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A SHARP REGION WHERE π(x)− li(x) IS POSITIVE

YANNICK SAOUTER AND PATRICK DEMICHEL

Abstract. In this article, we study the problem of changes of sign of π(x)−
li(x). We provide three improvements. First, we give better esimates of error

term for Lehman’s theorem. Second, we rigorously prove the positivity of
this difference for a region formerly conjectured by Patrick Demichel. Third,
we improve the estimates for regions of positivity by using number theoretic
results.

1. Previous work

The problem of estimating the number of prime numbers goes back to Gauss.
The function counting prime numbers is classically denoted π, i.e. π(x) =

∑
p≤x 1.

In 1791, he conjectured that π(x) � x
log x . This result was proven in 1896 by

Hadamard and de la Vallée-Poussin. In 1849, Gauss suggested that the log-integral

function, defined by li(x) = limε→0

{∫ 1−ε

0
dt

log t +
∫ x

1+ε
dt

log t

}
, should give a better

approximation for π. Gauss also noted that the inequality π(x) < li(x) holds
for any x in the interval [2, 3000000]. Since then, this property has been checked
numerically up to 1014 [1].

On the other hand, Littlewood proved in 1914 that the property π(x) > li(x)
holds infinitely often, but he did not give any explicit value for such an x. In 1933,
Skewes proved, assuming the Riemann hypothesis, that the latter inequality occurs

at least once for a value x < 1010
1034

. A great improvement was given in 1966
by Lehman [2]. He established a theorem which enables one unconditionally to
obtain much lower values. His theorem enabled him to show that there exists a
region near 1.65 × 101165 where the difference π(x) − li(x) admits positive values.
Then, te Riele [3] in 1987 discovered another region near 6.65 × 10370, and Bays
and Hudson [4] exhibited a region near 1.40 × 10316 in 1999. In 2006, Chao and
Plymen [5] gave an improvement on the error terms of Lehman’s theorem. This
enabled them to sharpen Bays and Hudson’s region and established a new lower
bound equal to 1.398× 10316. Independently, in 2005, Demichel [6] made intensive
computations on this problem and conjectured that this value could be improved to
1.397× 10316, without rigorously establishing the result. Another point is that this
latter region is a new one, i.e. it is not included in that of Bays and Hudson, contrary
to the result of Chao and Plymen. Our contribution to this problem is three-fold.
First, we will show that Chao and Plymen’s error term can be lowered. Second, by
numerical computation, we will prove the validity of Demichel’s region. Third, we
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show, using some theorems in number theory, that the final results obtained by the
classic approach to this subject can be improved.

2. Lehman’s theorem

The main tool to deal with this problem is Lehman’s theorem:

Theorem 2.1 (Lehman’s Theorem). Let A be a positive number such that β = 1
2

for all zeros ρ = β+ iγ of Riemann zeta function ζ(s) for which 0 < γ ≤ A. Let α,
η and ω be positive values such that ω − η > 1 and the following conditions hold:

4A/ω ≤ α ≤ A2,(2.1)

2A/α ≤ η ≤ ω/2.(2.2)

Let

K(y) =

√
α

2π
e−αy2/2,(2.3)

I(ω, η) =

∫ ω+η

ω−η

K(u− ω)ue−u/2{π(eu)− li(eu)}du.(2.4)

Then for 2πe < T ≤ A, we have

(2.5) I(ω, η) = −1−
∑

0<|γ|≤T

eiγω

ρ
e−γ2/2α + R

where |R| ≤ S1 + S2 + S3 + S4 + S5 + S6, with

S1 =
3

ω − η
+ 4(ω + η)e−(ω−η)/6,(2.6)

S2 =
2e−αη2/2

√
2παη

,(2.7)

S3 = 0.08
√
αe−αη2/2,(2.8)

S4 = e−T 2/2α

{
α

πT 2
log

T

2π
+ 8

log T

T
+

4α

T 3

}
,(2.9)

S5 =
0.05

ω − η
,(2.10)

S6 = A logAe−A2/2α+(ω+η)/2{4α−1/2 + 15η}.(2.11)

If the Riemann hypothesis holds, then conditions (2.1) and (2.2) may be omitted
and the term S6 may be omitted in the upper bound for R.

The complete proof can be found in [2]. The application of the previous theorem
makes two essential assumptions. First, the Riemann hypothesis has to be checked
up to height A. Second, explicit values for the zeros of ζ have to be known up to
height T . If we suppose that both conditions are met, we can estimate the integral
(2.4) using the equation (2.5). Lehman’s method amounts then to finding suitable
values for α and ω such that the first two terms on the right-hand side of equation
(2.5) sum to a positive value larger than the associated error term |R|. The integral
(2.4) is then established to be positive and thus, by virtue of the positivity of K,
the term {π(eu) − li(eu)} must admit some positive values for u in the interval
[ω − η, ω + η].
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3. Improvements

Improvements on the error term R are possible. In fact, the dominating term in
R is generally S1. In his seminal work, Lehman [2] derived S1 from an upper bound
for π(x) obtained by Rosser and Schoenfeld [7]. In their paper, Chao and Plymen
derived a tighter bound by using recent results of Panaitopol [8]. Doing so, they
could lower the constant 3 in the first term of S1 to 2.1457. In this part, we use one
result obtained by Dusart [9, th. 1.10] to show that this constant can be replaced
by 2 (with some other terms in S1). Moreover, this value cannot be improved.

Theorem 3.1 (Dusart’s Theorem). If x ≥ 32299, we have

(3.1)
x

log x

(
1 +

1

log x
+

1.8

log2 x

)
≤ π(x).

If x ≥ 355991, we have

(3.2) π(x) ≤ x

log x

(
1 +

1

log x
+

2.51

log2 x

)
.

Given this result, we prove the following theorem:

Theorem 3.2. Under the hypothesis of Lehman’s theorem and if ω − η > 25.57,
equation (2.5) still holds if S1 is replaced by

(3.3) S′
1 =

2

ω − η
+

10.04

(ω − η)2
+ log 2.(ω + η)e−(ω−η)/2 +

2

log 2
(ω + η)e−(ω−η)/6.

Proof. We proceed as in Lehman’s work. Let

(3.4) Π(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + ... ,

and let

(3.5) Π0(x) = lim
ε→0

1

2

{
Π(x+ ε) + Π(x− ε)

}
.

The Riemann-von Mangoldt formula states that for x > 1,

(3.6) Π0(x) = li(x)−
∑
ρ

li(xρ) +

∫ +∞

x

du

(u2 − 1)u log u
− log 2,

where ρ runs over the zeros of function ζ in the critical strip.
We have

(3.7)
1

2
π(x1/2) +

1

3
π(x1/3) + ... ≤ 1

2
π(x1/2) +

1

3
π(x1/3)

⌊
log x

log 2

⌋
.

Then we use Dusart’s theorem together with the classic bound π(x) ≤ 2x
log x .

Thus, if x ≥ 3559912, we have

(3.8)
1

2
π(x1/2) +

1

3
π(x1/3) + ... ≤ x1/2

log x

(
1 +

2

log x
+

10.04

log2 x

)
+ 2

⌊
log x

log 2

⌋
x1/3

log x
,

and thus

(3.9)
1

2
π(x1/2) +

1

3
π(x1/3) + ... ≤ x1/2

log x

(
1 +

2

log x
+

10.04

log2 x

)
+

2

log 2
x1/3.
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Substituting in (3.6), we have

(3.10) π(x) ≥ li(x)−
∑
ρ

li(xρ)− x1/2

log x

(
1 +

2

log x
+

10.04

log2 x

)
− 2

log 2
x1/3 − log 2.

We put x = eu, and then if u > 25.57, we have

ue−u/2(π(eu)− li(eu))

≥ −1−
∑
ρ

ue−u/2li(euρ)− 2

u
− 10.04

u2
− 2u

log 2
e−u/6 − log 2.ue−u/2.

(3.11)

So, following Lehman’s proof, we derive equation (2.5) with the same bounding
terms S2, S3, S4, S5 and S6. Term S2 comes from bounding the two tail integrals∫ ω−η

−∞ K(u − ω)du and
∫ +∞
ω+η

K(u − ω)du. Terms S3, S4, S5 and S6 come from the

estimate of
∑

ρ

∫ ω+η

ω−η
K(u− ω)ue−u/2li(euρ)du.

Finally, the term corresponding to term S1 in our theorem comes from bounding
the expression

(3.12) J =

∫ ω+η

ω−η

K(u− ω)

(
2

u
+

10.04

u2
+

2u

log 2
e−u/6 + log 2.ue−u/2

)
du.

Both terms in the previous integral are positive and
∫ +∞
−∞ K(y)dy = 1, thus we have

�(3.13) J≤ 2

ω − η
+

10.04

(ω − η)2
+
2(ω + η)

log 2
e−(ω−η)/6+log 2.(ω + η)e−(ω−η)/2.

4. Numerical results

As mentioned previously, the use of the previous theorems presupposes numer-
ical verifications of the Riemann hypothesis up to height A. In his seminal pa-
per, Lehman used a verification made on his own on the first 250000 zeros, giving
A = 170571.35. Since then, a lot of work has been done to check numerically the
Riemann hypothesis up to larger and larger heights. In 2001, van de Lune [10] es-
tablished that the conjecture is verified for the first 10000000000 zeros up to height
A = 3293531632.415. This value, in fact, sets an upper bound for the value of
A that can be used in Lehman’s theorem. However, two more recent verifications
are noteworthy. The first was performed by Gourdon and Demichel [11] in 2004
using a fast multiple evaluation algorithm for ζ invented by Odlyzko. With their
implementation, the conjecture has been verified up to the 1013-th zero. The sec-
ond is the distributed ZetaGrid project [12], managed by Wedeniwski, which was
active between 2002 and 2005. The official status of these verifications is not clear:
Gourdon and Demichel’s work has never been independently verified and, in the
case of the ZetaGrid project, it was not established that all zeros were checked.

For 0 < T ≤ A, we know that the real part of zeros ρ = β + iγ of ζ such that
|γ| < T is equal to 1/2. Moreover, zeros of ζ in the critical strip occur as conjugate
pairs, so the sum to evaluate is:

(4.1)
∑

0<|γ|≤T

eiγω

ρ
e−γ2/2α =

∑
0<γ≤T

cos γω + 2γ sin γω
1
4 + γ2

e−γ2/2α.

For our numerical computations, we computed the first 22 million zeros of ζ. This
was done in two phases. First, an approximation was computed by the classic
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Figure 1. The Bays and Hudson region.

Riemann-Siegel formula and then precision was improved up to 9 decimal digits
using correction terms in this formula. The three additional correction terms we
used were computed by formulae given in [13]. The last zero of our database gave
us T = 10379599.727431060. The relative precision that can be expected when
computing the right-hand side of the previous equation is then bounded by

ΔI = 10−9.
∑

0<γ≤T

∂

∂γ

(
cos γω + 2γ sin γω

1
4 + γ2

e−γ2/2α

)
.(4.2)

In our computations, we set α = 6 × 1012, and in the range of our application we
have ω � 727.95. We compute the associated precision given by equation (4.2),
and it gives approximately 7× 10−7. We chose to make the computation explicitly,
instead of using bounds as in previous work, in order to obtain the best possible
precision. Figure 1 plots the value of I(ω, η) for ω in [727.950, 727.955]. Values are
corrected by the error term R. This figure shows Bays and Hudson’s region whose
center is a bit larger than ω = 727.952. In this figure, Chao and Plymen’s region as
well as our region are contained in the peak between 727.951 and 727.9515. At the
level of magnification of this figure, it is not very clear that the curve effectively cuts
the line I(ω, η) = 0. Figure 2 depicts Chao and Plymen’s region with a better level
of magnification. In this figure, quite large areas of the curve are in the positive
domain. Figure 3 depicts the new region with the same scale level as for Figure 2.
The positive region is much sharper than the one of Figure 2. By looking at the ω
axis, we notice that this region is left of Chao and Plymen’s one. Finally, Figure 4
gives a closeup of the peak of the new region.

Numerically, the least value for ω giving a positive value for I(ω, η) is ω =
727.951335792. By studying the remainder terms and especially S6, we found
that A = 6.85 × 107 is the value minimizing the interval length. We then have
η = 2A/α = 0.00002283333334 and conditions (2.1) and (2.2) are met. Moreover,
the condition ω − η > 25.57 of Theorem 3.2 is also verified. By computation, we

then obtain
∑

0<|γ|≤T
eiγω

ρ e−γ2/2α = −1.002906086981405, thus giving I∗(ω, η) =

0.002906086981405 as an estimate of I(ω, η). We then have

I(ω, η) ≥ I∗(ω, η)−ΔI − S′
1 − S2 − S3 − S4 − S5 − S6.
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Figure 2. The Chao and Plymen region.
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Figure 3. The new region on the same scale.
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Figure 4. The maximum in the new region, scaled up.
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Numerically, we have

ΔI = 7.1645945511× 10−7,

S′
1 = 0.002766382992,

S2 = 7.612616047× 10−682,

S3 = 1.045693526× 10−674,

S4 = 0.00003202055301,

S5 = 0.00006868591225,

S6 = 7.640973098× 10−7.

Thus we obtain

I(ω, η) ≥ 0.00003751696746.(4.3)

Thus, we proved that there exists a value x in [exp(727.9502380), exp(727.9524336)]
for which the inequality π(x) > li(x) holds. More precisely, there are some values
u in the interval [727.9513130, 727.9513586] such that

π(eu)− li(eu) > 0.00003751696746 ∗ eu/2/u > 6.091784490× 10150.(4.4)

So, we can claim:

Theorem 4.1. There exists at least one value x in the interval [exp(727.9513130),
exp(727.9513586)] for which π(x) > li(x) holds. Moreover, there are more than
6.09 × 10150 successive integers in the vicinity of exp(727.951335792) where the
inequality holds.

5. Sharpening the interval

The previous theorem gives us an upper bound of exp(727.9513586) for the
first crossover. This value is better than the one obtained by Chao and Plymen.
Nevertheless, it is possible to reduce again the length of the interval. Indeed, the
integrand function decays very fast to 0 around its center and thus the meaningful
part of the integral is in fact around ω. In order to reduce the interval, we need
some information about the growth of π(x)− li(x). At this point, we split the study
into two cases. First, we will consider the general case and second, we will suppose
that the Riemann hypothesis holds.

In the general case, we will first prove:

Theorem 5.1. If x ≥ exp(8), we have

(5.1) 0 ≤ li(x)− x

log x

(
1 +

1

log x
+

2

log2 x

)
− C1 ≤ 12x

log4 x
+ C2,

with C1 = li(2)− 2
log 2 (1 +

1
log 2 + 2

log2 2
) and C2 =

∫ exp(8)

2
48dt
log5 t

− 24
log4 2

.

Proof. From the definition of li(x), we have for x ≥ 2,

(5.2) li(x) = li(2) +

∫ x

2

dt

log t
.

Then, after three successive integrations by parts, we have for x ≥ 2,

(5.3) li(x) = li(2)+

[
t

log t

(
1 +

1

log t
+

2

log2 t

)]x
2

+

∫ x

2

6dt

log4 t
,
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and thus

(5.4) li(x)− x

log x

(
1 +

1

log x
+

2

log2 x

)
− C1 =

∫ x

2

6dt

log4 t
.

At this point we obtain the first inequality of Theorem 5.1. Another integration by
parts on the right-hand side gives, for x ≥ 2,

(5.5)

∫ x

2

6dt

log4 t
=

[
6t

log4 t

]x
2

+

∫ x

2

24dt

log5 t
.

Now, for x ≥ exp(8), we have

(5.6)

∫ x

2

6dt

log4 t
−
[

6t

log4 t

]x
2

−
∫ exp(8)

2

24dt

log5 t
=

∫ x

exp(8)

24dt

log5 t
.

But, for t ≥ exp(8), we have 24
log5 t

≤ 1
2 .

6
log4 t

. So we obtain, for x ≥ exp(8),

(5.7)

∫ x

2

6dt

log4 t
−
[

6t

log4 t

]x
2

−
∫ exp(8)

2

24dt

log5 t
≤ 1

2

∫ x

exp(8)

6dt

log4 t
≤ 1

2

∫ x

2

6dt

log4 t
.

We obtain finally for x ≥ exp(8),

(5.8)

∫ x

2

6dt

log4 t
≤ 12x

log4 x
− 24

log4 2
+

∫ exp(8)

2

48dt

log5 t
,

which establishes the theorem. �
The latter theorem could be further optimized but it will suffice for our purpose.

Combined with Theorem 3.1, it gives:

Theorem 5.2. If x ≥ 355991, we have

(5.9) − 0.2x

log3(x)
− 12x

log4(x)
− 44.53131 ≤ π(x)− li(x) ≤ 0.51x

log3(x)
+ 1.80141.

Moreover, if x ≥ exp(40), then

(5.10) |π(x)− li(x)| ≤ 0.51x

log3(x)
+ 1.80141.

Although this theorem was obtained by elementary methods, in the range of
values for x where we intend to use it, it gives a finer result than earlier theorems;
for instance, that of Dusart [9, th. 1.12]. With this theorem, we will now study
the tail parts of the integral (2.4). Now, let η0 be a real positive number such that
η0 < η. We then have, since ω > 40,∣∣∣∣

∫ ω+η

ω+η0

K(u− ω)ue−u/2{π(eu)− li(eu)}du
∣∣∣∣

≤
∫ ω+η

ω+η0

K(u− ω)ue−u/2{|π(eu)− li(eu)|}du

≤
∫ ω+η

ω+η0

K(u− ω)ue−u/2

{
0.51eu

u3
+ 1.80141

}
du

≤
∫ ω+η

ω+η0

K(u− ω)

{
0.51eu/2

u2
+ 1.80141.ue−u/2

}
du

≤ (η − η0)K(η0)

{
0.51

e(ω+η)/2

(ω + η0)2
+ 1.80141.(ω + η)e−(ω+η0)/2

}
.

(5.11)
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Likewise, we obtain, since ω − η > 40,∣∣∣∣
∫ ω−η0

ω−η

K(u− ω)ue−u/2{π(eu)− li(eu)}du
∣∣∣∣

≤ (η − η0)K(−η0)

{
0.51

e(ω−η0)/2

(ω − η)2
+ 1.80141.(ω − η0)e

−(ω−η)/2

}
.

(5.12)

We denote, respectively, T1 and T2, the right-hand sides of the two previous final in-
equalities. The sum of the two tail integrals is then bounded above by T1+T2. Now,
numerically, with the previous values we used and obtained in our computations,
if we set η0 = η/2.074, we obtain

T1 = 0.00001594194397,

T2 = 0.00001594167602.

Those numeric values, together with the estimate (4.3), gives the following result:

I(ω, η0) ≥ 0.00000563334747.

This result then allows us to obtain a result finer than the one obtained in The-
orem 4.1. However, as we will see in the next part, more work can still be done
to improve the final result. Thus, for the moment, we will state our result in a
different way:

Theorem 5.3. There exists one value x in the interval [exp(727.95132478),
exp(727. 95134681)] such that π(x)− li(x) > 9.1472× 10149.

In the following, we assume that the Riemann hypothesis holds. In this case,
Theorem 5.2 is far from being optimal, even in the range of values we consider. A
much finer result is given by Schoenfeld [14, p. 339]:

Theorem 5.4. If the Riemann hypothesis holds, then for x ≥ 2657, we have

(5.13) |π(x)− li(x)| < 1

8π

√
x log x.

If we denote T ′
1 and T ′

2 upper bounds of the corresponding tail integrals, we then
obtain

T ′
1 =

1

8π
K(η0)(ω + η)2,(5.14)

T ′
2 =

1

8π
K(−η0)(ω − η0)

2.(5.15)

Numerically, if we set η0 = η/6.72, we obtain

T ′
1 = 0.00001870458817,

T ′
2 = 0.00001870458683,

and thus,

I(ω, η0) ≥ 0.000000107793.

We can then state:

Theorem 5.5. If the Riemann hypothesis holds, then there exists one value x in the
interval [exp(727.95133239), exp(727.95133919)] such that π(x) − li(x) > 1.7503 ×
10148.
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6. Interval of positivity

Theorem 4.1 exhibits an interval of 6.09×10150 consecutive integers where π(x)−
li(x) is positive. Indeed, equation (4.4) states that there exists a point x, such that
π(x) − li(x) > 6.09 × 10150. Let b be a positive integer. Then li(x − b) ≤ li(x).
Moreover, for any x ≥ 1, we have π(x− 1) ≥ π(x)− 1, thus by recurrence and with
the previous inequality, we can deduce that π(x− b)− li(x− b) > 6.09× 10150 − b.
Thus we can affirm that the 6.09× 10150 successive integers preceding x belong to
the interval of positivity. This result is obtained by considering integers inferior
to x. However, as we will see, this result can be much improved by considering
integers greater than x. In fact, we have:

Theorem 6.1. Let x > 1 and y > 0, then we have

li(x+ y)− li(x) =

∫ x+y

x

dt

log t

<
y

log x
.

With the previous theorem, we can state:

Theorem 6.2. Let x be a real positive number such that π(x)−li(x) = A > 0. Then
if y is a real number such that 0 < y < A. log x, we have π(x+ y)− li(x+ y) > 0.

Proof. Let y > 0, since the function π(x) is increasing, we then have

π(x+ y)− li(x+ y) = (π(x+ y)− π(x)) + (π(x)− li(x)) + (li(x)− li(x+ y))

> A− y

log x
. �

Then Theorem 5.3 enables us to state:

Theorem 6.3. There are at least 6.6587 × 10152 consecutive integers x in the
interval [exp(727.95132478), exp(727. 95134682)] such that π(x)− li(x) > 0.

The value 6.6587× 10152 obtained is a direct application of Theorem 6.2. How-
ever, we do not know where the first x lies in the interval of Theorem 5.3. We
only know that its maximal value is exp(727. 95134681). But we have exp(727.
95134682)−exp(727. 95134681) � 1.397×10308, which is larger than 6.6587×10152.
Thus we can affirm that the 6.6587× 10152 integers following x belong to the inter-
val [exp(727.95132478), exp(727. 95134682)]. In a similar way, Theorem 5.5 gives
us the following result:

Theorem 6.4. If the Riemann hypothesis holds, then there are at least 1.2741 ×
10151 consecutive integers x in the interval [exp(727.95133239), exp(727.95133920)]
such that π(x)− li(x) > 0.

A final remark is in order about Theorem 6.4. The number of consecutive integers
satisfying π(x)− li(x) > 0 is approximately 50 times smaller than in Theorem 6.3.
This theorem might then appear weaker, which would then make assuming the Rie-
mann hypothesis pointless. In fact, this theorem is stronger than Theorem 6.3, since
the length of the interval is three times shorter. The difference in terms of consecu-
tive integers comes from the fact that the estimate for I(ω, η0) is much sharper when
the Riemann hypothesis holds. In turn, this fact is a consequence of having better
upper bounds for tail integrals (see equations (5.11)–(5.12) and (5.14)–(5.15)).
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