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COMPUTING A LOWER BOUND FOR THE CANONICAL

HEIGHT ON ELLIPTIC CURVES OVER NUMBER FIELDS

THOTSAPHON THONGJUNTHUG

Abstract. Computing a lower bound for the canonical height is a crucial step
in determining a Mordell–Weil basis for elliptic curves. This paper presents
an algorithm for computing such a lower bound for elliptic curves over num-
ber fields without searching for points. The algorithm is illustrated by some
examples.

1. Introduction

Let E be an elliptic curve defined over a number field K, and let Etors(K) be
the torsion subgroup of E(K). The canonical height on E/K is a quadratic form

ĥ : E(K) → [0,∞) which is positive definite on the lattice E(K)/Etors(K). Thus

there exists a positive lower bound for ĥ(P ) among all non-torsion P ∈ E(K).
Computing such a lower bound has a number of applications in arithmetic ge-

ometry. In particular, it is a crucial step in determining a Mordell–Weil basis for
E(K) (see [7] for full details). In summary, one starts with some points P1, . . . , Pr

which generate a subgroup of finite index of E(K)/Etors(K). Using the geometry
of numbers [7, Theorem 3.1], this yields an upper bound for the index

n = [E(K)/Etors(K) : 〈P1, . . . , Pr〉].
It follows from the geometry of numbers that, in order to obtain a smaller upper
bound for n, one must obtain a larger lower bound for the canonical height.

Lang’s conjecture states (see [8, Conjecture VIII.9.9]) that there exists a constant
cK , depending only on K, such that

ĥ(P ) ≥ cK logN (DE/K)

for all non-torsion P ∈ E(K), where DE/K is the minimal discriminant of E/K,
and N denotes the norm of an integral ideal of K. A result similar to this has been
proven [5, Theorem 0.3], although the lower bound obtained by that result is too
small for practical use; see Example 10.1 for more details.

In this paper, we present an alternative method for determining a lower bound for

ĥ(P ) without searching for points. This work, which is part of the author’s doctoral
thesis, is an extension of the author’s previous algorithm [11] for elliptic curves over
totally real number fields. The methodology is mainly inspired by the algorithm
of Cremona and Siksek [2] for the case K = Q. Whereas the structure of this
paper will be similar to [11], the novelty comes from a newly added section on the
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contributions of the complex embeddings and a repeated quadrisection technique.
For more background, the reader should refer to [11].

2. Points of good reduction

Suppose E/K is given by a Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ OK , where OK is the ring of integers of K. Let Δ be the
discriminant of E. Denote the sets of real and complex archimedean places by M r

K

and M c
K , respectively, and let MK be the set of all places of K. Define the map

φ : E(K) →
∏
v∈S

E(v)(Kv)

with S = M r
K ∪M c

K ∪ {p : p | Δ}, in such a way that P ∈ E(K) is mapped into its
corresponding point on:

• the real embedding E(v)(R), for each v ∈ M r
K , and

• the complex embedding E(v)(C), for each v ∈ M c
K , and

• the minimal model E(v)(Kv), for each non-archimedean place v | Δ.

If the class number of K is greater than 1, then E(v) may differ for different non-
archimedean places v. In other words, E may not be globally minimal.

Instead of working directly on E(K), our method is to determine a positive lower
bound μ for the canonical height on the subgroup

Egr(K) = φ−1

(∏
v∈S

E
(v)
0 (Kv)

)

where E
(v)
0 (Kv) is the connected component of the identity. For non-archimedean

v, this is the set of points of good reduction. Let c be the least common multiple
of the Tamagawa indices

cv = [E(v)(Kv) : E
(v)
0 (Kv)]

for all v ∈ MK . Note that c is well-defined since cv = 1 for all v /∈ S. If such μ is
determined, then we have

ĥ(P ) > μ/c2

for all non-torsion P ∈ E(K), since clearly cP ∈ Egr(K), and ĥ is quadratic.
In this paper, we will first derive an explicit formula for computing μ. The value

of μ obtained by this formula, in practice, will not be as good as the one obtained
by the algorithm to be derived later on. The algorithm will check using a number
of criteria whether a given μ > 0 is a lower bound on Egr(K). By repeating the
algorithm, we can refine μ further until a sufficient degree of accuracy is achieved.

3. Heights

Note that normalisation of heights varies in literature. In this paper, the local
and canonical heights are defined with respect to the divisor 2(O), where O is the
identity of E(K). This has the same normalisation as the one used in the computer
package MAGMA, and gives double the values compared with Silverman’s paper [9]
where heights are defined with respect to (O).
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Let b2, b4, b6, b8, c4, c6, and Δ be the standard invariants associated to E (see
[8, p. 46]). Let

f(P ) = 4x(P )3 + b2x(P )2 + 2b4x(P ) + b6,

g(P ) = x(P )4 − b4x(P )2 − 2b6x(P )− b8.

For v ∈ MK , let nv = [Kv : Qv], and σv be the embedding of K into Kv. For
x ∈ K, the absolute value of x at v is given by

|x|v =

{
|σv(x)| if v ∈ M r

K ∪M c
K ,

N (p)−ordp(x)/np if v = p,

where p is the prime ideal associated to a non-archimedean place v. It is a standard
fact that this definition satisfies all axioms of valuation theory and the product
formula

∏
v∈MK

|x|nv
v = 1. Define

Φv(P ) =

⎧⎨
⎩
1 if P = O,
max{|f(P )|v, |g(P )|v}

max{1, |x(P )|v}4
otherwise.

Then it can be shown (see e.g. [11, p. 142]) that

(3.1) ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλv(P )

where

λv(P ) = logmax{1, |x(P )|v}+
∞∑
i=0

log Φv(2
iP )

4i+1
.

The function λv : E(Kv) → R is called the local height at v. This therefore allows

us to obtain ĥ(P ) by computing λv(P ) on each local model E(Kv), noting that
λv(P ) = 0 for almost all v.

3.1. The non-archimedean local heights. For P ∈ E(K), let P (p) be the cor-
responding point of P on the minimal model E(p). Let Δ and Δ(p) be the discrim-
inants of E and E(p), respectively. If 〈x(P (p))〉 = AB−1 for some coprime integral
ideals A,B, then we write denom(x(P (p))) = B.

The following lemma yields a simplified formula for computing the sum of all
non-archimedean local heights on Egr(K).

Lemma 3.1. Suppose P ∈ Egr(K) \ {O}. Then∑
p

npλp(P ) = L(P )− 1

6
logN (ME)

where

L(P ) = logN

⎛
⎝ ∏

p|denom(x(P (p)))

p−ordp(x(P
(p)))

⎞
⎠ , ME =

∏
p

pordp(Δ/Δ(p)).

Note that N (ME) = 1 if E is a globally minimal model.

Proof. This is a well-known result; see e.g. [11, Lemma 3] for more details. Note
that the definition that we use of local height of a point with good reduction does
not include a multiple of − log |Δ(p)|p (cf. [9, p. 351]). �
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3.2. The archimedean local heights. For v ∈ M r
K ∪M c

K , define αv by

α−3
v = inf

P∈E
(v)
0 (Kv)

Φv(P ).

These αv can be computed rapidly by the method in [4, Section 7 and Section 9].
The following lemma, which is Lemma 4 of [11], gives us an estimate for the

archimedean local heights.

Lemma 3.2. If P ∈ E
(v)
0 (Kv) \ {O}, then

logmax{1, |x(P )|v} − λv(P ) ≤ logαv.

4. Multiplication by n

In this section, we will derive a lower estimate for the contribution that multi-

plication by n makes towards ĥ(nP ).
Let kp be the residue class field of p, and let ep be the exponent of the group

E
(p)
ns (kp) ∼= E

(p)
0 (Kp)/E

(p)
1 (Kp). Define

DE(n) =
∑

p prime
ep|n

2(1 + ordc(p)(n/ep)) logN (p)

where c(p) is the characteristic of kp. Note that kp is a finite field, so c(p) is always

a prime number. In particular, N (p) = |kp| ≤ c(p)[K:Q].

Proposition 4.1. If ep | n, then we have the following:

(1) N (p) ≤ (n+ 1)max{2,[K:Q]}. In other words, DE(n) is finite.
(2) Moreover, if P is a non-torsion point in Egr(K) and n ≥ 1, then

L(nP ) ≥ DE(n).

Proof. See [11, Proposition 1]. Note that there is one typographical error in that
proposition. The correct one should read as follows: if E(p) has bad reduction at p,
then ep is N (p)+1 or N (p)−1 according as E(p) has non-split or split multiplicative
reduction at p. This error, however, does not affect the proof. �

5. A bound for multiples of points of good reduction

We now wish to determine whether a given μ > 0 satisfies ĥ(P ) > μ for all non-
torsion P ∈ Egr(K). To do this, we shall use Proposition 4.1 to obtain a bound for
the x-coordinates of the multiples nP .

For μ > 0 and n ∈ Z+, define Bn(μ) by

logBn(μ) = [K : Q]n2μ−DE(n) +
1

6
logN (ME) +

∑
v∈Mr

K

logαv + 2
∑

v∈Mc
K

logαv.

Proposition 5.1. If Bn(μ) < 1, then ĥ(P ) > μ for all non-torsion P ∈ Egr(K).

If Bn(μ) ≥ 1, then for all non-torsion P ∈ Egr(K) with ĥ(P ) ≤ μ, we have

|x(nP )|v ≤
{
Bn(μ) if v ∈ M r

K ,√
Bn(μ) if v ∈ M c

K .
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Proof. Suppose P ∈ Egr(K) is a non-torsion point with ĥ(P ) ≤ μ. By Lemma 3.2,
we have

logmax{1, |x(nP )|v} − λv(nP ) ≤ logαv

for all v ∈ M r
K ∪M c

K . This implies that

(5.1)
∑

v∈Mr
K

logmax{1, |x(nP )|v}+ 2
∑

v∈Mc
K

logmax{1, |x(nP )|v}

≤
∑

v∈Mr
K

λv(nP ) + 2
∑

v∈Mc
K

λv(nP ) +
∑

v∈Mr
K

logαv + 2
∑

v∈Mc
K

logαv.

Note that nv = 1 for all v ∈ M r
K and nv = 2 for all v ∈ M c

K . By writing ĥ(nP ) as
a sum of local heights (3.1), we have∑

v∈Mr
K

λv(nP ) + 2
∑

v∈Mc
K

λv(nP ) = [K : Q]ĥ(nP )−
∑
p

npλp(nP )

= [K : Q]ĥ(nP )− L(P ) +
1

6
logN (ME) by Lemma 3.1

≤ [K : Q]ĥ(nP )−DE(n) +
1

6
logN (ME) by Proposition 4.1(2)

≤ [K : Q]n2μ−DE(n) +
1

6
logN (ME) since ĥ(P ) ≤ μ.

Combining this with (5.1) and taking the exponential, we obtain⎛
⎝ ∏

v∈Mr
K

max{1, |x(nP )|v}

⎞
⎠

⎛
⎝ ∏

v∈Mc
K

max{1, |x(nP )|v}2
⎞
⎠ ≤ Bn(μ).

But the left-hand side is at least 1. Thus, ifBn(μ) < 1, then we have a contradiction,

i.e. ĥ(P ) > μ for all non-torsion P ∈ Egr(K). On the other hand, it can be seen
that |x(nP )|v ≤ Bn(μ) for all v ∈ M r

K , and |x(nP )|2v ≤ Bn(μ) for all v ∈ M c
K . �

We now give an explicit formula for a lower bound on Egr(K).

Theorem 5.2. Let p be a prime ideal such that

(5.2) N (p) >

⎛
⎝ ∏

v∈Mr
K

√
αv

⎞
⎠

⎛
⎝ ∏

v∈Mc
K

αv

⎞
⎠N (ME)

1
12 .

Set n = ep and

μ0 =
1

[K : Q]n2

⎛
⎝DE(n)−

∑
v∈Mr

K

logαv − 2
∑

v∈Mc
K

logαv −
1

6
logN (ME)

⎞
⎠ .

Then μ0 > 0, and ĥ(P ) ≥ μ0 for all non-torsion P ∈ Egr(K).

Proof. This can be proved in a similar way as in [11, Corollary 1]. �

Although it is possible to obtain a lower bound on Egr(K) by Theorem 5.2 alone,
our practical experience shows that this bound is not as good as the one obtained
by collecting more information on x(nP ). This will be illustrated in Example 10.1.
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6. Solving inequalities I: Real embeddings

Proposition 5.1 allows us to solve a system of inequalities on each embedding
E(v). In this section, we will first concentrate on solving a system of inequalities
on each real embedding E(v)(R), i.e. for v ∈ M r

K .
If Bn(μ) ≥ 1, then Proposition 5.1 says that all non-torsion P ∈ Egr(K) with

ĥ(P ) ≤ μ must satisfy |x(nP )|v ≤ Bn(μ) for every v ∈ M r
K . Let σv : K → R be

the real embedding associated to v. This means that we need to consider σv(nP )

over E
(v)
0 (R), where E(v) is given by

E(v) : y2 + σv(a1)xy + σv(a3)y = x3 + σv(a2)x
2 + σv(a4)x+ σv(a6).

To prove that ĥ(P ) > μ for all non-torsion P ∈ Egr(K), we attempt to derive a
contradiction from these inequalities using an application of the elliptic logarithm.

6.1. Elliptic logarithm. This is explained in full detail in [11, Section 5.1], but
for convenience we shall cover it briefly.

The elliptic logarithm is an isomorphism of real analytic Lie groups ϕ : E0(R) →
R/Z. This can be rapidly computed by the method of arithmetic-geometric mean
(see e.g. [1, Algorithm 7.4.8]). We wish to apply the elliptic logarithm to solve
our inequalities on each real embedding E(v)(R). For convenience, we shall identify
R/Z with the interval [0, 1).

The process can be described roughly as follows: let ϕv : E
(v)
0 (R) → [0, 1) be

the elliptic logarithm associated to the real embedding E(v). Suppose P ∈ E
(v)
0 (R)

satisfies ξ1 ≤ |x(P )| ≤ ξ2. Then this is equivalent to

ϕv(P ) ∈ S(v)(ξ1, ξ2)

where S(v)(ξ1, ξ2) is a disjoint union of subintervals of [0, 1) depending on ξ1, ξ2.
If

⋃
[ai, bi] is a disjoint union of intervals and α ∈ R, we define

α+
⋃

[ai, bi] =
⋃

[ai + α, bi + α], α
⋃

[ai, bi] =
⋃

[αai, αbi] (for α > 0).

Lemma 6.1. Suppose ξ1 ≤ ξ2, and n ∈ Z+. Let

S(v)
n (ξ1, ξ2) =

n−1⋃
α=0

(
α

n
+

1

n
S(v)(ξ1, ξ2)

)
.

Then P ∈ E
(v)
0 (R) satisfies ξ1 ≤ x(nP ) ≤ ξ2 if and only ϕv(P ) ∈ S(v)

n (ξ1, ξ2).

Proof. See [11, Proposition 3]. �

This together with Proposition 5.1 leads to the following proposition.

Proposition 6.2. If Bn(μ) < 1 for some n ∈ Z+, then ĥ(P ) > μ for all non-
torsion P ∈ Egr(K). If Bn(μ) ≥ 1 for all n = 1, . . . , nmax, then every non-torsion
point P ∈ Egr(K) with h(P ) ≤ μ satisfies

ϕv(σv(P )) ∈
nmax⋂
n=1

S(v)
n (−Bn(μ), Bn(μ))

for every v ∈ M r
K . In particular, if the intersection is empty for some v ∈ M r

K ,

then ĥ(P ) > μ for all non-torsion P ∈ Egr(K).
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7. Solving inequalities II: Complex embeddings

Suppose Bn(μ) ≥ 1. Proposition 5.1 also says that all non-torsion P ∈ Egr(K)

with ĥ(P ) ≤ μ satisfy |x(nP )|v ≤
√
Bn(μ) for every v ∈ M c

K . We will show that
each of these inequalities corresponds to a region in the fundamental parallelogram,
and solving this system of inequalities is equivalent to intersecting all such regions.
Most of our work is devoted to this section.

7.1. Fundamental parallelograms. Let Λ ⊂ C be a lattice generated by periods
ω1, ω2 ∈ C with ω2/ω1 /∈ R. The (closed) fundamental parallelogram of Λ is the set

Πω1,ω2
= {λ1ω1 + λ2ω2 : 0 ≤ λ1, λ2 ≤ 1}.

Let E(v) be the complex embedding of E associated to v ∈ M c
K . It is well known

that there exists a complex analytic group isomorphism ϕv : E(v)(C) → C/Λ, for
some lattice Λ generated by ω1, ω2 satisfying the above condition. Note that every
element of C/Λ has a representative in Πω1,ω2

which is unique except for points on

the boundary of Πω1,ω2
. After choosing a lift in Πω1,ω2

for each P ∈ E(v)(C), we

may view ϕv as a map E(v)(C) → Πω1,ω2
⊂ C. Let τ = ω2/ω1. Without loss of

generality, we may choose the basis ω1, ω2 such that

|(τ )| ≤ 1/2 and |τ | ≥ 1.

Let Λτ be the lattice generated by 1, τ . Then clearly the map δ : C → C given
by z �→ z/ω1 induces a bijection Λ → Λτ . Denote Π1,τ by Πτ , and let

Hτ = {λ1 + λ2τ : 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1/2}
(i.e. Hτ is the lower half of Πτ ). Each P ∈ E(v)(C) maps to a point z ∈ Πτ , and
either P or −P maps to a point in Hτ . Hence we can let

(7.1) ψv(P ) =

{
ψ′
v(P ) if ψ′

v(P ) ∈ Hτ ,

ψ′
v(−P ) if ψ′

v(P ) /∈ Hτ ,

where ψ′
v = δ◦ϕv (viewed as a map E(v)(C) → Πτ ), so that in all cases ψv(P ) ∈ Hτ .

7.2. The corresponding region. In this section, we will give a description of a
region in Hτ that corresponds to an inequality on |x(P )|v.

Suppose E(v) is given by the Weierstrass equation

E(v) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for some a1, a2, a3, a4, a6 ∈ C. Let ω1, ω2, and τ be as above. Recall that we have
the Weierstrass parameterisation C/Λτ→̃EW (C), where EW is the elliptic curve
Y 2 = 4X3 − g2(Λτ )X − g3(Λτ ), given by

z �→ (℘Λτ
(z), ℘′

Λτ
(z)).

Moreover, we have an isomorphism EW (C) → E(v)(C) given by

(X,Y ) �→ (x, y) =

(
ω−2
1 X − b2

12
,
ω−3
1 Y − a1x− a3

2

)
.

Hence for any ξ ≥ 0, it is clear that

|x| ≤ ξ ⇐⇒ |℘Λτ
(z)| ≤ Uξ

where Uξ = |ω1|2 (ξ + |b2|/12).
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y2 = x3 + x + (1 + 4i) over Q(i)
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Figure 1. The boundary on Hτ associated to different Uξ. Each
curve is labelled by the relevant value of ξ.

Figure 2. Loops on the torus C/Λτ when the boundary varies.

Now we can consider the set

 = {z ∈ Hτ : |℘Λτ
(z)| = Uξ}

as a curve1 on Hτ (see Figure 1). This is the boundary of the region

R(v)(ξ) = {z ∈ Hτ : |℘Λτ
(z)| ≤ Uξ}.

Since the Weierstrass ℘-function becomes a one-to-one continuous map once its
domain is restricted to Hτ , the equation |℘Λτ

(z)| = Uξ yields only one curve on
Hτ . By symmetry (about the mid-point of Πτ ), we also have another identical
boundary on the upper half of Πτ . Depending on Uξ, the boundaries on both
halves topologically form either one or two identical loops on the torus C/Λτ , as
shown in Figure 2.

1This may have either one or two connected components on Hτ .
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7.3. Determining the region. For practical reasons we prefer to approximate
R(v) by a finite number of parallelograms whose union covers R(v). Denote by
S(v) the finite set of these parallelograms. A finer approximation to R(v) can be
obtained by decreasing the size of parallelograms in S(v).

The construction of S(v) will be explained in detail in Section 7.3.3. For now we
mention that S(v)(ξ) has the following properties:

(1)
⋃

C∈S(v)(ξ) C ⊇ R(v)(ξ), i.e. the union of all parallelograms in S(v)(ξ)

contains the actual region R(v)(ξ).
(2) Every C ∈ S(v)(ξ) contains z such that |℘Λτ

(z)| ≤ Uξ. In other words,

C ∩R(v)(ξ) �= ∅ for all C ∈ S(v)(ξ).

7.3.1. Approximating the Weierstrass ℘-function. Let q = exp(2πiτ ) and u =
exp(2πiz). For k ∈ Z, we define the function fk(z, τ ) by

fk(z, τ )

(2πi)2
=

u

(1− u)2
+

1

12
+

k−1∑
n=1

[
qnu

(1− qnu)2
+

qnu−1

(1− qnu−1)2
− 2qn

(1− qn)2

]
.

In particular, limk→∞ fk(z, τ ) = ℘Λτ
(z) for all non-lattice points z (see [1, Propo-

sition 7.4.4]). By choosing a suitable k, we can bound the error which occurs when
|fk(z, τ )| is used as the approximation to |℘Λτ

(z)|, as shown in the next lemma.

Lemma 7.1. Suppose z ∈ Hτ with z �= 0, 1. Let α = �(z)/�(τ ). Then∣∣|℘Λτ
(z)| − |fk(z, τ )|

∣∣ ≤ 4π2

1− |q|

[
|q|k+α

(1− |q|k+α)2
+

|q|k−α

(1− |q|k−α)2
+

2|q|k
(1− |q|k)2

]
.

Proof. First we have

℘Λτ
(z)− fk(z, τ ) = (2πi)2

∞∑
n=k

[
qnu

(1− qnu)2
+

qnu−1

(1− qnu−1)2
− 2qn

(1− qn)2

]
.

Observe that |u| = |q|α. By the triangle inequality, we obtain

(7.2)
|℘Λτ

(z)− fk(z, τ )|
4π2

≤
∞∑

n=k

[
|q|n+α

(1− |q|n+α)2
+

|q|n−α

(1− |q|n−α)2
+

2|qn|
(1− |qn|)2

]
.

Since we work on Hτ , we have |q| < 1 and 0 ≤ α ≤ 1/2, which implies that
|q|n±α < 1 for all n ≥ 1. Thus we have the estimate

∞∑
n=k

|q|n±α

(1− |q|n±α)2
≤ 1

(1− |q|k±α)2

∞∑
n=k

|q|n±α ≤ |q|k±α

(1− |q|k±α)2(1− |q|) ,

and similarly
∞∑

n=k

2|q|n
(1− |q|n)2 ≤ 2|q|k

(1− |q|k)2(1− |q|) .

This together with (7.2) and the triangle inequality yields the result. �

It is readily verified that the absolute error given by Lemma 7.1 attains its
maximum when α = 1/2, and becomes smaller as k increases. Moreover, it can be
seen that this absolute error decreases as �(τ ) increases.

Recall that every parallelogram C in S(v)(ξ) satisfies |℘Λτ
(z)| ≤ Uξ for some

z ∈ C. In practice, we can compute |fk(z, τ )| and add it with the error given by
Lemma 7.1 to obtain a (small) interval which contains |℘Λτ

(z)|. On each of the
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four line segments comprising the boundary of C, we can parameterize |fk(z, τ )| by
a real-valued function fk(x, τ ) or fk(y, τ ), where x = (z) and y = �(z). We wish
to find the range of fk when x or y varies along the line. For this computation, we
find some techniques from interval arithmetic (see [6]) to be very useful.

7.3.2. Interval arithmetic on fk(z, τ ). Before we proceed to its application, we shall
first explain briefly what interval arithmetic is.

Let I = [a, b] and J = [c, d] (with a ≤ b and c ≤ d) be two intervals of real
numbers. We can define an arithmetic operation on intervals by

I ∗ J = {x ∗ y : a ≤ x ≤ b, c ≤ y ≤ d}
where ∗ is an operation on real numbers. A number of usual arithmetic operations
on real numbers can be extended to the one on intervals. For example,

I + J = [a+ c, b+ d], I − J = [a− d, b− c],

I · J = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}],
I/J = [a, b] · [1/d, 1/c] provided that 0 /∈ J.

It can be seen easily that interval addition and interval multiplication are both
associative and commutative. Distributivity, however, does not always hold for
interval arithmetic. For example,

[1, 3] · ([1, 3]− [1, 3]) = [1, 3] · [−2, 2] = [−6, 6], whereas

[1, 3] · [1, 3]− [1, 3] · [1, 3] = [1, 9]− [1, 9] = [−8, 8].

In general, if I, J , K are intervals, then

I · (J +K) ⊂ I · J + I ·K.

This is normally known as subdistributivity.
One important property of interval arithmetic is that it is inclusion monotonic,

i.e. if I ⊂ K and J ⊂ L are intervals, then

I + J ⊂ K + L, I − J ⊂ K − L,

I · J ⊂ K · L, I/J ⊂ K/L provided that 0 /∈ L.

This leads to

Theorem 7.2 ([6, Theorem 3.1]). Let f(X1, . . . , Xn) be a rational expression with
real coefficients in the interval variables X1, . . . , Xn, i.e. a finite combination of
X1, . . . , Xn and a finite set of constant intervals with interval arithmetic operations.
Then

X ′
1 ⊂ X1, . . . , X

′
n ⊂ Xn implies f(X ′

1, . . . , X
′
n) ⊂ f(X1, . . . , Xn)

for every set of intervals X1, . . . , Xn for which the interval arithmetic operations in
f are defined.

Suppose f(x1, . . . , xn) is a real rational expression, i.e. f is a quotient of real
polynomials in terms of x1, . . . , xn. Then by Theorem 7.2, the resulting interval
F = f(X1, . . . , Xn) will always contain the actual range of f(x1, . . . , xn) for xi ∈ Xi.
In particular, F will be the actual range of f(x1, . . . , xn) for xi ∈ Xi if each variable
xi occurs only once in f (note that x2

i = xi · xi is taken as two occurrences). With
some techniques, e.g. using subdistributivity to group common terms in f , the
resulting interval F can be made smaller.
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Recall the function fk(z, τ ) in Section 7.3.1. Suppose z = x+iy ∈ C is on a fixed
line segment L. Depending on L, we can regard z as a function of either x or y (for
example, if z is on a vertical line, then x is fixed but y varies). Thus, provided that
L is fixed and z ∈ L, we can consider

g(z) = |fk(z, τ )|2

as a real function of one real variable, i.e. either g(z) = g(z(x)) or g(z) = g(z(y)),
depending on L. To ease notation, we shall write

f(∗) = g(z(∗)),
where ∗ is either x or y, depending on how z is parameterized along L.

The next proposition shows that we can apply interval arithmetic to f(∗).

Proposition 7.3. Define f(∗) as above. Then f can be extended to a real rational
expression of at most three interval variables, depending on the line segment L.

Proof. First we note that

f(∗) = |fk(z, τ )|2 = (fk(z, τ ))2 + �(fk(z, τ ))2.
We will show how to obtain the real part of fk(z, τ ), the imaginary part of fk(z, τ )
can be deduced in a similar way.

The real part of fk(z, τ ) consists of the real parts of the terms

(7.3)
u

(1− u)2
,

1

12
,

qnu

(1− qnu)2
,

qnu−1

(1− qnu−1)2
,

qn

(1− qn)2

where u = exp(2πiz) and q = exp(2πiτ ). Write z = x+ iy. Let

x1 = exp(−2πy), x2 = cos(2πx), x3 = sin(2πx).

Consider the following two cases:

(1) If L is a non-vertical line (i.e. y = αx+β for some finite α and β), then


(

u

(1− u)2

)
=

x1x2(1 + x2
1)− 2x2

1

(1− 2x1x2 + x2
1)

2
.

Similarly, it can be shown that the real parts of the other terms in (7.3)
can be written as rational expressions in terms of x1, x2, x3.

(2) If L is a vertical line (i.e. x is fixed), then we have (u/(1 − u)2) as
above. Since x2 and x3 are now constant, we have (u/(1 − u)2) as a
rational expression in terms of x1 only. This is also the case for the real
parts of the other terms in (7.3).

Thus we have f(∗) as a real rational expression in terms of x1, x2, x3. Suppose
that a ≤ x ≤ b and c ≤ y ≤ d on L (note that c, d ≥ 0 since we work on Hτ ). Let

X1 = exp(−2π[c, d]) = [exp(−2πd), exp(−2πc)],

X2 = cos(2π[a, b]) = [ min
a≤x≤b

cos(2πx), max
a≤x≤b

cos(2πx)],

X3 = sin(2π[a, b]) = [ min
a≤x≤b

sin(2πx), max
a≤x≤b

sin(2πx)].

After replacing x1, x2, x3 in f with X1, X2, X3, respectively, we finally obtain the
interval version of f . �

Since f(X1, X2, X3) is a real rational expression of interval variables, then The-
orem 7.2 applies. Together with the error term in Lemma 7.1, this easily yields
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Ci1 Ci3

Ci2 Ci4

Figure 3. Four quarters of Ci.

Proposition 7.4. Let L be a line segment in the complex plane. Define X1, X2, X3

to be the intervals depending on L as above.
Let [u1, u2] = f(X1, X2, X3) (with u2 ≥ u1 ≥ 0). For a fixed k ∈ Z+, let ε = εk

be the maximum absolute error given by Lemma 7.1. Then for all z ∈ L, we have
√
u1 − ε ≤ |℘Λτ

(z)| ≤ √
u2 + ε.

7.3.3. Constructing S(v). We are now ready to construct S(v).
Let L be a line segment in the complex plane. By Proposition 7.4, the interval

I(L) = [
√
u1 − ε,

√
u2 + ε]

contains the actual range of |℘Λτ
(z)| where z ∈ L. We can then extend this notion

to any parallelogram C by letting

I(C) =
⋃

L∈∂C

I(L)

where ∂C is the boundary of C. Note that the four intervals I(L) for L ∈ ∂C will
overlap, so I(C) is an interval.

We define S(v)(ξ) recursively as follows: first we let

S(v,0)(ξ) = {Hτ}.

Suppose S(v,r)(ξ) = {C1, . . . , Cm}, where m = 4r. Let

S ′(v,r+1) = {C11, . . . , C14, . . . , Cm1, . . . , Cm4 : Ci =

4⋃
j=1

Cij},

i.e. Ci1, . . . , Ci4 are the four quarters of Ci, as shown in Figure 3.
Suppose E(v) is in the form Y 2 = 4X3 + AX + B for some A,B ∈ C. Let

P ∈ E(v)(C) be a point with X(P ) = 0. Let C0 ∈ S ′(v,r+1) be the parallelogram
containing ψv(P ) (see (7.1) for the definition of ψv). Note that we may have
I(C0) ∩ [0, Uξ] = ∅. Then we define

S(v,r+1)(ξ) = {C0} ∪ {C ∈ S ′(v,r+1) : I(C) ∩ [0, Uξ] �= ∅}.

Finally, we let S(v)(ξ) = S(v,r)(ξ) for some r > 0.
If S is a set of parallelograms in C, we denote

⋃
C∈S C by

⋃
S. It is then obvious

from the construction above that⋃
S(v,0)(ξ) ⊃

⋃
S(v,1)(ξ) ⊃ . . . ⊃

⋃
S(v,r)(ξ) ⊃ . . . ⊃ R(v)(ξ).

In practice, we can increase our computational speed by using the following
techniques to assist in finding S(v,r+1).



COMPUTING A LOWER BOUND FOR THE CANONICAL HEIGHT 2443

Lemma 7.5 (Four-Corner Test). Suppose C ∈ S ′(v,r+1)(ξ). Let z1, . . . , z4 be the
corners of C, and let εk be the maximum absolute error given by Lemma 7.1. Define

I(z) = [ |fk(z, τ )| − εk, |fk(z, τ )|+ εk ].

If I(zi) ⊂ [0, Uξ] for some i = 1, . . . , 4, then C ∈ S(v,r+1)(ξ).

Proof. This will imply that |℘Λτ
(z)| ≤ Uξ for some z ∈ C (namely z = zi). Thus

C ∈ S(v,r+1)(ξ). �

In practice, checking whether C is in S(v,r+1)(ξ) by this test is considerably faster
than the usual criterion I(C) ∩ [0, Uξ]. In addition, most of the parallelograms in

S(v,r+1)(ξ) can be found rapidly by this test.

Lemma 7.6. For r ≥ 0, let Sr+1 be the set of all parallelograms in S ′(v,r+1)(ξ)
which satisfy the condition in Lemma 7.5. Let

∂Sr+1 = {C ∈ S ′(v,r+1)(ξ) \ Sr+1 : C is adjacent to
⋃

Sr+1}.

If I(C) ∩ [0, Uξ] = ∅ for all C ∈ ∂Sr+1, then S(v,r+1)(ξ) = Sr+1.

Proof. If all parallelograms in ∂Sr+1 are excluded from S(v,r+1)(ξ), then this means
there is no part of the boundary  of the actual region R(v)(ξ) passing through⋃
∂Sr+1. Thus the one-to-one and continuity properties of the Weierstrass ℘-

function on Hτ imply that the boundary  of R(v)(ξ) lies entirely in
⋃
Sr+1, and

so all parallelograms in S ′(v,r+1)(ξ) \ Sr+1 can be discarded. �

An illustration of using these techniques to construct S(v) is shown2 in Figure
4. In this figure, the process of determining S(v) consists of the following steps:

(1) Starting with S ′(v,r+1)(ξ) for some r, we use Lemma 7.5 to identify a number
of parallelograms C ∈ S ′(v,r+1)(ξ) which are also in S(v,r+1)(ξ) (these are
marked by “*”). Let Sr+1 be the set of all such parallelograms C.

(2) Identify all parallelograms in ∂Sr+1 (these are marked by “?”).
(3) For each C ∈ ∂Sr+1, check if I(C)∩ [0, Uξ] = ∅. If so, then C /∈ S(v,r+1)(ξ)

and thus can be discarded (this is marked by “.”).
(4) If it turns out that the set ∂Sr+1 is entirely discarded, then by Lemma

7.6 we have S(v,r+1)(ξ) = Sr+1. In other words, every parallelogram in
S ′(v,r+1)(ξ) \ Sr+1 is discarded. Finally, we let S(v)(ξ) = S(v,r+1)(ξ).

7.4. Division by n. We have seen that the inequality |x(P )|v ≤ ξ yields the region⋃
S(v)(ξ) in Hτ . Since the Weierstrass ℘-function is even, we also have another

identical region in the upper half of Πτ . Let T (v)(ξ) be the union of both regions.
Then clearly T (v)(ξ) contains the set {z ∈ Πτ : |℘Λτ

(z)| ≤ Uξ}.
Recall the isomorphism ψ′

v : E(v)(C) → Πτ . Suppose P ∈ E(v)(C) is given, and
consider all points Q ∈ E(v)(C) such that P = nQ. Let z = ψ′

v(P ) and z′ = ψ′
v(Q).

Then we have
z = nz′ (mod Λτ ).

In fact, if z = α+ βτ for some 0 ≤ α, β ≤ 1, then

z′ ∈
{
α+ s

n
+

(β + t)τ

n
: 0 ≤ s, t ≤ n− 1

}
.

2Here S(v) = S(v,4)(0.4) for the elliptic curve y2 = x3 + x+ (1 + 4i) defined over Q(i).
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Figure 4. Illustration of how to obtain S(v).

Figure 5. Division on Πτ by 3.

This therefore allows us to “divide” T (v)(ξ) by n (see Figure 5 for an illustration)
to obtain a new region

T ′(v)
n (ξ) = {z′ ∈ Πτ : nz′ (mod Λτ ) ∈ C, for some C ∈ T (v)(ξ)}.

Due to the symmetry of T ′(v)
n , we can let

T (v)
n (ξ) = T ′(v)

n (ξ) ∩Hτ .

The following lemma is analogous to Lemma 6.1.

Lemma 7.7. If P ∈ E(v)(C) satisfies |x(nP )| ≤ ξ, then ψv(P ) ∈ T (v)
n (ξ).

Proof. If |x(nP )| ≤ ξ, then we have ψv(nP ) ∈ C for some C ∈ S(v)(ξ) ⊂ T (v)(ξ).
Since nψv(P ) is either ψv(nP ) or −ψv(nP ) (mod Λτ ), in any case we have ψv(P ) ∈
T ′(v)
n (ξ) ∩Hτ = T (v)

n (ξ). �

Together with Proposition 5.1, we have

Proposition 7.8. If Bn(μ) ≥ 1 for all n = 1, . . . , nmax, then every non-torsion

point P ∈ Egr(K) with ĥ(P ) ≤ μ satisfies

ψv(σv(P )) ∈
nmax⋂
n=1

T (v)
n (

√
Bn(μ))

for all v ∈ M c
K . Here σv : K → C is the complex embedding of K associated to v.

In particular, if the intersection is empty for some v ∈ M c
K , then ĥ(P ) > μ for

all non-torsion P ∈ Egr(K).
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8. An algorithm to bound the canonical height

Combining Proposition 6.2 and Proposition 7.8, we are now ready to state our
main theorem.

Theorem 8.1. Let μ > 0. If Bn(μ) < 1, then ĥ(P ) > μ for all non-torsion
P ∈ Egr(K). Otherwise, if Bn(μ) ≥ 1 for all n = 1, . . . , nmax, then every non-

torsion point P ∈ Egr(K) with ĥ(P ) ≤ μ satisfies

ϕv(σv(P )) ∈
nmax⋂
n=1

S(v)
n (−Bn(μ), Bn(μ))

for every v ∈ M r
K , and moreover,

ψv(σv(P )) ∈
nmax⋂
n=1

T (v)
n (

√
Bn(μ))

for every v ∈ M c
K .

In particular, if one of the intersections is empty for some v ∈ M r
K ∪M c

K , then

ĥ(P ) > μ for all non-torsion P ∈ Egr(K).

Theorem 8.1 in turn yields an algorithm for computing a lower bound for the
canonical height on Egr(K), which consists of the following steps:

(1) Given an initial value μ > 0 and the number of steps nmax, we start by
computing Bn(μ) for n = 1, . . . , nmax. If Bn(μ) < 1 for some n, then we

can conclude immediately that ĥ(P ) > μ for all non-torsion P ∈ Egr(K).

(2) Otherwise, we proceed to compute
⋂nmax

n=1 S(v)
n (−Bn(μ), Bn(μ)) for every

v ∈ M r
K . If the intersection is empty for some v, then again ĥ(P ) > μ for

all non-torsion P ∈ Egr(K).

(3) If not, then we compute
⋂nmax

n=1 T (v)
n (

√
Bn(μ)) for every v ∈ M c

K . Again,

if the intersection is empty for some v, then ĥ(P ) > μ for all non-torsion
P ∈ Egr(K). Otherwise, we fail to show that μ is a lower bound on Egr(K).

(4) We can refine μ until sufficient accuracy is achieved, say, if μ is shown to be
a lower bound, then we increase μ and repeat the process to see if it is still
a lower bound. However, if the algorithm fails to show that μ is a lower
bound, then we decrease μ (or increase nmax) and repeat the process.

(5) Return the largest value of μ which is known to be a lower bound.

9. Remarks

As in [11], the lower bound we obtain is not model-independent, since, for ex-
ample, the values αv in Section 3.2 depend on the coefficients of the Weierstrass
model of E. At present, we have not systematically investigated how the bound
obtained by our algorithm is affected by a change of model. Note, however, that
our formulae can be simplified if E is given by a globally minimal model.

Regarding the computational complexity, it can be seen that computing Bn(μ)

is less time-consuming than computing S(v)
n , which in turn is less time-consuming

than computing T (v)
n . Therefore it is plausible to use Bn(μ) as the first criterion,

followed by the intersection of S(v)
n and T (v)

n , respectively, as we do in our algorithm.
Let c be the least common multiple of all Tamagawa indices as in Section 2.

As pointed out by a referee, it may be possible to obtain a larger lower bound by
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Table 1. Illustration of the algorithm for Example 10.1.

μ nmax Is any Is any intersection Is μ a
Bn(μ) < 1? empty? lower bound?

0.20 4 No No Fail
0.10 4 No Yes Yes
0.15 4 No Yes Yes
0.18 4 No Yes Yes

making use of the explicit formulae for the local heights at non-archimedean places
of bad reduction (see e.g. [9, Theorem 5.2]), provided that c is large. Note that this
is different to our approach which uses the subgroup of points of good reduction.
In particular, our lower bound on E(K) will be small if c is large. Nonetheless, it
might be an interesting area for further study.

10. Examples

We have implemented our algorithm in MAGMA.

Example 10.1. Let E be the elliptic curve over K = Q(i) given by

E : y2 = x3 + (91− 26i)x− (144 + 323i).

The discriminant of E can be factorized into a product of prime ideals as p1p2p
8
3,

where
p1 = 〈799 + 1124i〉, p2 = 〈7− 12i〉, p3 = 〈1 + i〉.

Hence E is globally minimal. Our algorithm shows that

ĥ(P ) > 0.18

for all non-torsion P ∈ Egr(K). This is obtained after a number of refinements as

shown in Table 1. In this example, we choose S(v) = S(v,4) for every v ∈ M c
K .

The Tamagawa indices of E at p1, p2, p3 are all 1. Also, cv = 1 where v is the
only complex archimedean place of K. Hence c = 1, and so

ĥ(P ) > 0.18

for all non-torsion P ∈ E(K).
We will now illustrate how to derive a Mordell–Weil basis for E(K) using this

lower bound. Here, the torsion subgroup of E(K) is trivial. Let

P1 = (1 + 5i, 2− i), P2 =

(
−32− 53i

2
,
−663 + 49i

4

)
.

Then we have P1, P2 ∈ E(K). Moreover, one can check using MAGMA that the
rank of E(K) is at most 2. Since

R(P1, P2) = det(〈Pi, Pj〉)1≤i,j≤2 = 3.6050 �= 0,

then P1 and P2 are independent. Hence E(K) has rank 2. The geometry of numbers
[7, Theorem 3.1] together with the bound just obtained then implies that

n = [E(K) : 〈P1, P2〉] ≤ (2
√
3.6050)/(

√
3 · 0.18) = 12.1801.

Using a sieving procedure (see [7, Section 4.1]), one can show that n is not divisible
by any primes P ≤ 11. Therefore n = 1, i.e.,

E(K) = 〈P1, P2〉.
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It can be verified that P1 has the smallest canonical height among non-torsion

P ∈ E(K), with ĥ(P1) = 1.2326. Compare this with our lower bound ĥ(P ) > 0.18.
On the other hand, the lower bound obtained by Theorem 5.2 is not as good as

the one we just obtained. In this example, we have

αv = 4.715889.

We now choose a prime ideal p which satisfies N (p) > αv, say, p = 〈5, 2 + i〉. Set
n = ep = 5. Then this yields DE(5) = 3.218876. Finally, we have

ĥ(P ) ≥ μ0 = (3.218876− 2 log(4.715889))/(2 · 52) = 2.34× 10−3.

for all non-torsion P ∈ E(K). If we had used this bound we would only have
obtained n ≤ 936, which would make it harder to check that, in fact, n = 1.

Finally, one can verify that the lower bound obtained by [5, Theorem 0.3] is

ĥ(P ) ≥ 3.0624× 10−25

for all non-torsion P ∈ E(K). We leave it to the reader to compare the results.

Example 10.2. The elliptic curve in this example is from Cremona’s paper [3,
Example 2]. Let E be the elliptic curve over K = Q(i) given by

E : y2 + iy = x3 + (1− i)x2 − ix.

It is verified that E(K) has trivial torsion subgroup, and P0 = (0, 0) ∈ E(K). In
his paper, Cremona asks whether E(K) = 〈P0〉. We will show that this is the case.

Let Δ be the discriminant of E. Then we have 〈Δ〉 = p, where p = 〈13+8i〉. The
Tamagawa index at p is 1. Again cv = 1 where v is the only complex archimedean

place of K. Hence c = 1. Using the fact that ĥ(P0) = 0.0230, we set our initial
guess μ to be smaller than 0.0230, say, μ = 0.01. Our algorithm shows that

B5(μ) = 0.7772 < 1.

Thus by Proposition 5.1, we have ĥ(P ) > 0.01 for all non-torsion P ∈ Egr(K).

Since c = 1, we also have ĥ(P ) > 0.01 for all non-torsion P ∈ E(K).
Using MAGMA, one can check that the rank of E(K) is at most 1. Since P0 is

non-torsion, the rank of E(K) is also at least 1. Hence E(K) has rank 1. Finally,
[7, Theorem 3.1] implies that

n = [E(K) : 〈P0〉] ≤
√
0.0230/0.01 = 1.5173 < 2,

i.e. n = 1. Therefore E(K) = 〈P0〉.

Example 10.3. Let K = Q(θ) where θ is a root of the polynomial x3 − 2. Let E
be the elliptic curve over K given by

E : y2 = x3 − (θ2 + 3θ)x+ θ2.

Let Δ be the discriminant of E. Then we have 〈Δ〉 = p161 p2, where

p1 = 〈2, θ〉, p2 = 〈390433, 218056 + θ〉.
It can be verified that E is globally minimal. Our algorithm shows that

ĥ(P ) > 0.25

for all non-torsion P ∈ Egr(K). This is obtained after a number of refinements as

shown in Table 2. Recall that if
⋂
S(v)
n = ∅ for some v ∈ M r

K , then μ is a lower

bound and so there is no need to compute
⋂
T (v)
n for each v ∈ M c

K .
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Table 2. Illustration of the algorithm for Example 10.3.

μ nmax Is any Is any
⋂
S(v)
n Is any

⋂
T (v)
n Is μ a

Bn(μ) < 1? empty? empty? lower bound?
0.50 3 No No No Fail
0.20 3 No Yes Skipped Yes
0.30 3 No No No Fail
0.25 3 No Yes Skipped Yes

The Tamagawa indices at p1 and p2 are 2 and 1, respectively. Moreover, cv1 = 2
and cv2 = 1 where v1 ∈ M r

K and v2 ∈ M c
K . Hence c = 2. Thus we finally have

ĥ(P ) > 0.25/22 = 0.0625

for all non-torsion P ∈ E(K). Note that in this specific example we have obtained
no additional information from the complex place; however, there is no reason to
suppose that this would be the case in general.

To derive a Mordell–Weil basis for E(K), first we note that the torsion subgroup
of E(K) is trivial. Let

P1 = (0, θ), P2 = (1 + θ, 1), P3 = (3− 9θ + 7θ2, 31 + 23θ − 36θ2).

Then P1, P2, P3 ∈ E(K). Moreover, since

R(P1, P2, P3) = det(〈Pi, Pj〉)1≤i,j≤3 = 0.6263 �= 0,

then P1, P2, P3 are independent. Moreover, one can check using MAGMA that the
rank of E(K) is at most 3. Hence E(K) has rank 3. The geometry of numbers [7,
Theorem 3.1] together with our lower bound then implies that

n = [E(K) : 〈P1, P2, P3〉] ≤
√
2(0.6263)/(

√
0.0625)3 = 71.6300.

Using a sieving procedure (see [7, Section 4.1]), one can actually show that n is not
divisible by any primes p ≤ 71. Therefore n = 1, i.e.,

E(K) = 〈P1, P2, P3〉.
It can be verified that P1 has the smallest canonical height among non-torsion P ∈
E(K), with ĥ(P1) = 0.6303. Compare this with our lower bound ĥ(P ) > 0.0625.

11. Comparison with a searching points method

As suggested by a referee, we finally describe very briefly an alternative way to
derive a Mordell–Weil basis as illustrated in [10], and compare it with our method.

Suppose we can find the set {P1, . . . , Pr} ⊂ E(K) which bijects to a basis for
the group E(K)/mE(K) for some m ≥ 2. Let

C1 = max{ĥ(Q) : Q = n1P1 + · · ·+ nrPr, with 0 ≤ n1, . . . , nr < m}.

Then [10, Proposition 7.2] says that the set S = {R ∈ E(K) : ĥ(R) ≤ C1} generates
E(K). Using a result of [4] or [10], one can compute a constant C2 which is an

upper bound for h(P )− ĥ(P ) for all P ∈ E(K), where h(P ) denotes the Weil height
of the x-coordinate of P . It then follows that

h(R) ≤ C1 + C2
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for all R ∈ S. This, in principle, will allow one to search for R. If there exist R
which are not linear combinations of P1, . . . , Pr, then we can replace some Pi with
linear combinations of such R to obtain a Mordell–Weil basis; otherwise P1, . . . , Pr

already form such a basis.
The difficulty of this method lies in searching for points. Even though the x-

coordinates have bounded height, this can be a non-trivial task especially if [K :
Q] is large. In contrast, our method completely circumvents this problem. If
P1, . . . , Pr does not yet form a Mordell–Weil basis, we can use a sieving procedure
[7, Section 4.1] to derive a new set of candidates. This process, which can be done
more quickly than searching for points, however, requires an upper bound for the
index [E(K)/Etors(K) : 〈P1, . . . , Pr〉], which in turn requires a lower bound for the
canonical height.
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