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MULTILEVEL PRECONDITIONING AND ADAPTIVE

SPARSE SOLUTION OF INVERSE PROBLEMS

STEPHAN DAHLKE, MASSIMO FORNASIER, AND THORSTEN RAASCH

Abstract. We are concerned with the efficient numerical solution of min-
imization problems in Hilbert spaces involving sparsity constraints. These
optimizations arise, e.g., in the context of inverse problems. In this work we
analyze an efficient variant of the well-known iterative soft-shrinkage algorithm
for large or even infinite dimensional problems. This algorithm is modified in
the following way. Instead of prescribing a fixed thresholding parameter, we
use a decreasing thresholding strategy. Moreover, we use suitable variants of
the adaptive schemes derived by Cohen, Dahmen and DeVore for the approx-
imation of the infinite matrix-vector products. We derive a block multiscale
preconditioning technique which allows for local well-conditioning of the un-
derlying matrices and for extending the concept of restricted isometry property
to infinitely labelled matrices. The combination of these ingredients gives rise
to a numerical scheme that is guaranteed to converge with exponential rate,
and which allows for a controlled inflation of the support size of the itera-
tions. We also present numerical experiments that confirm the applicability of
our approach which extends concepts from compressed sensing to large scale
simulation.

1. Introduction

In this paper we are concerned with the efficient minimization of functionals of
the type

(1.1) J(u) := Jα(u) :=
∥∥(K ◦ F )u− y

∥∥2
Y
+ 2‖u‖�1,α(I),

where K : X → Y is a bounded linear operator acting between two separable
Hilbert spaces X and Y , y ∈ Y is a given datum and F : �2(I) � u �→

∑
λ∈I uλψλ is

the synthesis operator of a prescribed countable basis or a tight frame Ψ := (ψλ)λ∈I

for X. For 1 ≤ p < ∞, the sequence norm ‖u‖�p,α(I) :=
(∑

λ∈I |uλ|pαλ

)1/p
is the
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usual norm for weighted p-summable sequences, with weight α = (αλ)λ∈I ∈ RI
+.

We denote A := K ◦ F .
Functionals of the type (1.1) may arise in the numerical treatment of linear

inverse problems

(1.2) y = Ku+ e,

where the data y may be corrupted by unknown noise e and u is expanded in
the basis Ψ. It was shown in [17] that penalization by the �1-norm term in the
functional J corresponds to a regularization scheme [20], and it promotes sparse
minimal solutions.

Our approach to approximate a minimizer u∗ of J is based on its characterization
by means of the fixed point equation

(1.3) u∗ = Sα

[
u∗ +A∗y −A∗Au∗],

which involves the soft thresholding operator defined componentwise by Sα(u)λ =
Sαλ

(uλ) and

(1.4) Sτ (x) =

⎧⎨
⎩

x− τ x > τ,
0 |x| ≤ τ,
x+ τ x < −τ.

In fact, several authors have independently proposed to use the associated fixed
point iteration

(1.5) u(n+1) = Sα

[
u(n) +A∗y −A∗Au(n)

]
to approximate minimizers u∗ of J (see [22, 36, 37, 19]), which is called the iterative
soft-thresholding algorithm or the thresholded Landweber iteration (ISTA). This is
our starting point and the reference iteration on which we want to work out several
improvements. Strong convergence of this algorithm was proved in [17], under the

assumption that ‖A‖ < 1 (actually, convergence can be shown also for ‖A‖ <
√
2

[9]; nevertheless, the condition ‖A‖ <
√
2 is by no means a restriction, since it can

always be met by a suitable rescaling of the functional J , in particular, of K, y,
and α). However, in several concrete circumstances, ISTA may converge slowly in
practice. Therefore, in order to end up with a fast recovery algorithm, it is helpful
to apply certain modifications. In this paper, we propose to apply a combination
of the following three key strategies:

(i) multilevel preconditioning ;
(ii) decreasing thresholding parameters ;
(iii) adaptivity.

1.1. Rate of convergence and local preconditioning. Let us start by address-
ing (i)multilevel preconditioning. Concerning the qualitative convergence properties

of iterative soft-thresholding, note first that the necessary condition ‖A‖ <
√
2 does

not guarantee contractivity of the iteration operator I − A∗A, since A∗A may not
be boundedly invertible. The insertion of Sα does not improve the situation since
Sα is only nonexpansive,

(1.6)
∥∥Sα(v)− Sα(w)

∥∥
�2(I) ≤ ‖v −w‖�2(I), for all v,w ∈ �2(I).
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Hence, for any minimizer u∗, the estimate

(1.7) ‖u∗−u(n+1)‖�2(I) ≤
∥∥(I−A∗A)(u∗−u(n))

∥∥
�2(I) ≤ ‖I−A∗A‖‖u∗−u(n)‖�2(I)

does not give rise to linear error reduction. However, under additional assumptions
on the operator A or on the minimizers u∗, linear convergence of (1.5) can be en-
sured. In particular, if A fulfills the so-called finite basis injectivity (FBI) condition
(see [3] where this terminology is introduced), i.e., for any finite set Λ ⊂ I, the re-
striction AΛ is injective, then (1.5) converges linearly to a minimizer u∗ of J . Here
AΛ shall denote the submatrix extracted from A by retaining only the columns
indexed in Λ. We also denote A∗A|Λ×Λ := A∗

ΛAΛ, the square submatrix extracting
from A only the entries indexed on Λ× Λ.

However, depending on the active set Λ, the matrix A∗A|Λ×Λ can be arbitrarily
badly conditioned, which would imply contraction rates γΛ close to 1 in the error
reduction ‖u∗ − u(n+1)‖�2(I) ≤ γΛ‖u∗ − u(n)‖�2(I) .

Our first improvement and contribution of this paper is to show that for several
FBI operatorsK and for certain choices of Ψ, the matrix A∗A can be preconditioned
by a matrix D−1/2, resulting in the matrix D−1/2A∗AD−1/2, in such a way that
any restriction (D−1/2A∗AD−1/2)Λ×Λ turns out to be well-conditioned as soon as
Λ ⊂ I is a small set, but independently of its “location” within I.

As a typical example, we consider injective (nonlocal) compact operators K with
Schwartz kernel having certain polynomial decay properties of the derivatives, i.e.,

Ku(x) =

∫
Ω

Φ(x, ξ)u(ξ)dξ, x ∈ Ω̃,

for Ω̃,Ω ⊂ R
d, u ∈ X := Ht(Ω), and

|∂α
x ∂

β
ξ Φ(x, ξ)| ≤ cα,β |x− ξ|−(d+2t+|α|+|β|), t ∈ R, and multi-indices α, β ∈ N

d.

Moreover, for the proper definition of the discrete matrix A∗A := F ∗K∗KF , we
will show that multiscale bases Ψ, such as wavelets, do a good job for us [14, 13, 15].

1.2. Iterative soft-thresholding with decreasing thresholding parameter.
We consider now (ii) decreasing thresholding parameters. In view of such local well-
conditioning, it becomes obvious that iterating on small sets Λ will also improve the
convergence rate. Unfortunately, the thresholded Landweber iteration (1.5) does
not iterate in general on small sets, but rather it starts iterating on relatively large
sets, slowly shrinking to the size of the support of the limit u∗; see Figure 6 and
Figure 7 below.

The second improvement and contribution of this paper is the proposal and the
proof of convergence of an algorithm which starts with large thresholding param-
eters α(n) and geometrically reduces them during the iterations to a target limit
α > 0,

(1.8) u(n+1) = Sα(n)

[
u(n) +A∗y −A∗Au(n)

]
.

This strategy promotes small supports of initial iterates, which are inflated during
the process. For matrices A for which the restrictions A∗A|Λ×Λ are uniformly well-
conditioned with respect to Λ of small size, our analysis provides also a prescribed
linear rate of convergence of the iteration (1.8). The strategy of choosing slowly
decreasing thresholding parameters is not at all new. Several other contributions,
for example [21], proposed similar approaches. However, none of them quantifies
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rigorously the convergence improvement by relating the rate of convergence with
the local conditioning of A∗A.

1.3. Adaptivity. Finally, we address (iii) adaptivity. In the case that A maps into
an infinite-dimensional space Y , e.g., when A is the forward solution operator from
a partial differential equation, the iteration (1.8) will not be exactly implementable.
Instead, one has to replace the exact applications of A and A∗ by suitable numerical
approximations. In particular, we assume that for any finitely supported vector
w ∈ �2(I), we are able to compute an approximation of A∗Aw. For this, we
will rely on the existence of a numerical routine APPLY[A∗A,w, ε] which, for
given input data w and ε > 0, outputs a finitely supported vector wε such that
‖A∗Aw−wε‖�2(I) ≤ ε. We refer, e.g., to [7, 28, 38], for concrete examples of such a
procedure, when the matrix A∗A can be assumed compressible [13, §9.5]; see Section
4. Moreover, we assume that there exists a routine RHS[A∗y, ε] which, for given
input data ε, outputs a finitely supported vector rε such that ‖A∗y − rε‖�2(I) ≤ ε.

Instead of (1.8), we will consider then the numerically implementable algorithm

(1.9) ũ(0) = 0, ũ(n+1) = Sα(n)

(
ũ(n) +RHS[A∗y, δn]−APPLY[A∗A, ũ(n), ξn]

)
,

n = 0, 1, . . . ,

with certain tolerances δn and ξn. Such an adaptive scheme was first proposed in the
context of sparse optimization and inverse problems in the paper [23], “borrowing a
leaf” from the analysis of adaptive schemes for well-posed problems [7, 8, 10, 12, 38];
in the present work we would like to extend those preliminary results and make them
more rigorous. More recent contributions, e.g., [2, 33], also adopted this idea and
proposed similar approaches.

Our third contribution is the proof of linear convergence of (1.9) when the matrix
A∗A has restrictions A∗A|Λ×Λ which are uniformly well-conditioned with respect
to small active sets Λ.

1.4. Outline of the paper. In Section 2 we collect a few technical results on sparse
and compressible vectors as well as on properties of the soft-thresholding operator.
Section 3 is dedicated to the analysis of the decreasing iterative soft-thresholding
algorithm when both exact and adaptive matrix-vector multiplications are involved
and local well-conditioning of the matrix A∗A is assumed. In Section 4 we address
the issue of multiscale preconditioning and we show that for a large class of operators
it is possible to choose a multiscale basis for which the resulting discretization
matrices can be locally preconditioned by simple block-diagonal preconditioners.
In Section 5 we clarify how preconditioning can be used in ill-posed problems and
how we can take advantage of the sparsity of minimal solutions and of adaptive
matrix-vector multiplications in order to avoid topological issues. Since our results
on the efficiency of the proposed strategy depend on the sparsity of the minimal
solution, in Section 6 we quantify how the support size of minimal solutions may
increase as the thresholding parameter α is made smaller and smaller. We conclude
the paper with Section 7 where we show numerical results which demonstrate and
confirm the theoretical achievements of the previous sections.

This paper is significantly reduced with respect to its original preprint version
[11], and we refer the interested reader to it for more details and a broader discus-
sion.
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2. Technical lemmas

We are particularly interested in computing approximations with the smallest
possible number of nonzero entries. As a benchmark, we recall that the most
economical approximations of a given vector v ∈ �2(I) are provided by the best
N-term approximations vN , defined by discarding in v all but the N ∈ N0 largest
coefficients in absolute value. The error of best N -term approximation is defined
as

(2.1) σN (v) := ‖v − vN‖�2(I).
The subspace of all �2 vectors with best N -term approximation rate s > 0, i.e.,

σN (v) � N−s for some decay rate s > 0, is commonly referred to as the weak �τ
space �wτ (I), for τ = (s+ 1

2 )
−1, which, endowed with

(2.2) ‖v‖�wτ (I) := sup
N∈N0

(N + 1)sσN (v),

becomes the quasi-Banach space (�wτ (I), ‖·‖�wτ (I)). Moreover, for any 0 < ε ≤ 2−τ ,
we have the continuous embedding �τ (I) ↪→ �wτ (I) ↪→ �τ+ε(I), justifying why �wτ (I)
is called weak �τ (I) (note that τ < 2 by definition).

When it comes to the concrete computations of good approximations with a
small number of active coefficients, one frequently utilizes certain thresholding pro-
cedures. Here small entries of a given vector are simply discarded, whereas the
large entries may be slightly modified. In this paper, we will make use of soft-
thresholding that we already introduced in (1.4). It is well known (see [17]), that
Sα is non-expansive for any α ∈ R

I
+. Moreover, for any fixed x ∈ R, the mapping

τ �→ Sτ (x) is Lipschitz continuous with

(2.3)
∣∣Sτ (x)− Sτ ′(x)

∣∣ ≤ |τ − τ ′|, for all τ, τ ′ ≥ 0.

We readily infer the following technical estimate (for the detailed proof we refer the
reader to [11], which is an extended preprint version of this paper).

Lemma 2.1. Assume v ∈ �2(I), α, β ∈ R
I
+ such that ᾱ = infλ αλ = infλ βλ = β̄ >

0, and define Λᾱ(v) :=
{
λ ∈ I : |vλ| > ᾱ

}
. Then

(2.4)
∥∥Sα(v)− Sβ(v)

∥∥
�2(I) ≤

(
#Λᾱ(v)

)1/2

max
λ∈Λᾱ(v)

|αλ − βλ|.

Let v ∈ �wτ (I), it is well known [18, §7] that
(2.5) #Λᾱ(v) ≤ C(τ )‖v‖τ�wτ (I)ᾱ

−τ ,

and, for αλ = ᾱ for all λ ∈ I, we have

(2.6)
∥∥v − Sα(v)

∥∥
�2(I)

≤ C(τ )‖v‖τ/2�wτ (I)ᾱ
1−τ/2,

where C(τ ) > 0 may depend on τ . Let v ∈ �0(I) :=
⋂

τ>0 �
w
τ (I) the set of finitely

supported vectors, and ‖v‖�0 := # suppv < ∞. Then we have the straightforward
estimate

(2.7) #Λᾱ(v) ≤ ‖v‖�0
and, for αλ = ᾱ for all λ ∈ I, we have

(2.8)
∥∥v − Sα(v)

∥∥
�2(I) ≤ ‖v‖1/2�0

ᾱ,
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which is easily shown by a direct computation. In the sequel, we shall also use the
following support size estimate, whose proof follows the lines of [7, Lemma 5.1],
more details are provided in [11].

Lemma 2.2. Let v ∈ �wτ (I) and w ∈ �2(I) with ‖v − w‖�2(I) ≤ ε. Assume

α = (αλ)λ∈I ∈ RI
+ and infλ αλ = ᾱ > 0. Then it holds that

(2.9) # supp Sα(w) ≤ #Λᾱ(w) ≤ 4ε2

ᾱ2
+ 4C‖v‖τ�wτ (I)ᾱ

−τ ,

where C = C(τ ) > 0. In particular, if v ∈ �0(I), then the estimate is refined:

(2.10) # supp Sα(w) ≤ #Λᾱ(w) ≤ 4ε2

ᾱ2
+ ‖v‖�0(I).

3. Adaptive iterative soft-thresholding

In this section we address first the analysis of the iteration (1.8) where exact
matrix-vector multiplications involving A∗A are assumed to be realizable. In order
to ensure a linear rate of convergence of the algorithm to a minimizer u∗, we will
use spectral conditions on A∗A, the so-called Restricted Isometry Property, a well-
known concept from compressed sensing problems [4, 5]. In the second part of the
section, we address the problem of the use of such iteration when inexact applica-
tions of the matrix A∗A are necessary and we provide again a detailed analysis of
the rate of convergence.

3.1. A variant of iterative soft-thresholding. In the case of exact operator

evaluations and threshold parameters α, α(n) ∈ R
I
+, where α

(n) ≥ α, i.e., α
(n)
λ ≥ αλ

for all λ ∈ I, and ᾱ = infλ∈I αλ > 0, we consider the iteration

(3.1) u(0) = 0, u(n+1) = Sα(n)

[
u(n) +A∗(y −Au(n))

]
, n = 0, 1, . . .

which we call, as α
(n)
λ ≥ α

(n+1)
λ for all λ ∈ I, the decreasing iterative soft-

thresholding algorithm (D-ISTA).
For obtaining a controlled liner rate of convergence, we shall need the following

spectral condition on a bounded linear operator A : �2(I) → Y . We say that A has
the Restricted Isometry Property (RIP) of order k if there is a 0 < γk < 1 such that

(3.2) (1− γk)‖uΛ‖2�2 ≤ ‖AΛuΛ‖2Y ≤ (1 + γk)‖uΛ‖2�2
for all uΛ ∈ �2(Λ) with Λ ⊂ I, and #Λ ≤ k. This property essentially requires that
every set of columns with cardinality less than k is approximately an orthonormal
system.

For our purposes, the following characterization of the RIP is of particular im-
portance; see [4, Definition 1.2].

Proposition 3.1. The following conditions are equivalent for A ∈ L(�2(I), Y ):

(i) A has the RIP property of order k and constant γk.
(ii) For all Λ ⊂ I with #Λ ≤ k, the symmetric matrix A∗A|Λ×Λ is positive

definite with eigenvalues in [1− γk, 1 + γk].
(iii) For all Λ ⊂ I with #Λ ≤ k, it holds that ‖(I −A∗A)|Λ×Λ‖ ≤ γk.

We are now in the position to state the convergence result for D-ISTA in the
case of exact operator evaluations.
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Theorem 3.2. Let ‖A‖ <
√
2 and ū := (I − A∗A)u∗ + A∗y ∈ �wτ (I) for some

0 < τ < 2. Moreover, let L = L(α) :=
4‖u∗‖2

�2(I)

ᾱ2 + 4C‖ū‖τ�wτ (I)ᾱ
−τ , and assume

that A fulfills the RIP of order 2L + #suppu∗ with constant 0 < γ0 < 1. Then,
for any γ0 ≤ γ < 1, the iterates u(n) from (3.1) fulfill #suppu(n) ≤ L and they
converge to u∗ at a linear rate

(3.3) ‖u∗ − u(n)‖�2(I) ≤ γn‖u∗‖�2(I) =: εn

whenever the α(n) are chosen according to

(3.4) αλ ≤ α
(n)
λ ≤ αλ + (γ − γ0)L

−1/2εn, for all λ ∈ I.

Remark 3.3. The RIP may seem restrictive, nevertheless, in Section 4 we will show
how to obtain such property, for the cases when it fails, by suitable preconditioning
strategies.

Proof of Theorem 3.2. We develop the proof by induction. For the initial iterate,
we have u(0) = 0, so that # suppu(0) ≤ L and (3.3) is trivially true. Assume
as an induction hypothesis that S(n) := suppu(n) is such that #S(n) ≤ L, and
‖u∗ − u(n)‖�2(I) ≤ εn. Abbreviating w(n) := u(n) + A∗(y − Au(n)), by ‖A∗A‖ ≤ 2
and the induction hypothesis, it follows that

‖ū−w(n)‖�2(I) =
∥∥(I −A∗A)(u∗ − u(n))

∥∥
�2(I) ≤ ‖u∗ − u(n)‖�2(I) ≤ εn.

Hence, using (2.9), we obtain the estimate

(3.5) #S(n+1) = #supp Sα(n)(w(n)) ≤ #Λᾱ(w
(n)) ≤ 4ε2n

ᾱ2
+ 4C‖ū‖τ�wτ (I)ᾱ

−τ ≤ L.

Since also #S(n) ≤ L by induction hypothesis, the set Λ(n) := S(n) ∪ S(n+1) has
at most 2L elements. Let us abbreviate S := suppu∗. By assumption, (I −
A∗A)|S∪Λ(n)×S∪Λ(n) is contractive with constant γ0. Using the identities

u∗
S∪Λ(n) = Sα(ūS∪Λ(n)) = Sα

(
u∗
S∪Λ(n) +A∗

S∪Λ(n)(y −AS∪Λ(n)u∗
S∪Λ(n))

)
and

u
(n+1)

S∪Λ(n) = Sα(n)(w
(n)

S∪Λ(n)) = Sα(n)

(
u
(n)

S∪Λ(n) +A∗
S∪Λ(n)(y −AS∪Λ(n)u

(n)

S∪Λ(n))
)
,

it follows from (1.6), (2.4), (1.7), and α(n) ≥ α that

‖u∗ − u(n+1)‖�2(I) =
∥∥Sα(ūS∪Λ(n))− Sα(n)(w

(n)

S∪Λ(n))
∥∥
�2(S∪Λ(n))

≤
∥∥Sα(ūS∪Λ(n))− Sα(w

(n)

S∪Λ(n))
∥∥
�2(S∪Λ(n))

+
∥∥Sα(w(n)

S∪Λ(n))− Sα(n)(w
(n)

S∪Λ(n))
∥∥
�2(S∪Λ(n))

≤
∥∥(I −A∗A|S∪Λ(n)×S∪Λ(n))(u∗ − u(n))S∪Λ(n)

∥∥
�2(S∪Λ(n))

+
(
#Λᾱ(w

(n))
)1/2

max
λ∈Λᾱ(w(n))

|αλ − α
(n)
λ |

≤ γ0εn +
(
#Λᾱ(w

(n))
)1/2

max
λ∈Λᾱ(w(n))

|αλ − α
(n)
λ |.

Using (3.5) we obtain ‖u∗ − u(n+1)‖�2(I) ≤ γ0εn +
√
Lmaxλ∈Λᾱ(w(n)) |α

(n)
λ − αλ|,

and, since the α(n) are chosen according to (3.4), the claim follows. �
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3.2. Iterative thresholding with inexact operator evaluations. In the case
of A being, e.g., the forward solution operator from a partial differential equation,
iteration (3.1) will not be implementable as it is. Instead, one will have to replace
the applications of A and A∗ by suitable approximations. Instead of (3.1), we may
then consider the implementable algorithm

(3.6) ũ(0) = 0, ũ(n+1) = Sα(n)

(
ũ(n) +RHS[A∗y, δn]−APPLY[A∗A, ũ(n), ξn]

)
,

n = 0, 1, . . . ,

with certain tolerances δn and ξn, where the numerical routines APPLY and RHS
are introduced in Section 1.3. We call this iteration the adaptive iterative soft-
thresholding algorithm (A-ISTA). As we shall see, the proof of Theorem 3.2 still
works also in the case of inexact operator evaluations.

Proposition 3.4. Let ‖A‖ <
√
2 and let ū := (I − A∗A)u∗ + A∗y ∈ �wτ (I) for

some 0 < τ < 2. Assume 0 < γ0 ≤ γ < γ̃ < 1 and ρ ≥ 1
1− γ

γ̃
, i.e., γ

γ̃ + 1
ρ ≤ 1.

Moreover, let L̃ = L̃(α) :=
4(1+γ̃/ρ)‖u∗‖2

�2(I)

ᾱ2 + 4C‖ū‖τ�wτ (I)ᾱ
−τ , and assume that

A fulfills the RIP of order 2L̃ + #suppu∗ with constant γ0. If δn = ξn = ε̃n+1

2ρ ,

ε̃n = γ̃n‖u∗‖�2(I), and the α(n) are chosen according to

(3.7) αλ ≤ α
(n)
λ ≤ αλ + (γ − γ0)L

−1/2ε̃n, for all λ ∈ I,
then the iterates (3.6) fulfill

(3.8) # supp ũ(n) ≤ L̃ and ‖u∗ − ũ(n)‖�2(I) ≤ ε̃n.

Proof. Since ũ(0) = 0 and ε̃0 = ‖u∗‖�2(I), we only discuss the n-th iteration

step. Setting w(n) := (I − A∗A)ũ(n) + A∗y and w̃(n) := ũ(n) + RHS[ ε̃n+1

2ρ ] −
APPLY[A∗A, ũ(n), ε̃n+1

2ρ ], from ‖A∗A‖ ≤ 2 and the induction hypothesis it fol-

lows that ‖ū − w̃(n)‖�2(I) ≤
∥∥(I − A∗A)(u∗ − ũ(n))

∥∥
�2(I) +

ε̃n+1

ρ ≤ (1 + γ̃
ρ )ε̃n, and

‖ū − w(n)‖�2(I) ≤
∥∥(I − A∗A)(u∗ − ũ(n))

∥∥
�2(I)

≤ ε̃n. By an application of (2.9)

we obtain # supp ũ(n+1) = #supp Sα(n)(w̃(n)) ≤ 4
(
(1+γ̃/ρ)ε̃n

)2

ᾱ2 +4C‖ū‖τ�wτ ᾱ
−τ ≤ L̃,

and similarly # supp Sα(n)(w(n)) ≤ L ≤ L̃. As in Theorem 3.2, we can restrict the
iterations on small sets of entries, so that the local contractivity of I − A∗A and
(3.7) imply ‖u∗ − Sα(n)(w(n))‖�2(I) ≤ γε̃n. The claim finally follows from

‖u∗ − ũ(n+1)‖�2(I) ≤
∥∥u∗ − Sα(n)(w(n))

∥∥
�2(I) +

∥∥Sα(n)(w(n))− Sα(n)(w̃(n))
∥∥
�2(I)

≤ γε̃n + ε̃n+1

ρ = (γγ̃ + 1
ρ)ε̃n+1 ≤ ε̃n+1. �

4. A multilevel preconditioning

In Section 3, the convergence analysis of A-ISTA was done under the assump-
tion of the Restricted Isometry Property. Unfortunately, for compact operators
in Hilbert spaces, this assumption fails to hold in general. Indeed, anytime we
represent such operators with respect to a quasi-diagonalizing basis (which is the
one we would prefer in order to maximally sparsify the matrix), then the diagonal
entries of the resulting matrix will decay according to the behavior of the spectrum
of the operator. As a remedy, we suggest a rescaling strategy which essentially
consists of a block-diagonal preconditioning of certain classes of such operators,



PRECONDITIONING AND SPARSE SOLUTION OF INVERSE PROBLEMS 427

which include several concrete and interesting cases (see §4.2). Note that in general
a block-diagonal preconditioning is indeed usually quite effective when the matrix
representation of an operator with respect to a given basis is diagonal dominant,
with diagonal entries decreasing to zero.

4.1. Block-diagonal preconditioning implies a Restricted Isometry Prop-
erty for nfinite matrices. Throughout this section, we have to be more specific
concerning the operator K and the generating system Ψ = (ψλ)λ∈I . Typically, we
shall be concerned with the following situation. Let us assume that the Hilbert
space X and its dual X ′, together with L2(Ω), Ω ⊂ Rd, form a Gelfand triple

(4.1) X ⊂ L2(Ω) ⊂ X ′

and that the operator K is a bounded linear operator from X ′ to L2(Ω). Then,
the operator K∗K is a well-defined bounded operator from X ′ to X. Moreover, we
assume that the generating system is given by a compactly supported basis or a frame
of wavelet type [6, §2.12] for L2(Ω). In this case, the index λ = (j, k, e) typically
encodes several types of information, namely the scale j ∈ Z, often denoted by |λ|,
the spatial location k, and the type of the wavelet indexed by e. In the following
we assume that we can label k ∈ Zd, exclusively for simplifying the analysis, which
is in general a legitimate assumption for Ω = [0, 1]d, whereas for more complex
domains one can reconduct the analysis to such latter situation, by using suitable
decompositions and transformations; see, e.g., [6]. Within this setting, we shall
make the following technical assumptions:

• The entries in the stiffness matrix of K∗K satisfy the following decay esti-
mate,

(4.2)
∣∣〈K∗Kψλ, ψμ〉

∣∣ ≤ c1
2−s||λ|−|μ||2−σ(|λ|+|μ|)(

1 + 2min(|λ|,|μ|)dist(Ωμ,Ωλ)
)r

where c1, s, σ, r ∈ R+, r > d and Ωμ denotes the support of ψμ.
• For the diagonal entries, i.e., for μ = λ, we require an additional estimate
from below:

(4.3)
∣∣〈K∗Kψλ, ψλ〉

∣∣ ≥ c22
−2σ|λ|.

• For the same scale, i.e., for |μ| = |λ|, λ = (|λ|, k, e), μ = (|λ|, k′, e′), we
assume that

(4.4)
∣∣〈K∗Kψλ, ψμ〉

∣∣ ≤ c3
2−2σ|λ|(

1 + ‖k − k′‖
)r .

Remark 4.1. i) At first sight, the conditions (4.2), (4.3) and (4.4) seem to be rather
restrictive. However, in §4.2 we present some concrete examples for which
condition (4.2) is indeed satisfied, whereas the others may be checked case
by case.

ii) For the special case σ = 0, the estimate (4.2) usually holds for zero order
operators with Schwartz kernels. The parameters s and r depend on the
smoothness of the wavelet basis, the mapping properties of the underlying
operator, and on the number of vanishing moments of the wavelet basis.
Typically, increasing the smoothness and the number of vanishing moments
produces larger values of r and s. We refer to [13] for details.

With the assumptions above, we can now prove the following theorem.
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Theorem 4.2. Let A∗A = F ∗K∗KF = (〈K∗Kψλ, ψμ〉)λ,μ∈I denote the stiff-
ness matrix of K∗K. Let Db

j = (〈K∗Kψλ, ψμ〉)|λ|=|μ|=j denote the diagonal block

of A∗A corresponding to the refinement level j, and let Db denote the block di-
agonal matrix Db = (Db

0, D
b
1, . . .). Suppose that (4.2), (4.3), and (4.4) are sat-

isfied with c2 > c3
dτd
r−d and τd = πd/2

Γ(d/2+1) . Then there exists a constant C =

C(c1, c2, c3, r, d) such that for each finite set Λ ⊂ I with |Λ| < 2sC−1 the sub-
matrix ((Db)−1/2A∗A(Db)−1/2)|Λ×Λ satisfies

(4.5)
∥∥(I − (Db)−1/2A∗A(Db)−1/2)|Λ×Λ

∥∥ < C2−s|Λ| < 1

and

(4.6) K
(
(Db)−1/2A∗A (Db)−1/2|Λ×Λ

)
≤ 1 + C 2−s|Λ|

1− C 2−s|Λ| .

Remark 4.3. (1) Obviously, Theorem 4.2 implies that for increasing values of s
(which can, e.g., be achieved by increasing the smoothness of the wavelet
basis), larger index sets Λ can be used. We have been purposely not very
precise concerning the concrete value of C, because it is difficult to evaluate,
and Theorem 4.2 is based on Gerschgorin’s theorem which is well known to
give highly suboptimal results; see [34, Section 2.5]. In Figure 2 below, we
show that the proposed preconditioning strategy works in practice also for
quite large index sets Λ.

(2) In the proof of Theorem 4.2, we will ignore the dependence on the type of
the wavelets, i.e., on the parameter e, since this dependence only produces
an additional constant.

(3) The use of a diagonal preconditioner works as well in practice; see §7.0.1
and Figure 2. Unfortunately, Gerschgorin’s theorem is too pessimistic in
this case to allow for an estimate of the type (4.5).

Proof of Theorem 4.2. The proof is essentially based on Gerschgorin’s theorem; see,
e.g., [25, Theorem 7.2.1]. The first step is to estimate the decay of the entries of
(Db

j)
−1/2. To this end, we will use the following theorem which has been proved by

Jaffard [29]; see [29, formula (7)] in particular.

Theorem 4.4. Let A = (ak,k′)k,k′∈Zd be a symmetric matrix satisfying ‖A‖ < 1
and

(4.7) |ak,k′ | ≤ c4(
1 + ‖k − k′‖

)r .
Then the entries of B = (bk,k′)k,k′∈Zd , B = A−1 satisfy

(4.8) |bk,k′ | ≤ c5 λmin(A)−1(
1 + ‖k − k′‖

)r .
Moreover, the entries of B1/2 = (b

1/2
k,k′)k,k′∈Zd satisfy

(4.9) |b1/2k,k′ | ≤
c6 λmin(A)−1/2(
1 + ‖k − k′‖

)r .
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To apply Theorem 4.4, we need to estimate the minimal eigenvalue of the j-th
diagonal block Db

j =: (djk,k′)k,k′∈Zd . Gerschgorin’s theorem tells us that

λmin(D
b
j) ≥ min

{
djk,k −

∑
k′ �=k

|djk,k′ |
}
.

By using (4.3), (4.4), and
∑

k′ �=k
1

(1+‖k−k′‖)r ≤
∫
‖x‖≥1

1
‖x‖r dx ≤ dτd

r−d , we obtain

djkk −
∑

k′ �=k |d
j
k,k′ | ≥

(
c2 − c3

∑
k′ �=k

1(
1+‖k−k′‖

)r

)
2−2σj ≥

(
c2 − c3

dτd
r−d

)
2−2jσ =:

c7 2
−2σj . Consequently, by (4.9), we get for (Db

j)
−1/2 = (d̃jk,k′) the estimate

(4.10) |d̃jk,k′ | ≤
c8 2

σj(
1 + ‖k − k′‖

)r .
The next step is to estimate individual entries of (Db)−1/2A∗A(Db)−1/2. For sim-
plicity, let us assume that |μ| > |λ|. We get∣∣((Db)−1/2A∗A(Db)−1/2)λ,μ

∣∣ = ∣∣∣ ∑
|λ′|=|λ|

(Db)
−1/2
λ,λ′

∑
|μ′|=|μ|

(A∗A)λ′,μ′(Db)
−1/2
μ′,μ

∣∣∣
≤

∑
|μ′|=|μ|

∑
|λ′|=|λ|

∣∣(Db)
−1/2
λ,λ′

∣∣∣∣(A∗A)λ′,μ′
∣∣∣∣(Db)

−1/2
μ′,μ

∣∣.
Recall that for compactly supported wavelets suppψλ ⊂ 2−|λ|k + 2−|λ|Q, where Q
is a suitable cube centered at the origin [6, §2.12]. Combining this observation with
(4.10), (4.2) and the fact that |μ| > |λ|, we obtain by setting λ′ = (|λ|, k′), μ′ =
(|μ|, l′),∣∣((Db)−1/2 A∗A (Db)−1/2)λ,μ

∣∣
≤ c9

∑
|μ′|=|μ|

∑
k′

2σ|λ|(
1 + ‖k − k′‖

)r 2−s||λ|−|μ||2−σ(|λ|+|μ|)(
1 + 2|λ|‖2−|λ|k′ − 2−|μ|l′‖

)r (Db)
−1/2
μ′,μ

≤ c9
∑

|μ′|=|μ|

∑
k′

2−s||λ|−|μ||2−σ|μ|(
1 + ‖k − k′‖)r

(
1 + ‖k′ − 2−|μ|+|λ|l′‖

)r (Db)
−1/2
μ′,μ .

Invoking the fact that the matrices satisfying (4.7) form an algebra (see again [29]),
and using (4.10) for another time yields

(4.11)

∣∣((Db)−1/2A∗A(Db)−1/2)λ,μ
∣∣

≤
∑
l′

c102
−s||λ|−|μ||2−σ|μ|(

1 + ‖k − 2−|μ|+|λ|l′‖
)r c8 2

σ|μ|(
1 + ||l′ − l||

)r
≤ c10c82

−s||λ|−|μ||
∑
l′

1(
1 + ‖k − 2−|μ|+|λ|l′‖

)r(
1 + ‖l′ − l‖

)r
≤ c10c82

−s||λ|−|μ||
∑
l′

1(
1 + ‖l′ − l‖

)r ≤ C2−s||λ|−|μ||.

The case |λ| < |μ| can be treated similarly, hence∣∣((Db)−1/2A∗A(Db)−1/2)λ,μ
∣∣ ≤ C2−s, |λ| �= |μ|.

Now another application of Gerschgorin’s theorem yields

λmin

(
(Db)−1/2A∗A(Db)−1/2|Λ×Λ

)
≥ 1− C2−s|Λ|
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and

λmax

(
(Db)−1/2A∗A(Db)−1/2|Λ×Λ

)
≤ 1 + C2−s|Λ|.

Consequently,∥∥(I−(Db)−1/2A∗A(Db)−1/2)|Λ×Λ

∥∥
= 1− λmin((I − (Db)−1/2A∗A(Db)−1/2)|Λ×Λ) ≤ C2−s|Λ| < 1,

and

K
(
(Db)−1/2A∗A(Db)−1/2|Λ×Λ

)
=

λmax

(
(Db)−1/2A∗A(Db)−1/2|Λ×Λ

)
λmin

(
(Db)−1/2A∗A(Db)−1/2|Λ×Λ

)
≤ 1 + C2−s|Λ|

1− C2−s|Λ| . �

Remark 4.5. Note that from (4.11) we have also (for |λ| < |μ|),∣∣((Db)−1/2A∗A(Db)−1/2)λ,μ
∣∣

≤ C2−s||λ|−|μ||
∑
l′

1(
1 + ‖k − 2−|μ|+|λ|l′‖

)r(
1 + ‖l′ − l‖

)r
≤ C2−s||λ|−|μ||

∫
Rd

1(
1 + ‖k − 2−|μ|+|λ|x‖

)r(
1 + 2−|μ|+|λ|‖x− l‖

)r dx
= C2−s||λ|−|μ||2d||λ|−|μ||

∫
Rd

1(
1 + ‖k − ξ‖

)r(
1 + ‖ξ − 2−|μ|+|λ|l‖

)r dξ
≤ C

2(d−s)||λ|−|μ||(
1 + 2min{|λ|,|μ|}‖2−|λ|k − 2−|μ|l‖

)r .
This means that for s > d, the preconditioned matrix ((Db)−1/2A∗A(Db)−1/2) is
a zero-order operator; see the details in [13, formula (9.4.10)]. In particular, this
matrix is compressible in the sense described in [13, §9.5]. For such matrices, an
efficient APPLY routine, as required in §3.2, is provided; see [7, 38, 24].

4.2. Operators which allow for an effective block-diagonal precondition-
ing. In this section, we are concerned with a class of integral operators that fulfill
(4.2) and therefore give rise to suitable preconditioning techniques.

In the Gelfand triple (4.1), let X be a Sobolev space on a domain or a closed
manifold Ω ⊂ R

d, i.e., X = Ht(Ω), X ′ = H−t(Ω). We consider a bounded operator
S : H−t(Ω) −→ Ht(Ω) of the form

(4.12) (Su)(x) =

∫
Ω

Φ(x, ξ)u(ξ) dξ, x ∈ Ω,

where we assume that the kernel Φ is of Schwartz type, i.e,

(4.13)
∣∣∂α

x ∂
β
ξ Φ(x, ξ)

∣∣ ≤ cα,β‖x− ξ‖−(d+2t+|α|+|β|),

t ∈ R, and multi-indices α, β ∈ N
d,

and smooth off the main diagonal. The classical layer potential operators, such
as the single and double layer potentials, fall into this category. Further cases are
discussed in more detail in [11]. We are interested in solving operator equations of
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the form Su = f . In practice, due to noisy data, it might happen that the right–
hand side is not contained in Ht(Ω), but only in L2(Ω). Therefore, we consider the
problem

(4.14) Ku = f ∈ L2(Ω), Ku(x) =

∫
Ω

Φ(x, ξ)u(ξ) dξ, x ∈ Ω.

We changed purposely the symbol S → K of the operator in order to point out
its different action, in particular, its image space. We want to discretize (4.14) by
means of a tight wavelet frame (ψλ)λ∈I on Ω for which the following cancellation
property [13, formula 9.3.4], [35] holds:∣∣∣∣

∫
Ω

φ(ξ)ψλ(ξ) dξ

∣∣∣∣ ≤ c0,β2
−|λ|(d/2+d∗+1)‖φ‖W∞,d∗+1(Ωλ).

It can be shown that if (4.13) holds, then the decay of the entries 〈Kψλ′ , ψλ〉 is
typically governed by the following basic estimate,

(4.15) 2(|λ
′|+|λ|)t∣∣〈Kψλ′ , ψλ〉

∣∣ ≤ C
2−η||λ|−|λ′||(

1 + 2min(|λ|,|μ|)dist(Ωλ′ ,Ωλ)
)d+2m−2t

,

where η depends on the mapping properties of S and the smoothness of the wavelet
frame whereas m is related with the number of vanishing moments d∗; see, e.g.
[15, 16, 35] for details. Equation (4.15) means that the matrix (2(|λ

′|+|λ|)t)|〈Kψλ′ ,
ψλ〉|))λ,λ′∈I is contained in the Lemarié algebra M which is the class of all matrices
N = (nλ,λ′)λ,λ′∈I such that

(4.16) |nλ,λ′ | ≤ C
2−η||λ|−|λ′||(

1 + 2min(|λ|,|μ|)dist(Ωλ′ ,Ωλ)
)r , for all λ, λ′ ∈ I,

for some constant C and suitable parameters r > d and η > d/2. We refer to [30]
for further information concerning this class. Due to the usual norm equivalences of
wavelet bases or frames, the discretization of (4.14) leads to the following biinfinite
matrix equation on �2:

(4.17) (F ◦K ◦ F ∗ ◦D−1)u = F (f),

where D = diag(2−t|λ|, λ ∈ I) and F denotes the analysis operator associated with
the tight frame, i.e.,

F (v) :=
(
〈v, ψλ〉

)
λ∈I .

We refer to [10] for details. Now the fundamental estimate (4.15) implies that

D−1 ◦ F ◦K ◦ F ∗ ◦D−1 = M ∈ M
and hence

F ◦K ◦ F ∗ ◦D−1 = DM.

The Lemarie algebra is stable under taking adjoints; therefore,

D−1 ◦ F ◦K∗ ◦ F ∗D−1 = M∗ ∈ M.

Since we are working with a tight frame, this yields:

D−1 ◦
(
〈K∗Kψλ′ , ψλ〉

)
λ,λ′∈I ◦D−1 = D−1 ◦ F ◦K∗K ◦ F ∗ ◦D−1

= (D−1 ◦ F ◦K∗ ◦ F ∗) ◦ (F ◦K ◦ F ∗ ◦D−1)

= M∗DDM.(4.18)
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Since DD = diag(22t|λ|, λ ∈ I), we may estimate |(M∗DDM)λ,λ′ | ≤ |(M∗M)λ,λ′ |,
being M∗,M ∈ M, also the product M∗M ∈ M, maybe with slightly smaller
parameters r′ < r and η′ < η. Altogether, we arrive at

|〈K∗Kψλ′ψλ〉| ≤ C ′ 2−η′||λ|−|λ′||2−2t(|λ′|+|λ|)(
1 + 2min(|λ|,|μ|)dist(Ωλ′ ,Ωλ)

)r′ , for all λ, λ′ ∈ I,

i.e., (4.2) holds.

5. Reduction to a finite dimensional problem

5.1. Reformulation of the problem after preconditioning. In this section
we would like to show how preconditioned matrices can be indeed employed in the
adaptive iteration (3.6). We start first by reformulating the functional J as follows:

J(u) = ‖Au− y‖2Y + 2α‖u‖�1(I)
= ‖AD−1/2 D1/2u︸ ︷︷ ︸

:=z

−y‖2Y + 2α‖D−1/2 D1/2u︸ ︷︷ ︸
:=z

‖�1(I)

= ‖AD−1/2z− y‖2Y + 2α‖D−1/2z‖�1(I) := JD(z).

Hence,

argmin
u∈�2(I)

J(u) = D−1/2

(
argmin

z∈D1/2�2(I)
JD(z)

)
.

Here, we assume thatD1/2 : �2(I) → D1/2�2(I) is a suitable preconditioning matrix
which has a well-defined formal inverse D−1/2 on its imageD1/2�2(I). Moreover, we
also assume that this matrix D1/2 is symmetric, block-diagonal, diagonal dominant,
in the sense that ‖D−1/2z‖�1(I) ∼ ‖ diag(D−1/2)z‖�1(I) for all z ∈ �0(I) such that
|z|�0(I) ≤ κ, and with positive diagonal elements decreasing to zero, so that the di-

agonal entries of its inverse D−1/2 do increase to infinity. Moreover, since the treat-
ment of the term ‖D−1/2z‖�1(I) can be difficult in practice, for the sake of simplicity

we may want to exploit the approximation ‖D−1/2z‖�1(I) ∼ ‖ diag(D−1/2)z‖�1(I),
and, with a slight abuse, we redefine

JD(z) := ‖AD−1/2z− y‖2Y + 2‖z‖�
1,α diag(D−1/2)

(I),

which is again in the form (1.1). The use of a diagonal preconditioner is also justified
by the numerical evidences we report in §7.0.1 and Figure 2.

We provided examples of such matrices D1/2 in §4, and we have also observed in
Remark 4.5 that, when used, they produce preconditioned matricesD−1/2A∗AD−1/2

which represent zero-order operators. In particular, in these cases, D−1/2A∗AD−1/2

is a bounded operator on �2(I), so we will consider it throughout this section. How-
ever, in our discussion we will not be too concerned with the topology where the
minimization argminz J

D(z) should take place, because we will clarify below that,
due to the thresholding action, this apparently infinite dimensional problem is ac-
tually a finite dimensional one. Hence no topological issues have to be taken into
account.
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5.2. Equivalence of the infinite dimensional problem to a finite dimen-
sional one. Let us consider z∗ = argminz J

D(z) = D1/2u∗. Since u∗ is a finitely
supported vector and D1/2 is a block-diagonal matrix, then z∗ is also a finitely
supported vector. Let S∗ = supp(z∗) and Λ◦ ⊂ I be any finite subset of indices
sufficiently large, and S∗ ⊂ Λ◦. We want to emphasize that we know the existence
of the set Λ◦, but we shall not define it precisely a priori. It is clear that the finite
vector z∗|Λ◦ is also a minimizer of the functional

(5.1) JD|Λ◦(z) := ‖(AD−1/2)Λ◦z− y‖2Y + 2α‖ diag(D−1/2)Λ◦z‖�1(Λ◦),

defined for z ∈ RΛ◦
, which is a finite dimensional space.

5.3. The adaptive numerical solution of the finite dimensional problem
equals the one of the infinite dimensional problem. Note that now the
infinite dimensional optimization problem has been reformulated in this way into
a finite dimensional one, for which the norm-topology on the solution space R

Λ◦
is

no longer a relevant issue. Let us assume, for instance, that the topology on RΛ◦
is

simply the Euclidean. In such topology the adjoint operator of AD−1/2|Λ◦ is given
simply by the transposed matrix. This implies that the minimizer z∗|Λ◦ may be
computed via the following iterative thresholding algorithm:
(5.2)

z(n+1) = Sα diag(D−1/2)Λ◦ (z
(n) + (AD−1/2)∗Λ◦y − (D−1/2A∗AD−1/2)|Λ◦×Λ◦z(n)),

where the rate of convergence of the iterations is now governed by the condition-
ing of the iteration matrix D−1/2A∗AD−1/2|Λ◦×Λ◦ , which is precisely the one we
analyzed in Theorem 4.2.

Of course, the iteration (5.2) cannot be implemented, unless we know a priori
precisely the set Λ◦, which is, as previously noted, out of our capability. Never-
theless, in the following we want to show that the implementation of the adaptive
algorithm (3.6), where the iteration matrix A∗A is substituted by D−1/2A∗AD−1/2

and the thresholding operations are suitably adapted to Sα(n) diag(D−1/2), will turn
out to be equivalent to applying the same algorithm to the resolution of the problem
of minimizing the functional JD|Λ◦ in (5.1), as we were perfectly in possession of Λ◦.
In this preconditioned context we will denote by z̃(n) the iterations of the adaptive
algorithm and by z∗ the minimizer, or fixed point of (5.2) in finite dimensions.

In particular, we will show that the use of the APPLY routine to approximate
the matrix-vector multiplication for D−1/2A∗AD−1/2 or D−1/2A∗AD−1/2|Λ◦×Λ◦ is
simply equivalent, despite the fact that Λ◦ is not given to us. Actually, it turns out
that we can chose Λ◦ ⊃

⋃∞
n=0 Λ

(n), where Λ(n) = supp(z̃(n)) is the support of the
nth-iteration. Therefore, the adaptive algorithm will construct for us the set Λ◦.

5.4. The procedure APPLY and its role in the reduction to finite dimen-
sions. In order to clarify our argument we need to have a more precise under-
standing of the functioning of the APPLY routine; in particular, for help with the
explanation we refer to Figure 1. For the precise definition of APPLY we refer the
reader to [7, 28, 38].

The underlying assumption for the efficient use of APPLY is the compressibil-
ity of the matrix D−1/2A∗AD−1/2, expressed by certain off-diagonal decay esti-
mates. As shown in Remark 4.5 we can assume for several interesting cases that
D−1/2A∗AD−1/2 is indeed a compressible matrix. Hence we are allowed to consider
this procedure, and not only can we assume D−1/2A∗AD−1/2 bounded on �2, but
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Λ°

vB

supp v

Figure 1. Scheme of approximate matrix-vector products Bv,
provided by the APPLY subroutine. The entries of v are mul-
tiplied with adaptively compressed columns of B. Large entries
of v meet only slightly compressed columns, whereas small entries
are multiplied with strongly compressed columns or are even dis-
carded. In the case that B = (D−1)∗A∗AD−1 and v = z(n), the
support of the output may exceed Λ◦.

also on �wτ for 0 < τ < 2; see [7, 28, 38] for details. The procedure APPLY receives
as an input a finite vector z̃(n) and computes as output an approximation of the cor-
responding linear combination of columns of D−1/2A∗AD−1/2. Depending on the
absolute value of the entries in z̃(n) and on the requested accuracy, the associated
matrix columns are adaptively compressed by discarding small off-diagonal matrix
entries. The support size of the output w(n) therefore hinges on the input z̃(n)

and on the accuracy requirements. We refer to [7, 38] for details on the particular
compression rules.

Let us assume now that Λ◦ is sufficiently large so that, at the very beginning,
none of the first, say, N th iterations did exceed, after APPLY, the set Λ◦. Hence,

without loss of generality, we may assume that
⋃N

n=0 Λ
(n)∪S∗ ⊂ Λ◦. We would like

to show now that, thanks to the action of the thresholding operator, Λ(n) ⊂ Λ◦ for
all n ≥ N as soon as Λ◦ was chosen sufficiently large. Hence, regardless of the size
of the support of the resulting vectors after an application of the APPLY routine
on iterations n ≥ N , the thresholding will produce the restriction of the output of
APPLY to Λ◦. Hence, it would be as if APPLY was outputting directly on Λ◦.

Theorem 5.1. For convenience of notation let us fix M = D−1/2A∗AD−1/2 and
P = D−1/2A∗. We can also assume ‖M‖ < 2, without loss of generality (recall that
M is a bounded operator on �2(I) as well as on �wτ (I)). Moreover, as a technical
assumption we require that Py ∈ �2(I)∩�wτ (I), for 0 < τ < 2. Let us assume that we
are also in the conditions of applicability of Proposition 3.4 for the convergence of
the algorithm (3.6) applied for the minimization of the finite dimensional functional
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(5.1), but actually without restricting yet neither the matrices nor the vectors to any
set Λ◦ a priori fixed.

We define z̄ := z∗ + (Py −Mz∗) ∈ �2(I) and

Λ◦ =

N⋃
n=0

Λ(n) ∪ S∗ ∪ Λδ(z̄),

where N ∈ N is such that

(5.3) ‖z∗ − z̃(N)‖ ≤ ε̃N ≤ ε,

for

(5.4)

(
1 +

1

ρ

)
ε+ δ ≤ α

(
inf
λ∈I

diag(D−1/2)λ

)
, δ > 0.

(We recall the notations Λ(n) = supp(z̃(n)), S∗ = supp(z∗), and Λδ(z̄) = {λ ∈ I :
δ < z∗λ + (Py −Mz∗)λ}. The constant ρ is as in Proposition 3.4.)
Then the supports of the iterations never exceed Λ◦, i.e.,

Λ(n) ⊂ Λ◦, for all n ≥ 0.

Proof. Note that Λ(n) ⊂ Λ◦, for all n ≤ N by definition of Λ◦. Let us assume that

n > N . Let λ /∈ Λ◦, hence λ /∈ S∗ = supp(z∗), and |z̃(n)λ | ≤ ε. Moreover, we have

‖z∗ + Py −Mz∗ −
(
z̃(n) +RHS[δn]−APPLY[M, z̃(n), γn]

)
‖

≤ ‖z∗ + Py −Mz∗ −
(
z̃(n) + Py −M z̃(n)

)
‖

+ ‖
(
z̃(n) + Py −M z̃(n)

)
−
(
z̃(n) +RHS[δn]−APPLY[M, z̃(n), γn]

)
‖

≤ ε+
ε

ρ
=

(
1 +

1

ρ

)
ε.(5.5)

Since z∗ is a fixed point of (5.2) (in the finite dimensional environment) we have
|z∗λ + (Py−Mz∗)λ| ≤ α diag(D−1/2)λ. If |z∗λ + (Py−Mz∗)λ| ≤ δ, then from (5.5)

and (5.4) we obtain also |
(
z̃(n)+RHS[δn]−APPLY[M, z̃(n), γn]

)
λ
| ≤

(
1 + 1

ρ

)
ε+

δ ≤ α
(
infλ∈I diag(D

−1/2)λ
)
≤ α(n) diag(D−1/2)λ. Hence z̃

(n+1)
λ = 0. Moreover,

since z∗ is a finite dimensional vector, M is a bounded operator on �2(I), and
Py ∈ �2(I), then z̄ := z∗ + (Py − Mz∗) ∈ �2(I) and therefore Λδ(z̄) = {λ ∈
I : δ < z∗λ + (Py − Mz∗)λ} has finite cardinality. Hence, if eventually we define

Λ◦ =
⋃N

n=0 Λ
(n) ∪ S∗ ∪ Λδ(z̄), then we have that Λ(n) ⊂ Λ◦ for all n ≥ 0. �

Remark 5.2. 1. We remark that in the previous theorem the boundedness properties
of the matrix M = D−1/2A∗AD−1/2 on �2(I) and �wτ (I) play a crucial role. These
properties are ensured by the compressibility of M as mentioned in Remark 4.5.
Therefore, neither for every operator K nor for any preconditioning matrices D1/2

or different bases Ψ too, can we expect Theorem 5.1 to hold.
2. Preconditioning might create some topological troubles and complicate signifi-

cantly the setting where the algorithm (3.6) can work. In simple words, Theorem 5.1
establishes that for operators and block-diagonal preconditioning, as in §4, the use
of the adaptive algorithm (3.6) to compute a sparse solution u∗ is allowed and it will
converge as expected, because in practice it will behave the same as if being used
for a finite dimensional problem, although the finite dimensional reference space is
built on the fly.
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6. Convergence to compressible and sparse solutions

In this section, for the sake of simplicity, we assume αλ = ᾱ for all λ ∈ I.
Hence, we may assume that α = ᾱ is a scalar. The analysis we developed so far
is valid when the parameter α is not too small. Indeed, we may expect that for α
becoming smaller, the support of the minimizer u∗

α of Jα (as in (1.1)) is becoming
also larger and larger. Therefore, we have to expect that the constants γ0 = γ0(α)
in Proposition 3.4 tend to 1, as α → 0. In this section we would like to explore the
main features of such limit behavior.

Theorem 6.1. Assume ‖A‖ <
√
2 and that there exists a compressible solution

u◦ ∈ �wτ (I), for 0 < τ < 2, such that Au◦ = y. Let us define the function

(6.1) Γ(α) :=
‖(I −A∗A)(u∗

α − u◦)‖�2(supp(u∗
α)∪supp(u◦))

‖u∗
α − u◦‖�2(I)

.

The function Γ is certainly bounded above by 1; here we assume that Γ(α) < 1.
Then we have the following estimates:

(i) there exists a constant C = C(τ ) such that

‖u∗
α − u◦‖�2(I) ≤

C

1− Γ(α)
|u◦|τ/2�wτ

α1−τ/2;

(ii) for another constant C ′ = C ′(τ ) > 0 we have

#supp(u∗
α) ≤

(
4C2

(1− Γ(α))2
+ 4C ′

)
|u◦|τ�wτ α

−τ .

Proof. Let us write

u∗
α − u◦ = Sα(u

∗
α −A∗Au∗

α +A∗Au◦)− Sα(u
◦) + Sα(u

◦)− u◦.

Then, from (1.6) and (2.6), we have the estimates

‖u∗
α − u◦‖�2(I) ≤ ‖Sα(u∗

α −A∗Au∗
α +A∗Au◦)− Sα(u

◦)‖supp(u∗
α)∪supp(u◦)

+‖Sα(u◦)− u◦‖�2(I)
≤ ‖(I −A∗A)(u∗

α − u◦)‖�2(supp(u∗
α)∪supp(u◦)) + C|u◦|τ/2�wτ

α1−τ/2

≤ Γ(α)‖u∗
α − u◦‖�2(I) + C|u◦|τ/2�wτ

α1−τ/2.

The latter estimate immediately shows (i). Now note that

‖ (u∗
α −A∗Au∗

α +A∗y)− u◦‖�2(I) = ‖(I −A∗A)(u∗
α − u◦)‖�2(I)

≤ C

1− Γ(α)
|u◦|τ/2�wτ

α1−τ/2.

A straightforward application of (2.9) yields

# supp(u∗
α) ≤

4C2|u◦|τ�wτ α
2−τ

(1− Γ(α))2α2
+ 4C ′|u◦|τ�wτ α

−τ

≤
(

4C2

(1− Γ(α))2
+ 4C ′

)
|u◦|τ�wτ α

−τ .

This concludes the proof of (ii). �
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Corollary 6.2. Under the hypothesis and notation of Theorem 6.1, assume now
that u◦ is a sparse solution, i.e., u◦ ∈ �0(I) :=

⋂
τ>0 �

w
τ (I), and |u◦|�0 =

#supp(u◦) < ∞. Let us denote S◦ = supp(u◦) and |u◦|�0(I) := #S◦. Then
we have the following estimates:

(i) ‖u∗
α − u◦‖�2(I) ≤ 1

1−Γ(α) |u◦|1/2�0(I)α;

(ii) # supp(u∗
α) ≤

(
4

(1−Γ(α))2 + 1
)
|u◦|�0(I).

Proof. The estimates (i) and (ii) follow immediately from Theorem 6.1 by taking
the limit τ → 0 (see formulas (2.7) and (2.8); note the modification of the constants
for τ = 0 in Lemma 2.2). �

We conclude this section with a result which establishes conditions for a uniform
behavior of algorithms (3.1) and (3.6) as α → 0.

Corollary 6.3. Assume that there exists u◦ ∈ �0(I) such that Au◦ = y, and

(6.2) ‖I −A∗A|Λ×Λ‖ ≤ γ0 < 1

for all Λ ⊂ I such that #Λ ≤
(

4
(1−γ0)2

+ 2
)
|u◦|�0(I). Then the following conditions

are equivalent:

(a) supα>0 Γ(α) ≤ γ0 < 1;

(b) u∗
α converges linearly to u◦, i.e., ‖u∗

α − u◦‖�2(I) ≤ 1
1−γ0

|u◦|1/2�0(I)α;

(c) supα>0 #supp(u∗
α) ≤ ( 4

(1−γ0)2
+ 1)|u◦|�0(I).

Proof. Assume that (a) holds. Then by Corollary 6.2 (i) we have

‖u∗
α − u◦‖�2(I) ≤

1

1− γ0
|u◦|1/2�0(I)α,

which implies (b). Let us assume (b) now. Then, again an application of Lemma
2.2 (for the constants adjusted to τ = 0) yields (c):

# supp(u∗
α) ≤

4|u◦|�0(I)α2

(1− γ0)2α2
+ |u◦|�0(I) =

(
4

(1− γ0)2
+ 1

)
|u◦|�0(I).

If (c) holds, then from (6.2) we have

Γ(α) =
‖(I −A∗A)(u∗

α − u◦)‖�2(supp(u∗
α)∪supp(u◦))

‖u∗
α − u◦‖�2(I)

≤ γ0. �

Remark 6.4. In the recent papers [26, 27] the authors investigated the conditions:

(1) (source or range condition) range(A∗) ∩ ∂‖ · ‖�1(I)(u◦) �= ∅, where
∂‖ · ‖�1(I)(u) is the subdifferential of the �1-norm at the point u, given
by

∂‖ · ‖�1(I)(u) = {ξ ∈ �2(I) : ξλ ∈ ∂| · |(uλ), λ ∈ I}
where ∂| · |(z) = {sign(z)} if z �= 0 and ∂| · |(0) = [−1, 1]; this condition
implies that

u◦ = arg min
Au=y

‖u‖�1(I);

(2) (local injectivity condition) AΛ◦ is injective where Λ◦ = supp(u◦).
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According to [27, Proposition 3.12] these conditions imply the linear convergence

‖u∗
α − u◦‖�2(I) ≤ Cα,

for a constant C = C(u◦, ‖A‖, ‖A−1
Λ◦‖). This result is not uniform in the sense that

the constant C depends on u◦, and not only on its support size, and it reflects the
nonuniformity of the conditions (1) and (2). Clearly in applications, one would pre-
fer to have uniform guarantees. In particular, if the Restricted Isometry Property
holds, more precisely, if

(6.3) ‖I −A∗A|Λ×Λ‖ ≤ γ′
0 < 1

for all Λ ⊂ I such that #Λ ≤ |u◦|�0(I), then [27, Theorem 5.6] ensures

‖u∗
α − u◦‖�2(I) ≤ C ′α,

for a constant C ′ = C ′(|u◦|1/2�0
, γ′

0). The precise expression of this constant can be

found in [27, formula (35)]. This constant becomes smaller for smaller γ′
0. Note

further that this result is now (more) uniform because it depends exclusively on the
support size of u◦. When we compare conditions (6.2) and (6.3), we see immediately
that

γ′
0 ≤ γ0.

Hence there might be situations for which the values of γ′
0 and γ0 are such that

C ′(|u◦|1/2�0
, γ′

0) ≤
(

1

1− γ0
|u◦|1/2�0(I)

)
.

In this case, condition (b) of Corollary 6.3 would be satisfied, hence also the other
equivalent conditions (a) and (b) would hold.

7. Numerical experiments

For instructive and simple numerical experiments in an infinite-dimensional set-
ting, we will consider the Volterra integral operator K : L2(0, 1) → L2(0, 1),

(7.1) Ku(t) =

∫ t

0

u(s) ds, K∗Ku(t) =

∫ 1

0

(
1−max(s, t)

)
u(s) ds.

The integration operator can be regarded as a model case for more general Fredholm-
type integral operators. K is injective and bounded with norm ‖K‖ = 2/π ≈ 0.64.
The nonzero eigenvalues of K∗K are explicitly available as λn = 1/(π(n+ 1

2 ))
2; see

[31]. In the following, the discretization of K will be performed using a biorthogo-
nal, piecewise linear spline wavelet basis for L2(0, 1) with 2 vanishing moments from
[32]. Due to the piecewise linear kernel of K∗K and the compression properties of
the wavelet basis, the system matrix A∗A is quasi-sparse. In the experiments, A∗A
is scaled to have L(�2)-norm 1.

7.0.1. Local well-conditioning. As a first numerical test, we investigate the effect of
preconditioning strategies on the spectral properties of small submatrices of A∗A.
For each N ∈ N, we randomly select 10 times a support set Λ ⊂ I of size #Λ ≤ N .
The arithmetic mean over the spectral condition numbers of these submatrices is
plotted against the support size N in Figure 2.

As we clearly see, both preconditioning strategies drastically improve the spec-
tral properties of small submatrices. In particular, for square submatrices with less
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Figure 2. Average spectral condition numbers cond2(A
∗A|Λ×Λ)

of small N×N -submatrices of A∗A, without preconditioning (solid
line), with diagonal preconditioning (dashed line), and with block-
diagonal preconditioning (dotted line)

than 1000 columns, their condition numbers stay below 102 for diagonal precondi-
tioning, whereas they exceed 108 in the case of the original matrix. Note that the
spectral improvement via diagonal preconditioning is already significant, whereas
switching to block-diagonal preconditioning does not further improve the condi-
tioning considerably. Therefore, in practice, the additional computational work of
block-diagonal preconditioning can be avoided at no noticeable loss. Of course, due
to the clustering of the singular values at 0, larger submatrices of A∗A will fail to
have good spectral properties in both preconditioned cases as well.

7.0.2. Recovery of sparse solutions. In order to validate the numerical performance
of the proposed recovery algorithms, we will fix in the sequel a piecewise linear
function u ∈ L2(0, 1) as the solution of Ku = y. The function u is chosen to
have nodes at dyadic points, and therefore its expansion in a piecewise linear spline
wavelet basis has only finitely many nonzero coefficients; see also Figure 3. In
particular, we have ‖u‖�0 = 72, ‖u‖�1 ≈ 3.8525 and ‖u‖�2 ≈ 0.8711.

7.0.3. Choice of the regularization parameter. The exact minimizer u∗ = u∗
α de-

pends on the regularization parameter α in a nonlinear way. Due to the presence
of roundoff errors in the computation of the system matrix and of the right-hand
side, and due to the truncation of the thresholding process after finitely many steps,
we may not expect that the numerical reconstructions ũ ≈ u∗ perfectly match the
unknown solution u as α gets arbitrarily small. Experimentally, it can be observed
that the residual errors begin to stagnate for values of α significantly smaller than
10−6. Therefore, in the numerical experiments, we choose parameters α ≥ 10−7.

7.0.4. Linear convergence to the minimizer. By the injectivity of the forward op-
erator K and by the finite support of the minimizer u∗ for each given α > 0, any
of the considered thresholding algorithms should converge linearly. However, the
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Figure 3. Unknown function u to be recovered

particular error reduction constants will most likely depend on the magnitude of the
index set in which the particular iterates are supported. Due to the spectral prop-
erties of A∗A, the choice of a large support set within a given iterative scheme will
inhibit a significant error reduction per iteration step, while smaller support sets
will be beneficial. Therefore, we hope that an iteration with decreasing threshold
parameters converges faster than an algorithm with fixed parameters. Moreover,
based on the observation from Figure 2, preconditioning strategies should further
reduce the error reduction constants considerably.

In order to quantify the linear convergence to the minimizer, we first compute a
very good approximation to the exact minimizer u∗ by a combination of the well-
known FISTA algorithm of Beck and Teboulle [1] and some semismooth Newton
steps. Then we restart from u(0) = 0, and we measure the �2 error of the iterands
with respect to that limit. In the experiments, the threshold parameters are chosen
according to the rule α(n) = α+ ηγnε0, for certain parameters 0 < γ, η < 1 and the
choice ε0 := 5‖u‖�1 . The iteration is allowed to use all wavelet indices λ with level
|λ| ≤ 12. Note that the neglected entries (A∗A)λ,μ are already smaller than 10−8

in absolute value, so this is not really a limitation.
In Figures 4 and 5, we plot the �2 error histories for different iterative thresh-

olding algorithms. We clearly observe linear convergence of all iterative schemes.
The original iterative thresholding method (ISTA) and its variant with decreasing
threshold parameters (D-ISTA) show a similar asymptotic behavior. Both precon-
ditioned variants P-ISTA and PD-ISTA have a significantly better error reduction
per iteration for any choice of the regularization parameter α.

A decreasing choice of the threshold parameters only pays off for medium values
of α ≈ 10−6. An explanation of the varying slopes in Figure 4 can be found
when considering the support sizes of the iterands during the iteration; see Figure
7 from the next subsection. For α = 10−6, e.g., PD-ISTA asymptotically works
on a slightly larger index set than P-ISTA, resulting in a marginally worse error
reduction per iteration.

7.0.5. Support dynamics. One of the core ideas towards the acceleration of iterative
thresholding methods is to keep the number of active degrees of freedom as small as
possible. The rationale is to take advantage of the spectral bounds of the associated
submatrices of A∗A. In Figures 6 and 7, we track the support size histories for
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different iterative thresholding algorithms and different regularization parameters
α. Apparently, in the course of the iteration, all algorithms gradually reduce
the support size of the respective iterands. A decreasing choice of the threshold
parameters αn can efficiently reduce the active degrees of freedom in the transient
phase of the first iterations. What is more important, the considered thresholding
algorithms behave in a quantitatively different way in regard to the number of
active coefficients. As soon as the regularization parameter α is sufficiently small,
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the unpreconditioned algorithms iterate on significantly larger index sets than their
preconditioned counterparts; see Figure 7.

7.0.6. Dynamics. In order to further analyze the response of the considered thresh-
olding algorithms, we investigate the orbit of the iterates towards the minimizer
u∗ in the so-called dynamics plane, i.e., the relationship between the residuals
‖Au(n) − y‖L2(0,1) and the respective penalty terms ‖u(n)‖�1 . We refer to Figure 8
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Figure 8. Dynamics of the first 10000 iterations of ISTA (solid
line), D-ISTA (dotted line), P-ISTA (dashed line), and PD-ISTA
(dash-dotted line)

for a dynamics plot. All algorithms do have the same limit sequence u∗, how-
ever, the associated paths in the dynamics plane look quite different. Apart from
the preconditioned iterative thresholding algorithm with constant parameters (P-
ISTA), which approaches the minimizer from the right, all other algorithms yield
iterates with increasing penalty norms. However, since the plot only shows the
first 10000 iterations, it becomes clear again that both preconditioned iterations
converge much faster to the limit coefficient array than ISTA.

7.0.7. Adaptivity. As shown in Theorem 5.1, we have theoretical guarantees of con-
vergence of the preconditioned algorithm only if the adaptive applications of the
forward operator A∗A are implemented by the procedure APPLY. Moreover, the
efficiency in terms of complexity of the considered iterative thresholding method
can be further improved by these inexact operations. In particular, we can exploit
that the biinfinite matrix A∗A is compressible in the aforementioned sense. More
precisely, due to the piecewise smooth kernel of K∗K, the compressibility exponent
s in formula (4.2) does not exceed s∗ = 1.5, even for smooth wavelet bases.

We compare iterative thresholding algorithms with adaptive and nonadaptive
operator evaluations in Figure 9, where the accuracies within the APPLY routine
are chosen like ε̃n = 500ηγnε0.
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Figure 9. Convergence and complexity of iterative thresholding
algorithms with exact and inexact operator applications for sum-
mable tolerances: PD-ISTA (solid line) and PDA-ISTA (dashed
line)
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