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ON A CLASS OF FROZEN REGULARIZED GAUSS-NEWTON

METHODS FOR NONLINEAR INVERSE PROBLEMS

QINIAN JIN

Abstract. In this paper we consider a class of regularized Gauss-Newton
methods for solving nonlinear inverse problems for which an a posteriori stop-
ping rule is proposed to terminate the iteration. Such methods have the frozen
feature that they require only the computation of the Fréchet derivative at the
initial approximation. Thus the computational work is considerably reduced.
Under certain mild conditions, we give the convergence analysis and derive
various estimates, including the order optimality, on these methods.

1. Introduction

Nonlinear inverse problems arise from many practical applications that include
inverse source problems, inverse scattering problems, tomographies, and parameter
identifications in partial differential equations; see [4, 5, 6, 8]. Mathematically,
such a problem usually is formulated as the problem of finding a solution x† of the
operator equation

(1.1) F (x) = y,

where F : D(F ) ⊂ X �→ Y is a Fréchet differentiable nonlinear operator between
two Hilbert spaces X and Y with domain D(F ), Throughout this paper ‖ · ‖ and
(·, ·) will be used to denote the norms and inner products, respectively, for both
the spaces X and Y since there is no confusion. The Fréchet derivative of F at
x ∈ D(F ) and its adjoint will be denoted as F ′(x) and F ′(x)∗, respectively. It
is known that if F ′(x†) : X → Y is an injective map with a closed range, then
(1.1) possesses the local uniqueness and Lipschitz stability; see [15, Theorem 1] for
instance. Unfortunately, the closed range condition on F ′(x†) is rarely satisfied
since F ′(x†) is compact in general. In fact, a characteristic property of most in-
verse problems is their ill-posedness in the sense that their solutions do not depend
continuously on the data. Since the right-hand side of (1.1) is usually obtained by
measurement, thus, instead of y itself, the available data is an approximation yδ

satisfying

(1.2) ‖yδ − y‖ ≤ δ

with a given small noise level δ > 0. Due to the ill-posedness, the computation
of a stable approximation to x† from yδ becomes an important issue, and the
regularization techniques should be taken into account.
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Many regularization methods have been considered to solve (1.1) in the last
two decades. Due to the straightforward implementation, iterative methods are
attractive for solving nonlinear inverse problems; an overview can be found in the
recent book [13]. The general regularized Gauss-Newton method, which defines the
iterative solutions {xδ

k} successively by

(1.3) xδ
k+1 = x0 − gαk

(
F ′(xδ

k)
∗F ′(xδ

k)
)
F ′(xδ

k)
∗ (

F (xδ
k)− yδ − F ′(xδ

k)(x
δ
k − x0)

)
,

has been considered in several references ([2, 12, 11]), where xδ
0 := x0 is an initial

guess of x†, {αk} is a given sequence of numbers such that

(1.4) αk > 0, 1 ≤ αk

αk+1
≤ r and lim

k→∞
αk = 0

for some constant r > 1, and gα : [0,∞) → (−∞,∞) is a family of piecewise
continuous functions satisfying certain structure conditions.

In order for the method (1.3) to be useful for solving (1.1), the iteration must
be terminated properly, that is, a stopping index kδ must be chosen so that xδ

kδ
is

indeed a good approximation to x†. Due to the practical applications, a posteriori
rules, which use only quantities that arise during computation, should be considered
to choose the stopping index of iteration. In our recent paper [11] the discrepancy
principle

(1.5) ‖F (xδ
kδ
)− yδ‖ ≤ τδ < ‖F (xδ

k)− yδ‖, 0 ≤ k < kδ,

with τ > 1, which is widely used in the literature of regularization theory for ill-
posed problems, has been considered for the general method (1.3). Several useful
results, concerning the approximation of xδ

kδ
to x†, were obtained; in particular,

it was shown that order optimality can be obtained under merely the Lipschitz
condition on F ′ if x0 − x† is smooth enough.

The method (1.3) with gα(λ) = (α+λ)−1 together with (1.5) has been considered
in [3, 7]. Note that when gα(λ) = (α+ λ)−1, the method (1.3) becomes

(1.6) xδ
k+1 = xδ

k−
(
αkI + F ′(xδ

k)
∗F ′(xδ

k)
)−1 (

F ′(xδ
k)

∗(F (xδ
k)− yδ) + αk(x

δ
k − x0)

)
which is the iteratively regularized Gauss-Newton method (see [1]). It is known
that the best possible rate of convergence for the method defined by (1.6) and (1.5)
is O(δ1/2). In order to prevent such saturation, we proposed in [9] an alternative a
posteriori stopping rule to choose the stopping index kδ as the first integer satisfying

(1.7) α
1/2
kδ

‖
(
αkδ

I + F ′(xδ
kδ
)F ′(xδ

kδ
)∗

)−1/2 (
F (xδ

kδ
)− yδ

)
‖ ≤ τδ,

where τ > 1 is a given number. The careful convergence analysis has been given in
[9, 10]. It is even shown that the method defined by (1.6) and (1.7) is order optimal
under merely the Lipschitz condition on F ′ if x0 − x† is smooth enough.

Note that the method (1.3) requires calculating the Fréchet derivative of F at
each iteration, which needs a considerable amount of computational work, and thus
makes the method expensive. In order to reduce the computational work, in this
paper we will consider the iterative methods which define the iterates {xδ

k} by

(1.8) xδ
k+1 = x0 − gαk

(A∗
0A0)A

∗
0

(
F (xδ

k)− yδ −A0(x
δ
k − x0)

)
,

where A0 := F ′(x0) is the Fréchet derivative of F at the initial guess x0. Such
methods are called the frozen regularized Gauss-Newton methods since the Fréchet
derivative is held at x0 throughout the iteration process. In order to terminate
the iteration (1.8) properly, we need a suitable a posteriori stopping rule. The
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discrepancy principle (1.5) is certainly a candidate. It turns out, however, that
its convergence analysis requires a very restrictive condition on F , thus further
investigations are required. The stopping rule (1.7) is also expensive due to the
required calculation of the Fréchet derivative at each iteration. Thus, instead of
applying it directly, we will consider a frozen version of (1.7) to choose the stopping
index of iteration kδ as the first integer such that

(1.9) α
1/2
kδ

‖ (αkδ
I +A0A

∗
0)

−1/2 (
F (xδ

kδ
)− yδ

)
‖ ≤ τδ,

where τ > 1 is a given number.
In this paper we will give a convergence analysis on the method defined by (1.8)

and (1.9). Certain conditions should be imposed on {gα}, {αk} and F . We start
with the assumptions on gα which is always assumed to be piecewise continuous on
[0, 1/2] for each α > 0. We set

(1.10) rα(λ) := 1− λgα(λ),

which is called the residual function associated with gα.

Assumption 1.1. (a) There is a positive constant c1 such that

0 ≤ rα(λ) ≤ 1 and 0 ≤ gα(λ) ≤ c1α
−1

for all α > 0 and λ ∈ [0, 1/2];
(b) rα(λ) ≤ rβ(λ) for all 0 < α ≤ β and λ ∈ [0, 1/2].

Assumption 1.1 is standard in the analysis of linear regularization methods. It
is clear that condition (a) implies, with a constant c0 ≤ √

c1,

(1.11) 0 ≤ gα(λ)λ
1/2 ≤ c0α

−1/2

for all α > 0 and λ ∈ [0, 1/2]. In Lemma 2.3 we will give another simple but very
useful consequence of Assumption 1.1.

For the sequence of positive numbers {αk}, we will always assume that it satisfies
(1.4). Moreover, we also need the following condition on {αk} interacting with rα.

Assumption 1.2. There is a constant c2 > 1 such that

rαk
(λ) ≤ c2rαk+1

(λ)

for all k and λ ∈ [0, 1/2].

We remark that for some {gα} Assumption 1.2 is an immediate consequence of
(1.4). However, this is not always the case; in some situations, Assumption 1.2
indeed imposes further conditions on {αk}. As a rough interpretation, Assumption
1.2 requires for any two successive iterated solutions that the errors do not decrease
dramatically. This may be good for the stable numerical implementations of ill-
posed problems although it may require more iterations to be performed. It is not
yet clear if Assumption 1.2 can be dropped.

Assumption 1.3. (a) Bρ(x
†) ⊂ D(F ) for some ρ > 2(1 + c0/(τ − 1))‖e0‖, where

Bρ(x
†) denotes the ball of radius ρ with center at x†.

(b) The operator A0 is properly scaled such that ‖A0‖ ≤ β
1/2
0 , where 0 < β0 ≤

1/2 is such that rα0
(λ) ≥ 3/4 for all λ ∈ [0, β0].

(c) There is a positive constant K0 such that

(1.12) F ′(x) = A0Rx and ‖I −Rx‖ ≤ K0‖x− x0‖
for all x ∈ Bρ(x

†).
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Note that rα0
(0) = 1, the number β0 in Assumption 1.3(b) always exists. The

scaling condition (b) can always be fulfilled by multiplying the equation (1.1) by a
sufficiently small constant.

Theorem 1.1. Assume that τ > 1 and that {αk}, {gα} and F satisfy (1.4), As-
sumption 1.1, Assumption 1.2 and Assumption 1.3. There exist positive constants
η0 and C depending only on c1, c2, τ and r, such that if K0‖x0 − x†‖ ≤ η0, then
the method given by (1.8) and (1.9) is well defined and

‖xδ
kδ

− x†‖ ≤ C inf

{
‖rαk

(A∗
0A0)(x0 − x†)‖+ δ√

αk
: k = 0, 1, · · ·

}

for the integer kδ determined by the stopping rule (1.9).

Although Theorem 1.1 is an important result on the method defined by (1.8)
and (1.9), it does not imply the convergence of xδ

kδ
to x† if there are no further

conditions on {gα} (for instance, consider gα ≡ 0 for all α > 0). In order to
derive the convergence and rate of convergence, we need the following additional
but standard condition.

Assumption 1.4. There exists ν̄ > 0 such that for every 0 < ν ≤ ν̄ there is a
constant dν such that

rα(λ)λ
ν ≤ dνα

ν

for all α > 0 and λ ∈ [0, 1/2].

According to [17], the largest number ν̄ > 0 such that Assumption 1.4 holds is
called the qualification of the linear regularization method defined by {gα}.

Corollary 1.1. Let Assumption 1.4 and all the conditions in Theorem 1.1 be ful-
filled, let {xδ

k} be defined by (1.8), and let kδ be the integer defined by the stopping
rule (1.9) with τ > 1.

(i) If x0 − x† ∈ N (A0)
⊥, then limδ→0 x

δ
kδ

= x†.

(ii) If x0 − x† = (A∗
0A0)

νω for some ω ∈ X and 0 < ν ≤ ν̄, then

‖xδ
kδ

− x†‖ ≤ Cν‖ω‖1/(1+2ν)δ2ν/(1+2ν),

where Cν is a constant depending only on c1, c2, r, τ and ν.
(iii) If x0 − x† = (− ln(A∗

0A0))
−μ

ω for some ω ∈ X and μ > 0, then

‖xδ
kδ

− x†‖ ≤ Cμ‖ω‖
(
1 +

∣∣∣∣ln δ

‖ω‖

∣∣∣∣
)−μ

,

where Cμ is a constant depending only on c1, c2, r, τ and μ.

In the statement of the main results, the smallness condition on K0‖x0 − x†‖ is
not specified. In Section 2, however, we will spell out all the necessary smallness
conditions during the proof. Our proof is based on a simple consequence of Assump-
tion 1.1 given in Lemma 2.3 which enables us to prove the important inequality in
Lemma 2.4. The source conditions in (ii) and (iii) of Corollary 1.1 are called the
Hölder type source conditions and the logarithmic type source conditions, which
are important for dealing with mildly, and respectively, severely ill-posed problems.
In Section 3 we will consider some variants of the above method. A numerical
example is reported in Section 4 to test the theoretical results given by Theorem
1.1 and Corollary 1.1.
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The use of frozen Newton methods is well understood for well-posed problems
and its advantages are explored in numerical experiments for a wide variety of in-
verse problems. The frozen methods reduce the computational work considerably.
By choosing x0 suitably, the computation of A0 can be easily handled and even an
explicit formula can be obtained. Moreover, the convergence analysis of (1.8) and
(1.9) can be carried out under quite mild conditions on F . Its obvious disadvan-
tage is that inevitably more iterations are required which, however, can be offset
considering the numerous advantages.

The frozen Gauss-Newton method (1.8) was considered previously in [12] under
Hölder type source conditions on x0 − x† in which the iteration is terminated as
long as

max
{
‖F (xδ

k−1)− yδ‖, ‖F (xδ
k−1)− yδ −A0(x

δ
k − xδ

k−1)‖
}
≤ τδ

is satisfied for the first time, where τ is required to be sufficiently large. Such a
method was reconsidered recently in [14] under general type source conditions. The
convergence analysis in [12, 14] is based on the condition that

(1.13) F ′(x) = RxA0 and ‖I −Rx‖ ≤ C0‖x− x0‖

for all x ∈ Bρ(x
†). This condition looks similar to (1.12) in Assumption 1.3,

they are, however, essentially different. The validity of (1.13), in many situations,
requires the commutativity of A0 with a family of linear operators which is impos-
sible in general. Therefore, (1.13) is a very restrictive condition. The verification
of (1.12), however, turns out to be much easier and indeed it has been checked for
a wide variety of nonlinear inverse problems in the literature.

2. Proof of the main result

We first give some simple but useful consequences of Assumption 1.3. From
Assumption 1.3 it follows for any x, z ∈ Bρ(x

†) that

F (x)− F (z)−A0(x− z) =

∫ 1

0

[F ′(tx+ (1− t)z)−A0] (x− z)dt

=

∫ 1

0

A0

[
Rtx+(1−t)z − I

]
(x− z)dt.

This together with Assumption 1.1(a) then implies

‖gα(A∗
0A0)A

∗
0 (F (x)− F (z)−A0(x− z)) ‖

≤
∫ 1

0

‖gα(A∗
0A0)A

∗
0A0

[
Rtx+(1−t)z − I

]
(x− z)‖dt

≤ K0

∫ 1

0

(t‖x− x0‖+ (1− t)‖z − x0‖) dt‖x− z‖.

Therefore, for any x, z ∈ Bρ(x
†) and α > 0 there holds

‖gα(A∗
0A0)A

∗
0(F (x)− F (z)−A0(x− z))‖

≤ 1

2
K0 (‖x− x0‖+ ‖z − x0‖) ‖x− z‖.(2.1)
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Note that ‖(αI +A0A
∗
0)

−1/2A0‖ ≤ 1 for α > 0, by a similar argument we also have

‖(αI +A0A
∗
0)

−1/2(F (x)− F (z)−A0(x− z))‖

≤ 1

2
K0 (‖x− x0‖+ ‖z − x0‖) ‖x− z‖(2.2)

for any x, z ∈ Bρ(x
†) and α > 0.

Now we are in a position to show that the method given by (1.8) and (1.9) is
well defined under the conditions in Theorem 1.1. Without loss of generality, we
may assume that x0 �= x†. We introduce the integer k̃δ satisfying

(2.3) αk̃δ
≤

(
(τ − 1)δ

2‖x0 − x†‖

)2

< αk, 0 ≤ k < k̃δ.

Since τ > 1 and {αk} satisfies (1.4), such k̃δ exists and is finite. In the following
we will show that

(2.4) ‖xδ
k − x†‖ ≤ 2

(
1 +

c0
τ − 1

)
‖x0 − x†‖ < ρ

for all 0 ≤ k ≤ k̃δ and

(2.5) kδ ≤ k̃δ

for the integer kδ defined by the stopping rule (1.9).
For the simplicity of presentation, we set e0 := x0 − x† and eδk := xδ

k − x†. In

order to show (2.4), we assume that xδ
k ∈ Bρ(x

†) for some 0 ≤ k < k̃δ. Then it
follows from (1.8) that

(2.6) eδk+1 = rαk
(A∗

0A0)e0 − gαk
(A∗

0A0)A
∗
0

(
F (xδ

k)− yδ −A0e
δ
k

)
.

Applying Assumption 1.1(a), (1.2) and (2.1) we obtain

‖eδk+1‖ ≤ ‖e0‖+ c0δα
−1/2
k +K0‖e0‖‖eδk‖+

1

2
K0‖eδk‖2.

Since 0 ≤ k < k̃δ, we have δα
−1/2
k ≤ 2

τ−1‖e0‖. Therefore,

‖eδk+1‖ ≤
(
1 +

2c0
τ − 1

)
‖e0‖+K0‖e0‖‖eδk‖+

1

2
K0‖eδk‖2.

Thus, if K0‖e0‖ is so small that

(2.7) 4

(
1 +

c0
τ − 1

) (
2 +

c0
τ − 1

)
K0‖e0‖ ≤ 1,

then we can conclude (2.4) by an induction argument.
Next we show (2.5). It suffices to show that

(2.8) α
1/2

k̃δ
‖(αk̃δ

I +A0A
∗
0)

−1/2(F (xδ
k̃δ
)− yδ)‖ ≤ τδ.

We denote by d̃(δ) the left-hand side of the above inequality. If k̃δ = 0, then its

definition implies α
1/2
0 ≤ (τ − 1)δ/(2‖e0‖). Thus, by (1.2), (2.2) and the smallness

condition (2.7), we have

d̃(δ) ≤ δ + α
1/2
0 ‖e0‖+

1

2
K0‖e0‖2α1/2

0 ≤ τδ.
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Therefore, we may assume k̃δ > 0. It then follows from (2.2) that

d̃(δ) ≤‖α1/2

k̃δ
(αk̃δ

I +A0A
∗
0)

−1/2(A0e
δ
k̃δ

− yδ + y)‖

+
1

2
α
1/2

k̃δ
K0

(
2‖e0‖+ ‖eδ

k̃δ
‖
)
‖eδ

k̃δ
‖.

Note that (2.6) implies

A0e
δ
k̃δ

− yδ + y =A0rαk̃δ−1
(A∗

0A0)e0 + rαk̃δ−1
(A0A

∗
0)(y − yδ)

−A0gαk̃δ−1
(A∗

0A0)A
∗
0

(
F (xδ

k̃δ−1
)− y −A0e

δ
k̃δ−1

)
.

Thus we may use Assumption 1.1(a) and (2.1) to conclude

d̃(δ) ≤δ + α
1/2

k̃δ
‖e0‖+

1

2
α
1/2

k̃δ
K0

(
2‖e0‖+ ‖eδ

k̃δ−1
‖
)
‖eδ

k̃δ−1
‖

+
1

2
α
1/2

k̃δ
K0

(
2‖e0‖+ ‖eδ

k̃δ
‖
)
‖eδ

k̃δ
‖.

By using the definition of k̃δ, the estimate (2.4) and the smallness condition (2.7)
we obtain

d̃(δ) ≤ δ +
τ − 1

2
δ + 2(τ − 1)

(
1 +

c0
τ − 1

) (
2 +

c0
τ − 1

)
K0‖e0‖δ ≤ τδ,

which is exactly the inequality (2.8).
Summarizing the above results we obtain

Lemma 2.1. Assume that τ > 1, and that {αk}, {gα} and F satisfy (1.4), Assump-
tion 1.1(a) and Assumption 1.3. If K0‖e0‖ satisfies the smallness condition (2.7),
then the method given by (1.8) and (1.9) is well defined. Moreover, the estimates

(2.4) and (2.5) hold, where k̃δ is defined by (2.3).

Remark 2.1. When {αk} is chosen as αk = α0r
−k for some r > 1, it is easy to

see that the integer k̃δ defined by (2.3) satisfies k̃δ ≤ O(1 + | log δ|). Consequently,
by (2.5), the integer kδ determined by the stopping rule (1.9) satisfies kδ ≤ O(1 +
| log δ|). This indicates that, for such a choice of {αk}, the method given by (1.8)
and (1.9) has the fast convergence feature.

Next we will derive some estimates on the noise-free iterates {xk} defined by

xk+1 = x0 − gαk
(A∗

0A0)A
∗
0 (F (xk)− y −A0(xk − x0)) .

We set ek := xk − x†. It is easy to see that

(2.9) ek+1 = rαk
(A∗

0A0)e0 − gαk
(A∗

0A0)A
∗
0 (F (xk)− y −A0ek) .

Thus, if xk ∈ Bρ(x
†), then it follows from (2.1) that

(2.10) ‖ek+1 − rαk
(A∗

0A0)e0‖ ≤ K0‖e0‖‖ek‖+
1

2
K0‖ek‖2.

Since (2.7) implies 8K0‖e0‖ ≤ 1 and Assumption 1.1(a) implies ‖rαk
(A∗

0A0)e0‖ ≤
‖e0‖, we can show by induction that {xk} is well defined and

(2.11) ‖ek‖ ≤ (7−
√
33)‖e0‖ ≤ 3

2
‖e0‖ < ρ for all k ≥ 0.

Moreover, we have
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Lemma 2.2. Assume that {αk}, {gα} and F satisfy (1.4), Assumption 1.1, As-
sumption 1.2 and Assumption 1.3. If 7c2K0‖x0 − x†‖ ≤ 1, then

(2.12)
2

3
‖rαk

(A∗
0A0)e0‖ ≤ ‖ek‖ ≤ 4

3
c2‖rαk

(A∗
0A0)e0‖

and

(2.13)
1

2c2
‖ek‖ ≤ ‖ek+1‖ ≤ 2‖ek‖

for all k ≥ 0.

Proof. By using (2.11) and the condition 7c2K0‖e0‖ ≤ 1, we can obtain from (2.10)
that

(2.14) ‖ek+1 − rαk
(A∗

0A0)e0‖ ≤ 7

4
K0‖e0‖‖ek‖ ≤ 1

4c2
‖ek‖.

Note that Assumption 1.2 implies

(2.15) ‖rαk
(A∗

0A0)e0‖ ≤ c2‖rαk+1
(A∗

0A0)e0‖
and that Assumption 1.3(b) implies ‖rα0

(A∗
0A0)e0‖ ≥ 3

4‖e0‖, thus by induction we
may conclude from (2.14) that

(2.16) ‖ek‖ ≤ 4

3
c2‖rαk

(A∗
0A0)e0‖ for all k.

Note also that Assumption 1.1(b) implies

‖rαk+1
(A∗

0A0)e0‖ ≤ ‖rαk
(A∗

0A0)e0‖,
we can obtain from (2.14) and (2.16) that

‖ek+1‖ ≥ ‖rαk
(A∗

0A0)e0‖ −
1

4c2
‖ek‖ ≥ 2

3
‖rαk+1

(A∗
0A0)e0‖.

Thus we obtain (2.12). The inequality (2.13) is an immediate consequence of (2.14)
and (2.12). �

From (2.12) and Assumption 1.1(b) it follows that

(2.17) ‖el‖ ≤ 2c2‖ek‖ for all k ≤ l.

It is clear that the reverse inequality does not hold for a convergent method. Lemma
2.4 below, however, will show that a reverse inequality could hold if a certain
correction term is added. We need the following consequence of Assumption 1.1.

Lemma 2.3. Under Assumpion 1.1 there holds

(2.18) 0 ≤ rβ(λ)− rα(λ) ≤ c3
λ

α+ λ
rβ(λ)

for all 0 < α ≤ β and λ ∈ [0, 1/2], where c3 := max{2, 2c1}.

Proof. We first note that 0 ≤ rβ(λ) ≤ 1 and Assumption 1.1(b) imply

0 ≤ rβ(λ)− rα(λ) ≤ rβ(λ) (1− rα(λ)) .

By using the definition of rα and the assumption on gα we have 1−rα(λ) ≤ c1λα
−1.

This together with the fact 1− rα(λ) ≤ 1 implies

1− rα(λ) ≤ c3
λ

α+ λ
,

and (2.18) thus follows. �
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The inequality (2.18) plays a significant role in the proof of Lemma 2.4 below.
It is surprising that this simple inequality has never been noticed in the literature
of regularization theory.

Lemma 2.4. Let all the conditions in Lemma 2.2 hold. If, in addition, 2(2c2 +
2c2c3+c3)K0‖e0‖ ≤ 1, then there is a constant C depending only on c1 and c2 such
that

(2.19) ‖ek‖ ≤ C‖el‖+
C
√
αl

‖α1/2
k (αkI +A0A

∗
0)

−1/2
(F (xk)− y)‖

for all 0 ≤ k ≤ l.

Proof. It follows from (2.9) that

xk − xl =
[
rαk−1

(A∗
0A0)− rαl−1

(A∗
0A0)

]
e0

− gαk−1
(A∗

0A0)A
∗
0 (F (xk−1)− y −A0ek−1)

+ gαl−1
(A∗

0A0)A
∗
0 (F (xl−1)− y −A0el−1) .

By using the estimates (2.1) and (2.11) we obtain

‖xk − xl‖ ≤1

2
K0(2‖e0‖+ ‖ek−1‖)‖ek−1‖+

1

2
K0 (2‖e0‖+ ‖el−1‖) ‖el−1‖

+ ‖
[
rαk−1

(A∗
0A0)− rαl−1

(A∗
0A0)

]
e0‖

≤7

4
K0‖e0‖ (‖ek−1‖+ ‖el−1‖) + I0,(2.20)

where

I0 := ‖
[
rαk−1

(A∗
0A0)− rαl−1

(A∗
0A0)

]
e0‖.

In order to estimate the term I0, let {Eλ} denote the spectral family generated by
the self-adjoint operator A∗

0A0. It then follows from (2.18) in Lemma 2.3 that

I0 =

(∫ 1/2

0

[
rαk−1

(λ)− rαl−1
(λ)

]2
d‖Eλe0‖2

)1/2

≤ c3

(∫ 1/2

0

(αl−1 + λ)−2λ2rαk−1
(λ)2d‖Eλe0‖2

)1/2

= c3‖(αl−1I +A∗
0A0)

−1A∗
0A0rαk−1

(A∗
0A0)e0‖.

Therefore, by using the inequality ‖(αl−1I +A∗
0A0)

−1A∗
0A0‖ ≤ 1, we have

(2.21) I0 ≤ c3‖ek − rαk−1
(A∗

0A0)e0‖+ c3‖ (αl−1I +A∗
0A0)

−1 A∗
0A0ek‖.

The combination of (2.20), (2.21) and (2.14) gives

‖xk − xl‖ ≤7

4
K0‖e0‖ (‖ek−1‖+ ‖el−1‖) +

7

4
c3K0‖e0‖‖ek−1‖

+ c3‖ (αl−1I +A∗
0A0)

−1 A∗
0A0ek‖.
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Thus, by using (2.2) and (2.11), we have

‖xk − xl‖ ≤7

4
K0‖e0‖ (‖ek−1‖+ ‖el−1‖) +

7

4
c3K0‖e0‖‖ek−1‖

+ c3‖A∗
0 (αl−1I +A0A

∗
0)

−1
(F (xk)− y −A0ek)‖

+ c3‖ (αl−1I +A∗
0A0)

−1 A∗
0(F (xk)− y)‖

≤7

4
K0‖e0‖ (‖ek−1‖+ ‖el−1‖) +

7

4
c3K0‖e0‖‖ek−1‖+

7

4
c3K0‖e0‖‖ek‖

+ c3‖ (αl−1I +A∗
0A0)

−1 A∗
0(F (xk)− y)‖.(2.22)

In order to proceed further, we consider the bounded linear operator

L := α
1/2
l−1α

−1/2
k (αl−1I +A∗

0A0)
−1

A∗
0 (αkI +A0A

∗
0)

1/2
.

In order to estimate ‖L‖, we note that k < l and (1.4) imply αl−1(αk + λ) ≤
αk(αl−1 + λ), by using {Fλ} to denote the spectral family generated by the self-
adjoint operator A0A

∗
0, we have for any u ∈ Y that

‖Lu‖2 = ‖α1/2
l−1α

−1/2
k (A0A

∗
0)

1/2 (αl−1I +A0A
∗
0)

−1 (αkI +A0A
∗
0)

1/2 u‖2

=

∫ 1/2

0

αl−1α
−1
k λ(αl−1 + λ)−2(αk + λ)d‖Fλu‖2

=

∫ 1/2

0

λ

αl−1 + λ
· αl−1(αk + λ)

αk(αl−1 + λ)
d‖Fλu‖2

≤
∫ 1/2

0

d‖Fλu‖2 = ‖u‖2.

This implies that ‖L‖ ≤ 1. Therefore,

‖ (αl−1I + A∗
0A0)

−1
A∗

0(F (xk)− y)‖

= α
−1/2
l−1 ‖L · α1/2

k (αkI +A0A
∗
0)

−1/2
(F (xk)− y)‖

≤ α
−1/2
l ‖α1/2

k (αkI +A0A
∗
0)

−1/2
(F (xk)− y)‖.

This together with (2.22) and (2.13) implies

‖xk − xl‖ ≤7

4
(2c2 + 2c2c3 + c3)K0‖e0‖‖ek‖+

7

2
c2K0‖e0‖‖el‖

+
c3√
αl

‖α1/2
k (αkI +A0A

∗
0)

−1/2
(F (xk)− y)‖.

Since 2(2c2 + 2c2c3 + c3)K0‖e0‖ ≤ 1, we immediately obtain (2.19). �

Lemma 2.5. Let all the conditions in Lemma 2.1 hold. If, in addition, (11 +

4c0/(τ − 1))K0‖e0‖ ≤ 2, then for all 0 ≤ k ≤ k̃δ there hold

(2.23) ‖xδ
k − xk‖ ≤ 2c0δα

−1/2
k

and

(2.24) ‖α1/2
k (αkI +A0A

∗
0)

−1/2 (
F (xδ

k)− F (xk)− yδ + y
)
‖ ≤ (1 + ε) δ,

where ε := (11 + 4c0/(τ − 1)) c0K0‖e0‖.
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Proof. From (2.6) and (2.9) it follows for 0 ≤ k < k̃δ that

xδ
k+1 − xk+1 =gαk

(A∗
0A0)A

∗
0

(
F (xk)− F (xδ

k)−A0(xk − xδ
k)

)
+ gαk

(A∗
0A0)A

∗
0(y

δ − y).(2.25)

By using (2.1), (1.2) and Assumption 1.1(a) we obtain

‖xδ
k+1 − xk+1‖ ≤ c0δα

−1/2
k +

1

2
K0

(
2‖e0‖+ ‖ek‖+ ‖eδk‖

)
‖xδ

k − xk‖.

Using the estimates (2.4) and (2.11) on ‖ek‖ and ‖eδk‖ yields

‖xδ
k+1 − xk+1‖ ≤ c0δα

−1/2
k +

(
11

4
+

c0
τ − 1

)
K0‖e0‖‖xδ

k − xk‖

≤ c0δα
−1/2
k +

1

2
‖xδ

k − xk‖.

Thus, we can obtain the desired estimate (2.23) by an induction argument. In order
to show (2.24), we denote by dk(δ) the left-hand side. Then it follows from (2.2)
that

dk(δ) ≤‖α1/2
k (αkI +A0A

∗
0)

−1/2 (
F (xδ

k)− F (xk)−A0(x
δ
k − xk)

)
‖

+ ‖α1/2
k (αkI +A0A

∗
0)

−1/2 (
A0(x

δ
k − xk)− yδ + y

)
‖

≤1

2
α
1/2
k K0

(
2‖e0‖+ ‖ek‖+ ‖eδk‖

)
‖xδ

k − xk‖

+ ‖α1/2
k (αkI +A0A

∗
0)

−1/2 (
A0(x

δ
k − xk)− yδ + y

)
‖.

By the estimates (2.4), (2.11) and (2.23) we obtain

dk(δ) ≤‖α1/2
k (αkI +A0A

∗
0)

−1/2 (
A0(x

δ
k − xk)− yδ + y

)
‖

+

(
11

2
+

2c0
τ − 1

)
c0K0‖e0‖δ.(2.26)

Note that (2.25) implies

A0(x
δ
k − xk)− yδ + y

= A0gαk−1
(A∗

0A0)A
∗
0

(
F (xk−1)− F (xδ

k−1)−A0(xk−1 − xδ
k−1)

)
+ rαk−1

(A0A
∗
0)(y − yδ).

Thus, by using (1.2), (2.1), Assumption 1.1(a), (2.4), (2.11), and (2.23) we have

‖α1/2
k (αkI +A0A

∗
0)

−1/2 (
A0(x

δ
k − xk)− yδ + y

)
‖

≤ 1

2
α
1/2
k K0

(
2‖e0‖+ ‖ek−1‖+ ‖eδk−1‖

)
‖xδ

k−1 − xk−1‖+ δ

≤ δ +

(
11

2
+

2c0
τ − 1

)
c0K0‖e0‖δ.

This together with (2.26) implies the estimate (2.24). �

Now we are ready to complete the proof of the main results. For ease of exposi-
tion, in the following we will use the convention Φ � Ψ to mean that Φ ≤ CΨ for
some generic constant C depending only on c1, c2, r and τ .
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Proof of Theorem 1.1. We first consider the case k ≥ kδ. It follows from (2.23) in
Lemma 2.5, (2.19) in Lemma 2.4, and the fact αk ≤ αkδ

that

‖eδkδ
‖ � ‖ekδ

‖+ δ
√
αkδ

� ‖ek‖+
1√
αk

‖α1/2
kδ

(αkδ
I +A0A

∗
0)

−1/2
(F (xkδ

)− y) ‖+ δ√
αk

.

By the estimate (2.24) in Lemma 2.5, the fact kδ ≤ k̃δ given by (2.5), and the
definition of kδ, we have

‖α1/2
kδ

(αkδ
I +A0A

∗
0)

−1/2
(F (xkδ

)− y) ‖

� ‖α1/2
kδ

(αkδ
I +A0A

∗
0)

−1/2 (
F (xδ

kδ
)− yδ

)
‖+ δ � δ.

Therefore, by using (2.12) in Lemma 2.2 we have for k ≥ kδ that

‖eδkδ
‖ � ‖ek‖+

δ√
αk

� ‖rαk
(A0A

∗
0)e0‖+

δ√
αk

.

Next we consider the case 0 ≤ k < kδ. We first obtain from (2.23) and (2.17)
that

(2.27) ‖eδkδ
‖ � ‖ekδ

‖+ δ
√
αkδ

� ‖ek‖+
δ

√
αkδ

.

By the definition of kδ and (2.24) we have

τδ ≤‖α1/2
kδ−1 (αkδ−1I +A0A

∗
0)

−1/2 (
F (xδ

kδ−1)− yδ
)
‖

≤‖α1/2
kδ−1 (αkδ−1I +A0A

∗
0)

−1/2 (F (xkδ−1)− y) ‖+ (1 + ε)δ.

Thus, if K0‖e0‖ is so small that ε ≤ (τ − 1)/2, then

δ � ‖α1/2
kδ−1 (αkδ−1I +A0A

∗
0)

−1/2 (F (xkδ−1)− y) ‖.
With the help of (2.2) and (2.11) we obtain

δ � α
1/2
kδ−1‖ekδ−1‖+ α

1/2
kδ−1K0 (‖e0‖+ ‖ekδ−1‖) ‖ekδ−1‖ � α

1/2
kδ−1‖ekδ−1‖.

Using (1.4) and (2.17) yields

δ
√
αkδ

� ‖ekδ−1‖ � ‖ek‖.

This together with (2.27) and Lemma 2.2 implies for all 0 ≤ k < kδ that

‖eδkδ
‖ � ‖ek‖ � ‖rαk

(A0A
∗
0)e0‖.

The proof is therefore complete. �

In order to complete the proof of Corollary 1.1, in particular, the assertion (iii),
we need the simple consequence of Assumption 1.4 which says for every μ > 0 there
is a positive constant bμ such that

(2.28) rα(λ)(− lnλ)−μ ≤ bμ (− ln(α/(2α0)))
−μ

for all 0 < α ≤ α0 and λ ∈ [0, 1/2]. To see this, we pick a ν0 with 0 < ν0 < ν̄. Then
0 ≤ rα(λ) ≤ 1 in Assumption 1.1 and Assumption 1.4 implies for every μ > 0 that

rα(λ)(− lnλ)−μ ≤ min
{
(− lnλ)−μ, dν0

αν0λ−ν0(− lnλ)−μ
}
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for all 0 < α ≤ α0 and λ ∈ [0, 1/2]. It is clear that (− lnλ)−μ ≤ (− ln(α/(2α0)))
−μ

for 0 ≤ λ ≤ α/(2α0). By using the fact that the function λ → λ−ν0(− lnλ)−μ is
decreasing on the interval (0, e−μ/ν0 ] and is increasing on the interval [e−μ/ν0 , 1), it is
easy to show that there is a positive constant aμ such that dν0

αν0λ−ν0(− lnλ)−μ ≤
aμ (− ln(α/(2α0)))

−μ
for α/(2α0) ≤ λ ≤ 1/2. We thus obtain (2.28).

Proof of Corollary 1.1. We first prove (i), we may assume x0 �= x†. Let k̄δ be the

first integer such that αk̄δ
≤ δ. By (1.4) such k̄δ exists, αk̄δ

→ 0 and δα
−1/2

k̄δ
→ 0

as δ → 0. By Theorem 1.1 we have

‖xδ
kδ

− x†‖ ≤ C
(
‖rαk̄δ

(A∗
0A0)e0‖+ δα

−1/2

k̄δ

)
.

Since Assumption 1.4 and e0 ∈ N (A0)
⊥ imply ‖rα(A∗

0A0)e0‖ → 0 as α → 0, we
therefore obtain the convergence.

In order to show (ii), we note that Assumption 1.4 and the source condition
e0 = (A∗

0A0)
νω imply ‖rα(A∗

0A0)e0‖ ≤ dν‖ω‖αν for α > 0. By choosing the integer
mδ satisfying

αν+1/2
mδ

≤ δ

‖ω‖ < α
ν+1/2
k , 0 ≤ k < mδ.

then from Theorem 1.1 and (1.4) we obtain

‖xδ
kδ

− x†‖ ≤ C
(
dνα

ν
mδ

‖ω‖+ δα−1/2
mδ

)
≤ Cν‖ω‖1/(1+2ν)δ2ν/(1+2ν).

Finally, we prove (iii). We define nδ to be the integer satisfying

α1/2
nδ

(
− ln

(
αnδ

2α0

))−μ

≤ δ

‖ω‖ < α
1/2
k

(
− ln

(
αk

2α0

))−μ

, 0 ≤ k < nδ.

By an elementary argument we can show from (1.4) that there is a constant cμ > 0
such that

αnδ
≥ r−1αnδ−1 ≥ cμ

(
δ

‖ω‖

)2 (
1 +

∣∣∣∣ln δ

‖ω‖

∣∣∣∣
)2μ

.

Thus, by using Theorem 1.1, the source condition e0 = (− ln(A∗
0A0))

−μω, (2.28)
and the definition of nδ we obtain

‖xδ
kδ

− x†‖ ≤ Cμ

((
− ln

(
αnδ

2α0

))−μ

‖ω‖+ δ
√
αnδ

)
≤ Cμ

δ
√
αnδ

≤ Cμ‖ω‖
(
1 +

∣∣∣∣ln δ

‖ω‖

∣∣∣∣
)−μ

.

The proof is therefore complete. �

Remark 2.2. By checking the proof of the main result carefully, one can see that
Assumption 1.2 is superfluous if F is linear. Thus, we provide some new insights
on the regularization methods for linear ill-posed problems.

Remark 2.3. Here is a minor remark on Assumption 1.3(c). From the proof of
Theorem 1.1, one can see that the full strength of Assumption 1.3(c) is not used;
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what we used are (2.1) and (2.2). Let {Fλ} denote the spectral family generated
by A0A

∗
0, then by Assumption 1.1(a) we have for all u ∈ Y ,

‖gα(A∗
0A0)A

∗
0(αI +A0A

∗
0)

1/2u‖2 =

∫ 1/2

0

gα(λ)
2λ(α+ λ)d‖Fλu‖2

≤ (1 + c1)‖u‖2.
Therefore, for all α > 0

‖gα(A∗
0A0)A

∗
0(αI +A0A

∗
0)

1/2‖ ≤
√
1 + c1.

Consequently, (2.2) implies (2.1) but with the number 1/2 on the right-hand side
replaced by

√
1 + c1/2. Thus, Assumption 1.3(c) becomes unnecessary if one can

check (2.2) directly.

Example 2.1. (a) In the iterated Tikhonov regularization of order m,

gα(λ) =
(α+ λ)m − αm

λ(α+ λ)m
and rα(λ) =

αm

(α+ λ)m
.

The ordinary Tikhonov regularization corresponds to m = 1. It is well known
that Assumption 1.1 and Assumption 1.4 hold with c1 = m and ν̄ = m. For any
sequence {αk} satisfying (1.4), Assumption 1.2 is satisfied with c2 = rm.

(b) In Landweber iteration we have

gα(λ) =

[1/α]∑
i=0

(1− λ)i and rα(λ) = (1− λ)[1/α]+1.

Then Assumption 1.1 and Assumption 1.4 hold with c1 = 2 and ν̄ = ∞. If the
sequence {αk} is chosen as αk = 1/nk, where {nk} is a sequence of positive integers
such that limk→∞ nk = ∞ and 0 ≤ nk+1 − nk ≤ q for some q ≥ 1, then both (1.4)
and Assumption 1.2 are satisfied with r = 1 + q/n0 and c2 = 2q.

(c) In the asymptotic regularization, we have

gα(λ) = (1− e−λ/α)/λ and rα(λ) = e−λ/α.

Assumption 1.1 and Assumption 1.4 hold with c1 = 1 and ν̄ = ∞. If {αk} is a
sequence of positive numbers satisfying limk→∞ αk = 0 and 0 ≤ 1/αk+1−1/αk ≤ θ0
for some θ0 > 0, then both (1.4) and Assumption 1.2 are satisfied with r = 1+θ0α0

and c2 = eθ0 .

3. Miscellaneous variants

3.1. A continuous analog. We consider the regularization scheme in which the
regularized solution xδ

α is defined implicitly by the equation

(3.1) xδ
α = x0 − gα(A

∗
0A0)A

∗
0

(
F (xδ

α)− yδ −A0(x
δ
α − x0)

)
,

where α > 0 is the regularization parameter which is determined by the following
rule: Let τ > 1 be a given number. If ‖F (x0) − yδ‖ ≤ τδ, we choose α(δ) := ∞,
i.e., we choose x0 as an approximation of x†; otherwise we choose α(δ) as the root
of the equation

(3.2) ‖α1/2 (αI +A0A
∗
0)

−1/2 (
F (xδ

α)− yδ
)
‖ = τδ.

Such a method can be viewed as a continuous analog of the method defined by (1.8)
and (1.9).
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In the following we will show that the above method is well defined under As-
sumption 1.1 and Assumption 1.3. We set

(3.3) α0(δ) :=

(
(τ − 1)δ

2‖x0 − x†‖

)2

.

We will show that for each α ≥ α0(δ) the equation (3.1) has a unique solution xδ
α

satisfying

(3.4) ‖xδ
α − x†‖ ≤ r := 2

(
1 +

c0
τ − 1

)
‖x0 − x†‖,

and if ‖F (x0)− yδ‖ > τδ, then the equation (3.2) has a root α(δ) satisfying α(δ) ≥
α0(δ).

To this end, we set Dr := Br(x†) as the closed ball of radius r with center at x†.
For each α ≥ α0(δ) we consider the function

Φα(x) := x0 − gα(A
∗
0A0)A

∗
0

(
F (x)− yδ −A0(x− x0)

)
which can be written as

Φα(x) = x† + rα(A
∗
0A0)(x0 − x†) + gα(A

∗
0A0)A

∗
0(y

δ − y)

− gα(A
∗
0A0)A

∗
0

(
F (x)− y −A0(x− x†)

)
.(3.5)

This together with Assumption 1.1, (1.2) and (2.1) implies, with e0 := x0 − x†,

‖Φα(x)− x†‖ ≤ ‖e0‖+ c0δα
−1/2 +K0‖e0‖‖x− x†‖+ 1

2
K0‖x− x†‖2

≤
(
1 +

2c0
τ − 1

)
‖e0‖+K0‖e0‖‖x− x†‖+ 1

2
K0‖x− x†‖2.

Thus, if K0‖e0‖ satisfies the smallness condition (2.7), then for any x ∈ Dr we have
‖Φ(x)− x†‖ ≤ r. Thus Φα maps Dr into itself.

Next we will show that Φα is a contractive mapping. By using (3.5) we have for
any x, z ∈ Dr that

Φα(x)− Φα(z) = gα(A
∗
0A0)A

∗
0 (F (z)− F (x)−A0(z − x)) .

With the help of (2.1) and (2.7), we obtain

‖Φα(x)− Φα(z)‖ ≤ 1

2
K0

(
2‖e0‖+ ‖x− x†‖+ ‖z − x†‖

)
‖x− z‖ ≤ 1

2
‖x− z‖.

Thus Φα : Dr → Dr is a contractive mapping. It follows from the contractive
mapping theorem that Φα has a unique fixed point xδ

α in Dr for each α ≥ α0(δ).
We thus obtain (3.4).

Now we assume that ‖F (x0)− yδ‖ > τδ. We denote by dδ(α) the left-hand side
of (3.2). By using (3.1), the estimate (3.4), (1.11) and the continuity of F , it is
easy to see that limα→∞ xδ

α = x0. Thus,

lim
α→∞

dδ(α) = ‖F (x0)− yδ‖ > τδ.

By using a similar manner in deriving (2.8) we can show that for α0(δ) defined by
(3.3) there holds

dδ(α0(δ)) ≤ τδ.
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Thus, in order to show that (3.2) has a root, it suffices to show α → xδ
α is continuous

on [α0(δ),∞). From (3.1) it follows for any α, β ≥ α0(δ) that

xδ
α − xδ

β =gα(A
∗
0A0)A

∗
0

(
F (xδ

β)− F (xδ
α)−A0(x

δ
β − xδ

α)
)

+ [gβ(A
∗
0A0)− gα(A

∗
0A0)]A

∗
0

(
F (xδ

β)− yδ −A0(x
δ
β − x0)

)
.

Therefore, by using (2.1) we have

‖xδ
α − xδ

β‖ =
1

2
K0

(
2‖e0‖+ ‖xδ

α − x†‖+ ‖xδ
β − x†‖

)
‖xδ

α − xδ
β‖

+ ‖ [gβ(A∗
0A0)− gα(A

∗
0A0)]A

∗
0

(
F (xδ

β)− yδ −A0(x
δ
β − x0)

)
‖.

With the help of (3.4) and the smallness condition (2.7) we obtain

‖xδ
α − xδ

β‖ ≤ 2‖ [gβ(A∗
0A0)− gα(A

∗
0A0)]A

∗
0

(
F (xδ

β)− yδ −A0(x
δ
β − x0)

)
‖.

Thus, we can conclude the continuity of α → xδ
α if {gα} satisfies the following

additional condition.

Assumption 3.1. The function α → gα(λ) is continuous on (0,∞) uniformly with
respect to λ ∈ [0, 1/2].

Now we turn to consider the approximation property of xδ
α(δ) to x†. We will use

xα to denote the solution of the noise-free equation

(3.6) xα = x0 − gα(A
∗
0A0)A

∗
0 (F (xα)− y −A0(xα − x0)) .

By using a similar argument as above we can show that for each α > 0 the equation
(3.6) has a unique solution xα satisfying

‖xα − x†‖ ≤ 3

2
‖x0 − x†‖ and ‖xα − x†‖ � ‖rα(A∗

0A0)(x0 − x†)‖.

By checking the proof of Lemma 2.4 one can easily see, without using any estimates
as in Lemma 2.2, that for any α ≥ β > 0 there holds

(3.7) ‖xα − x†‖ � ‖xβ − x†‖+ 1√
β
‖α1/2(αI +A0A

∗
0)

−1/2 (F (xα)− y) ‖.

Similar estimates as in Lemma 2.5 still hold and read as

‖xδ
α − xα‖ ≤ 2c0δα

−1/2

and

‖α1/2(αI +A0A
∗
0)

−1/2
(
F (xδ

α)− F (xα)− yδ + y
)
‖ ≤ (1 + ε)δ

for all α ≥ α0(δ).
With the above ingredients, one can follow the proofs of Theorem 1.1 and Corol-

lary 1.1 to obtain the following result.

Theorem 3.1. Assume that τ > 1 and that {gα} and F satisfy Assumption 1.1,
Assumption 3.1 and Assumption 1.3. There exist positive constants η1 and C
depending only on c1 and τ such that if K0‖x0 − x†‖ ≤ η1, then the method given
by (3.1) and (3.2) is well defined and

‖xδ
α(δ) − x†‖ ≤ C inf

{
‖rα(A∗

0A0)(x0 − x†)‖+ δ√
α

: α > 0

}
.

Assume, in addition, that {gα} satisfies Assumption 1.4. Then
(i) if x0 − x† ∈ N (A0)

⊥, then limδ→0 x
δ
α(δ) = x†;
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(ii) if x0 − x† = (A∗
0A0)

νω for some ω ∈ X and 0 < ν ≤ ν̄, then

‖xδ
α(δ) − x†‖ ≤ Cν‖ω‖1/(1+2ν)δ2ν/(1+2ν),

where Cν is a constant depending only on c1, τ and ν;
(iii) if x0 − x† = (− ln(A∗

0A0))
−μ

ω for some ω ∈ X and μ > 0, then

‖xδ
α(δ) − x†‖ ≤ Cμ‖ω‖

(
1 +

∣∣∣∣ln δ

‖ω‖

∣∣∣∣
)−μ

,

where Cμ is a constant depending only on c1, τ and μ.

Example 3.1. It is clear that the functions {gα} from Example 2.1 (a) and (c)
satisfy Assumption 3.1. Here we give one more example where gα arises from the
regularized singular value decomposition and

gα(λ) =

{
1/λ, if λ ≥ α,
1/α, if λ < α

and rα(λ) =

{
0, if λ ≥ α,
1− λ/α, if λ < α.

Assumption 1.1, Assumption 1.4 and Assumption 3.1 hold with c1 = 1 and ν̄ = ∞.

Remark 3.1. In [16] Tautenhahn considered a general regularization scheme for
(1.1) in which the regularized solution xδ

α is defined as a fixed point of the nonlinear
equation

(3.8) x = x0 − gα (F ′(x)∗F ′(x))F ′(x)∗
(
F (x)− yδ − F ′(x)(x− x0)

)
,

and the regularization parameter α > 0 is determined by a Morozov’s type discrep-
ancy principle. The convergence of the method is established under certain Hölder
source conditions. However, the method is not shown to be well defined. This
gap can be filled by using the technique of this subsection with a little involved
argument.

3.2. The Lavrentiev type methods. When a nonlinear inverse problem can be
formulated as the nonlinear equation (1.1) with F : D(F ) ⊂ X → X, then we can
simplify the method given by (1.8) and (1.9) further if one can find an initial guess
x0 near x† such that A0 := F ′(x0) is self-adjoint and positive semi-definite. In this
situation, we define the iterates {xδ

k} by

(3.9) xδ
k = x0 − gαk

(A0)
(
F (xδ

k)− yδ −A0(x
δ
k − x0)

)
,

and we terminate the iteration by choosing kδ as the first integer such that

(3.10) ‖αkδ
(αkδ

I +A0)
−1 (

F (xδ
kδ
)− yδ

)
‖ ≤ τδ,

where τ > 1 is a given number.
The argument in Section 2 applies to this simplified method, but with (2.19) and

(2.23) replaced by

(3.11) ‖xk − x†‖ � ‖xl − x†‖+ 1

αl
‖αk(αkI +A0)

−1(F (xk)− y)‖

for 0 ≤ k ≤ l and

‖xδ
k − xk‖ ≤ 2c0δα

−1
k

for 0 ≤ k ≤ k̂δ, where {xk} are the iterates defined by (3.9) with yδ replaced by y,

and k̂δ is defined as the integer satisfying

αk̂δ
≤ (τ − 1)δ

2‖x0 − x†‖ < αk, 0 ≤ k < k̂δ.
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By the same argument as in the proofs of Theorem 1.1 and Corollary 1.1 we can
obtain the following result.

Theorem 3.2. Assume that τ > 1 and that {αk}, {gα} and F satisfy (1.4), As-
sumption 1.1, Assumption 1.2 and Assumption 1.3. There exist positive constants
η2 and C depending only on c1, c2, r and τ such that if K0‖x0 − x†‖ ≤ η2 and
A0 := F ′(x0) is self-adjoint and positive semi-definite, then the method given by
(3.9) and (3.10) is well defined and

‖xδ
kδ

− x†‖ ≤ C inf

{
‖rαk

(A0)(x0 − x†)‖+ δ

αk
: k = 0, 1, · · ·

}
.

Assume, in addition, that {gα} satisfies Assumption 1.4. Then
(i) if x0 − x† ∈ N (A0)

⊥, then limδ→0 x
δ
kδ

= x†;

(ii) if x0 − x† = Aν
0ω for some ω ∈ X and 0 < ν ≤ ν̄, then

‖xδ
kδ

− x†‖ ≤ Cν‖ω‖1/(1+ν)δν/(1+ν),

where Cν is a constant depending only on c1, c2, r, τ and ν;
(iii) if x0 − x† = (− lnA0)

−μ
ω for some ω ∈ X and μ > 0, then

‖xδ
kδ

− x†‖ ≤ Cμ‖ω‖
(
1 +

∣∣∣∣ln δ

‖ω‖

∣∣∣∣
)−μ

,

where Cμ is a constant depending only on c1, c2, r, τ and μ;

Remark 3.2. The method defined by (3.9) and (3.10) requires only A0 be self-adjoint
and positive semi-definite; it does not require F be monotone everywhere.

Remark 3.3. It is possible to drop the requirement that A0 be self-adjoint for
some special choice of {gα}. For instance, if A0 is only positive semi-definite, then
(αI+A0)

−1 is well defined for each α > 0. Thus, for the function gα(λ) = (α+λ)−1

the method (3.9) becomes

(3.12) xδ
k+1 = x0 − (αkI +A0)

−1
(
F (xδ

k)− yδ −A0(x
δ
k − x0)

)
.

Note that ‖(αI+A0)
−1‖ ≤ α−1 and ‖(αI+A0)

−1A0‖ ≤ 1 for α > 0, the arguments
in Section 2 can apply except that three places need to be modified since they involve
the theory of spectral integrals which is not available when A0 is not self-adjoint.
The first one is the inequality (2.15) which was obtained from Assumption 1.2. In
the current situation, it becomes

‖αk(αkI +A0)
−1e0‖ ≤ (1 + r)‖αk+1(αk+1 +A0)

−1e0‖.
This can be verified directly by noting that

‖α−1
k+1αk(αkI +A0)

−1(αk+1I +A0)‖ ≤ 1 + α−1
k+1αk‖(αkI +A0)

−1A0‖
≤ 1 + α−1

k+1αk ≤ 1 + r.

The other two are related to the inequality (3.11) for 0 ≤ k < l. By checking the
proof of Lemma 2.4 one can see that the derivation of (2.21) involves the spectral
integral, however, one can use the expression of rα(λ) = α(α+λ)−1 to get it directly.
The other place is to establish

‖(αl−1I +A0)
−1(F (xk)− y)‖ ≤ 1

αl−1
‖αk(αkI +A0)

−1(F (xk)− y)‖.
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This can be obtained by showing that

(3.13) ‖αl−1α
−1
k (αl−1I +A0)

−1(αkI +A0)‖ ≤ 1.

By noting that

(αl−1I +A0)
−1(αkI +A0) =

(
αk

αl−1
− 1

)
αl−1(αl−1I + A0)

−1 + I

and the fact αk ≥ αl−1, we can obtain (3.13) easily. Therefore, all the results stated
in Theorem 3.2 with ν̄ = 1, except part (iii), are valid for the method defined by
(3.12) and (3.10).

Remark 3.4. The above simplification applies to the continuous method discussed
in subsection 3.1.

4. A numerical example

In this section we present a numerical example to test the convergence result
given in Corollary 1.1 on the method defined by (1.8) and (1.9) by considering the
estimation of the coefficient a in the two-point boundary value problem

(4.1)

{
−u′′ + au = f, t ∈ (0, 1),
u(0) = g0, u(1) = g1,

from the L2 measurement uδ of the state variable u, where g0, g1 and f ∈ L2[0, 1]
are given. This inverse problem reduces to solving the equation (1.1) with the
nonlinear operator F : D(F ) ⊂ L2[0, 1] �→ L2[0, 1] defined as the parameter-to-
solution mapping F (a) := u(a), where u(a) denotes the unique solution of (4.1). It
is well known that F is well defined on

D(F ) :=
{
a ∈ L2[0, 1] : ‖a− â‖L2 ≤ γ for some â ≥ 0 a.e.

}
with some γ > 0. Moreover, F is Fréchet differentiable, the Fréchet derivative and
its adjoint are given by

F ′(a)h = −A(a)−1(hu(a)),

F ′(a)∗w = −u(a)A(a)−1w,

where A(a) : H2 ∩ H1
0 �→ L2 is defined by A(a)u = −u′′ + au. It is known that

if, for the desired solution a†, |u(a†)(t)| ≥ κ > 0 for all t ∈ [0, 1], then (1.12) is
satisfied in a neighborhood of a†.

In the following we report some numerical results on the method given by (1.8)
and (1.9) with gα(λ) = (α + λ)−1, which, in the current situation, defines the
iterated solutions {aδk} by

(4.2) aδk+1 = aδk − (αkI +A∗
0A0)

−1
(
A∗

0(F (aδk)− yδ) + αk(a
δ
k − a0)

)
and determines the stopping index kδ as the first integer satisfying

(4.3) αkδ

(
F (aδkδ

)− yδ), (αkI +A0A
∗
0)

−1(F (aδk)− yδ)
)
≤ τ2δ2.

During the computation, all differential equations are solved approximately by a
finite difference method by dividing the interval [0, 1] into n + 1 subintervals with
equal length h = 1/(n+ 1); we take n = 200 in our actual computation.
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Example 4.1. In this example we consider the estimation of a in (4.1) with f =
1 + t2 and g0 = g1 = 1. If u(a†) = 1, then a† = 1 + t2 is the desired solution.
When applying the method (4.2)–(4.3), we use the special noise data uδ = 1 +√
2δ sin(10πt), αk = 1.0×2−k and τ = 1.2. In Table 1 we summarize the numerical

results corresponding to two different choices of the initial guess

(4.4) a0 = 1 + t2 − 2t(1− t)(1 + t− t2)

and

(4.5) a0 = 1.2.

For the a0 given by (4.4) one can check a0 − a† ∈ R(F ′(a†)∗F ′(a†)). Table 1
indicates that the convergence rate is O(δ2/3), which confirms the theoretical result
very well. On the other hand, for the a0 given by (4.5), a0 − a† has no sourcewise
representation a0 − a† ∈ R((F ′(a†)∗F ′(a†))ν) with a good ν > 0. Thus a good
convergence rate cannot be expected if the method starts from this a0; Table 1,
however, still indicates the convergence of the method.

Table 1. Numerical results for example 1, where error := ‖aδkδ
− a†‖L2

a0 = 1 + t2 − 2t(1− t)(1 + t− t2) a0 = 1.2

δ kδ error error/δ2/3 kδ error
5.0e− 2 6 3.43e− 1 2.53 1 3.24e− 1
1.0e− 2 10 8.34e− 2 1.80 8 3.03e− 1
5.0e− 3 11 4.74e− 2 1.62 11 2.51e− 1
1.0e− 3 12 2.57e− 2 2.57 15 1.70e− 1
5.0e− 4 13 1.39e− 2 2.21 17 1.39e− 1
1.0e− 4 15 4.40e− 3 2.04 20 1.05e− 1
5.0e− 5 16 2.80e− 3 2.04 21 9.20e− 2
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