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MORE ON SOLVING SYSTEMS OF POWER EQUATIONS

YINGQUAN WU

Abstract. It is known that a system of power equations can be reduced
to a single-variable polynomial equation by exploiting the so-called Newton’s
identities. In this work, we investigate four new types of power equation
systems. In the first two types we allow the powers to be a mix of positive
and negative terms, whereas in the literature the system of power equations
involves only positive powers. The first type involves only positive signs of
powers, whereas the second type expands to involve both positive and negative
signs. We present algebraic methods to solve the system and furthermore
fully characterize the number of nontrivial solutions. The other two types are
defined over finite fields and otherwise are the same as the conventional system

of power equations. The methodology for solving the third type can be viewed
as a generalization of the Berlekamp algorithm. The solution space of the last
system is fully characterized despite the fact that the number of equations is
two less than the number of unknowns.

1. Introduction

Systems of algebraic equations appear in many application areas of computa-
tional algebra, including communications, robotics, chemistry, and mechanics. In
these algebraic equations, one commonly aims at carrying out eliminations in order
to obtain a triangular system of equations which can be easily solved. The most
widely known such methods include resultants, Groebner bases, and characteristic
sets. On the other hand, a system of power polynomial equations, i.e., a system of
the form

(1.1)
n∑

i=1

xj
i = sj , j = 1, 2, . . . , n,

can be solved by reducing it to a single-variable polynomial equation using Newton’s
identities, which are based on simple relationships between elementary symmetric
polynomials and power polynomials (cf. [3]).

In [7], Wu and Hadjicostis presented an algebraic solution of a generalized system
of (1.1) with mixed positive and negative signs

(1.2)

k∑
i=1

xj
i −

n−k∑
i=1

yji = sj , j = 1, 2, . . . , n .
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The core of an algebraic solution is a linear decomposition of elementary symmetric
polynomials corresponding to positive and negative signs, respectively. This math-
ematical framework has been successfully applied to various situations. In [8], it is
employed to decode BCH codes under the Lee metric (the Lee distance between a,
b ∈ GF(p) is defined as the smaller value between |a− b| and p− |a− b|, where p is
a prime.). In [9], it is employed for the fault identification in discrete event systems
that are described by Petri nets (a Petri net is a directed bipartite graph, in which
the nodes represent transitions, i.e., discrete events that may occur, places, i.e.,
conditions, and directed arcs that describe which places are pre- and/or postcon-
ditions for which transitions). More specifically, redundancy is incorporated into a
given Petri net in a way that enables fault detection and identification to be per-
formed efficiently, in a centralized or distributed manner, using the well-established
algebraic coding technique in Hamming and Lee metrics. In [6], it is employed to
characterize algebraically the inverse polynomial images of [−1, 1], which consists
of two Jordan arcs (a Jordan arc denotes a curve that does not cross itself and has
no points missing, a curve that can be put into one-to-one correspondence with
the closed interval from 0 to 1), by an explicit polynomial equation for the four
endpoints of the arcs.

In this paper, we present four new types of systems of power polynomial equa-
tions. The first system is an extension of system (1.1) with powers having a mix of
positive and negative signs, i.e.,

(1.3)

n∑
i=1

xj
i = sj , j = −k, . . . ,−1, 1, . . . , n− k.

We first identify the intrinsic relation of elementary symmetric polynomials with
respect to a set of variables and to their inverses. We then present an algebraic
solution for the system. It is worth noting that the extended system may have an
infinite number of solutions, or no solution at all in an arbitrary space, whereas
the original system (1.1) always has a unique solution (in an appropriate space).
Likewise, the second system is an extension of system (1.2) with the power spectrum
crossing the zero boundary, i.e.,

(1.4)

r∑
i=1

xj
i −

n−r∑
i=1

yji = sj , j = −k, . . . ,−1, 1, . . . , n− k.

The proposed algebraic solution follows the new developments of the first system
(1.3) and the system (1.2).

As an immediate application of the proposed second system, it effectively doubles
the code-rate spectrum of BCH codes under the Lee metric. Specifically, letting
α be a primitive element of GF(pm), where p is a prime, in literature, efficient
algebraic decoding algorithms are derived to correct up to t Lee errors for the BCH
codes defined with spectral nulls at α0 = 1, α, α2, . . . , αt, t < p [5, 8], whereas the
proposed algebraic solution essentially provides an efficient decoding/correcting of
up to t1 + t2 Lee errors for the BCH codes defined with spectral nulls at α−t1 , . . . ,
α−1, α0, α1, . . . , αt2 , t1, t2 ≤ p. Here is the connection from the decoding of the
newly defined BCH codes under the Lee metric to the proposed equation system.

Let the received word polynomial w(x) = c(x) + e(x), where c(x)
�
= c0 + c1x +

c2x
2+· · ·+cN−1x

N−1 denotes the prototype codeword polynomial and e(x) denotes
the corresponding Lee error polynomial with coefficients being either 1 or −1. The
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decoding objective is to identify e(x) so that c(x) is successfully retrieved through
c(x) = w(x) − e(x). By definition, c(αi) = 0, i = −t1,−t1 + 1, . . . , t2. Evaluate
w(x) over the spectral nulls αi and obtain si = w(αi), for i = −t1,−t1 + 1, . . . , t2.
The decoding problem is then reduced to the equation system

(1.5) e(αi) = si, i = −t1,−t1 + 1, . . . , t2.

Note that e(α0) = s0 specifies the different number of positive signs (“1” coeffi-
cients) and negative signs (“−1” coefficients), which is further used to determine
the valid choices of the numbers of positive and negative signs (r and n − r, re-
spectively, in this context). For each choice, the resulting equation system of (1.5)
is a special form of the (general) system (1.4). Therefore, the proposed algebraic
solution can be exploited to identify all candidate Lee error polynomials e(x).

The third system limits the power equation system (1.1) to a finite field GF(pm)
(where p is a prime). Under this constraint, the equations involving powers that are
multiples of p become redundant. Thus the effective system has the inconsecutive
power spectrum

(1.6)
n∑

i=1

xj
i = sj , j = 1, . . . , p− 1, p+ 1, . . . , 2p− 1, 2p+ 1, . . . , k,

where k = np
p−1 . When the field has characteristic p = 2, the system is the key equa-

tion for decoding binary BCH codes, which was efficiently solved by the Berlekamp
algorithm with quadratic complexity O(n2) [1]. Note that a straightforward trial-
and-error effort takes quadruple complexity O(n4) to compute the minimum-length
characteristic polynomial. We divide the system into p − 1 subsystem of linear-
feedback shift registers and devise a generalized Berlekamp algorithm to com-
pute the minimum-length characteristic polynomial with only quadratic complexity
O(n2). The proposed generalized Berlekamp algorithm is akin to the fundamen-
tal iterative algorithm which generalizes the Berlekamp-Massey algorithm to solve
multi-sequence linear-feedback shift registers [4]. As an immediate application, the
proposed algebraic solution can be used to complement the hard-decision decoding
of ternary BCH codes. Specifically, observing that a “−1” Hamming error can be
viewed as two “1” Lee errors, likewise that a “1” Hamming error can be viewed as
two “−1” Lee errors in GF(3m), when N1 +N−1 > k

2 and when N1 + 2N−1 < 2k
3

or 2N1 +N−1 < 2k
3 , where N1 and N−1 denote the number of “1” and “−1” errors

respectively, the proposed solution may potentially provide the correction which
otherwise fails by hard-decision decoding (which corrects up to N1 + N−1 ≤ k

2
Hamming errors).

The last system is a special power equation system in GF(pm) (where p is a
prime)

(1.7)

p∑
i=1

xj
i = 0, j = 1, 2, . . . , p− 2.

We identify explicitly all nontrivial solutions and particularly determine precisely
the number of distinct solutions. This system sheds lights on the code spectrum of
the Lee metric BCH codes defined in [5, 8].
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2. Preliminaries

In this section we review the necessary background on power polynomial equa-
tions and Newton’s identities. For notational simplicity, we use xn to denote a set
of n variables named by x and with subscription “1, 2, . . . , n”, namely, {x1, x2,
. . . , xn}.

A power polynomial is defined as

(2.1) Sk(xn)
�
=

n∑
i=1

xk
i

and a system of power polynomial equations is usually represented as in (1.1). It is
well known that the system in (1.1) can be solved by employing Newton’s identities
[3]. The identities display a simple relation between the elementary symmetric
polynomials given by

(2.2) Λk(xn)
�
= (−1)k

∑
1≤i1<i2<···<ik≤n

xi1xi2 . . . xik , 1 ≤ k ≤ n

(for consistency, we set Λ0(xn) = 1) and the power polynomials {Si(xn)}ni=1 in
(2.1). Newton’s identities take the form

(2.3)

{
Sk + Λ1Sk−1 + · · ·+ Λk−1S1 + kΛk = 0, 1 ≤ k ≤ n,
Sk + Λ1Sk−1 + · · ·+ Λn−1Sk−n+1 + ΛnSk−n = 0, k > n,

where (xn) is omitted for simplicity, and they remain true over an arbitrary field
[1]. If S1(xn),S2(xn), . . . ,Sn(xn) are known as s1, s2, . . . , sn, respectively, and

1
n!

is defined in the given field, we can use (2.3) to obtain the linear equation array

(2.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 + Λ1(xn) = 0,
s2 + Λ1(xn)s1 + 2Λ2(xn) = 0,

...
sn + Λ1(xn)sn−1 + · · ·+ Λn−1(xn)s1 + nΛn(xn) = 0

and can easily solve for Λk(xn) = Fk(sk), k = 1, 2, . . . , n. More specifically,

(2.5) Fk(sk) =
(−1)k

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 1 0 . . . 0 0
s2 s1 2 . . . 0 0
s3 s2 s1 . . . 0 0
...

...
...

. . .
...

...
sk−1 sk−2 sk−3 . . . s1 k − 1
sk sk−1 sk−2 . . . s2 s1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We remark that the solution for Λk(xn) in terms of {si}ki=1 is independent of the
number of original variables n. Moreover, the above expression does not hold if
the inverse 1

k! is not defined in the given finite field. Also note that the equation
system (2.4) is a lower triangular Toeplitz linear system, whose solution requires
O(n logn) arithmetic operations [2].
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Once {Λi(xn)}ni=1 are available, the solutions x1, x2, . . . , xn of (1.1) are exactly
the roots of the characteristic polynomial

(2.6) xn + Λ1(xn)x
n−1 + · · ·+ Λn−1(xn)x+ Λn(xn) =

n∏
i=1

(x− xi)

and can be solved using well-established methods.

For notational simplicity, we define F0(s0)
�
= 1. The function F(·) exhibits the

following decomposition property [7].

Proposition 2.1. Let x1, x2, . . . , xn be n variables and let s1, s2, . . . , sk be k given
(known) parameters. Then,

(2.7) Fk(s1+S1(xn), s2+S2(xn), . . . , sk+Sk(xn)) =

min{n, k}∑
i=0

Fk−i(sk−i)·Λi(xn)

for i = 1, 2, . . . , n.

The system of composite power equations (1.2) is first studied in [7] and subse-
quently improved in [8]. Without loss of generality, we assume 2k ≥ n. We first
rearrange the system (1.2)

(2.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1+ · · ·+ xk=s1+y1+ · · ·+ yn−k,
x2
1+ · · ·+ x2

k=s2+y21+ · · ·+ y2n−k,
...

xn
1+ · · ·+ xn

k=sn+yn1+ · · ·+ ynn−k.

Applying Proposition 2.1 with respect to j = k + 1, k + 2, . . . , n, we obtain the
following linear system with respect to Λi(yn−k), i = 1, 2, . . . , n− k:

(2.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λk+1(xk)= 0=
∑n−k

i=0 Fk+1−i(sk+1−i)Λi(yn−k),

Λk+2(xk)= 0=
∑n−k

i=0 Fk+2−i(sk+2−i)Λi(yn−k),
...

Λn(xk) = 0=
∑n−k

i=0 Fn−i(sn−i)Λi(yn−k),

which can be effectively solved by the Berlekamp-Massey algorithm with complex-
ity O((n− k)2), regardless of the number of actual nontrivial roots among {yi}n−k

i=1

[1]. Subsequently, Λi(xk), i = 1, 2, . . . , k, can be obtained through applying Propo-
sition 2.1 with respect to j = 1, 2, . . . , k:

(2.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Λ1(xk) = F1(s1) + Λ1(yn−k),
Λ2(xk) = F2(s2) + F1(s1)Λ1(yn−k) + Λ2(yn−k),

...

Λk(xk) =
∑n−k

i=0 Fn−k−i(sn−k−i)Λi(yn−k).

Finally, {xi}ki=1 and {yi}n−k
i=1 can be solved separately utilizing the corresponding

characteristic equation as defined in (2.6).
We proceed to introduce the Berlekamp algorithm. In essence, the Berlekamp

algorithm effectively determines the minimum-length characteristic polynomial
(which is alternatively called the error-locator polynomial, or linear-feedback shift
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register (LFSR)) of the following system of Newton’s identities in GF(2m):

(2.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0=s1 + Λ1(xn),
0=s3 + s2Λ1(xn) + s1Λ2(xn) + Λ3(xn),
0=s5 + s4Λ1(xn) + s3Λ2(xn) + s2Λ3(xn) + s1Λ4(xn) + Λ5(xn),
...
0=sk−3 + sk−4Λ1(xn) + · · ·+ sk−n−2Λn−1(xn) + sk−n−3Λn(xn),
0=sk−1 + sk−2Λ1(xn) + · · ·+ sk−nΛn−1(xn) + sk−n−1Λn(xn),

where k is an even number.
The above system is the key equation for decoding binary BCH codes which

has a unique solution when the number of variables n is up to half the number of
{si}ki=1, i.e., 2n ≤ k [1]. When 2n ≤ k, the minimum-length LSFR determined by
the Berlekamp algorithm turns out to be the unique (and valid) solution.

The detailed Berlekamp algorithm is described below, followed by its well-estab-
lished characterizations [1].

Berlekamp algorithm.

• Input: [s1, s2, . . . , sk].

• Initialization: Set Λ(0)(x) = B(0)(x) = 1, L
(0)
Λ = L

(0)
B = 0.

• For j = 0, 1, 2, . . . , k, do:
– Let j + 1 = 2q + r, where 0 ≤ r < 2. If r = 0, then continue for next

iteration.

– Compute Δ =
∑L

(j)
Λ

i=0 sj+1−iΛ
(j)
i .

– Update Λ(j+1)(x) = Λ(j)(x)−ΔxB(j)(x).

– If Δ �= 0 and L
(j)
Λ ≤ L

(j)
B , then set

B(j+1)(x) ← Δ−1xΛ(j)(x), L
(j+1)
B ← L

(j)
Λ + 1, L

(j+1)
Λ ← L

(j)
B + 1.

Else set

B(j+1)(x) ← x2B(j)(x), L
(j+1)
B ← L

(j)
B + 2, L

(j+1)
Λ ← L

(j)
Λ .

• Output: Λ(k)(x), L
(k)
Λ .

Proposition 2.2. At any iteration j of the Berlekamp algorithm:

(i) The lengths of the LFSRs L
(j)
Λ and L

(j)
B satisfy L

(j)
Λ + L

(j)
B = j.

(ii) deg(Λ(j)(x)) ≤ L
(j)
Λ and deg(B(j)(x)) ≤ L

(j)
B .

(iii) The discrepancy Δ is always zero when j is even (due to that 2 is the
characteristic of the field).

(iv) Λ(j)(x) is the minimum-length LFSR (with normalized constant term) to
satisfy the linear constraints with s1, s2, . . . , sj.

(v) xB(j)(x) is the minimum-length LFSR (with zero constant term) to satisfy
the linear constraints involved with s1, s2, . . . , sj.
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3. Solving systems of power polynomial equations

3.1. Type-A system of power equations. In this subsection, we consider the
power equation system

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−k
1 +x−k

2 + · · ·+x−k
n =s−k,

...
x−1
1 +x−1

2 + · · ·+x−1
n =s−1,

x1
1 +x1

2 + · · ·+x1
n =s1,

...

xn−k
1 +xn−k

2 + · · ·+xn−k
n =sn−k,

where s1, s2, . . . , sn are known parameters and 0 < k < n.
The Newton identities indicate that

(3.2) Λi(x
−1
n ) = Fi(s−i), i = 1, 2, . . . , k.

where x−1
n and s−i denote the sets {x−1

1 , x−2
2 , . . . , x−1

n } and {s−1, s−2, . . . , s−i},
respectively, and

(3.3) Λi(xn) = Fi(si), i = 1, 2, . . . , n− k.

The following lemma identifies the inherent connection between Λi(x
−1
n ) and

Λn−i(xn).

Lemma 3.1. If x1, x2, . . . , xn are nonzero, then

(3.4) Λi(x
−1
n ) =

Λn−i(xn)

Λn(xn)
, i = 1, 2, . . . , n.

The proof follows the equalities below

xn + xn−1Λ1(x
−1
n ) + · · ·+ xΛn−1(x

−1
n ) + Λn(x

−1
n )

= (x− x−1
1 )(x− x−1

2 ) . . . (x− x−1
n )

= xn (x1 − x−1)(x2 − x−1) . . . (xn − x−1)

x1x2 . . . xn

=
xn

Λn(xn)
(x−1 − x1)(x

−1 − x2) . . . (x
−1 − xn)

=
xn

Λn(xn)

(
x−n + x−n+1Λ1(xn) + · · ·+ x−1Λn−1(xn) + Λn(xn)

)

= xn + xn−1Λn−1(xn)

Λn(xn)
+ · · ·+ x1 Λ1(xn)

Λn(xn)
+

1

Λn(xn)
.

The above assertion immediately yields

Fk(s−k) = Λk(x
−1
n ) =

Λn−k(xn)

Λn(xn)
=

Fn−k(sn−k)

Λn(xn)
.(3.5)

Case 1. Fk(s−k) �= 0 and Fn−k(sn−k) �= 0. By (3.5)

(3.6) Λn(xn) =
Fn−k(sn−k)

Fk(s−k)

and, using (3.2) and (3.4),

(3.7) Λi(xn) =
Fn−i(s−(n−i))Fn−k(sn−k)

Fk(s−k)
,
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for i = n− k + 1, n− k + 2, . . . , n− 1.

Case 2. Fk(s−k) = 0 and Fn−k(sn−k) = 0. In this case Λn(xn) may take an
arbitrary nonzero value, say, a (a �= 0), and it follows that

(3.8) Λi(xn) = aFn−i(s−(n−i)),

for i = n− k + 1, n− k + 2, . . . , n− 1.

Case 3. Fk(s−k) �= 0 and Fn−k(sn−k) = 0, or Fk(s−k) = 0 and Fn−k(sn−k) �= 0.
Clearly, no solution exists for this case.

Example 3.2. Consider the following system of power equations:⎧⎨
⎩

x−1
1 +x−1

2 +x−1
3 = 0,

x1
1 +x1

2 +x1
3 = 7,

x2
1 +x2

2 +x2
3 = 49.

It follows that

Λ1(x3) = F1(7) = −7, Λ2(x3) = F2(7, 49) = 0,

Λ1(x
−1
3 ) = Λ2(x3)

Λ3(x3)
= F1(0) = 0.

Note that Λ2(x3) and Λ1(x
−1
3 ) are both zero; thus the system has an infinite number

of solutions. The preceding analysis indicates that x3 is the set of roots of x3 −
7x2 + a = 0, where a is a parameter.

3.2. Type-B system of power equations. In this subsection, we consider the
composite power equation system

(3.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−k
1 + · · ·+x−k

r −y−k
1 − · · ·−y−k

n−r= s−k,
...

x−1
1 + · · ·+x−1

r −y−1
1 − · · ·−y−1

n−r= s−1,
x1
1 + · · ·+x1

r −y11 − · · ·−y1n−r= s1,
...

xn−k
1 + · · ·+xn−k

r −yn−k
1 − · · ·−yn−k

n−r= sn−k,

where s−k, . . . , s−1, s1, . . . , sn−k are known parameters and 0 < k, r < n. We are
interested in nontrivial solutions xr ∪ yn−r, such that xr ∩ yn−r = ∅.

We first move y’s terms to the right side:

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−k
1 + · · ·+x−k

r = s−k +y−k
1 + · · ·+y−k

n−r,
...

x−1
1 + · · ·+x−1

r = s−1 +y−1
1 + · · ·+y−1

n−r,
x1
1 + · · ·+x1

r = s1 +y11 + · · ·+y1n−r,
...

xn−k
1 + · · ·+xn−k

r = sn−k+yn−k
1 + · · ·+yn−k

n−r .

It suffices to assume 2r ≤ n; otherwise, (3.9) can be rearranged in such a way that
it exhibits precisely the same form as (3.10).

Applying Proposition 2.1, we obtain

(3.11) Λi(xr) =

min(i,n−r)∑
j=0

Fi−j(si−j)Λj(yn−r)



MORE ON SOLVING SYSTEMS OF POWER EQUATIONS 2325

for i = 1, 2, . . . , n− k and

(3.12) Λi(x
−1
r ) =

min(i,n−r)∑
j=0

Fi−j(s−(i−j))Λj(y
−1
n−r)

for i = 1, 2, . . . , k.
In the following, we focus on the case k ≥ r, whereas the alternative case k < r

can be solved similarly. Note that (3.12) can be divided into two different categories:

(3.13) Λi(x
−1
r ) =

min(i,n−r)∑
j=0

Fi−j(s−(i−j))Λj(y
−1
n−r)

for i = 1, 2, . . . , r and

(3.14) 0 =

min(i,n−r)∑
j=0

Fi−j(s−(i−j))Λj(y
−1
n−r)

for i = r + 1, r + 2, . . . , k. Define

(3.15) a
�
=

Λn−r(yn−r)

Λr(xr)
.

Applying Lemma 3.1, we rewrite (3.13) and (3.14) as

(3.16) Λr−i(xr) · a =

min(i,n−r)∑
j=0

Fi−j(s−(i−j))Λn−r−j(yn−r)

for i = 1, 2, . . . , r, and

(3.17) 0 =

min(i,n−r)∑
j=0

Fi−j(s−(i−j))Λn−r−j(yn−r)

for i = r + 1, r + 2, . . . , k.

Case 1. n − k < r. We combine (3.11), (3.16), and (3.17) to solve for a. As can
be seen from (3.16), a is a root of a polynomial with degree up to r. For each
distinct solution of a, {Λi(xr)}ri=1 and {Λi(yn−r)}n−r

i=1 can be uniquely determined,
if the corresponding determinant is nonsingular. Otherwise, r is reduced by 1 and
n is reduced by 2 and the corresponding determinant must be checked again. The
procedure is repeated until the determinant is nonsingular, and thus {Λi(xr)}ri=1

and {Λi(yn−r)}n−r
i=1 can be uniquely determined.

Case 2. n− k ≥ r. We observe that (3.11) with i = r can be expressed as

(3.18) Λr(x
−1
r ) =

1

a
Λn−r(yn−r) =

min(r,n−r)∑
j=0

Fr−j(s−(r−j))Λj(y
−1
n−r).

Thus, combining (3.11), (3.16), and (3.17) indicates that a is a root of a polynomial
with degree at most r + 1.

It is worth noting that when the system composed of (3.11) and (3.12) is linearly
dependent (where a is treated as a variable), a has an infinite number of solutions.
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Example 3.3. Consider the follow system of power equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x−2
1 +x−2

2 +x−2
3 +x−2

4 −y−2
1 = −1,

x−1
1 +x−1

2 +x−1
3 +x−1

4 −y−1
1 = 1,

x1
1 +x1

2 +x1
3 +x1

4 −y11 = 1,
x2
1 +x2

2 +x2
3 +x2

4 −y21 = −1,
x3
1 +x3

2 +x3
3 +x3

4 −y31 = 1.

We first reformulate the above system as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y−2
1 = 1 +x−2

1 +x−2
2 +x−2

3 +x−2
4 ,

y−1
1 = −1+x−1

1 +x−1
2 +x−1

3 +x−1
4 ,

y11 = −1+x1
1 +x1

2 +x1
3 +x1

4,
y21 = 1 +x2

1 +x2
2 +x2

3 +x2
4,

y31 = −1+x3
1 +x3

2 +x3
3 +x3

4.

It follows that

Λ1(y1) = 1 + Λ1(x4),(3.19)

0 = Λ1(x4) + Λ2(x4),(3.20)

0 = Λ2(x4) + Λ3(x4),(3.21)

Λ1(y
−1
1 ) = 1 + Λ1(x

−1
4 ),(3.22)

0 = Λ1(x
−1
4 ) + Λ2(x

−1
4 ).(3.23)

We observe that (3.23) is equivalent to

0 =
Λ3(x4)

Λ4(x4)
+

Λ2(x4)

Λ4(x4)
,

which is linearly independent to (3.21), and (3.22) is equivalent to

(3.24)
1

Λ1(y1)
= 1 +

Λ3(x4)

Λ4(x4)
,

As a result, there are five variables and only four equations: (3.19), (3.20), (3.21),

and (3.24). Consequently, a
�
= Λ4(x4)

Λ1(y1)
, or alternatively, Λ1(y1), may take on any

nonzero value. If choosing Λ1(y1) = 1, then Λi(x4) = 0, i = 1, 2, 3, whereas Λ4(x4)
can be arbitrary. Thus, we obtain an infinite family of solutions

y1 = 1, x4 = {f1/4, −f1/4, i · f1/4, −i · f1/4}, ∀f.

For any other nontrivial choice of Λ1(y1), there is a unique solution Λ4(x4). Since
the system that is composed of (3.19), (3.20), (3.21), (3.22), and (3.23) is linearly
dependent, the original system of power equations is reduced to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−2
1 +x−2

2 +x−2
3 = −1,

x−1
1 +x−1

2 +x−1
3 = 1,

x1
1 +x1

2 +x1
3 = 1,

x2
1 +x2

2 +x2
3 = −1,

x3
1 +x3

2 +x3
3 = 1,

which yields the unique solution x3 = {1, i, −i}.
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3.3. Type-C system of power equations. In this section, we consider the fol-
lowing system defined in GF(pm), where p is a prime:

(3.25)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1+x2+x3+ · · ·+xn−1+xn= s1,
x2
1+x2

2+x2
3+ · · ·+x2

n−1+x2
n= s2,
...

xk
1+xk

2+xk
3+ · · ·+xk

n−1+xk
n= sk,

where k
�
= � np

p−1� and the unknown xn ∈ GF(pm) and s1, s2, . . . , sk are known

parameters. Note that due to the nature of finite field operation,

(3.26) spi =
n∑

j=1

xpi
j = (

n∑
j=1

xi
j)

p = spi .

Therefore, the equations associated with spi (i > 0) are redundant. Newton’s
identities yield

(3.27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 +1 · Λ(xn) = 0,
...

...
sp−1 +sp−2Λ1(xn) + · · ·+s1Λp−2(xn) +(p− 1)Λp−1(xn) = 0,
sp+1 +spΛ1(xn) + · · ·+s1Λp(xn) +1 · Λp−1(xn) = 0,

...
...

s2p−1+s2p−2Λ1(xn)+ · · ·+s1Λ2p−2(xn) +(p− 1)Λ2p−1(xn)= 0,
...

...
sn+1 +snΛ1(xn) + · · ·+s2Λn−1(xn) +s1Λn(xn) = 0,

...
...

sk +sk−1Λ1(xn) + · · ·+sk−n+1Λn−1(xn)+sk−nΛn(xn) = 0.

Note that when p = 2, the system (3.27) is the decoding key equation for binary
BCH codes and is efficiently solved by the Berlekamp algorithm with complexity
O(n2). Moreover, there is at most a unique solution associated with n ≤ k

2 . When
p > 2, the above system can no longer be viewed as a single LFSR system, but
as p − 1 independent LFSR systems, corresponding to the last term 1 · Λ(xn),
2 · Λ(xn), . . . , (p − 1) · Λ(xn), respectively. Moreover, there may exist multiple

solutions associated with n ≤ k(p−1)
p , as illustrated in the following example.

Example 3.4. Let α be a primitive element in GF(34).
(i) Let s12 = [α25, α61, α75, α19, α11, α23, α79, α57, α65, 0, α77, α57], which yields a

system of eight linearly independent equations. Both of the following polynomials
satisfy the linear constraints imposed by (3.27):

Λ1(x) = 1 + α65x1 + α16x2 + α38x3 + α37x4 + α68x5 + α38x6 + α39x7 + α70x8,

Λ2(x) = 1 + α65x1 + α16x2 + α71x4 + α22x5 + α72x6.

(ii) Let s12 = [α41, α12, α43, α17, α61, α36, α19, α40, α49, 0, α56, α51]. Both of the
following polynomials satisfy the linear constraints imposed by (3.27):

Λ1(x) = 1 + α1x1 + α62x2 + α68x3 + α31x4 + α65x5 + α77x6 + α31x7 + α25x8,

Λ2(x) = 1 + α1x1 + α62x2 + α66x3 + α72x4 + α43x6 + α44x7 + α25x8.
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We next present a generalized Berlekamp algorithm to determine the minimum-
length LFSR satisfying the above system with the same complexity O(n2), whereas
a straightforward effort will require O(n4) (by performing trial and error for ev-
ery possible number of nontrivial variables x’s, each with cubic complexity, until
successfully finding a solution Λ(x)). We present the algorithm as follows while
justifying it thereafter.

Generalized Berlekamp algorithm.

• Input: [s1, s2, . . . , sk].

• Initialization: Set Λ(0)(x) = 1, B
(0)
i (x) = i−1xi−1, i = 1, 2, . . . , p− 1.

Set L
(0)
Λ = 0, L

(0)
Bi

= i− 1, i = 1, 2, . . . , p− 1.
• For j = 0, 1, 2, . . . , k − 1, do:

– Let j + 1 = qp+ r, where 0 ≤ r < p. If r = 0, then continue with the
next iteration.

– Compute Δ =
∑L

(j)
Λ

i=0 sj+1−iΛ
(j)
i .

– Update Λ(j+1)(x) = Λ(j)(x)−ΔxB
(q)
r (x).

– If Δ �= 0 and L
(j)
Λ ≤ L

(q)
Br

, then set

B(q+1)
r (x) ← Δ−1xp−1Λ(j)(x), L

(q+1)
Br

← L
(j)
Λ + p− 1, L

(j+1)
Λ ← L

(q)
Br

+ 1.

Else set

B(q+1)
r (x) ← xpB(q)

r (x), L
(q+1)
Br

← L
(q)
Br

+ p, L
(j+1)
Λ ← L

(j)
Λ .

• Output: Λ(k)(x), L
(k)
Λ .

The following theorem asserts the correctness of the above algorithm. Its proof
follows trivially the induction as with the binary case given in [1] and thus is
omitted.

Theorem 3.5. At any iteration j of the generalized Berlekamp algorithm, let j =
qp+ r, where 0 ≤ r < p.

(i) If j = pq, i.e., r = 0, then L
(j)
Λ +

∑p−1
i=1 L

(q+1)
Bi

= qp(p− 1) + (p−2)(p−1)
2 .

(ii) deg(Λ(j)(x)) ≤ L
(j)
Λ and deg(B

(q)
r (x)) ≤ L

(q)
Br

, r = 1, 2, . . . , p− 1.
(iii) The discrepancy Δ is always zero when r = 0.
(iv) Λ(j)(x) is the minimum-length LFSR (with normalized constant term) to

satisfy the linear constraints involved with s1, s2, . . . , sj.

(v) xB
(q)
r (x), r = 1, 2, . . . , p − 1, are the minimum-length LFSR (with zero

constant term) to satisfy the linear constraints involved with r, s1, s2, . . . , sj,
respectively.

We proceed to determine the valid roots of Λ(x) (herein “valid” means within
the predefined field GF(pm) or its subset). A straightforward approach is to utilize
derivatives to account for the repeated roots of Λ(x). In the worst case, the exhaus-
tive field search is employed deg(Λ(x)) times, resulting in a complexity of O(npq)
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(where q denotes the field size, i.e., q = pm), noting that a root may repeat up to
p−1
2 times. We next present a novel method using Forney’s formula which employs

an exhaustive field search only once and exhibits a complexity of O(nq).
Let x−1

1 , x−1
2 , . . . , x−1

f be the distinct roots of Λ(x) determined by an exhaustive
field search. First compute the Hamming error-locator polynomial

(3.28) Λ∗(x)
�
=

f∏
i=1

(x− x−1
i ) = Λ∗

0 + Λ∗
1x+ Λ∗

2x
2 + · · ·+ Λ∗

fx
f .

Then compute the derivative of the error-locator polynomial

(3.29) [Λ∗]′(x) = Λ∗
1 + 2Λ∗

2x+ · · ·+ fΛ∗
fx

f−1.

Next compute the error-evaluator polynomial

(3.30) Γ(x)
�
= Λ∗(x) ·

k∑
i=1

six
i−1 (mod xk).

Finally, the error evaluation is performed utilizing Forney’s formula as follows (cf.
[1, p. 196]):

(3.31) ei =
Γ(x−1

i )

−x−2
i · [Λ∗]′(x−1

i )
.

The (unique) solution is successfully produced if the number of valid roots of the

error-locator polynomial is equal to its associated length LΛ, i.e., LΛ =
∑f

i=1 ei.
At last, we go through an example to illustrate the proposed decoding/solving

procedure.

Example 3.6. Let

s12 = [α61, α13, α23, α63, α39, α39, α43, α37, α69, α40, α75, α29].

The detailed iteration information of the generalized Berlekamp algorithm is shown
as follows:

L
(1)
Λ = 1, Λ(1)(x) = 1 + α21x1, Δ = α61,

L
(1)
B1

= 2, B
(1)
1 (x) = α19x2,

L
(2)
Λ = 2, Λ(2)(x) = 1 + α21x1 + α34x2, Δ = α34,

L
(1)
B2

= 3, B
(1)
2 (x) = α46x2 + α67x3,

L
(4)
Λ = 3, Λ(4)(x) = 1 + α21x1 + α34x2 + α52x3, Δ = α73,

L
(2)
B1

= 4, B
(2)
1 (x) = α7x2 + α28x3 + α41x4,

L
(5)
Λ = 4, Λ(5)(x) = 1 + α21x1 + α34x2 + α75x3 + α18x4, Δ = α71,

L
(2)
B2

= 5, B
(2)
2 (x) = α9x2 + α30x3 + α43x4 + α61x5,
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L
(7)
Λ = 5, Λ(7)(x) = 1 + α21x1 + α34x2 + α62x3 + α53x4 + α60x5, Δ = α59,

L
(3)
B1

= 6, B
(3)
1 (x) = α21x2 + α42x3 + α55x4 + α16x5 + α39x6,

L
(8)
Λ = 6, Λ(8)(x) = 1 + α21x1 + α34x2 + α20x3 + α12x4 + α36x5 + α16x6,Δ = α75,

L
(3)
B2

= 7, B
(3)
2 (x) = α5x2 + α26x3 + α39x4 + α67x5 + α58x6 + α65x7, Δ = α42

L
(10)
Λ = 7, Λ(10)(x) = 1 + α21x1 + α34x2 + α19x3 + α58x4 + α31x5 + α40x6 + α41x7,

L
(4)
B1

= 8, B
(4)
1 (x) = α38x2 + α59x3 + α72x4 + α58x5 + α50x6 + α74x7 + α54x8, Δ = 0

L
(11)
Λ = 7, Λ(11)(x) = 1 + α21x1 + α34x2 + α19x3 + α58x4 + α31x5 + α40x6 + α41x7,

L
(4)
B2

= 10, B
(4)
2 (x) = α5x5 + α26x6 + α39x7 + α67x8 + α58x9 + α65x10,

An exhaustive search over GF(34) identifies 5 distinct roots:

{x−1
1 , x−1

2 , x−1
3 , x−1

4 , x−1
5 } = {α66, α42, α39, α36, α31}.

We next compute the Hamming error-locator polynomial

Λ∗(x) = (x− α66)(x− α42)(x− α39)(x− α36)(x− α31)

= α14 + α77x1 + α71x2 + α28x3 + α66x4 + x5

whose derivative is obtained as

[Λ∗]′(x) = α77 − α71x+ α66x3 − x4.

We proceed to compute the error-evaluator polynomial

Γ(x) = Λ∗(x)s(x) (mod x15) = α75 + α14x1 + α7x2 + α70x3 + α40x4.

Applying Forney’s formula, we obtain the error magnitude as follows:

(α14, 2), (α38, 1), (α41, 2), (α44, 1), (α49, 1).

3.4. Type-D system of power equations. In this subsection, we are interested
in solving the following special system in GF(pm), where m > 1 and p is a prime
greater than 2:

(3.32)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 +x2 +x3 + · · ·+xp−1+xp = 0,
x2
1 +x2

2 +x2
3 + · · ·+x2

p−1+x2
p = 0,

...

xp−2
1 +xp−2

2 +xp−2
3 + · · ·+xp−2

p−1+xp−2
p = 0.

Note that p unknowns are coupled by only p − 2 constraints. Clearly, x1 = x2 =
· · · = xp is a set of trivial solutions of the above system. We next seek nontrivial
solutions where at least two x’s are distinct.

Newton’s identities indicate that

(3.33) Λi(xp) = 0, i = 1, 2, . . . , p− 2.

Therefore, x1, x2, . . . , xp must be all roots of the characteristic equation

(3.34) xp − ax+ b = 0,

where a, b ∈ GF(pm) are arbitrary. Let x1 and x2 be two distinct roots of (3.34).
Then we have

xp
1 − ax1 = xp

2 − ax2.

Consequently, we obtain

(3.35) a(x1 − x2) = xp
1 − xp

2 = (x1 − x2)
p,
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where the second equality is due to the operation in GF(pm) (p ≥ 3). Since x1 �= x2

by assumption, we immediately have

(3.36) a = (x1 − x2)
p−1.

Let a = αt, 0 ≤ t < pm − 1, where α is the primitive element in GF(pm). Then
(3.36) implies

(3.37) t+ i(pm − 1) = j(p− 1),

where i, j are some integers. Since p − 1 divides pm − 1, we conclude that p − 1
divides t, say t = (p − 1)f . Thus, x1 − x2, x1 − x3, . . . , x1 − xp are p − 1 distinct
roots of the equation xp−1 = a and take the form

(3.38) x1 − xi = αf+i p
m−1
p−1 , i = 2, 3, . . . , p.

Conversely, any set of {xi}pi=1 satisfying (3.38) is a valid solution of the sys-
tem (3.32). Therefore, (3.38) (with arbitrary value f and x1) completely charac-
terizes the nontrivial solutions of Type D system (3.32).

Note that the solutions identified by (3.38) may be repetitious. We proceed to
determine the number of distinct nontrivial solutions. We first show that if x1−xi,
i = 2, 3, . . . , p, are the roots of xp−1 = a, so is xi − xj for any i �= j. Note that
(3.35) indicates

xp
1 − xp

i = a(x1 − xi),

xp
1 − xp

j = a(x1 − xj).

We immediately have

xp
i − xp

j = a(xi − xj),

which further indicates that xi−xj is a root of xp−1 = a. Therefore, each nontrivial
solution {x1, x2, . . . , xp} is counted p times, since x1 (as used in (3.38)) can take
the values of x1, x2, . . . , xp, respectively, and x1, x2, . . . , xp are distinct, as indicated
by (3.38). Finally, note that a ranges from {p − 1, 2(p− 1), 3(p− 1), . . . , pm − 1}.
Thus, there are pm−1

p−1 pm−1 distinct nontrivial solutions in Type D system (3.32).

Example 3.7. All 12 distinct nontrivial solutions of the above system over GF(32)
are listed as follows:

(0, 1, α4), (a1, α7, α6), (a5, α2, α3),
(0, α1, α5), (1, α7, α2), (a4, α6, α3),
(0, α6, α2), (1, α1, α3), (a4, α7, α5),
(0, α7, α3), (1, α6, α5), (a4, α1, α2).

4. Concluding remarks

In this work, we present algebraic solutions for four new types of power equation
systems. In the first two types we allow the powers to be a mix of positive and
negative terms. The first type involves only positive signs, whereas the second type
extends to involve both positive and negative signs. We present algebraic methods
to solve the system and furthermore fully characterize the number of nontrivial
solutions. In the literature the system of power equations involves purely positive
or negative powers. The last two types are defined in finite fields and are otherwise
the same as the conventional power equation system. The methodology for solving
the third type can be viewed as a generalization of the Berlekamp algorithm which
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exhibits quadratic complexity and compares favorably to the straightforward trail-
and-error method with quadruple complexity.

It is worth noting that the proposed extensions in the first three types of systems
lose the uniqueness property of the original systems. It is imperative to determine
the minimal additional constraints such that the resulting systems have up to one
valid solution. Any such characterization will significantly boost their applicability.
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