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NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

WITH A SIMPLE COARSE SPACE FOR ELLIPTIC PROBLEMS

QIYA HU, SHI SHU, AND JUNXIAN WANG

Abstract. We propose a substructuring preconditioner for solving three-
dimensional elliptic equations with strongly discontinuous coefficients. The
new preconditioner can be viewed as a variant of the classical substructur-
ing preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with
much simpler coarse solvers. Though the condition number of the precon-
ditioned system may not have a good bound, we are able to show that the
convergence rate of the PCG method with such substructuring preconditioner
is nearly optimal, and also robust with respect to the (possibly large) jumps
of the coefficient in the elliptic equation.

.

1. Introduction

Nonoverlapping domain decomposition methods (DDMs), which are often used
as preconditioners, are efficient techniques for solving large-scale discretized par-
tial differential equations (especially those with strongly discontinuous coefficients).
This type of preconditioners have been extensively investigated for various mod-
els in literature (cf., [1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 30]). A key component in such preconditioners is the
construction of suitable coarse spaces, which can vary greatly for different models
(compare [15], [16], [25] with [5], [20]). In particular, the design of coarse spaces
for problems in three-dimensions is in general much more complicated than that
for two-dimensional problems (compare [5], [16], [25] with [1], [4], [27]).

Sophisticated coarse spaces are needed for three-dimensional problems so that
condition numbers of the resulting preconditioned systems are nearly optimal with
respect to the mesh sizes and are independent of jumps of the coefficients in the
underlying equations. It is clear that the most natural and the simplest coarse
space is the space that consists of finite element functions associated with the coarse
triangulation generated by the domain decomposition (cf. [8] and [30]). But, the
condition number of the resulting preconditioned system is not quasi-optimal yet
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for the case with large jumps (see, for example, [8] and [30]). According to this,
the simplest coarse space has been regarded to be impractical in nonoverlapping
DDMs for a long time. On the other hand, it is known that a convergence rate of
the CG method is hardly affected by a few small eigenvalues of the iteration matrix.
In particular, a more exact estimate of convergence of CG iteration was built by
[2]. The estimate in [2] means that convergence rate of CG iteration depends only
on the so-called reduced condition number, which can be roughly viewed as the
condition number restricted in a large subspace of the underlying solution space.
Based on this result, an excited convergence of the PCG method with a multigrid
preconditioner for solving three-dimensional elliptic problems with jump coefficients
was obtained recently by [29]. The results in [29] indicate that the PCG method
with a multigrid preconditioner is robust with the jumps of the coefficients in the
underlying equations, even if the condition number of the preconditioned system
itself is not satisfactory.

In the present paper, mainly motivated by the work of Xu and Zhu [29], we still
consider the simplest coarse space mentioned above. We introduce two substruc-
turing preconditioners for solving the discrete system of three-dimensional elliptic
equations with strongly discontinuous coefficients, one is an additive preconditioner,
and the other is a multiplicative preconditioner. In the two preconditioners, we
choose the simplest coarse space mentioned above instead of the usual complicated
coarse spaces. More importantly, since this coarse space does not involve any ac-
tion of the harmonic extension, we can use completely inexact subdomain solvers
in our preconditioners. We will show that the convergence rate of the PCG method
with this substructuring preconditioner is dependent only of the logarithm of the
dimension of the local problem associated with an individual substructure, and is
independent of possible large jumps of the coefficients in the elliptic equations, al-
though the condition number of the resulting preconditioned system itself is not
quasi-optimal. Our numerical experiments show that the multiplicative precondi-
tioner, which is specially designed in this paper, possesses much faster convergence
than the additive preconditioner.

The outline of the paper is as follows. In Section 2, we introduce a triangulation
based on domain decomposition and give the corresponding discretization system.
In Section 3, we recall a more exact convergence result of the PCG iterative method.
The new substructuring preconditioners and their convergence are described in
Section 4. In Section 5, we prove the main convergence results. Some numerical
results are given in Section 6.

2. Nonoverlapping domain decomposition

Consider the model problem

(2.1)

{
− div(ω∇u) = f, in Ω,
u = 0, on ∂Ω,

where Ω is a bounded and connected Lipschitz domain in R3, and the coefficient
function ω(x) is a positive function in L∞(Ω).

Let H1
0 (Ω) denote the standard Sobolev space, and define the bilinear form

A(v, w) =

∫
Ω

ω∇v · ∇wdx, v, w ∈ H1
0 (Ω).
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Let (·, ·) denote the L2(Ω)-inner product. The weak formulation of (2.1) is: Find
u ∈ H1

0 (Ω) such that

(2.2) A(u, v) = (f, v), ∀v ∈ H1
0 (Ω).

In the following, we define a discrete problem of (2.2) based on triangulations
associated with nonoverlapping domain decompositions.

Assume that Ω can be written as the union of polyhedral subdomains D1, · · · ,
DN0

: Ω̄ =
⋃N0

l=1 D̄l, such that ω(x) = ωl (positive constant) for x ∈ Dl. Note that
N0 is a fixed constant in applications. For a number d ∈ (0, 1), let each polyhedron
Dl be decomposed into the union of nonoverlapping tetrahedra (or hexahedra)
{Ωk} with the size d. Then, we get a nonoverlapping domain decomposition for Ω:

Ω̄ =
⋃N

k=1 Ω̄k. Assume that Ωi ∩ Ωj = ∅ when i �= j; if i �= j and ∂Ωi ∩ ∂Ωj �= ∅,
then ∂Ωi ∩ ∂Ωj is a common face of Ωi and Ωj , or a common edge of Ωi and Ωj ,
or a common vertex of Ωi and Ωj . It is clear that the subdomains Ω1, · · · ,ΩN

constitute a coarse triangulation Td of Ω. If ∂Ωi ∩ ∂Ωj is just a common face of Ωi

and Ωj , then set Γij = ∂Ωi ∩ ∂Ωj . Define Γ =
⋃
Γij .

With each subdomain Ωk we associate a regular triangulation made of tetrahe-
dral elements (or hexahedral elements). We require that the triangulations in the
subdomains match on the interfaces between subdomains, and so they constitute
a triangulation Th on the domain Ω. We denote by h the mesh size of Th, i.e., h
denotes the maximum diameter of tetrahedra in the mesh Th. By Nh we denote the
set of nodes in Nh. Define Vh(Ω) ⊂ H1

0 (Ω) as the space consisting of continuous
piecewise linear functions associated with Th.

The discrete problem of (2.2) is: Find uh ∈ Vh(Ω) such that

(2.3) A(uh, v) = (f, v), ∀v ∈ Vh(Ω).

3. Preconditioned conjugate gradient (PCG) method

Let A : Vh(Ω) → Vh(Ω) be the discrete operator defined by

(Avh, wh) = A(vh, wh), vh ∈ Vh(Ω), ∀wh ∈ Vh(Ω).

Then, the discrete variational problem (2.3) can be written as the operator form

(3.1) Auh = fh, uh ∈ Vh(Ω).

In general, the space Vh(Ω) has very high dimensions, so the system needs to be
solved by some iterative method, for example, the CG method . It is well known
that the condition number κ(A), which can be estimated by

κ(A) <∼
max
x∈Ω

ω(x)

h2min
x∈Ω

ω(x)
,

is very great for small h or large jump coefficient ω(x). Thus, we need to construct
an efficient preconditioner B for A, and solve (3.1) by the PCG method, i.e., solve
the equivalent system by the CG method

BAuh = Bfh.

Let ‖·‖A be the norm induced by the positive definite operator A, and let κ(BA)
denote the condition number of BA associated with the inner product (·, ·)A. As
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usual, the convergence of the PCG method is described as

(3.2) ‖un − uh‖A ≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)n

‖u0 − uh‖A.

This convergence tells us that the PCG method converges fast provided that
κ(BA) is small. But, in some applications, it is difficult to construct a precondi-
tioner B satisfying the requirement that not only the action of B is cheap, but also
κ(BA) is small. A natural question is whether the estimate (3.2) is sharp. In fact,
many existing numerical experiments indicate that the PCG method still possesses
fast convergence when BA has a few small eigenvalues only, although κ(BA) is
great. This means that convergence of the PCG method may be described by a
more exact estimate than (3.2). In this section, we give such a simplified result,
and more detailed discussion can be found in [29] and its references.

Let λ1 ≤ · · · ≤ λM be all the eigenvalues of BA associated with the inner product
(·, ·)A. Assume that there exists a small positive integer m, such that

0 < λ1 ≤ · · · ≤ λm 
 λm+1 ≤ · · · ≤ λM .

Namely, BA has m small eigenvalues only. As in [29], define the reduced condition
number κm+1(BA) by

κm+1(BA) =
λM

λm+1
.

The following two results can be found in [29].

Proposition 3.1. The convergence of PCG iteration can be estimated by

(3.3) ‖un − uh‖A ≤ 2(κ(BA)− 1)m

(√
κm+1(BA)− 1√
κm+1(BA) + 1

)n−m

‖u0 − uh‖A. �

Proposition 3.2. Let V be a subspace of Vh(Ω), with dim(V) = M −m. Then,

(3.4) λm+1 ≥ min
0�=v∈V

(BAv,Av)

(v,Av)
. �

From Proposition 3.2, one can see that λm+1 can be viewed as the minimal
eigenvalue of the restriction of BA on the subspace V . In particular, if one of the
eigenfunctions associated with λM belongs to V , then the reduced condition number
κm+1(BA) can be viewed as the condition number of the restriction of BA on the
subspace V .

4. Substructuring preconditioners

This section is devoted to introduction of two substructuring preconditioners
with the simplest coarse space and inexact subdomain solvers. For such substruc-
turing preconditioners, the resulting preconditioned systems may possess nearly
optimal reduced condition numbers, although they have “bad” minimal eigenvalues.
By the results described in the last section, PCG iteration with these precondition-
ers still possesses a fast convergence rate.
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4.1. A space decomposition. Let Vd(Ω) denote the space consisting of contin-
uous piecewise linear functions associated with the coarse triangulation Td. It is
clear that a function in Vd(Ω) is uniquely determined by the values of the function
at the cross-points (i.e., the internal nodes of this coarse triangulation). Moreover,
we have Vd(Ω) ⊂ Vh(Ω).

Let Wk denote the basket-set of Ωk, i.e., the union of the edges and the vertices of

the tetrahedron (or hexahedron) Ωk. Set W =
⋃N

k=1 Wk, and define the wire-basket
subspace:

V W
h (Ω) =

{
vh ∈ Vh(Ω) : vh vanishes at all the nodes away from W

}
.

For two neighboring subdomains Ωi and Ωj , set Ωij = Ωi ∪Ωj ∪ Γij , and define

V 0
h (Ωij) = {vh ∈ Vh(Ω) : supp vh ⊂ Ωij}.

Then, we have a space decomposition

(4.1) Vh(Ω) = Vd(Ω) + V W
h (Ω) +

∑
Γij

V 0
h (Ωij).

Remark 4.1. Note that, besides the coarse space Vd(Ω), an extra subspace V W
h (Ω)

is involved in the decomposition (4.1). However, the subspace V W
h (Ω) possesses a

very particular structure, which makes the design of a cheap solver on it to be easy
(see the next subsection).

4.2. An additive preconditioner. In this subsection, we first introduce an ad-
ditive preconditioner for the operator A.

For convenience, let ϕp denote the nodal basis function corresponding to the
node p. It is easy to see that

(Avh, vh) =∼
∑

p∈Nh∩W
v2h(p)A(ϕp, ϕp), vh ∈ V W

h (Ω).

This means that an inexact solver BW : V W
h (Ω) → V W

h (Ω) can be defined by

(BWvh, wh) =
∑

p∈Wh∩W
vh(p)wh(p)A(ϕp, ϕp), vh ∈ V W

h (Ω), ∀wh ∈ V W
h (Ω).

The action of B−1
W can be expressed explicitly as

B−1
W g =

∑
p∈Nh∩W

(g, ϕp)

A(ϕp, ϕp)
ϕp, g ∈ V W

h (Ω).

It is known that B−1
W is just the well-known Jacobi smoother.

Let Bd : Vd(Ω) → Vd(Ω) and Bij : V 0
h (Ωij) → V 0

h (Ωij) be two symmetric and
positive definite operators which are spectrally equivalent to the restrictions of A
on Vd(Ω) and V 0

h (Ωij), respectively. Namely,

(4.2) (Bdvh, vh) =∼
∫
Ω

ω|∇vh|2dx, ∀vh ∈ Vd(Ω)

and

(4.3) (Bijvh, vh) =∼ ωi

∫
Ωi

|∇vh|2dx+ ωj

∫
Ωj

|∇vh|2dx, ∀vh ∈ V 0
h (Ωij).

In applications, the solver Bij can be chosen as a symmetric multigrid solver for
the restriction of A on V 0

h (Ωij). The coarse solver Bd can be simply chosen as the
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restriction of the operator A on Vd(Ω), since the dimension of Vd(Ω) is in general
very low.

Then, a preconditioner for A is defined as

(4.4) B = B−1
d Qd +B−1

W QW +
∑
Γij

B−1
ij Qij ,

where Qd, QW and Qij denote the L2 projector into the corresponding subspace,
respectively.

Remark 4.2. The preconditioner B is different from most existing substructuring
preconditioners (cf. [22], [23], [26] and [30]): it does not involve “exact” subdomain
solvers associated with the subdomains Ωk (k = 1, · · · , N). A similar preconditioner
for two-dimensional problems was considered in [10]. We emphasize that B−1

ij in
the preconditioner B is an “inexact” solver, so its action is inexpensive.

In the rest of the paper, we study the spectrum of BA on a special subspace
of Vh(Ω). To this end, let J = {k : ∂Dk ∩ ∂Ω = ∅} denote the index set of the

subdomains {Dk}N0

k=1 which do not touch the boundary of Ω, and set

Ṽh(Ω) = {vh ∈ Vh(Ω) :

∫
Dk

vhdx = 0, k ∈ J}.

Let m0 denote the number of the indices in J , and let κm0+1(BA) denote the

reduced condition number of BA associated with the subspace Ṽh(Ω). Namely,

κm0+1(BA) =
λmax(BA)

λm0+1(BA)
,

where λm0+1(BA) is the minimal eigenvalue of the restriction of BA on the subspace

Ṽh(Ω).
For ease of notation, following [28], the symbols <∼, >∼ and =∼ will be used in

the rest of this paper. That x1 <∼ y1, x2 >∼ y2 and x3
=∼ y3, mean that x1 ≤

C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 which
are independent of h and d.

Theorem 4.1. For the preconditioner B defined by (4.4), we have

(4.5) λm0+1(BA) >∼
1

log(1/d) log2(d/h)
and κm0+1(BA) <∼ log(1/d) log2(d/h).

When the coefficient ω(x) has no large jump across the interface Γ, or there is no
cross-point in the distribution of the jumps of the coefficient, the factor log(1/d) in
the above inequalities can be removed.

Remark 4.3. Theorem 4.1 indicates that the reduced condition number κm0+1(BA)
is nearly optimal with respect to the number of subdomains and the dimension
of the local problem, and is independent of possible large jumps of the coefficient
ω(x). Thus, from Proposition 3.1, we know that PCG iteration for solving (3.1)
with the preconditioner B possesses fast convergence rate.

The following result can be proved in the standard manner by using the estimates
of the weighted L2 projector given in [7]:
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Theorem 4.2. For the preconditioner B defined by (4.4), we have

(4.6) λmin(BA) >∼
h

d log2(d/h)
and cond(BA) <∼

d

h
log2(d/h).

If the coefficient ω(x) has no large jump across the interface Γ, or there is no
cross-point in the distribution of the jumps of the coefficient, then

λmin(BA) >∼
1

log2(d/h)
and cond(BA) <∼ log2(d/h).

Remark 4.4. Theorem 4.2 indicates that the minimal eigenvalue of BA in general
strongly depends on the dimension d/h of the local spaces Vh(Ωk). But, one can see
from Theorem 4.1 that the number of such “bad” small eigenvalues is not greater
than N0, which is a small (fixed) positive integer in applications.

The action of the preconditioner B can be described by the following algorithm.

Algorithm 4.1. For g ∈ Vh(Ω), the solution ug = Bg ∈ Vh(Ω) can be obtained as
follows:

Step 1. Computing ud ∈ Vd(Ω) by

(Bdud, vh) = (g, vh), ∀vh ∈ Vd(Ω).

Step 2. Computing uW ∈ V W
h (Ω) by

(BWuW , vh) = (g, vh), ∀vh ∈ V W
h (Ω).

Step 3. Computing every uij ∈ V 0
h (Ωij) in parallel by

(Bijuij , vh) = (g, vh), ∀vh ∈ V 0
h (Ωij).

Step 4. Set

ug = ud + uW +
∑
Γij

uij .

Remark 4.5. From the above algorithm, one can see more clearly that the action
of B is cheap and is easy to implement.

4.3. A multiplicative preconditioner. In this subsection, we design a simplified
multiplicative preconditioner, inspired by [13].

For ease of notation, set

V 0
Γ (Ω) =

∑
Γij

V 0
h (Ωij).

Then, the decomposition (4.1) can be written as

(4.7) Vh(Ω) = Vd(Ω) + V W
h (Ω) + V 0

Γ (Ω).

The desired multiplicative preconditioner is associated with the above space de-
composition. Let Ad : Vd(Ω) → Vd(Ω) denote the restriction of the operator A on
Vd(Ω). For convenience, set

B−1
Γ =

∑
Γij

B−1
ij Qij .
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Let B̃−1
W be a suitable damped Jacobi smoother (i.e., a scaled variant of B−1

W ) or
the symmetrized Gauss-Seidel smoother for the restriction of A on V W

h (Ω). Define
the operators

Pd = A−1
d QdA, TW = B̃−1

W QWA and TΓ = B−1
Γ A.

It is clear that Pd is the energy projector from Vh(Ω) into the subspace Vd(Ω).
Let I denote the identity operator on Vh(Ω), and set

T = I − (I − TW)(I − TΓ)(I − TW).

It is easy to see that the operator T : Vh(Ω) → Vh(Ω) is symmetric with respect to
the inner-product (A·, ·). Define

(4.8) M = [I − (I − Pd)(I − T )]A−1.

Let V ⊥
d (Ω) ⊂ Vh(Ω) denote the orthogonal complement of Vd(Ω) with respect to

the inner-product (A·, ·). It can be verified that (MA)|V ⊥
d (Ω) is a symmetric and

positive definite operator with respect to the inner-product (A·, ·) (cf. [13]). Then,
the operator M can be chosen as a multiplicative preconditioner in PCG iteration
for solving (3.1), where the initial guess u0 in PCG iteration would be computed
in a suitable manner so that e0 = uh − u0 ∈ V ⊥

d (Ω). We want to emphasize that
the preconditioner M is different from the standard symmetrized-multiplicative
preconditioner (cf. [22]): (1) the operators Pd and TΓ appear in M only one time,
instead of two times; (2) the maximal eigenvalue of TΓ may not be less than 2.

In the following we investigate convergence rate of the PCG method for solving
(3.1) with the multiplicative preconditioner M . For this purpose, set

Ṽ ⊥
d (Ω) = {vh ∈ V ⊥

d (Ω) :

∫
Dk

vhdx = 0, k ∈ J}.

Let λ⊥
m0+1(MA) denote the minimal eigenvalue of the restriction of MA on the

subspace Ṽ ⊥
d (Ω), and let λ⊥

min(MA) and λ⊥
max(MA) denote the minimal eigenvalue

and maximal eigenvalue of the restriction of MA on the subspace V ⊥
d (Ω), respec-

tively. Define

κ⊥(MA) =
λ⊥
max(MA)

λ⊥
min(MA)

and κ⊥
m0+1(MA) =

λ⊥
max(MA)

λ⊥
m0+1(MA)

.

Combining Proposition 3.1 in Section 3 with Theorem 4.1 in [13], we get

Proposition 4.1. The convergence of PCG iteration for solving (3.1) with the
multiplicative preconditioner M can be described as

(4.9) ‖un − uh‖A ≤ 2(κ⊥(MA)− 1)m0

⎛
⎝
√
κ⊥
m0+1(MA)− 1√

κ⊥
m0+1(MA) + 1

⎞
⎠

n−m0

‖u0 − uh‖A.

The condition numbers of MA can be estimated by the following result.

Theorem 4.3. For the preconditioner M defined by (4.8), we have

(4.10) κ⊥(MA) <∼
d

h
log2(d/h) and κ⊥

m0+1(MA) <∼ log(1/d) log2(d/h).
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Let the initial guess u0 in the PCG method for solving (3.1) with the mul-
tiplicative preconditioner M be chosen in a suitable manner so that the error
e0 = uh − u0 ∈ V ⊥

d (Ω) (for example, choose u0 = Pdfh). The action of the
preconditioner M can be described by the following algorithm.

Algorithm 4.2. For g ∈ Vh(Ω), the solution ug = Bg ∈ Vh(Ω) can be obtained as
follows:

Step 1. Computing u
(1)
W ∈ V W

h (Ω) by

(BWu
(1)
W , vh) = (g, vh), ∀vh ∈ V W

h (Ω).

Step 2. Computing every uij ∈ V 0
h (Ωij) in parallel by

(Bijuij , vh) = (g, vh)−A(u
(1)
W , vh), ∀vh ∈ V 0

h (Ωij),

and set

u′ = u
(1)
W +

∑
Γij

uij .

Step 3. Computing u
(2)
W ∈ V W

h (Ω) by

(BWu
(2)
W , vh) = (g, vh)−A(u′, vh), ∀vh ∈ V W

h (Ω),

and set

u′′ = u′ + u
(2)
W .

Step 4. Computing ud ∈ Vd(Ω) by

(Adud, vh) = (g, vh)−A(u′′, vh), ∀vh ∈ Vd(Ω).

Step 5. Set

ug = u′′ + ud.

Remark 4.6. Although the action of B−1
W needs to be implemented two times in

Algorithm 4.2, the cost of Algorithm 4.2 is almost the same as that of Algorithm
4.1, since the action of B−1

W is defined explicitly. As we will see in our numerical
results, Algorithm 4.2 possesses faster convergence than Algorithm 4.1 (although
one cannot see this from Theorem 4.3).

4.4. Can the space V W
h (Ω) be reduced? It is clear that the first sum in the

decomposition (4.1) is not a direct sum. We would like to investigate whether the
space V W

h (Ω) in (4.1) can be replaced by another smaller space. Note that the
coarse space Vd(Ω) is defined by the cross-points, it is natural to consider the space

V̂ W
h (Ω) = {vh ∈ V W

h (Ω) : vh vanishes at the cross-points}.

Then we have the following space decomposition:

(4.11) Vh(Ω) = Vd(Ω)⊕ V̂ W
h (Ω) +

∑
Γij

V 0
h (Ωij).

As before, we can define an additive preconditioner B̂ and an multiplicative
preconditioner M̂ associated with the decomposition (4.11). However, the estimate

(4.5) (resp. (4.10)) will not hold yet when replacing B by B̂ (resp. replacing M by

M̂). In fact, as in the proof of Theorem 4.1 and Theorem 4.3, we can show:
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Theorem 4.4. For the preconditioner B̂, we only have

(4.12) κm0+1(B̂A) <∼
d

h
log2(d/h) and κ⊥

m0+1(M̂A) <∼
d

h
log2(d/h).

In an analogous way to Section 5.2.2 of [30], we can explain that the two in-
equalities in (4.12) cannot be improved essentially. This means that the wire-basket

subspace V W
h (Ω) cannot be replaced by the smaller subspace V̂ W

h (Ω). This conclu-
sion will be illustrated further by numerical experiments in Section 6.

4.5. Comparison with some existing preconditioners. In this subsection, we
give some comparison between the new preconditioners and some existing precon-
ditioners.

• Comparison with BPS-type preconditioners.
The additive preconditioner B introduced in Subsection 4.2 can be viewed as a

variant of the well-known BPS preconditioner (see [4]). For BPS preconditioner,
a complicated coarse solver based on a large coarse subspace was designed, and
every local problem associated with subdomains {Ωk} should be solved exactly.
An interesting substructuring preconditioner with inexact subdomain solvers was
constructed in [6] by replacing the harmonic extension on each subdomain with a
simple average extension. However, nearly optimal convergence cannot be obtained
for the preconditioner in [6]. In this paper, we use two simple and cheap solvers,
Ad and BW , where Ad is defined on the natural subspace Vd(Ω) associated with the
initial triangulation, and the action of B−1

W can be expressed explicitly. Notice that
the actions of the two “coarse” solvers, i.e., solutions of ud and uW in Algorithm
4.1, do not involve any action of the discrete harmonic extension yet, and so no
local problem in Ωk needs to be solved exactly. Similar coarse solvers with Ad

and BW were considered in Algorithm 6.2 of [8], but exact subdomain solvers were
still used there. More importantly, the estimate of convergence of that algorithm
contains a factor which may depend on jumps of the coefficient. The multiplicative
preconditioner M , which has the same merits as the additive preconditioner B,
possesses faster convergence than B.

• Comparison with Neumann-type preconditioners.
The main merit of Neumann-type preconditioners (see [9] and [20]) is that they

possess a small coarse subspace, the dimension of which equals the number of
the floating subdomains. In short, each basis function of the coarse subspace
in Neumann-type preconditioners is generated by a constant function defined on
a subdomain Ωk. But, since the zero extension of a constant does not belong
to Vh(Ω) ⊂ H1(Ω), such a basis function has to be defined as a complicated
extension of a constant on some subdomain Ωk. Because of such complicated
extensions, Neumann-type preconditioners are difficult to implement for three-
dimensional problems. Our coarse subspace Vd(Ω) not only has low dimension,
which is almost the same as the dimension of the coarse subspace in Neumann-type
preconditioners, but also has natural basis functions.

• Comparison with FETI-type methods.
FETI-type methods (see [11] and [17]) has some connection with Neumann-type

methods. Since Lagrange multipliers are introduced in FETI-type methods, the
complicated extension in Neumann-type methods can be avoided in the construction
of the coarse subspace for FETI-type methods. But, extra techniques are needed
in FETI-type methods to deal with the floating subdomains (refer to [11] and [17]).
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The method introduced in [14] has similar merits as Algorithm 4.1, but a saddle-
point system needs to be solved for that method.

5. Analysis

In this section, we prove the results given in the last section. To this end, we
need to recall several simple auxiliary results. For convenience, we first define some
notation.
5.1. Some notation.

• Several local spaces:
For subdomain Ωk, set

V 0
h (Ωk) = {v ∈ Vh(Ω) : supp v ⊂ Ωk}

and

Wh(∂Ωk) = {v|∂Ωk
: v ∈ Vh(Ω)}.

For a face F of Ωk, define

W 0
h (F ) = {ϕ ∈ Wh(∂Ωk) : supp ϕ ⊂ F}.

Let V H
h (Ωij) denote the “discrete harmonic” subspace defined by

V H
h (Ωij) = {v ∈ V 0

h (Ωij) : A(v, w) = 0, ∀w ∈ V 0
h (Ωk) for k = i, j}.

• Interpolant-type operators ([30]):
For a node p ∈ Nh, let ϕp denote the nodal basis function on p. We use K to

denote an open subset of Ω. Define the interpolant-type operator I0K by

I0Kv(x) =
∑

p∈K∩Nh

v(p)ϕp(x), v ∈ Vh(Ω).

For example, given a face F of Ωk, the face interpolant I0F v ∈ Vh(Ω) satisfies

I0F v(p)

{
v(p), p ∈ F ∩ Nh,
0, p ∈ (Ω\F ) ∩ Nh.

It is clear that we have I0F v|∂Ωk
∈ W 0

h (F ). In the rest of this section, we will use
the operators I0W and I0F with F = Γij .

• H
1
2 norms defined in the boundary of a subdomain:

For a subdomain Ωk, define the scaled norm

‖ϕ‖ 1
2 , ∂Ωk

= (|ϕ|21
2 , ∂Ωk

+ d−1‖ϕ‖20, ∂Ωk
)

1
2 , ∀ϕ ∈ H

1
2 (∂Ωk).

For a face F of ∂Ωk, define

‖ϕh‖2
H

1
2
00(F )

= |ϕh|21
2 , F +

∫
F

|ϕh(x)|2
dist(x, ∂F )

ds(x), ϕh ∈ W 0
h (F ),

where dist(x, ∂F ) denotes the shortest distance from a point x ∈ F to the boundary
∂F . It is known that

‖ϕh‖2
H

1
2
00(F )

=∼ |ϕ̃h|21
2 , ∂Ωk

,

where ϕ̃h ∈ Wh(∂Ωk) denotes the zero extension of ϕh.
• Weighted norms:
In the rest of this paper, we will use repeatedly two weighted inner products

associated with the positive numbers ωl.
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Define the weighted L2-inner product

(v, w)
L2
ω(Ω)

=

N0∑
i=1

ωl

∫
Dl

vwdx, v, w ∈ L2(Ω)

and the weighted H1-inner product

(v, w)
H1

ω(Ω)
=

N0∑
i=1

ωl

∫
Dl

∇v · ∇wdx, v, w ∈ H1
0 (Ω).

Let ‖·‖
L2
ω(Ω)

and | · |
H1

ω(Ω)
denote, respectively, the norm and the semi-norm induced

by the inner product (·, ·)
L2
ω(Ω)

and (·, ·)
H1

ω(Ω)
. For convenience, define

‖v‖H1
ω(Ω) = (|v|2

H1
ω(Ω)

+ d−2‖v‖2
L2
ω(Ω)

)
1
2 .

5.2. Lemmas. The following two results can be found in [5] and [30].

Lemma 5.1. The following inequality holds for each face F of Ωk:

(5.1) ‖I0F v‖
H

1
2
00(F )

<∼ log(d/h)‖v‖ 1
2 ,∂Ωk

, ∀v ∈ Vh(Ω). �

Lemma 5.2. The following inequality holds for every Ωk:

(5.2) ‖v‖20,Wk
<∼ log(d/h)‖v‖21

2 ,∂Ωk
, ∀v ∈ Vh(∂Ωk). �

For convenience, define the norm ‖vh‖W by

‖vh‖2W = (BWvh, vh), vh ∈ V W
h (Ω).

Using the definition of BW and the discrete L2 norms, we have

‖vh‖2W =∼
N∑

k=1

ωk‖vh‖20,Wk
, vh ∈ V W

h (Ω).

This, together with (5.2), leads to

Corollary 5.1. The following inequality holds:

(5.3) ‖I0Wv‖2W <∼ log(d/h)‖v‖2H1
ω(Ω), ∀v ∈ Vh(Ω).

Let Qω
d : L2(Ω) → Vd(Ω) be the weighted L2 projections defined by

(5.4) (Qω
d v, w)L2

ω(Ω) = (v, w)L2
ω(Ω), ∀v ∈ L2(Ω), w ∈ Vd(Ω).

The following results follow directly by the estimates in [7].

Lemma 5.3 (See [29]). The weighted L2 projection Qω
d satisfies

(5.5) ‖(Qω
d − I)v‖2

L2
ω(Ω)

<∼ d2 log(1/d)|v|2
H1

ω(Ω)
, ∀v ∈ Ṽh(Ω)

and

(5.6) |Qω
d v|2H1

ω(Ω)

<∼ log(1/d)|v|2
H1

ω(Ω)
, ∀v ∈ Ṽh(Ω). �

Remark 5.1. When the coefficient ω(x) has no jump across the interface Γ, or
there is no cross-point in the distribution of the jumps of the coefficient, the factor
log(1/d) in the inequalities (5.5) and (5.6) can be removed.
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5.3. Proofs. Throughout this subsection, we use (·, ·)A to denote the inner-product
defined by the operator A, namely, the inner-product (·, ·)

H1
ω(Ω)

, and use ‖ · ‖A to

denote the norm induced by the inner-product (·, ·)A.

Proof of Theorem 4.1. In the standard manner, it can be verified that

λmax(BA) <∼ 1.

In the following we prove that

λm0+1(BA) >∼
1

log(1/d) log2(d/h)
.

It suffices to build a stable decomposition for vh ∈ Vh(Ω).
For vh ∈ Vh(Ω), define vd ∈ Vd(Ω) as vd = Qω

d vh. Let ṽh = vh − vd, and define
ṽHij ∈ V H

h (Ωij) by ṽHij = I0Γij
ṽh for each Γij . For convenience, set

(5.7) ṽHΓ = I0W ṽh +
∑
Γij

ṽHij ,

and define

ṽ0k =
(
ṽh − ṽHΓ

)
|Ωk

.

For each k, let mk be the number of faces that belong to ∂Ωk. Define

(5.8) ṽij = ṽHij + ṽ0i /mi + ṽ0j /mj .

Then we have the decomposition

(5.9) vh = vd + I0W ṽh +
∑
Γij

ṽij .

In fact, we deduce, by (5.7) and the definitions of the interpolation-type operators,
that

ṽHΓ = ṽh on Γ.

Then we get v0k ∈ V 0
h (Ωk) and

( N∑
k=1

v0k
)
|Ωk

= v0k =
(
ṽh − ṽHΓ

)
|Ωk

.

Namely,
N∑

k=1

v0k = ṽh − ṽHΓ .

Moreover, we have by (5.8),

∑
Γij

ṽij =
∑
Γij

ṽHij +
N∑

k=1

v0k.

Combining the above two equalities yields∑
Γij

ṽij =
∑
Γij

ṽHij + ṽh − ṽHΓ .

This, together with (5.7), leads to

ṽh = (ṽHΓ −
∑
Γij

ṽHij ) +
∑
Γij

ṽij = I0W ṽh +
∑
Γij

ṽij ,
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which implies (5.9). It is easy to see that

I0W ṽh ∈ V W
h (Ω) and ṽij ∈ V 0

h (Ωij).

It suffices to verify that

(Bdvd, vd) + ‖I0W ṽh‖2W +
∑
Γij

(Bij ṽij , ṽij)

<∼ log(1/d) log2(d/h)‖vh‖2A, ∀vh ∈ Ṽh(Ω).(5.10)

It follows by (5.6) that

(5.11) ‖vd‖2A <∼ log(1/d)‖vh‖2A.

From (5.3), we have

(5.12) ‖I0W ṽh‖2W <∼ log(d/h)‖ṽh‖2
H1

ω(Ω)
.

Using the definition of ṽh, together with (5.5), yields

‖ṽh‖2
H1

ω(Ω)

<∼ log(1/d)‖vh‖2A.

Plugging this into (5.12) leads to

(5.13) ‖I0W ṽh‖2W <∼ log(d/h) log(1/d)‖vh‖2A.

Similarly, we deduce, by the property of the harmonic extension, that

‖ṽHij ‖2A = ωi|ṽHij |21,Ωi
+ ωj |ṽHij |21,Ωj

<∼ ωi|ṽHij |21
2 ,∂Ωi

+ ωj |ṽHij |21
2 ,∂Ωj

<∼ (ωi + ωj)|I0Γij
ṽh|2

H
1
2
00(Γij)

.

This, together with (5.1), gives

‖ṽHij ‖2A <∼ log2(d/h)[ωi‖ṽh‖21
2 , ∂Ωi

+ ωj‖ṽh‖21
2 , ∂Ωj

]

<∼ log2(d/h)[ωi‖ṽh‖21, Ωi
+ ωj‖ṽh‖21

2 , Ωj
].

Thus, we get∑
Γij

‖ṽHij ‖2A <∼ log2(d/h)‖ṽh‖2
H1

ω(Ω)

<∼ log(1/d) log2(d/h)‖vh‖2A.(5.14)

Here we have used (5.5) again.
In the following, we verify that

(5.15) ‖ṽij‖2A <∼ log(1/d) log2(d/h)‖vh‖2A.

Since ṽh − ṽHΓ ∈ V 0
h (Ωk), we have

N∑
k=1

ωk|ṽ0k|21,Ωk
=

N∑
k=1

ωk|ṽh − ṽHΓ |21,Ωk
= ‖ṽh − ṽHΓ ‖2A.

Then we get by (5.7),

N∑
k=1

ωk|ṽ0k|21,Ωk
<∼ ‖ṽh‖2A + ‖I0W ṽh‖2A + ‖

∑
Γij

ṽHij ‖2A

<∼ ‖vh‖2A + ‖Qω
d vh‖2A + ‖I0W ṽh‖2W +

∑
Γij

‖ṽHij ‖2A.
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Substituting (5.6), (5.13) and (5.14) into the above inequality yields

N∑
k=1

ωk|ṽ0k|21,Ωk
<∼ log(1/d) log2(d/h)‖vh‖2A.

Combining this with (5.8) and (5.14) leads to (5.15).
Now the inequality (5.10) follows by (5.11), (5.13) and (5.15) (note the assump-

tions (4.2) and (4.3)). �

Proof of Theorem 4.3. Let v ∈ V ⊥
d (Ω). Since Pd(I − T )v ∈ Vd(Ω), we have

(5.16) (MAv,Av) = ([T + Pd(I − T )]v,Av) = A(Tv, v).

It is easy to see, by (4.3), that

A(Tv, v) <∼ A(v, v), v ∈ V ⊥
d (Ω).

This, together with (5.16), leads to

(5.17) λ⊥
max(MA) <∼ 1.

In the following, we prove that

(5.18) λ⊥
m0+1(MA) >∼

1

log(1/d) log2(d/h)
.

By (5.16), one needs only to estimate the minimal eigenvalue of the operator
T |Ṽ ⊥

d (Ω), namely, to estimate the maximal eigenvalue of the operator E|Ṽ ⊥
d (Ω) with

E = (I − TW)(I − TΓ)(I − TW).

By the definition of TW , we know that

(TWv, v)A ≤ θ0‖v‖2A, ∀v ∈ Vh(Ω)

for a constant θ0 ∈ (0, 2). Then we deduce, by the definition of E and the direct
calculation, that (compare [28])

‖v‖2A − (Ev, v)A = ‖v‖2A − ((I − TW)v, (I − TW)v)A + (TΓ(I − TW)v, (I − TW)v)A

≥ (2− θ0)(TWv, v)A + (TΓ(I − TW)v, (I − TW)v)A

≥ min{1, 2− θ0}[(TWv, v)A + (TΓ(I − TW)v, (I − TW)v)A].

This, together with (4.9) of [28], yields (note that K1 = 1)

(5.19) ‖v‖2A − (Ev, v)A ≥ min{1, 2− θ0}
4

((TΓ + TW)v, v)A, v ∈ Ṽ ⊥
d (Ω).

On the other hand, by the proof of Theorem 4.1, there is a decomposition for
any v ∈ Ṽ ⊥

d (Ω),

v = vd + vW +
∑
Γij

vij , with vd ∈ Vd(Ω), vW ∈ V W
h (Ω) and vij ∈ V 0

h (Ωij),

such that

(5.20) ‖vW‖2W +
∑
Γij

(Bijvij , vij) <∼ log(1/d) log2(d/h)|v|2A.

Since v ∈ Ṽ ⊥
d (Ω), we have (v, vd)A = 0. Then

‖v‖2A = (v, vd)A + (v, vW)A +
∑
Γij

(v, vij)A = (v, vW)A +
∑
Γij

(v, vij)A.
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As in Theorem 4.1 of [28], we further prove by (5.20) that

‖v‖2A <∼ log(1/d) log2(d/h)((TΓ + TW)v, v)A, v ∈ Ṽ ⊥
d (Ω).

Plugging this into (5.19) leads to

‖v‖2A − (Ev, v)A >∼
1

log(1/d) log2(d/h)
‖v‖2A, v ∈ Ṽ ⊥

d (Ω).

Hence

(Ev, v)A ≤
(
1− 1

C0 log(1/d) log
2(d/h)

)
‖v‖2A, v ∈ Ṽ ⊥

d (Ω),

where C0 is a constant independent of h, d and possible jumps of the coefficient ω.
Thus, we have by the definition of T ,

(Tv, v)A = ‖v‖2A − (Ev, v)A ≥ 1

C0 log(1/d) log
2(d/h)

‖v‖2A, v ∈ Ṽ ⊥
d (Ω).

Substituting the above inequality into (5.16) gives (5.18). Similarly, we can show

λ⊥
min(MA) ≥ h

d log(1/d) log2(d/h)
. �

6. Numerical experiments

In this section, we present some numerical results to demonstrate the theoretical
results in Section 4. We consider the model problem (2.1) with Ω being the unit
cube. Let the function f(x) be defined by the first equation (2.1) with ω(x) = 1
and u(x, y, z) = sin πx · sin πy · sin πz. The coefficient ω(x) will be given below.

Let Ω be decomposed into n × n × n hexahedra with the size d = 1/n. All the
hexahedra constitute the desired domain decomposition. To get the final triangula-
tion of Ω, we decompose each hexahedron mentioned above into m×m×m smaller
hexahedra with the size h = d/m = 1/nm. All the smaller hexahedra constitute
the desired triangulation. It is clear that each hexahedral subdomain is just the
union of some smaller hexahedral elements.

The standard Q1 finite element space is used for the discretization of (2.2). The
resulting system (3.1) is solved by the PCG method with the preconditioners B
and M defined in Section 4. We will report iteration counts, condition numbers
and reduced condition numbers. Here, the iteration terminates when the relative
remainder is not greater than 1.0D − 6.

Let κr(BA) (resp. κ⊥
r (MA)) denote the reduced condition number of BA (resp.

MA) when removing r− 1 small eigenvalues of BA (resp. (MA)|V ⊥
d (Ω)). In partic-

ular, κ2(BA) (resp. κ⊥
2 (MA)) denotes the reduced condition number of BA (resp.

(MA)|V ⊥
d (Ω)) when removing the minimal eigenvalue of BA (resp. (MA)|V ⊥

d (Ω)).

For convenience, we use “it.” to denote the iteration counts.
Case (i): the coefficient ω(x) = 1, which has no jump.
The numerical results are listed in Tales 6.1 and 6.2.
These results indicate that the condition numbers of BA and MA are nearly

optimal when the coefficient has no jump.
Case (ii): the coefficient ω(x) has large jumps (refer to [29]):

I0F v(p)

{
105, in D,
1, in Ω\D,

where D is a cube or the union of a few cubes.
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Table 6.1. Iteration counts, condition numbers and reduced con-
dition numbers for B.

d = 1/4 d = 1/5 d = 1/6
d/h it. κ(BA) κ2(BA) it. κ(BA) κ2(BA) it. κ(BA) κ2(BA)
8 30 26.79 22.45 29 26.94 22.08 29 27.55 22.70
16 33 36.77 34.93 35 37.46 35.41 35 38.47 35.79

Table 6.2. Iteration counts, condition numbers and reduced con-
dition numbers for M .

d = 1/4 d = 1/5 d = 1/6
d/h it. κ⊥(MA) κ⊥

2 (MA) it. κ⊥(MA) κ⊥
2 (MA) it. κ⊥(MA) κ⊥

2 (MA)
8 22 15.28 12.80 23 15.26 13.05 23 15.95 13.99
16 26 21.88 19.16 27 21.81 18.97 27 22.42 18.97

We first consider an example without cross-point, with D defined by

D = [
1

4
,
1

2
]3.

The numerical results are given in Tables 6.3 and 6.4.

Table 6.3. Iteration counts, condition numbers and reduced con-
dition numbers for B.

d = 1/4 d = 1/8
d/h it. κ(BA) κ2(BA) it. κ(BA) κ2(BA)
8 38 47.05 35.23 36 38.26 34.35
16 44 64.02 49.54 41 52.80 48.29

Table 6.4. Iteration counts, condition numbers and reduced con-
dition numbers for M .

d = 1/4 d = 1/8
d/h it. κ⊥(MA) κ⊥

2 (MA) it. κ⊥(MA) κ⊥
2 (MA)

8 30 25.24 19.55 27 20.65 19.14
16 35 34.75 28.16 32 29.66 27.54

Tables 6.3 and 6.4 tell us that the condition numbers of BA and MA are also
nearly optimal when there is no cross-point in the distribution of the jump of the
coefficient.

Then we consider an example with cross-points:

D = [0,
1

4
]3
⋃

[
1

4
,
1

2
]3
⋃

[
1

2
,
3

4
]3
⋃

[
3

4
, 1].

In order to illustrate our theoretical results more clearly, we would like to calculate
several reduced condition numbers. The numerical results are listed by Tables 6.5
and 6.6.

The results given in these two tables tell us that the PCG methods with the
preconditioners B and M possess nearly optimal convergence rates, although the
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Table 6.5. Iteration counts, condition numbers and reduced con-
dition numbers for B.

d d/h it. κ(BA) κ2(BA) κ3(BA) κ4(BA)
1/4 8 43 349.06 37.01 32.42 26.92
1/4 16 51 940.82 51.70 46.45 37.96
1/8 8 46 342.88 35.39 31.25 26.98
1/8 16 56 921.03 49.49 43.63 39

Table 6.6. Iteration counts, condition numbers and reduced con-
dition numbers for M .

d d/h it. κ⊥(MA) κ⊥
2 (MA) κ⊥

3 (MA) κ⊥
4 (MA)

1/4 8 33 156.84 20.59 17.77 14.87
1/4 16 41 473.08 29.53 26.07 21.41
1/8 8 35 155.56 19.77 17.78 15.30
1/8 16 44 467.23 28.34 25.63 22.47

condition numbers of the preconditioned systems themselves are not nearly optimal
yet. The main reason is that the preconditioned system has only a few “bad” small
eigenvalues, and so a reduced condition number is still nearly optimal.

All the above numerical results confirm our theoretical results. In particular, Al-
gorithm 4.2 has faster convergence than Algorithm 4.1 in every case. Now, we see
what will happen if we replace the wire-basket subspace V W

h (Ω) by the smaller sub-

space V̂ W
h (Ω). We consider the case without jump of the coefficient: the coefficient

ω(x) = 1. The numerical results are given in Table 6.7.

Table 6.7. Iteration counts, condition numbers and reduced con-
dition numbers with V̂ W

h (Ω) instead of V W
h (Ω).

d = 1/4 d = 1/5 d = 1/6

d/h it. κ(B̂A) κ2(B̂A) it. κ(B̂A) κ2(B̂A) it. κ(B̂A) κ2(B̂A)
8 47 374.47 314.20 51 391.94 342.34 53 402.22 355.36
16 60 1032.13 857.61 62 1081.40 940.12 65 1110.81 982.58

These results illustrate that the subspace V W
h (Ω) cannot be replaced by the

smaller one V̂ W
h (Ω) (see Subsection 4.4).

7. Conclusion

In this paper, we have constructed two substructuring preconditioners with the
simplest coarse solver and inexact subdomain solvers for solving the second order
three-dimensional elliptic equations with large jump coefficients. We have shown
that the PCG method with such preconditioners has a nearly optimal convergence
rate, although the condition numbers of the preconditioned systems are not quasi-
optimal yet. The method in this paper can be extended to some other equations
(for example, Maxwell’s equations).
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