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WEAK APPROXIMATION OF STOCHASTIC PARTIAL

DIFFERENTIAL EQUATIONS: THE NONLINEAR CASE

ARNAUD DEBUSSCHE

Abstract. We study the error of the Euler scheme applied to a stochastic
partial differential equation. We prove that, as is often the case, the weak
order of convergence is twice the strong order. A key ingredient in our proof
is Malliavin calculus which enables us to get rid of the irregular terms of the
error. We apply our method to the case of a semilinear stochastic heat equation
driven by a space-time white noise.

1. Introduction

When one considers a numerical scheme for a stochastic equation, two types of
errors can be considered. The strong error measures the pathwise approximation of
the true solution by a numerical one. This problem has been extensively studied in
finite dimension for stochastic differential equations (see for instance [21], [27], [28],
[33]) and also more recently in infinite dimension for various types of stochastic
partial differential equations (SPDEs) (see among others [1], [4], [6], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [23], [24], [30], [31], [35], [36], [37]). Another way
to measure the error is the so-called weak order of convergence of a numerical
scheme which is concerned with the approximation of the law of the solution at
a fixed time. In many applications, this error is more relevant. Pioneering work
by Milstein ([25], [26]) and Talay ([34]) have been followed by many articles (see
references in the books cited above). Very few works exist in the literature for the
weak approximation of the solution of SPDEs. A delayed stochastic differential
equation has been studied in [3]. Weak order for a SPDE has been studied only
recently in [7], [8], [9], [20]. In order to explain the novelty of the present article,
let us focus on a specific example.

We consider a stochastic nonlinear heat equation in a bounded interval I =
(a, b) ⊂ R with Dirichlet boundary conditions and driven by a space-time white
noise:

(1.1)

⎧
⎪⎪⎨

⎪⎪⎩

∂X

∂t
= Xξξ + f(X) + σ(X)η̇, ξ ∈ I, t > 0,

X(a, t) = X(b, t) = 0, t > 0,

X(ξ, 0) = x(ξ), ξ ∈ I.

Where f and σ are smooth Lipschitz functions from R to R.
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We introduce the classical abstract framework extensively used in the book [5].
We set H = L2(I), A = ∂ξξ, D(A) = H2(I) ∩ H1

0 (I), W is a cylindrical Wiener
process so that the space-time white noise is mathematically represented as the
time derivative of W . We set f(x)(ξ) = f(x(ξ)), x ∈ H and define σ : H→L(H)
by σ(x)h(ξ) = σ(x(ξ))h(ξ), x, h ∈ H. We then rewrite (1.1) as

(1.2)

{
dX = (AX + f(X))dt+ σ(X)dW,

X(0) = x.

It is well known that this equation has a unique solution (see for instance [5]). We
investigate the error committed when approximating this solution by the solution
of the Euler scheme
(1.3){

Xk+1 −Xk = Δt (AXk+1 + f(Xk)) + σ(Xk) (W ((k + 1)Δt)−W (kΔt)) ,

X0 = x,

where Δt = T/N , N ∈ N, T > 0.
The study of the weak error aims to prove bounds of the type:

|E(ϕ(X(nΔt)))− E(ϕ(Xn))| ≤ cΔtδ,

with a constant c which may depend on ϕ, x, N and on the various parameters in
the equation. Also, ϕ is assumed to be a smooth function on H. If such a bound
is true, we say that the scheme has weak order δ. In comparison, the strong error
is given by E(|(X(nΔt))−Xn|) or E(supn=0,...,N |(X(nΔt))−Xn|). Clearly, if the
scheme has strong order δ̃, then it has weak order δ ≥ δ̃. Indeed, the test functions
ϕ are Lipschitz. In general, it is expected that the weak order is larger than the
strong order.

In the case of the Euler scheme applied to a stochastic differential equation, it is
well known that the strong order is 1/2 whereas the weak order is 1 (see [33]). The
classical proof of this uses the Kolmogorov equation associated to the stochastic
equation. The main difficulty to generalize this proof to the infinite dimensional
equation (1.2) is that this Kolmogorov equation is then a partial differential equa-
tion with an infinite number of variables and involving unbounded operators (see
(3.6) below). The delayed stochastic differential equation studied in [3] is an infinite
dimensional problem but since the equation does not contain differential operators
the Kolmogorov equation is simpler to study. In [20], a SPDE similar to (1.2) is
considered but very particular test functions ϕ are used. They are allowed to de-
pend only on finite dimensional projections of the unknown and the bound of the
weak error involves a constant which strongly depends on the dimension. More
recently, this strong assumption on the test functions is relaxed in [9] but an ar-
ticificial assumption is still required to get a result. In [7], [8], the Kolmogorov
equation is not used directly and general test functions are considered. A change of
variable is used in order to simplify it. In [7], the stochastic nonlinear Schrödinger
equation is considered and the fact that the linear Schrödinger equation generates
an invertible group is used in an essential way. This is obviously wrong for the
heat equation considered here. The same change of unknown works in the case of
a linear equation with additive noise as shown in [8], but there it is used that the
solution can be written down explicitly. We have not been able to generalize this
idea to the nonlinear equation considered here.
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We use, in fact, the original method developed by Talay in the finite dimen-
sional case. The weak error is decomposed thanks to the Kolmogorov equations on
each time step. Each term represents the error between the solution of the Kol-
mogorov equation on one time step and the approximation given by the numerical
solution. Due to the presence of unbounded operators, this apparently requires a
lot of smoothness on the numerical solution. The main idea here is to observe that
the nonsmooth part of the solutions of (1.2) and (1.3) are contained in a stochastic
integral. We get rid of this stochastic integral thanks to Malliavin calculus and an
integration by parts. We are thus able to prove that as expected the weak order is
twice the strong order without artificial assumptions except from a technical one
on σ. We restrict our presentation to the abstract equation above, a nonlinear heat
equation driven by a space-time white noise. However, our method is general and
can be used for more general equations as will be shown in future articles. Also,
we only consider a semi-discretization in time. A full discretization will be treated
in forthcoming works.

Note that the method developed here does not allow us to recover the result
of [8]. Indeed, in the Euler scheme (1.3), the linear term is fully implicit and we
cannot consider a scheme where it is partially implicit such as the theta scheme
considered in [8]. Note also that the proof below is much more complicated than
in [8] and [7].

Malliavin calculus has already been used for the numerical analysis of stochastic
equations. In [2], it is used to prove an expansion of the error of the Euler scheme for
a stochastic differential equation under minimal assumptions on the test functions
ϕ. This is a completely different idea and the Malliavin calculus is used in a
completely different way. It is not clear that such ideas could be used for a SPDE.
In a different spirit, Malliavin calculus is used in [32] to analyse adaptive schemes
for the weak approximation of stochastic differential equations.

Our method is much closer to the method developed in [22]. There, the Malliavin
calculus is also used to get rid of a stochastic integral which appears when writting
down the weak error. However, it is done in a global way and the error is not
decomposed as in the present article. A fundamental feature of the Kohatsu-Higa
method is that the Kolmogorov equation is not used so that a more general sto-
chastic equation can be considered. The solution does not need to be markovian.
However, no SPDEs have been considered with this method.

2. Preliminaries and main result

We consider the following stochastic partial differential equation written in an
abstract form in a Hilbert space H with norm | · | and inner product (·, ·):

(2.1)

{
dX = (AX + f(X))dt+ σ(X)dW,
X(0) = x,

where the unknown X is a random process on a probability space (Ω,F ,P) depend-
ing on t > 0 and on the initial data x ∈ H. The operator A is a negative self-adjoint
operator on H with domain D(A) and has a compact inverse. We assume that

(2.2) Tr((−A)−α) < ∞, for all α > 1/2.

We define classically the domain D((−A)β), β ∈ R, of fractional powers of A and
set

|x|β = |(−A)βx|, x ∈ D((−A)β).
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The nonlinear function f takes values in H and is assumed to be C3 with bounded
derivatives up to order 3. We denote by Lf a constant such that for x, y ∈ H we
have

(2.3)
|f(x)| ≤ Lf (|x|+ 1),
|f(x)− f(y)| ≤ Lf |x− y|,
|f ′(x)− f ′(y)|L(H) ≤ Lf |x− y|.

The noise is written in terms of a cylindrical Wiener process W on H (see [5])
associated to a filtration (Ft)t≥0. The nonlinear mapping acting on the noise maps
H onto L(H); it is also assumed to be C3 with bounded derivatives up to order 3.
We denote by Lσ a constant satisfying

(2.4)
|σ(x)|L(H) ≤ Lσ(|x|+ 1),
|σ(x)− σ(y)|L(H) ≤ Lσ|x− y|.

We need a stronger assumption on this mapping, so we require

(2.5) |σ′′(x) · (h, h)|L(H) ≤ Lσ|h|2−1/4, x ∈ H, h ∈ H.

Note that this implies a strong restriction on σ. (See Remark 2.3 below for some
comments on this assumption).

Recall that the cylindrical Wiener process can be written as

W =
∑

�∈N

β�e�

where here and in the following (e�)�∈N is any orthonormal basis of H and (β�)�∈N

is an associated sequence of independent Brownian motions. This series does not
converge in H but in any larger Hilbert space U such that the embedding H ⊂ U
is Hilbert-Schmidt. Similarly, given a linear operator Φ from H to a possibly
different Hilbert space K, the Wiener process ΦW =

∑
�∈N

β�Φe� is well defined in
K provided Φ ∈ L2(H,K), the space of Hilbert-Schmidt operators from H to K.
(See the definition just below).

Recall also that the stochastic integral
∫ T

0
Ψ(s)dW (s) is defined as an element

of K provided that Ψ is an adapted process with values in L2(H,K) such that
∫ T

0
‖ψ(s)‖2L2(H,K)ds < ∞ a.s. (see [5]).

If L ∈ L(H) is a nuclear operator, Tr(L) denotes the trace of the operator L,
i.e.,

Tr(L) =
∑

i≥1

(Lei, ei) < +∞.

It is well known that the previous definition does not depend on the choice of the
Hilbertian basis. Moreover, the following properties hold for L nuclear and M
bounded

(2.6) Tr(LM) = Tr(ML),

and, if L is also positive, then

(2.7) Tr(LM) ≤ Tr(L)‖M‖L(H).

Hilbert-Schmidt operators also play an important role. An operator L ∈ L(H)
is Hilbert-Schmidt if L∗L is a nuclear operator on H. We denote by L2(H) the
space of such operators. It is a Hilbert space for the norm

‖L‖L2(H) = (Tr(L∗L))1/2 = (Tr(LL∗))1/2 .
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It is classical that if L ∈ L2(H), M ∈ L(H), N ∈ L(H), then NLM ∈ L2(H) and

(2.8) ‖NLM‖L2(H) ≤ ‖N‖L(H)‖L‖L2(H)‖M‖L(H).

See [5], appendix C, or [10] for more details on nuclear and Hilbert-Schmidt oper-
ators. Note that (2.2) implies that (−A)−β is Hilbert-Schmidt for any β > 1/4.

Our assumptions imply that for any x ∈ H, there exists a unique solution X(t)
to equation (2.1) (see for instance [5], Chapter 7). In what follows, we often recall
the dependence of the solution on the initial data by using the notation X(t, x).

We approximate equation (2.1) by an implicit Euler scheme. Let N ∈ N and
Δt = T

N > 0 be a time step, we define the sequence (Xk)k=0,...,N by

(2.9)

{
Xk+1 = SΔtXk +ΔtSΔtf(Xk) +

√
ΔtSΔtσ(Xk)χk+1,

X0 = x.

We write χk+1 = (W ((k+1)Δt)−W (kΔt))/
√
Δt. The operator SΔt is defined by

SΔt = (I −ΔtA)−1.

This is the classical fully implicit Euler scheme. It will be convenient to use the
integral form of (2.1),

(2.10) X(t) = S(t)x+

∫ t

0

S(t− s)f(X(s))ds+

∫ t

0

S(t− s)σ(X(s))dW (s), t ≥ 0,

where S(t) = etA is the semigroup generated by A. Similarly, (2.9) can be rewritten
as

(2.11) Xk = Sk
Δtx+Δt

k−1∑

�=0

Sk−�
Δt f(X�) +

√
Δt

k−1∑

�=0

Sk−�
Δt σ(X�)χ�+1.

It will be convenient in the following to use the notation:

tk = kΔt, k = 0, . . . , N.

The following inequalities are classical and easily proved using the spectral decom-
position of A:

∣
∣(−A)βSk

Δt

∣
∣
L(H)

≤ ct−β
k , k ≥ 1, β ∈ [0, 1],(2.12)

∣
∣(−A)βS(t)

∣
∣
L(H)

≤ ct−β , t > 0, β ≥ 0,(2.13)
∣
∣(−A)−β (I − SΔt)

∣
∣
L(H)

≤ cΔtβ , β ∈ [0, 1].(2.14)

Note that in (2.11) and (2.9), the noise term makes sense in H. Indeed, by
(2.12), (2.2) and (2.8), we know that SΔt is a Hilbert-Schmidt operator on H.

We are interested in the approximation of the law of the solution of (2.1). More
precisely, we wish to prove an estimate on the error committed when approximating
E(ϕ(X(T, x))) by E(ϕ(XN(x))). The function ϕ is a smooth function on H.

Throughout this article, we use the notation Dϕ(x) for the differential of a C1

function on H at the point x. If ϕ : H �→ K, where K is another Hilbert space,
Dϕ(x) ∈ L(H,K), the space of continuous linear operators from H to K. When
K = R, we identify the differential with the gradient thanks to Riesz’s identification
theorem. We use the same notation and get the identity for x, h ∈ H:

Dϕ(x) · h = (Dϕ(x), h).
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Similarly, if ϕ ∈ C2(H,R), D2ϕ(x) is a bilinear operator from H ×H to R and can
be identified with a linear operator on H through the identity

D2ϕ(x) · (h, k) = (D2ϕ(x)h, k), x, h, k ∈ H.

Sometimes, we also use the notations ϕ′, ϕ′′ instead of Dϕ or D2ϕ.
Given two Banach spacesK1 andK2, we denote by ‖·‖k the norm on Ck

b (K1,K2),
the space of k times continuously differentiable mappings from K1 to K2 with
derivatives bounded up to order k.

We use Malliavin calculus in the course of the proof. We now recall the ba-
sic definitions. (See [29]). Given a smooth real-valued function F on Hn and
ψ1, . . . , ψn ∈ L2(0, T,H), the Malliavin derivative of the smooth random variable

F (
∫ T

0
(ψ1(s), dW (s)), . . . ,

∫ T

0
(ψn(s), dW (s))) at time s in the direction h ∈ H is

given by

Dh
s

[

F

(∫ T

0

(ψ1(s), dW (s)), . . . ,

∫ T

0

(ψn(s), dW (s))

)]

=
n∑

i=1

∂iF

(∫ T

0

(ψ1(s), dW (s)), . . . ,

∫ T

0

(ψn(s), dW (s))

)

(ψi(s), h) .

We also define the process DF by (DF (s), h) = Dh
sF . It can be shown that D

defines a closable operator with values in L2(Ω, L2(0, T,H)) and we denote by D
1,2

the closure of the set of smooth random variables as above for the topology defined
by the norm

‖F‖D1,2 =

(

E(|F |2) + E(

∫ T

0

|DsF |2ds
)1/2

.

We define similarly the Malliavin derivative of random variables taking values in H.

If G =
∑

i∈N
Fiei ∈ L2(Ω, H) where Fi ∈ D

1,2 for all i ∈ N and
∑

i∈N

∫ T

0
|DsFi|2ds

< ∞, we set Dh
sG =

∑
i∈N

Dh
sFiei, DsG =

∑
i∈N

DsFiei. We define D1,2(H) as the
set of such random variables.

When h = em, we write Dem = Dm.
The chain rule is valid and if u ∈ C1

b (R), F ∈ D
1,2, then u(F ) ∈ D

1,2 and
D(u(F )) = u′(F )DF . Also, if G =

∑
i∈N

Fiei ∈ D
1,2(H) and u ∈ C1

b (H,R), then

u(G) ∈ D
1,2 and D(u(G)) = Du(G).DG = (Du,DG), or equivalently Dh

s (u(G)) =∑
i∈N

∂iuD
h
sFi = (Du,Dh

sG).
Note that, as already mentioned, we identify the differential of a function in

C1(H,R) with its gradient.
For F ∈ D

1,2 and ψ ∈ L2(Ω × [0, T ];H) such that ψ(t) ∈ D
1,2 for all t ∈ [0, T ]

and
∫ T

0

∫ T

0
|Dsψ(t)|2dsdt < ∞, we have the integration by parts formula

E

(

F

∫ T

0

(ψ(s), dW (s))

)

= E

(∫ T

0

(DsF, ψ(s))ds

)

,

where the stochastic integral is a Skohorod integral which is in fact defined by du-
ality. In this article, we only need to consider the Skohorod integral of adapted
processes in which case it corresponds with the Itô integral. Moreover, the integra-
tion by parts formula above holds for F ∈ D

1,2 and ψ ∈ L2(Ω× [0, T ];H) when ψ
is an adapted process. Recall that if F is Ft measurable, then DsF = 0 for s ≥ t.
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We will often use the following form of the integration by parts formula whose
proof is left to the reader.

Lemma 2.1. Let F ∈ D
1,2(H), u ∈ C2

b (H) and ψ ∈ L2(Ω × [0, T ],L2(H)) be an
adapted process. Then

E

(

Du(F ) ·
∫ T

0

ψ(s)dW (s)

)

= E

(
∑

m∈N

∫ T

0

D2u(F ) · (Dm
s F, ψ(s)em)ds

)

= E

(∫ T

0

Tr
(
ψ∗(s)D2u(F )DsF

)
ds

)

.

Also, we remark that this lemma remains valid if u is not assumed to be bounded
but only u ∈ C2(H) provided the expectations and the integral above are well
defined. This is easily seen by approximation of u by bounded functions.

We now state our main result.

Theorem 2.2. Assume that f and σ are C3
b functions from H to H and L(H) and

that σ satisfies (2.4). Then for any x ∈ H, T > 0, ε > 0, the Euler scheme (2.9)
satisfies the following weak error estimate:

|E(ϕ(X(T, x)))− E(ϕ(XN))| ≤ C(T, |ϕ|C3
b
, |x|, ε)Δt1/2−ε, ϕ ∈ C3

b (H).

Remark 2.3. Assumption (2.4) is quite restrictive. It is void for an additive noise
or a noise of the form BX dW where B is a linear operator from H to L(H).
Otherwise, it implies that the noise is a perturbation of such noise. An example of
a noise satisfying this is

σ(x) = Bx+ σ̃((−A)−1/4x)

where B ∈ L(H) and σ̃ : H→L(H) is a C3 function with derivatives bounded up
to order 3. This assumption is crucial in our proof. It is used in essential way in
Lemma 4.5 which is used at many points of the proof.

Apart from this point, our result is optimal. It is classical that equation (1.1)
enters our abstract framework so that Theorem 2.2 can be applied in this case. If
the noise is assumed to satisfy some nondegeneracy assumptions, the smoothness
assumption on the test function ϕ can be weakened. This will be investigated in a
future work.

Throughout this article, C or c denote constants which may depend on A, f, σ,Q
or T but not on Δt. Their values may change from one line to another. The initial
data x is fixed and the constant may also depend on |x|. Note also that we assume
that Δt ≤ 1, we could also assume Δt ≤ Δt0 for some Δt0 > 0. In this case, the
different constants would depend on Δt0. Finally, ε is a small positive number.

3. Proof of the main result

The proof uses different tools from stochastic calculus such as Itô’s formula,
Kolmogorov equations, and Malliavin calculus. Sometimes, it may be very lengthy
and technical to justify rigorously their use in infinite dimension. We avoid these
tedious justifications by using Galerkin approximations. We replace equation (2.1)
by the finite dimensional stochastic equation

dXm = (AXm + fm(Xm))dt+ σm(Xm)dW, Xm(0) = Pmx
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where Pm is the eigenprojector on the m first eigenvectors of A, fm(x) = Pmf(x),
σm(x) = Pmσ(x)Pm. It is not difficult to prove that Xm converges to X in various
senses.

Similarly, we replace the discrete unknown Xk by a finite dimensional sequence
defined in an obvious way.

We prove the result for these finite dimensional objects with constants that do
not depend on the dimension m. It is then easy to deduce the result for our infinite
dimensional equation.

In order to lighten the notation, we omit the dependence on m below and write
X, f , σ instead of Xm, fm, σm.

Step 1. We first define a continuous interpolation of the discrete unknown.

We rewrite (2.9) as follows:

Xk+1 = Xk +

∫ tk+1

tk

AΔtXk + SΔtf(Xk)ds+

∫ tk+1

tk

SΔtσ(Xk)dW (s)

where AΔt = SΔtA. Note that AΔt is in fact a Yosida regularization of A and is a
bounded operator:

(3.1) |AΔt|L(H) ≤ cΔt−1.

It is then natural to define X̃ on [0, T ] by

(3.2) X̃(t) = Xk+

∫ t

tk

AΔtXk+SΔtf(Xk)ds+

∫ t

tk

SΔtσ(Xk)dW (s), t ∈ [tk, tk+1).

Clearly, X̃ is a continuous and adapted process. Given a smooth function G on
[0, T ]×H, Itô’s formula implies that for t ∈ [tk, tk+1) (see [5]),

(3.3)

G(t, X̃(t)) = G(tk, X̃(tk)) +

∫ t

tk

dG

dt
(s, X̃(s)) + Lk,ΔtG(s, X̃(s))ds

+

∫ t

tk

(DG(s, X̃(s)), σ(Xk)dW (s));

where for ψ ∈ C2(H,R),

Lk,Δtψ(x)=
1

2
Tr

{
(SΔtσ(Xk))(SΔtσ(Xk))

∗ D2ψ(x)
}
+(AΔtXk+SΔtf(Xk), Dψ(x)).

Step 2. Decomposition of the error.

Let us define

(3.4) u(t, x) = E(ϕ(X(t, x))), t ∈ [0, T ].

Then the weak error at time T is equal to

(3.5)

u(T, x)− E(ϕ(XN)) = E(u(T, x))− u(0, XN )

=
N−1∑

k=0

E (u(T − tk, Xk)− u(T − tk+1, Xk+1)) .
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It is well known that u is a solution to the forward Kolmogorov equation:

du

dt
(t, x) = Lu(t, x)

=
1

2
Tr{σ(x)σ∗(x)D2u(t, x)}+ (Ax+ f(x), Du(t, x)).

(3.6)

Therefore, Itô’s formula (3.3) implies

E(u(T − tk+1, Xk+1)) = E(u(T − tk, Xk))

+ E

∫ tk+1

tk

Lk,Δtu(T − t, X̃(t))− Lu(T − t, X̃(t))dt.

The first term in (3.5) will be treated separately and we decompose the error as
follows:

(3.7) u(T, x)− E(ϕ(XN)) = u(T, x)− E(u(T −Δt,X1)) +
N−1∑

k=1

ak + bk + ck,

where

ak = E

∫ tk+1

tk

(
AX̃(t)−AΔtXk, Du(T − t, X̃(t))

)
dt,

bk = E

∫ tk+1

tk

(
f(X̃(t))− SΔtf(Xk), Du(T − t, X̃(t))

)
dt,

ck =
1

2
E

∫ tk+1

tk

Tr
{[

σ(X̃(t))σ∗(X̃(t))

− (SΔtσ(Xk)) (SΔtσ(Xk))
∗
]
D2u(T − t, X̃(t))

}
dt.

In the next steps, we estimate separately the different terms in (3.7).

Step 3. Estimate of u(T, x)− E(u(T −Δt,X1)).

By the Markov property, we have

u(T, x) = E(ϕ(X(T, x))) = E(u(T −Δt,X(Δt))).

Therefore, by Lemma 4.4, for any ε > 0,

|u(T, x)− E(u(T −Δt,X1))| ≤ c(T −Δt)−1/2+ε‖ϕ‖1E
(
|X(Δt)−X1|−1/2+ε

)
.

Moreover,

X(Δt)−X1 = (S(Δt)− SΔt)x+

∫ Δt

0

S(t− s)f(X(s, x))ds−ΔtSΔtf(x)

+

∫ Δt

0

S(t− s)σ(X(s, x))dW (s)−
√
ΔtSΔtσ(x)χ1.

It is easy to prove that

|(−A)−1/2+ε (S(Δt)− SΔt)|L(H) ≤ cΔt1/2−ε.
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Since (S(t))t≥0 is a contraction semigroup and |(−A)−1/2+ε · | ≤ c| · |, we have by
(2.3) and Lemma 4.2,

E

∣
∣
∣
∣
∣

∫ Δt

0

S(t− s)f(X(s, x))ds

∣
∣
∣
∣
∣
−1/2+ε

≤ ΔtLfE( sup
s∈[0,Δt]

|X(s, x)|+1) ≤ cΔt(|x|+1).

Similarly,

|ΔtSΔtf(x)|−1/2+ε ≤ cΔt(|x|+ 1).

We then have

E

(

|
∫ Δt

0

S(t− s)σ(X(s, x))dW (s)|2−1/2+ε

)

= E

(∫ Δt

0

|(−A)−1/2+εS(t− s)σ(X(s, x))|2L2(H)ds

)

≤ E

(∫ Δt

0

|(−A)−1/2+ε|2L2(H)|S(t− s)|2L(H)|σ(X(s, x))|2L(H)ds

)

and by (2.2), (2.4), and Lemma 4.2,

E

(

|
∫ Δt

0

S(t− s)σ(X(s, x))dW (s)|2−1/2+ε

)

≤ cΔt(|x|+ 1).

Similarly,

E

(
|
√
ΔtSΔtσ(x)χ1|2

)
≤ cΔt(|x|+ 1).

Gathering these estimates and using Cauchy-Schwarz inequality, we obtain

(3.8) |u(T, x)− E(u(T −Δt,X1))| ≤ c(T −Δt)−1/2+εΔt1/2−ε ≤ cΔt1/2−ε

where, as mentionned above, the constant is allowed to depend on T , x, ϕ, f , σ . . .

Step 4. Estimate of ak, k ≥ 1.

We split ak as follows:

ak = a1k + a2k

with

a1k = E

∫ tk+1

tk

(
(A−AΔt)Xk, Du(T − t, X̃(t))

)
dt,

a2k = E

∫ tk+1

tk

(
A(X̃(t)−Xk), Du(T − t, X̃(t))

)
dt.

Note that AΔt−A = ΔtSΔtA
2. By Lemma 4.4 below, we know thatDu(T−t, X̃(t))

is in D((−A)γ) for γ < 1/2 and it is easy to see that Xk belongs to D((−A)δ) for
δ < 1/4. It is impossible to compensate the presence of A2 by such arguments. The
idea is to recall (2.11) and to observe that the irregularity of Xk is contained in the
stochastic integral. Thus, we further decompose a1k into three terms according to
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(2.11). The first two terms are easy to treat. The third one involves the stochastic
integral and is estimated thanks to Malliavin calculus. We set

a1,1k = −ΔtE

∫ tk+1

tk

(
SΔtA

2Sk
Δtx,Du(T − t, X̃(t))

)
dt,

a1,2k = −ΔtE

∫ tk+1

tk

(

SΔtA
2Δt

k−1∑

�=0

Sk−�
Δt f(X�), Du(T − t, X̃(t))

)

dt,

a1,3k = −ΔtE

∫ tk+1

tk

(

SΔtA
2
√
Δt

k−1∑

�=0

Sk−�
Δt σ(X�)χ�+1, Du(T − t, X̃(t))

)

dt,

so that

a1k = a1,1k + a1,2k + a1,3k .

By (2.12), (2.12) and Lemma 4.4, we have for k = 1, . . . , N − 2 and ε > 0,

|a1,1k | ≤ cΔtE

∫ tk+1

tk

|SΔt(−A)1/2+2ε|L(H)

× |(−A)1−εSk
Δt|L(H)|(−A)1/2−εDu(T − t, X̃(t))| |x|dt

≤ cΔt1/2−2εt−1+ε
k

∫ tk+1

tk

(T − t)−(1/2−ε)dt.

(3.9)

The estimate of a1,2k is similar. We have by (2.3) and (2.12),
∣
∣
∣
∣
∣
Δt(−A)1−ε

k−1∑

�=0

Sk−�
Δt f(X�)

∣
∣
∣
∣
∣
≤ LfΔt

k−1∑

�=0

∣
∣(−A)1−εSk−�

Δt

∣
∣
L(H)

(|X�|+ 1)

≤ cΔt

k−1∑

�=0

t−1+ε
k−� (|X�|+ 1) .

Since

Δt

k−1∑

�=0

t−1+ε
k−� ≤ ε−1T ε,

thanks to Lemma 4.4 and Lemma 4.1 we deduce

|a1,2k | ≤ cΔt

∫ tk+1

tk

∣
∣
∣SΔt(−A)1/2+2ε

∣
∣
∣
L(H)

(T − t)−1/2+εdt

≤ cΔt1/2−2ε

∫ tk+1

tk

(T − t)−(1/2−ε)dt.

(3.10)

To treat a1,3k , we first rewrite it in terms of a stochastic integral:

a1,3k = ΔtE

∫ tk+1

tk

(∫ tk

0

SΔtA
2Sk−�s

Δt σ(X�s)dW (s), Du(T − t, X̃(t))

)

dt

where �s = [s/Δt] is the integer part of s/Δt. By the chain rule, Lemma 4.3 and
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(3.2), we know that X̃(t) has a Malliavin derivative. We have for s ∈ [0, tk], h ∈ H,
t ∈ [tk, tk+1),

Dh
s X̃(t) = Dh

sXk +

∫ t

tk

AΔtD
h
sXk + SΔtf

′(Xk) ·Dh
sXkds

+

∫ t

tk

SΔt

(
σ′(Xk) ·Dh

sXk

)
dW (s).

For β < 1/4, we have, by (2.12), (2.2), (2.4), and (2.8),

E

(∣
∣
∣
∣

∫ t

tk

SΔt

(
σ′(Xk) ·Dh

sXk

)
dW (s)

∣
∣
∣
∣

2

β

)

= E

(∫ t

tk

∣
∣(−A)βSΔt

(
σ′(Xk) ·Dh

sXk

)∣
∣2
L2(H)

ds

)

≤ E

(∫ t

tk

∣
∣
∣(−A)−1/4−ε

∣
∣
∣
2

L2(H)

∣
∣
∣(−A)β+1/4+εSΔt

∣
∣
∣
2

L(H)

∣
∣σ′(Xk) ·Dh

sXk

∣
∣2
L(H)

ds

)

≤ cΔt1/2−2β−2ε
E
(
|Dh

sXk|2
)
.

We then use (3.1) and (2.3) to bound the other terms above and obtain, thanks to
Poincaré inequality

(3.11) E

(
|Dh

s X̃(t)|2β
)
≤ cE

(
|Dh

sXk|2β
)
, s ∈ [0, tk], t ∈ [tk, tk+1).

By Lemma 4.3, we obtain for β < 1/4,

E

(∣
∣
∣(−A)βDsX̃(t)

∣
∣
∣
2

L(H)

)

≤ ct−2β
k−�s

.

Thus, we may apply Lemma 2.1 and write

a1,3k = ΔtE

∫ tk+1

tk

∫ tk

0

Tr
{
σ∗(X�s)SΔtA

2Sk−�s
Δt D2u(T − t, X̃(t))DsX̃(t)

}
ds dt.

We are now ready to conclude the estimate of a1,3k . We choose ε > 0 and write,
thanks to (2.4), (2.12), (2.12), Lemma 4.5, and (2.2),

|a1,3k | ≤ ΔtE

∫ tk+1

tk

∫ tk

0

|σ∗(X�s)|L(H)

∣
∣
∣SΔtA

1/2+2ε
∣
∣
∣
L(H)

∣
∣
∣(−A)1−3ε/2Sk−�s

Δt

∣
∣
∣
L(H)

×
∣
∣
∣(−A)1/2−ε/2D2u(T − t, X̃(t))(−A)1/2−ε/2

∣
∣
∣
L(H)

× Tr
{
(−A)−1/2−ε/2

} ∣
∣
∣(−A)εDsX̃(t)

∣
∣
∣
L(H)

ds dt

≤ cΔtE

∫ tk+1

tk

∫ tk

0

Δt−1/2−2εt
−1+3ε/2
k−�s

(T − t)−1+εt−ε
k−�s

ds dt.

Since
∫ tk
0

t
−1+ε/2
k−�s

ds ≤ 2
εT

ε/2, we deduce

(3.12) |a1,3k | ≤ cΔt1/2−2ε

∫ tk+1

tk

(T − t)−1+εdt.
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Gathering (3.9), (3.10), and (3.12), for k = 1, . . . , N − 1 we obtain

(3.13) |a1k| ≤ cΔt1/2−2ε
(
t−1+ε
k + 1

)
(∫ tk+1

tk

(T − t)−1+εdt+ 1

)

.

We now estimate a2k. Let us write

a2,1k = E

∫ tk+1

tk

(t− tk)
(
AAΔtXk, Du(T − t, X̃(t))

)
dt,

a2,2k = E

∫ tk+1

tk

(t− tk)
(
ASΔtf(Xk), Du(T − t, X̃(t))

)
dt,

a2,3k = E

∫ tk+1

tk

∫ t

tk

(
ASΔtσ(Xk)dW (s), Du(T − t, X̃(t))

)
dt,

so that, thanks to (3.2), we have a2k = a2,1k + a2,2k + a2,3k . The first term a2,1k is
similar to a1k above and is majorized in the same way:

(3.14) |a2,1k | ≤ cΔt1/2−2ε
(
t−1+ε
k + 1

)
(∫ tk+1

tk

(T − t)−1+εdt+ 1

)

,

for k = 1, . . . , N − 1. The second one is not difficult to treat. Using similar
arguments as above, we have

|a2,2k | ≤ cΔt|(−A)1/2+εSΔt|L(H)E(|f(Xk)|)
∫ tk+1

tk

(T − t)−(1/2−ε)dt

≤ cΔt1/2−ε

∫ tk+1

tk

(T − t)−(1/2−ε)dt

(3.15)

for k = 1, . . . , N −1. The estimate of a2,3k requires the use of Lemma 2.1. It implies

a2,3k = E

∫ tk+1

tk

∫ t

tk

Tr
{
σ∗(Xk)SΔtAD2u(T − t, X̃(t))DsX̃(t)

}
ds dt.

Since, Xk is Ftk measurable, we have from (3.2)

(3.16) DsX̃(t) = SΔtσ(Xk) s ∈ (tk, tk+1], tk ≤ s ≤ t < tk+1.

Thanks to (2.4), (2.12), (2.2), and Lemma 4.5, it follows that

a2,3k = E

∫ tk+1

tk

(t− tk)Tr
{
σ∗(Xk)SΔtAD2u(T − t, X̃(t))SΔtσ(Xk)

}
dt

≤ cΔtE

∫ tk+1

tk

|σ(Xk)|L(H)|SΔt(−A)1/2+ε/2|L(H)

× |(−A)1/2−ε/2D2u(T − t, X̃(t))(−A)1/2−ε/2|L(H)

× Tr((−A)−1/2−ε/2)|(−A)εSΔt|L(H)|σ(Xk)|L(H)dt

≤ cΔt1/2−3ε/2

∫ tk+1

tk

(T − t)−1+εdt

for k = 1, . . . , N − 1 . Finally, we obtain

(3.17) |a2k| ≤ cΔt1/2−2ε(t−1+ε
k + 1)

(∫ tk+1

tk

(T − t)−1+εdt+ 1

)
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for k = 1, . . . , N − 1. Together with (3.13) this yields the estimate of ak:

|ak| ≤ cΔt1/2−2ε(t−1+ε
k + 1)

(∫ tk+1

tk

(T − t)−1+εdt+ 1

)

.

It follows easily that

(3.18)

N−1∑

k=1

|ak| ≤ cΔt1/2−2ε.

Step 5. Estimate of bk.

This term seems easier to treat since we do not have the unbounded operator A.
However, since it involves the nonlinear term, we need to use Itô’s formula (3.3) to

control f(X̃(t))− f(Xk); this introduces many terms. For some of them we again
use Malliavin integration by parts.

First, we get rid of SΔt. Thanks to (2.14), (2.3), Lemma 4.4, and Lemma 4.1,
we have

b1k = E

∫ tk+1

tk

(
(I − SΔt) f(Xk), Du(T − t, X̃(t))

)
dt

≤ cE

∫ tk+1

tk

(1 + |Xk|)|(−A)−1/2+ε(I − SΔt)|L(H)|(−A)1/2−εDu(T − t, X̃(t))|dt

≤ cΔt1/2−ε
E

∫ tk+1

tk

(T − t)−1/2+εdt

for k = 0, . . . , N − 1. We now estimate

b2k = bk − b1k

= E

∫ tk+1

tk

(
f(X̃(t))− f(Xk), Du(T − t, X̃(t))

)
dt

= E

∫ tk+1

tk

∑

i∈N

(fi(X̃(t))− fi(Xk))∂iu(T − t, X̃(t))dt,

where fi = (f, ei) and ∂i = (D·, ei). We choose (ei)i∈N as the orthonormal basis of
eigenvectors of A. By (3.3), for i ∈ N we have

fi(X̃(t) = fi(Xk) +

∫ t

tk

1

2
Tr

{
(SΔtσ(Xk))(SΔtσ(Xk))

∗D2fi(X̃(s))
}
ds

+

∫ t

tk

(
AΔtXk + SΔtf(Xk), Dfi(X̃(s))

)
ds

+

∫ t

tk

(
Dfi(X̃(s)), σ(Xk)

)
dW (s).

With obvious notations, this defines the decomposition

b2k = b2,1k + b2,2k + b2,3k + b2,4k .
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To treat the first term, we rewrite it as follows1:

b2,1k =
1

2
E

∫ tk+1

tk

∫ t

tk

∑

i∈N

Tr
{
(SΔtσ(Xk))(SΔtσ(Xk))

∗D2fi(X̃(s))
}

∂iu(T − t, X̃(t))ds dt

=
1

2
E

∫ tk+1

tk

∫ t

tk

Tr {(SΔtσ(Xk))(SΔtσ(Xk))
∗A(s, t)} ds dt

where A(s, t) ∈ L(H) is defined by

(A(s, t)h, k) =
∑

i∈N

D2fi(X̃(s)).(h, k)∂iu(T − t, X̃(t))

=
(
D2f(X̃(s)).(h, k), Du(T − t, X̃(t))

)
, h, k ∈ H.

Obviously,

|A(s, t)|L(H) ≤
∣
∣
∣D2f(X̃(s))

∣
∣
∣
L2(H×H,H)

∣
∣
∣Du(T − t, X̃(t))

∣
∣
∣ ,

where L2(H ×H,H) denotes the space of bilinear operators from H ×H to H. By
(2.3) and Lemma 4.4, we deduce

|A(s, t)|L(H) ≤ c.

Then, thanks to (2.4), (2.12), and (2.2), we write

|Tr {(SΔtσ(Xk))(SΔtσ(Xk))
∗A(s, t)}|

≤ Tr
(
(−A)

−1/2−ε
) ∣
∣(−A)1/2+εSΔt

∣
∣
L(H)

|σ(Xk)|2L(H) |A(s, t)|L(H)

≤ cΔt−1/2−ε(1 + |Xk|)2.

By Lemma 4.1, we deduce

(3.19) b2,1k ≤ cΔt3/2−ε.

The second term b2,2k involves the same difficulty as a1k above. We rewrite it using
(2.11). This gives

b2,2k = E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(

AΔtS
k
Δtx+AΔtΔt

k−1∑

�=0

Sk−�
Δt f(X�), Dfi(X̃(s))

)

∂iu(T − t, X̃(t))dsdt

+ E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(

AΔt

∫ tk

0

Sk−�τ
Δt σ(X�τ )dW (τ ), Dfi(X̃(s))

)

∂iu(T − t, X̃(t))dsdt

1Recall that we, in fact, work with Galerkin approximations so that all sums below are finite
sums.
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where, as above, �τ = [τ/Δt]. The first term is bounded as follows, using Lemma
4.4, (2.3), (2.12), and (2.12):

E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(

AΔtS
k
Δtx+AΔtΔt

k−1∑

�=0

Sk−�
Δt f(X�), Dfi(X̃(s))

)

∂iu(T − t, X̃(t))dsdt

= E

∫ tk+1

tk

∫ t

tk

(

Df(X̃(s)) ·
(

AΔtS
k
Δtx+AΔtΔt

k−1∑

�=0

Sk−�
Δt f(X�)

)

,

Du(T − t, X̃(t))
)
dsdt

≤ cE

∫ tk+1

tk

∫ t

tk

|(−A)εSΔt|L(H)

(
∣
∣(−A)1−εSk

Δtx
∣
∣

+
k−1∑

�=0

∣
∣(−A)1−εSk−�

Δt

∣
∣
L(H)

|f(X�)|
)

ds dt

≤ cΔt2−ε(t−1+ε
k + 1).

The second term of b2,2k requires an integration by parts; thus we obtain

E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(

AΔt

∫ tk

0

Sk−�τ
Δt σ(X�τ )dW (τ ), Dfi(X̃(s))

)

∂iu(T − t, X̃(t))dsdt

= E

∫ tk+1

tk

∫ t

tk

∑

i,j,m∈N

(

AΔt

∫ tk

0

Sk−�τ
Δt σ(X�τ )em, ej

)

dβm(τ )∂jfi(X̃(s))∂iu(T − t, X̃(t))dsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

0

∑

i,j,m,n∈N

(
AΔtS

k−�τ
Δt σ(X�τ )em, ej

)[

∂j,nfi(X̃(s))
(
Dm

τ X̃(s), en

)

× ∂iu(T − t, X̃(t)) + ∂jfi(X̃(s))∂i,nu(T − t, X̃(t))
(
Dm

τ X̃(t), en

)]

dτdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

0

∑

i,m∈N

D2fi(X̃(s))
(
AΔtS

k−�τ
Δt σ(X�τ )em, Dm

τ X̃(s)
)

× ∂iu(T − t, X̃(t)) +
(
Bi(s, t)AΔtS

k−�τ
Δt σ(X�τ )em, Dm

τ X̃(t)
)
dτdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

0

∑

i∈N

Tr
{(

Dτ X̃(s)
)∗

D2fi(X̃(s))AΔtS
k−�τ
Δt σ(X�τ )

}

× ∂iu(T − t, X̃(t)) + Tr
{(

Dτ X̃(t)
)∗

Bi(s, t)AΔtS
k−�τ
Δt σ(X�τ )

}
dτdsdt

where, for i ∈ N, Bi(s, t) is defined by

(Bi(s, t)g, h) = (Dfi(X̃(s)), g)
∑

n∈N

∂i,nu(T − t, X̃(t))(h, en), g, h ∈ H.
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The first term above is estimated as b2,1k . For the second term, we write

∑

i∈N

(Bi(s, t)g, h) = D2u(T − t, X̃(t)) · (Df(X̃(s)) · g, h)

= (D2u(T − t, X̃(t))h,Df(X̃(s)) · g), g, h ∈ H.

Therefore,
∣
∣
∣
∣
∣

∑

i∈N

Bi(s, t)

∣
∣
∣
∣
∣
L(H)

≤
∣
∣
∣Df(X̃(s))

∣
∣
∣
L(H)

∣
∣
∣D2u(T − t, X̃(t))

∣
∣
∣
L(H)

.

We deduce by Lemma 4.3, (3.11), (2.3), (2.12), (2.2), (2.12), (2.2), Lemma 4.1, and
similar arguments as above that

E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(

AΔt

∫ tk

0

Sk−�τ
Δt σ(X�τ )dW (τ ), Dfi(X̃(s))

)

∂iu(T − t, X̃(t))dsdt

≤ cΔt3/2−ε.

Therefore,

b2,2k ≤ cΔt3/2−ε.

It is also easy to see that

b2,3k = E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(
SΔtf(Xk), Dfi(X̃(s))

)
∂iu(T − t, X̃(t))dsdt

= E

∫ tk+1

tk

∫ t

tk

Du(T − t, X̃(t)) ·
(
Df(X̃(s)) · SΔtf(Xk)

)
dsdt

≤ cΔt2.

It remains to estimate b2,4k . We again integrate by parts the stochastic integral and
obtain by Lemma 2.1 that

b2,4k = E

∫ tk+1

tk

∫ t

tk

∑

i∈N

(
Dfi(X̃(s)), σ(Xk)dW (s)

)
∂iu(T − t, X̃(t))dt

= E

∫ tk+1

tk

∫ t

tk

Tr
{(

DsX̃(t)
)∗

D2u(T − t, X̃(t))Df(X̃(s))σ(Xk)
}
ds dt

= E

∫ tk+1

tk

∫ t

tk

Tr
{
σ∗(Xk)SΔtD

2u(T − t, X̃(t))Df(X̃(s))σ(Xk)
}
ds dt

≤ cΔt3/2−ε,

thanks to (3.16), (2.2), and (2.12).
We conclude this step by gathering the previous estimates. This enables us to

write
N−1∑

k=1

|bk| ≤ cΔt1/2−ε.
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Step 6. Estimate of ck.

Using the symmetry of Du, we introduce the decomposition of ck:

ck =
1

2
E

∫ tk+1

tk

Tr
{[

σ(X̃(t))σ∗(X̃(t))

− (SΔtσ(Xk)) (SΔtσ(Xk))
∗
]
D2u(T − t, X̃(t))

}
dt

=
1

2
E

∫ tk+1

tk

Tr
{
(I − SΔt)σ(X̃(t))

(
(I − SΔt)σ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

+ E

∫ tk+1

tk

Tr
{
SΔtσ(X̃(t))

(
(I − SΔt)σ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

+
1

2
E

∫ tk+1

tk

Tr
{
SΔt

(
σ(X̃(t))− σ(Xk)

)(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

+
1

2
E

∫ tk+1

tk

Tr
{
SΔtσ(Xk)

(
SΔtσ(X̃(t))− σ(Xk)

)∗
D2u(T − t, X̃(t))

}
dt

= c1k + c2k + c3k + c4k.

The first two terms are easy to treat, we use similar arguments as in the previous
steps and, thanks to (2.7), Lemma 4.5, Lemma 4.1, and (2.14) we write

c1k ≤ cE

∫ tk+1

tk

Tr
{
(−A)−1/2+ε(I − SΔt)σ(X̃(t))σ∗(X̃(t))(I − SΔt)(−A)−1/2+ε

}

(T − t)−1+2εdt

≤ cE

∫ tk+1

tk

Tr
{
(−A)−1/2+ε(I − SΔt)(I − SΔt)(−A)−1/2+ε

}
(T − t)−1+2εdt

≤ cΔt1/2−3ε

∫ tk+1

tk

(T − t)−1+εdt.

The second term is similar; we have

c2k ≤ E

∫ tk+1

tk

∣
∣
∣(−A)−1/2+ε(I − SΔt)

∣
∣
∣
L(H)

∣
∣
∣σ(X̃(t))

∣
∣
∣
2

L(H)

∣
∣(−A)2εSΔt

∣
∣
L(H)

Tr
{
(−A)−1/2−ε

} ∣
∣
∣(−A)1/2−εD2u(T − t, X̃(t))(−A)1/2−ε

∣
∣
∣
L(H)

dt

≤ cΔt1/2−3ε

∫ tk+1

tk

(T − t)−1+εdt.

The estimate of the next term is much more complicated. It is based on similar
arguments as before, but the computations are much longer.
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We use (3.3) and obtain for h, k ∈ H:

((
σ(X̃(t))− σ(Xk)

)
h, k

)

=
1

2

∫ t

tk

Tr
{
(SΔtσ(Xk)) (SΔtσ(Xk))

∗ D2 (σ(·)h, k) (X̃(s))
}
dt

+
1

2

∫ t

tk

(
AΔtXk + SΔtf(Xk), D (σ(·)h, k) (X̃(s))

)
dt

= (Ah, k) + (Bh, k) + (Ch, k).

Thus we may write

c3k =
1

2
E

∫ tk+1

tk

Tr
{
SΔtA

(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

+
1

2
E

∫ tk+1

tk

Tr
{
SΔtB

(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

+
1

2
E

∫ tk+1

tk

Tr
{
SΔtC

(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

= c3,1k + c3,2k + c3,3k .

Note that

(Ah, k) =
1

2

∫ t

tk

∑

�∈N

((
σ′′(X̃(s)).(SΔtσ(Xk)e�, SΔtσ(Xk)e�)

)
h, k

)
ds.

By (2.5), for u, v ∈ H, we get

((
σ′′(X̃(s)).(u, v)

)
h, k

)
≤ Lσ|u|−1/4|v|−1/4 |h| |k| ≤ c|u| |v| |h| |k|.

Thanks to (2.2), (2.12), we deduce

(Ah, k) ≤ cΔt1/2−ε(1 + |Xk|)2|h| |k|

and

|A|L(H) ≤ cΔt1/2−ε(1 + |Xk|)2.

Then, by Lemma 4.1, Lemma 4.5, (2.12), and again by (2.2) we have

c3,1k ≤ cΔt1/2−3ε

∫ tk+1

tk

(T − t)−1/2+εdt.
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The term c3,2k involves the same difficulty as ak and b2,2k . We use (2.11) to replace
Xk by a sum of three terms:

(Bh, k) = 1

2

∫ t

tk

(

AΔtS
k
Δtx+ΔtAΔt

k−1∑

�=0

Sk−�
Δt f(X�)

+

∫ tk

0

AΔtS
k−�τ
Δt σ(X�τ )dW (τ ), D (σ(·)h, k) (X̃(s))

)

ds

=
1

2

∫ t

tk

([

σ′(X̃(s)) ·
(
AΔtS

k
Δtx+ΔtAΔt

k−1∑

�=0

Sk−�
Δt f(X�)

+

∫ tk

0

AΔtS
k−�τ
Δt σ(X�τ )dW (τ )

)
]

h, k

)

ds

= (B1h, k) + (B2h, k) + (B3h, k).

Then, thanks to (2.4), (2.12), and (2.12), we write

(B1h, k) =
1

2

∫ t

tk

([

σ′(X̃(s)) ·AΔtS
k
Δtx

]

h, k

)

ds

≤ c

∫ t

tk

∣
∣
∣σ′(X̃(s)) ·AΔtS

k
Δtx

∣
∣
∣
L(H)

|h| |k|ds

≤ cΔt|AΔtS
k
Δtx| |h| |k|

≤ cΔt1−εt1−ε
k |h| |k|.

Similarly,

(B2h, k) ≤ cΔt1−ε |h| |k|.
It follows, thanks to Lemma 4.5, (2.12) and (2.2), that

1

2
E

∫ tk+1

tk

Tr
{
SΔt(B1 + B2)

(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

≤ cΔt1−3ε(t1−ε
k + 1)

∫ tk+1

tk

(T − t)−1/2+εdt.

The estimate of the part of c3,2k involving B3 is very technical. As before, we
get rid of the stochastic integral, thanks to an integration by parts. This results
in a supplementary trace term. In order to work with the double trace, we write
everything in terms of the components of the operators and vectors. Given an
operator G on H, we set Gi,j = (Gei, ej). We thus write

E

∫ tk+1

tk

Tr
{
SΔtB3

(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

= E

∫ tk+1

tk

∑

i,j,m∈N

Bi,j
3 σm,j(X̃(t))

(
SΔtD

2u(T − t, X̃(t))SΔt

)m,i

dt

=
∑

i,j,m,n,r∈N

E

∫ tk+1

tk

∫ t

tk

∫ tk

0

∂rσ
i,j(X̃(s))

(
AΔtS

k−�τ
Δt σ(X�τ )en, er

)
dβn(τ )

σm,j(X̃(t))
(
SΔtD

2u(T − t, X̃(t))SΔt

)m,i

ds dt.
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It is important to recall here that, in fact, we work with finite dimensional approx-
imations of the solutions so that all the above sums are finite. We now use the
Malliavin integration by parts and obtain

E

∫ tk+1

tk

Tr
{
SΔtB3

(
SΔtσ(X̃(t))

)∗
D2u(T − t, X̃(t))

}
dt

=
∑

i,j,m,n,r∈N

E

∫ tk+1

tk

∫ t

tk

∫ tk

0

∑

p∈N

∂r,pσ
i,j(X̃(s))

(
Dn

τ X̃(s), ep

)(
AΔtS

k−�τ
Δt σ(X�τ )en, er

)

σm,j(X̃(t))
(
SΔtD

2u(T − t, X̃(t))SΔt

)m,i

+
∑

p∈N

∂rσ
i,j(X̃(s))

(
AΔtS

k−�τ
Δt σ(X�τ )en, er

)
∂pσ

m,j(X̃(t))
(
Dn

τ X̃(t), ep

)

(
SΔtD

2u(T − t, X̃(t))SΔt

)m,i

+ ∂rσ
i,j(X̃(s))

(
AΔtS

k−�τ
Δt σ(X�τ )en, er

)
σm,j(X̃(t))

(
SΔt

(
D3u(T − t, X̃(t)) ·Dn

τ X̃(s)
)
SΔt

)m,i

dτ ds dt

= I + II + III.

We then write

I =
∑

i,j,m,n∈N

E

∫ tk+1

tk

∫ t

tk

∫ tk

0

D2σi,j(X̃(s))

·
(
Dn

τ X̃(s), AΔtS
k−�τ
Δt σ(X�τ )en

)
σm,j(X̃(t))

(
SΔtD

2u(T − t, X̃(t))SΔt

)m,i

dτ ds dt

=
∑

j∈N

E

∫ tk+1

tk

∫ t

tk

∫ tk

0

D2u(T − t, X̃(t)) ·
(
φ1(s, τ, k)ej , SΔtσ(X̃(t))ej

)
dτ ds dt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

0

Tr
{
σ∗(X̃(t))SΔtD

2u(T − t, X̃(t))φ1(s, τ, k)
}
dτ ds dt

where we have set

φ1(s, τ, k)h1 =
∑

n∈N

SΔt

(
D2σ(X̃(s)) ·

(
Dn

τ X̃(s), AΔtS
k−�τ
Δt σ(X�τ )en

))
h1, h1 ∈ H.

Let us define Σs,h1,h2
by

(Σs,h1,h2
u, v) =

(
SΔt

(
D2σ(X̃(s)) · (u, v)

)
h1, h2

)
, u, v ∈ H.

Then by (2.5),

|Σs,h1,h2
|L(H) ≤ c |h1| |h2|.

We deduce by (2.4), (2.2), (2.12), (2.12), (3.11), and Lemma 4.3 that

(φ1(s, τ, k)h1, h2) = Tr
{
σ∗(X�τ )S

k−�τ
Δt AΔtΣs,h1,h2

Dτ X̃(s)
}

≤|σ∗(X�τ )|L(H)Tr(−A)−1/2−ε|(−A)1/2+εSk−�τ
Δt AΔt|L(H)|Σs,h1,h2

|L(H)|Dτ X̃(s)|L(H)

≤ cΔt−1/2−2εt−1+ε
k |h1| |h2|(1 + |Xk|),
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and by Lemma 4.1, Lemma 4.5, and (2.2), that

I ≤ cΔt1/2−2εt−1+ε
k

∫ tk+1

tk

(T − t)−1/2−εdt.

Similarly, we may write

II =
∑

n∈N

E

∫ tk+1

tk

∫ t

tk

∫ tk

0

Tr

{[(
Dσ(X̃(s)) ·

(
AΔtS

k−�τ
Δt σ(X�τ )en

))]

[(
Dσ(X̃(t)) ·

(
Dn

τ X̃(t)
))]∗

SΔtD
2u(T − t, X̃(t))SΔt

}

dτ ds dt

≤ cΔt−2ε
E

∫ tk+1

tk

∫ t

tk

∫ tk

0

|φ2(τ, s, t, k)|L(H) (T − t)−1/2+εdτ ds dt

with

φ2(τ, s, t, k) =
∑

n∈N

[(
Dσ(X̃(s)) ·

(
AΔtS

k−�τ
Δt σ(X�τ )en

))]

[(
Dσ(X̃(t)) ·

(
Dn

τ X̃(t)
))]∗

.

We use similar arguments to estimate its norm. For u, v ∈ H, we write

(φ2(τ, s, t, k)u, v)

=
∑

n∈N

([(
Dσ(X̃(t))·

(
Dn

τ X̃(t)
))]∗

u,
[(

Dσ(X̃(s))·
(
AΔtS

k−�τ
Δt σ(X�τ )en

))]∗
v
)

= Tr
{
σ∗(X�τ )S

k−�τ
Δt AΔta

∗
vbu

}

with

avh =
[
SΔt

(
Dσ(X̃(s)) · h

)]∗
v,

buh =
[
SΔt

(
Dσ(X̃(t)) ·

(
Dh

τ X̃(t)
))]∗

u.

Since

|av|L(H) ≤ c |v|, |bu|L(H) ≤ c |u|,
we deduce

|φ2(τ, s, t, k)|L(H) ≤ cTr{Sk−�τ
Δt AΔt} ≤ cΔt−1/2−2εt−1+ε

k−�τ

and

II ≤ cΔt1/2−4ε

∫ tk+1

tk

(T − t)−1/2−εdt.

Finally,

III =
1

2

∫ tk+1

tk

∫ t

tk

∫ tk

0

∑

n∈N

Tr{γnSΔtσ(X̃(t))}dτ ds dt
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where, for u, v ∈ H,
∑

n∈N

(γnu, v)

=
∑

n∈N

D3u(T − t, X̃(t))
(
Dn

τ X̃(s), u, SΔt

(
Dσ(X̃(s)) ·

(
AΔtS

k−�τ
Δt σ(X�τ )en

))
v
)

= Tr
{
κ(u, v)(−A)−1/2−ε(−A)2εDn

τ X̃(s)
}
,

and for h1, h2 ∈ H,

(κ(u, v)h1, h2) = D3u(T − t, X̃(t))

·
(
(−A)1/2−εh1, u, SΔt

(
Dσ(X̃(s))

))
·
(
AΔtS

k−�τ
Δt σ(X�τ )h2

))
v
)
.

By Lemma 4.6, we have

|κ(u, v)|L(H) ≤ c(T − t)−1/2+εt−1+3ε
k−�τ

Δt−3ε|u| |v|.
Therefore, by (2.2), (3.11), and Lemma 4.3,

∑

n∈N

(γnu, v) ≤ c(T − t)−1/2+εt−1+ε
k−�τ

Δt−3ε|u| |v|.

It follows that

|γn|L(H) ≤ c(T − t)−1/2+εt−1+ε
k−�τ

Δt−3ε

and by (2.2) and (2.12),

III ≤ cΔt1/2−4ε

∫ tk+1

tk

(T − t)−1/2+εdt.

We can now conclude that

|c3,2k | ≤ cΔt1/2−4ε(t−1+ε
k + 1)(

∫ tk+1

tk

(T − t)−1/2+εdt+ 1).

Finally, it is easy to check that

|C|L(H) ≤ cΔt(1 + |Xk|)
and

|c3,3k | ≤ cΔt1−2ε

∫ tk+1

tk

(T − t)−1/2+εdt.

We deduce

|c3k| ≤ cΔt1/2−4ε(t−1+ε
k + 1)

∫ tk+1

tk

((T − t)−1/2−ε + 1)dt,

and, since c4k is majorized in exactly the same way,

|ck| ≤ cΔt1/2−4ε(t−1+ε
k + 1)

∫ tk+1

tk

((T − t)−1+ε + 1)dt.

It follows that
N−1∑

k=1

|ck| ≤ cΔt1/2−4ε.
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Step 7. Conclusion.

It is now easy to gather all previous estimates in (3.7) and deduce

|u(T, x)− E (ϕ(XN)) | ≤ cΔt1/2−4ε.

Recall that all of the above computations have been done on the Galerkin approxi-
mations of X and Xk. The constant c above does not depend on m so that we can
easily let m→∞ in this estimate and obtain the result.

4. Auxiliary lemmas

In this section, we state and prove technical lemmas used in the preceeding
section. Again, the various estimates used here could be difficult to justify rig-
orously on the infinite dimensional equation and we, in fact, work with Galerkin
approximations. Taking the limit m→∞ at the end of the proofs gives the results
rigorously.

The first two lemmas are very classical and we state them without proof.

Lemma 4.1. For any l ∈ N, there exists a constant cl such that

max
k=0,...,N

E(|Xk|l) ≤ cl(|x|l + 1).

Lemma 4.2. For any l ∈ N, there exists a constant c̃l such that

sup
t

E(|X(t, x)|) ≤ c̃l(|x|l + 1).

Lemma 4.3. For k = 0, . . . , N , Xkhas a Malliavin derivative. Moreover, for any
β ∈ [0, 1/4), there exists a constant c such that for k = 1, . . . , N , s ∈ [0, tk], we
have

t2βk−�s
E
(
|Dh

sXk|2β
)
≤ c|h|2, h ∈ H.

Proof. By (2.11) and the chain rule, we obtain the following formula for the Malli-
avin derivative of Xk:

Dh
sXk = Sk−�s

Δt σ(X�s)h+Δt
k−1∑

�=�s+1

Sk−�
Δt f ′(X�) ·Dh

sX�

+
√
Δt

k−1∑

�=�s+1

Sk−�
Δt (σ′(X�) ·Dh

sX�)χ�+1

for s ∈ [0, tk] and h ∈ H.
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By (2.12), (2.2),(2.3), and (2.4), we deduce for ε > 0,

E
(
|Dh

sXk|2β
)
≤ c

(

t−2β
k−�s

|h|2 +
(

Δt

k−1∑

�=�s+1

∣
∣(−A)βSk−�

Δt

∣
∣
L(H)

|f ′(X�)|L(H)

∣
∣Dh

sX�

∣
∣

)2

+Δt

k−1∑

�=�s+1

∣
∣(−A)βSk−�

Δt (σ′(X�) ·Dh
sX�)

∣
∣2
L2(H)

)

≤ c

(

t−2β
k−�s

|h|2 + L2
F

(

Δt

k−1∑

�=�s+1

t−β
k−�

∣
∣Dh

sX�

∣
∣

)2

+ LσΔt
k−1∑

�=�s+1

t
−1/2−ε−2β
k−�

∣
∣Dh

sX�)
∣
∣2
L2(H)

)

.

It is now easy to use a discrete Gronwall lemma to prove

max
l=�s+1,...,k

t2β�−�s
E
(
|Dh

sX�|2
)
≤ c|h|2. �

Lemma 4.4. Let ϕ ∈ C1
b (H,R). For any β < 1/2, there exists a constant cβ such

that for t > 0, x ∈ H,

|Du(t, x)|β ≤ cβt
−β‖ϕ‖1,

where u is defined in (3.4).

Proof. Differentiating (3.4), we obtain for h ∈ H,

Du(t, x) · h = E
(
Dϕ(X(t, x)) · ηh,x(t)

)

where ηh,x(t) is the solution of
⎧
⎨

⎩

dηh,x =
(
Aηh,x + f ′(X(t, x)) · ηh,x

)
dt+ σ′(X(t, x)) · ηh,xdW,

ηh,x(0) = h.

We rewrite this equation in the integral form

ηh,x(t) = S(t)h+

∫ t

0

S(t− s)f ′(X(s, x)) · ηh,x(s)ds

+

∫ t

0

S(t− s)σ′(X(s, x)) · ηh,x(s)dW (s), t ≥ 0.

By (2.4), (2.2), and (2.12), we have, for y, k ∈ H and α > 1/2:

|S(t)σ′(y) · k|L2(H) ≤ Lσ

∣
∣
∣(−A)−α/2

∣
∣
∣
L2(H)

∣
∣
∣(−A)α/2S(t)

∣
∣
∣
L(H)

|k| ≤ ct−α/2|k|.

Using (2.3) and then Cauchy-Schwarz inequality, we obtain

E

(∣
∣ηh,x(t)

∣
∣2
)
≤ c t−2β|h|2−β + L2

fE

((∫ t

0

|ηh,x(s)|ds
)2

)

+ E

∫ t

0

(t− s)−α
∣
∣ηh,x(s)

∣
∣2 ds

≤ c t−2β|h|2−β + c

∫ t

0

E(|ηh,x(s)|2)ds+ E

∫ t

0

(t− s)−α
∣
∣ηh,x(s)

∣
∣2)ds.
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It is classical that this implies

(4.1) sup
t∈[0,T ]

t2βE
(∣
∣ηh,x(t)

∣
∣2
)
≤ |h|2−β.

We deduce

|Du(t, x) · h| ≤ c‖ϕ‖1t−β |h|−β.

Taking the supremum over h yields the result. �

Lemma 4.5. Let ϕ ∈ C2
b (H,R). For any β, γ < 1/2, there exists a constant cβ,γ

such that for t > 0, x ∈ H,

|(−A)βD2u(t, x)(−A)γ|L(H) ≤ cβ,γt
−(β+γ)‖ϕ‖2,

where u is defined in (3.4).

Proof. We use the same notation as in the proof of Lemma 4.4. We differentiate a
second time (3.4) and obtain for h, k ∈ H,

D2u(t, x) · (h, k) = E
(
D2ϕ(X(t, x)) · (ηh,x(t), ηk,x(t))
+Dϕ(X(t, x)) · ζh,k,x(t)

)(4.2)

where ζh,k,x(t) is the solution of

⎧
⎪⎨

⎪⎩

dζh,k,x =
(
Aζh,k,x + f ′′(X(t, x)) · (ηh,x(t), ηk,x(t)) + f ′(X(t, x)) · ζh,k,x(t)

)
dt

+
(
σ′′(X(t, x)) · (ηh,x(t), ηk,x(t)) + σ′(X(t, x)) · ζh,k,x(t)

)
dW,

ζh,k,x(0) = 0.

We rewrite this equation in the integral form

ζh,k,x(t) =

∫ t

0

S(t− s)
(
f ′′(X(s, x)) · (ηh,x(s), ηk,x(s)) + f ′(X(s, x)) · ζh,k,x(s)

)
ds

+

∫ t

0

S(t− s)
(
σ′′(X(s, x)) · (ηh,x(s), ηk,x(s))

+σ′(X(s, x)) · ζh,k,x(s)
)
dW (s), t ≥ 0.

Using a similar argument as above and (2.5), we prove

E
(
|ζh,k,x(t)|2

)
≤ cE

(∫ t

0

|ηh,x(s)| |ηk,x(s)|+ |ζh,k,x(s)|ds
)2

+ cE

∫ t

0

(t− s)−α
(
|ηh,x(s)|2−1/4|ηk,x(s)|2−1/4 +|ζh,k,x(s)|2

)
ds, t ≥ 0.

(4.3)
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Proceeding as in Lemma 4.4, thanks to Burkholder inequality and then to
Minkowsky inequality, we have

E

(∣
∣ηh,x(t)

∣
∣4
)
≤ c t−4β|h|4−β + cE

((∫ t

0

|ηh,x(s)|ds
)4

)

+ E

((∫ t

0

(t− s)−α
∣
∣ηh,x(s)

∣
∣2 ds

)2
)

≤ c t−4β|h|4−β + c

(∫ t

0

(
E(|ηh,x(s)|4)

)1/4
ds

)4

+ c

(∫ t

0

(t− s)−α
(
E(|ηh,x(s)|4)

)1/2
ds

)2

.

Taking the square root of this inequality and using a generalized Gronwall lemma,
we deduce

(4.4) sup
t∈[0,T ]

t4βE
(∣
∣ηh,x(t)

∣
∣4
)
≤ c|h|4−β.

Similarly, we have

E(|ηh,x(t)|4−1/4) ≤ ct1−4β|h|4−β + cE

(∫ t

0

|ηh,x(s)|ds
)4

+ cE

(∫ t

0

(t− s)−α|ηh,x(s)|2ds
)2

≤ ct1−4β|h|4−β + c

(∫ t

0

E
(
|ηh,x(s)|4

)1/4
ds

)4

+ c

(∫ t

0

(t− s)−α
E
(
|ηh,x(s)|4

)1/2
ds

)2

.

Therefore, by (4.4),

(4.5) E(|ηh,x(t)|4−1/4) ≤ ct1−4β|h|4−β.

Plugging these inequalities and similar ones for ηk,x into (4.3) yields

sup
t∈[0,T ]

E

(∣
∣ζh,x(t)

∣
∣2
)
≤ c|h|2−β|h|2−γ .

The result follows easily using (4.4) and this inequality in (4.2). �

The following lemma is proved thanks to similar arguments.

Lemma 4.6. Let ϕ ∈ C3
b (H). For any β < 1/2, there exists a constant cβ such

that for t > 0, x ∈ H, h1 ∈ D((−A)β), h2 ∈ H, h3 ∈ H,

D3u(t, x) · ((−A)βh1, h2, h3) ≤ cβt
−β‖ϕ‖3|h1| |h2| |h3|,

where u is defined in (3.4).
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[14] I. Gyöngy, A. Millet, On discretization schemes for stochastic evolution equations, Potential
Analysis 23 (2005), no. 2, 99–134. MR2139212 (2006a:60115)
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