re(z). So we have a set of 341 different
polynomials, and this set contains 35 of the 42 polynomials used in [RW].
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Table 4. List of the minimal noncyclotomic polynomials of alge-
braic integers of degree 24 with small house.

house of P polynomial P
1.017730 . . . X24 +X16 − 1
1.022651 . . . X24 −X20 +X12 −X8 + 1
1.024177 . . . X24 +X8 − 1
1.024596 . . . X24 +X21 +X12 −X6 + 1
1.025758 . . . (X28 +X2 + 1)/(Φ3Φ6)
1.027157 . . . (X30 +X15 −X3 + 1)/(Φ4Φ12)
1.027482 . . . (X26 −X + 1)/Φ6

1.028309 . . . X24 +X20 +X16 + 1
1.028513 . . . X24 −X6 + 1
1.029302 . . . X24 −X12 + 2
1.029312 . . . X24 +X21 +X18 +X15 + 1
1.029354 . . . (X27 −X14 +X − 1)/(Φ1Φ4)
1.029841 . . . X24 +X + 1
1.029939 . . . X24 −X − 1 Perron
1.030138 . . . X24 −X4 + 1

3. The final computation

For all algebraic integers with α ≤ (2 + 1/d)1/d, we have the bounds of Sk for
k from 1 to 3d. Now we follow Boyd’s strategy [BO1] to compute the coefficients
of the polynomial P with b1 ≥ 0.

As in Section 1, for d = 24, we have |R24| = 12, 132, 432, 709, 704 and |R72| =
33, 132. Moreover, we refine some steps as follows in our computation:

We take |bd| = ±1, ±2, because bd ∈ Z and

|bd| =
d∏

j=1

|αj | ≤ Bd ≤ 2 +
1

d
.

Moreover, by Corollary 2 of Matveev [MAT], we know that, for any algebraic
integer α of degree d, if

(3.1) α ≤ exp

(
ln(d+ 1

2 )

d2

)
,

then α is a root of unity. So we eliminate, by the Schur-Cohn algorithm [MAR], any
polynomial P of R3d which satisfies the condition (3.1). We obtain 48 polynomials
for d = 24. Then we use Pari [PA] to eliminate any polynomial with a cyclotomic
factor, get all the irreducible polynomials, and compute explicitly their roots.

Then we find all irreducible polynomials of degree d which satisfy α ≤ (2 +
1/d)1/d, so we have all smallest Perron numbers for d ≤ 24, and also all algebraic
integers α with small house (≤ (2 + 1/d)1/d). We list in Table 4 all the minimal
polynomials of degree 24 of algebraic integers which are not a root of unity with
small house that we get by our computations. We give only one polynomial if
there exist several polynomials which have the same house. Here Φ1 = X − 1,
Φ3 = X2 +X + 1, Φ4 = X2 + 1, Φ6 = X2 −X + 1 and Φ12 = X4 − X2 + 1 are
cyclotomic polynomials.
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As in [WU], Section 2, when we use the auxiliary functions, we suppose that the
polynomial P does not divide any polynomial Qj(±Xk) for k ≤ 3d (i.e. ±αk

i is
not a zero of Qj for all j and k). So it is necessary to add to the list of Table 4 the
nonprimitive polynomials P obtained as polynomials Qj(±Xk) whose house is less

than (2 + 1/d)1/d where d = k degQj . For example, if Qj = X2 − 2X + 2, then all

the polynomials X2k − 2Xk + 2 whose house ≤ (2 + 1/2k)1/2k have to be added to
the list.
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