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A PROJECTION-BASED ERROR ANALYSIS OF HDG

METHODS FOR TIMOSHENKO BEAMS

FATIH CELIKER, BERNARDO COCKBURN, AND KE SHI

Abstract. In this paper, we give the first a priori error analysis of the hy-
bridizable discontinuous Galerkin (HDG) methods for Timoshenko beams.
The analysis is based on the use of a projection especially designed to fit the
structure of the numerical traces of the HDG method. This property allows us
to prove in a very concise manner that the projection of the errors is bounded
in terms of the distance between the exact solution and its projection. The
study of the influence of the stabilization function on the approximation is then
reduced to the study of how they affect the approximation properties of the
projection in a single element. Surprisingly, and unlike any other discontinuous
Galerkin method, this can be done without assuming any positivity property
of the stabilization function of the HDG method. We apply this approach
to HDG methods using polynomials of degree k ≥ 0 in all of the unknowns,
and show that the projection of the error in each of them superconverges with
order k + 2 when k ≥ 1 and converges with order 1 for k = 0. As a result,
we show that the HDG methods converge with optimal order k+ 1 for all the
unknowns, and that they are free from shear locking. Finally, we show that
all of the numerical traces converge with order 2k+1. Numerical experiments
validating these results are shown.

1. Introduction

In this paper, we provide an a priori error analysis of the hybridizable discontin-
uous Galerkin (HDG) methods for Timoshenko beams recently introduced by the
authors in [4]. The dimensionless form of the Timoshenko beam model [8], is given
by the differential equations, see ([5]),

VV
′ = θ − d2

T

GA
, θ′ =

M

EI
, M ′ = T, T ′ = q,(1.1a)

in Ω := (0, 1), and the boundary conditions

VV =VVD, θ = θN on ∂Ω = {0, 1}.(1.1b)

Here, the unknowns are the transverse displacement VV, the rotation of the trans-
verse cross-section of the beam θ, the bending moment M , and the shear force T .
The material and geometrical properties of the beam are characterized by the shear
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modulus G, the cross-section area A, the Young modulus E, and the moment of
inertia I. The transverse load is denoted by q. It was shown in [5] that we can
assume without loss of generality that EI and GA are very smooth functions.
The parameter 0 < d < 1 represents the thickness of the beam.

The first discontinuous Galerkin (DG) methods for Timoshenko beams were in-
troduced in [3]. The convergence properties of these methods were numerically
explored in [2]. Later, in [5], these DG methods were proven to provide approxima-
tions for the displacement, rotation, bending moment and shear force simultane-
ously converging with the optimal order of k+1 when polynomials of degree k ≥ 0
were used to define the method. For the corresponding numerical traces at the
nodes, the order of convergence of 2k + 1 was also established for k ≥ 0. Finally,
it was proved that these properties hold uniformly with respect to the thickness of
the beam.

Recently, a new class of DG methods for Timoshenko beams was proposed. In-
deed, motivated by the introduction of the HDG methods [6] for diffusion problems,
the authors introduced, and numerically studied, the first HDG methods for Timo-
shenko beams [4]. The main feature of the HDG methods is that their only globally
coupled degrees of freedom are those of the numerical traces of some of its variables;
in this case, those of the displacement VV and the bending moment M . The matrix
to numerically invert is thus a highly structured square matrix of order 2N , where
N is the number of intervals in which Ω is partitioned. The size of the matrix is
independent of the polynomial degree k of the approximation; see [4].

In this paper, we analyze the HDGmethods proposed in [4] by using the approach
proposed in [7] to study HDG methods for diffusion problems when all the variables
are approximated by piecewise polynomials of degree k ≥ 0. We show that results
similar to those proven in [5] for the DG methods [3] hold for a wide class of
HDG methods. The approach has three main steps. The first is to find a suitably
defined projection such that the equations of the projection of the approximation
errors becomes extremely simple. This is achieved by tailoring the definition of the
projection to the very structure of the numerical traces of the HDG methods. The
second step is to study the approximation properties of the projection in a single
typical element. It is in this step that the information of the particular definition
of the numerical traces is captured and allows us to determine for what choices
we obtain the optimal order of convergence of k + 1 for each of the four variables
for k ≥ 0. The third step consists of bounding the projection of the errors in
terms of the approximation properties of the projection only. This step is rendered
particularly concise because of the simple form of the equations of the projection
of the errors.

The analysis we present here has two striking features. The first is that no
positivity of the stabilization function is required; let us elaborate. In the analysis of
numerical methods for symmetric elliptic problems, it is standard to take advantage
of the fact that they have an underlying energy. The delicate devising of the
numerical traces for the DG methods is then geared towards making sure that the
discrete energy associated with the jumps of the approximation is actually positive.
This is the approach taken in [5] to analyze the first DG methods for Timoshenko
beams; it could have been easily taken to carry out the analysis of the methods
under consideration. However, the alternative approach we present here has an
unexpected and surprising feature. It is the fact that, unlike the analysis of any
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other DG method, we do not rely on the stabilization function having any positivity
property.

The second striking feature is that the projection of the errors of each of all the
components of the approximation superconverge with order k + 2 when k ≥ 1 and
with order 1 for k = 0.

The two properties above are due to the fact that we are only using duality
arguments and that the problem is one-dimensional. The price to pay, however, is
that the maximum meshsize of the partition, h, needs to be small enough.

The rest of the paper is organized as follows. In Section 2, we display the HDG
methods, define the projection employed in the error analysis and state briefly our
main results. Detailed proofs of these results are presented in Sections 3 (approx-
imation properties of the projection), 4 (estimates of the projection of the errors)
and 5 (estimates of the errors of the numerical traces). Numerical results verifying
the theoretical orders of convergence are presented in Section 6. We end in Section
7 with some concluding remarks.

2. Main results

In this section, after describing the HDG method under consideration, we state
our main results regarding the convergence properties of the method.

2.1. The HDG methods. Let us describe the HDG methods under consideration;
we follow [4]. We begin by introducing the notation. To each partition of the domain
Ω,

Ωh := {(xj−1, xj) : 0 = x0 < x1 < · · · < xN−1 < xN = 1},
we associate the set of nodes, Eh := {x0, x1, . . . , xN}, and the set of interior nodes,
E ◦
h := Eh\∂Ω; we also set ∂Ωh := {∂K : K ∈ Ωh}. For each element K ∈ Ωh,

let hK denote the length of K, and set h := maxK∈Ωh
{hK}. Finally, for any given

polynomial degree k ≥ 0 and an element K ∈ Ωh, we define Pk(K) as the set
of polynomials of degree less than or equal to k on K. The space of piecewise
polynomials of degree k on Ω is defined accordingly as

V k
h := {v : Ωh �→ R : v|K ∈ Pk(K) for all K ∈ Ωh}.

We also set

L2
0(Eh) := {w ∈ L2(Eh) : w = 0 on ∂Ω}.

The HDG method seeks an approximation (Th,Mh, θh, VVh, M̂h, V̂Vh) to the exact
solution (T,M, θ, VV,M |Eh

, VV|Eh
), in the finite dimensional space [V k

h ]4 × L2(Eh) ×
L2(Eh). It is determined by requiring that

− (VVh, v
′
1)Ωh

+ 〈V̂Vh, v1 n〉∂Ωh
= (θh, v1)Ωh

− d2 (Th/GA, v1)Ωh
,(2.1a)

− (θh, v
′
2)Ωh

+ 〈θ̂h, v2 n〉∂Ωh
= (Mh/EI, v2)Ωh

,(2.1b)

− (Mh, v
′
3)Ωh

+ 〈M̂h, v3 n〉∂Ωh
= (Th, v3)Ωh

,(2.1c)

− (Th, v
′
4)Ωh

+ 〈T̂h, v4 n〉∂Ωh
= (q, v4)Ωh

,(2.1d)

〈θ̂h,mn〉∂Ωh
= 〈θN ,mn〉∂Ω,(2.1e)

〈T̂h,wn〉∂Ωh
= 0,(2.1f)
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hold for all (v1, v2, v3, v4,m,w) ∈ [V k
h ]4 × L2(Eh)× L2

0(Eh). Here, the outward unit
normal vectors are n(x∓) := ±1 for x ∈ Eh. The “volume” inner product is defined
as

(u, v)Ωh
:=

N∑
j=1

(u, v)Ij where (u, v)Ij :=

∫
Ij

u(x)v(x) dx,

and the boundary inner product is defined as

〈u, v n〉∂Ωh
:=

N∑
j=1

〈u, v n〉∂Ij where 〈u, v〉∂Ij := u(x−
j )v(x

−
j ) + u(x+

j−1)v(x
+
j−1).

Here, we are using the following notation. For any ϕ ∈ H1(Ωh) we set ϕ(x∓
� ) :=

limε↓0 ϕ(x� ∓ ε) for x� ∈ Eh. For any ϕ ∈ L2(∂Ωh), the value of ϕ at x� is denoted
by ϕ(x−

� ), respectively, ϕ(x
+
� ), when x� is a boundary of I�, respectively, of I�+1.

Note that the boundary condition (1.1b) on θ is imposed by equation (2.1e).
The boundary condition (1.1b) on VV is imposed as follows:

V̂Vh = VVD on ∂Ω.(2.2a)

To complete the definition of the HDG method, we need to express the numerical

traces T̂h and θ̂h in terms of the unknowns:[
θ̂h
T̂h

]
=

[
θh
Th

]
− S

[
Mh − M̂h

VVh − V̂Vh

]
n,(2.2b)

where the so-called stabilization function S is a matrix-valued function defined on
∂Ωh. It has to be suitably defined to guarantee the existence and uniqueness of the
approximate solution; for details see [4].

Let us note that the hallmark of these methods lies in the fact that the only glob-

ally coupled degrees of freedom are the values of M̂h and V̂Vh on Eh. The remaining
degrees of freedom can then be recovered in an element-by-element fashion; see [4].

2.2. The projection. Next, we introduce the main tool of our error analysis,
namely, a new projection,

Π = (ΠT ,ΠM ,Πθ,ΠVV) : [H
1(Ωh)]

4 → [V k
h ]4,

associated with the HDG methods. It is a generalization of the projection in-
troduced in [7] for the error analysis of HDG methods for second order elliptic
problems.

It is defined as follows. Given a function (u1, u2, u3, u4) ∈ [H1(Ωh)]
4 and an

arbitrary subinterval K ∈ Ωh, the restriction of (ΠTu1,ΠMu2,Πθu3,ΠVVu4) to K
is defined as the element of [Pk(K)]4 that satisfies

(ΠTu1, v1)K = (u1, v1)K ,(2.3a)

(ΠMu2, v2)K = (u2, v2)K ,(2.3b)

(Πθu3, v3)K = (u3, v3)K ,(2.3c)

(ΠVVu4, v4)K = (u4, v4)K ,(2.3d)

for all (v1, v2, v3, v4) ∈ [Pk−1(K)]4, and[
u3

u1

]
=

[
Πθu3

ΠTu1

]
−S

[
ΠMu2 − u2

ΠVVu4 − u4

]
n on ∂K.(2.3e)
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Note that when k = 0, the projection is defined solely by (2.3e). Note also that the
last set of equations reflects the form of the equations (2.2) defining the numerical

traces θ̂h and T̂h. As we are going to see in the next subsection, this is what allows
us to obtain a very simple set of equations for the projection of the errors.

Finally, let us point out that the projection is well defined under mild condi-
tions on the stabilization function S. To see this, note that the total number of
unknowns involved in the linear system that is needed to be solved for computing
(ΠTu1,ΠMu2,Πθu3,ΠVVu4) is 4(k + 1) since each component of the projection has
k+1 degrees of freedom. On the other hand, the total number of linearly indepen-
dent equations provided by the definition of the projection is also 4(k + 1). The
existence and uniqueness of the projection then follows from the approximation
properties of the projection; see below.

2.3. The equations for the projection of the errors. As we said in the Intro-
duction, the projection should be devised in such a way that the equations of the
projection of the errors be as simple as possible. Let us show that this is indeed
the case.

So, since the exact solution (T,M, θ, VV) of the governing equations (1.1a) satisfies
the formulation of the HDG approximation, (2.1), we immediately see that the
equations for the errors

eu := u− uh and êu := u− ûh for u = T,M, θ, VV,

are

− (eVV, v
′
1)Ωh

+ 〈êVV, v1 n〉∂Ωh
= (eθ, v1)Ωh

− d2(eT /GA, v1)Ωh
,

− (eθ, v
′
2)Ωh

+ 〈êθ, v2 n〉∂Ωh
= (eM/EI, v2)Ωh

,

− (eM , v′3)Ωh
+ 〈êM , v3 n〉∂Ωh

= (eT , v3)Ωh
,

− (eT , v
′
4)Ωh

+ 〈êT , v4 n〉∂Ωh
= 0,

〈êθ,mn〉∂Ωh
= 0,

〈êT ,wn〉∂Ωh
= 0,

hold for all (v1, v2, v3, v4,m,w) ∈ [V k
h ]

4 × L2(Eh)× L2
0(Eh). Hence, setting

δu := u−Πuu for u = T,M, θ, VV,

we obtain

− (ΠVVeVV, v
′
1)Ωh

+ 〈êVV, v1 n〉∂Ωh
= (Πθeθ, v1)Ωh

− d2(ΠT eT /GA, v1)Ωh
(2.4a)

+ (δθ, v1)Ωh
− d2(δT /GA, v1)Ωh

,

− (Πθeθ, v
′
2)Ωh

+ 〈êθ, v2 n〉∂Ωh
= (ΠMeM/EI, v2)Ωh

+ (δM/EI, v2)Ωh
,(2.4b)

− (ΠMeM , v′3)Ωh
+ 〈êM , v3 n〉∂Ωh

= (ΠT eT , v3)Ωh
+ (δT , v3)Ωh

,(2.4c)

− (ΠT eT , v
′
4)Ωh

+ 〈êT , v4 n〉∂Ωh
= 0,(2.4d)

〈êθ,mn〉∂Ωh
= 0,(2.4e)

〈êT ,wn〉∂Ωh
= 0,(2.4f)

for all (v1, v2, v3, v4,m,w) ∈ [V k
h ]4 × L2(Eh)× L2

0(Eh). Note that we have used the
orthogonality property of the projection (2.3) in each of the first terms of the first
four equations.

To complete the error equations, we have to add the boundary conditions

êVV = 0 on ∂Ω,(2.5a)
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as well as the equations relating the errors inside the elements to the errors of the
numerical traces, namely,[

êθ
êT

]
=

[
Πθeθ
ΠθeT

]
−S

[
ΠMeM − êM
ΠVVeVV − êVV

]
n on ∂Ωh.(2.5b)

These equations hold as a direct consequence of the parallelism between the defini-
tion of the numerical traces of the HDG method, (2.2b), and the definition of the
projection, (2.3e).

The simplicity of the above equations we have been referring to resides in the fact
that they differ from the HDG approximation only in the definition of their right-
hand sides which, moreover, involve only volume integrals of the approximation
errors δT , δM and δθ.

2.4. Approximation properties of the projection Π. In this subsection we
state a theorem displaying the approximation properties of the projection Π =
(ΠT ,ΠM ,Πθ,ΠVV). First, we need to introduce some notation. Let K = (xL, xR)
be an element of Ωh. For any function z on K, we define z− := z(xL), z

+ := z(xR),
We denote the usual norm and seminorm on a Sobolev space Hs(D) by ‖ · ‖s,D
and | · |s,D, respectively. We drop the first subindex if s = 0, and the second one
if D = Ω or D = Ωh. We also define the seminorm of a vector-valued function
(u1, u2, u3, u4) as

|(u1, u2, u3, u4)|s,D := |u1|s,D + |u2|s,D + |u3|s,D + |u4|s,D.

Its norm is defined similarly.

Theorem 2.1. On each K ∈ Ωh with stabilization function S, we have for any s
in [1, k + 1] that

‖(δT , δM , δθ, δVV)‖ ≤ CCSh
s|(T,M, θ, VV)|s.

Here, C is a constant independent of the discretization parameters and (T,M, θ, VV),
and CS is given by

CS := ‖(S+ + S−)−1‖∞ + ‖(S+ + S−)−1S+‖∞ + ‖(S+S−)−1S−‖∞
+ ‖S+(S+ + S−)−1‖∞ + ‖S−(S+ + S−)−1‖∞ + ‖S+(S+ + S−)−1S−‖∞.

A detailed proof of this result is given in Section 3. Let us note that we stated the
above result for (T,M, θ, VV) merely for notational convenience. In fact, the result
remains valid if we replace (T,M, θ, VV) with any (u1, u2, u3, u4) ∈ [Hs+1(K)]4.

2.5. Superconvergence of the projection of the errors. Here, we present an
estimate of the following norm of the projection of the errors,

‖Πe‖ := (‖ΠT eT ‖2 + ‖ΠMeM‖2 + ‖Πθeθ‖2 + ‖ΠVVeVV‖2)
1
2 ,

in terms of the following norm of the approximation error of the projection

‖δ‖ := (‖δT ‖2 + ‖δM‖2 + ‖δθ‖2 + ‖δVV‖2)
1
2 .

It is stated in terms of the solution of the so-called dual problem we define next.
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For any given (ηT , ηM , ηθ, ηVV) ∈ [L2(Ω)]4, the associated dual-problem is:

ψ′
VV = ψθ − d2ψT /GA+ ηT in Ω,(2.6a)

ψ′
θ = ψM/EI − ηM in Ω,(2.6b)

ψ′
M = ψT + ηθ in Ω,(2.6c)

ψ′
T = −ηVV in Ω,(2.6d)

ψVV = 0 on ∂Ω,(2.6e)

ψθ = 0 on ∂Ω.(2.6f)

The key inequality we use about the solution of this problem is the following elliptic
regularity result:

(2.7) ‖ψT ‖1 + ‖ψM‖1 + ‖ψθ‖1 + ‖ψVV‖1 ≤ Creg ‖(ηT , ηM , ηθ, ηVV)‖ ,

where the constant Creg is independent of the data (ηT , ηM , ηθ, ηVV) and of the
thickness d. A detailed proof of this lemma can be found in Appendix A.

We are now ready to state our main result.

Theorem 2.2. For k ≥ 1, we have that, if h is sufficiently small, then

‖Πe‖ ≤ CCregh ‖δ‖ .

For k = 0, we have

‖Πe‖ ≤ CCreg ‖δ‖ .
Here C is a constant independent of the data of the problem and of the discretization
parameters.

2.6. A priori error estimates. Next we present an estimate for the following
norm of the errors:

‖e‖ := (‖eT ‖2 + ‖eM‖2 + ‖eθ‖2 + ‖eVV‖2)
1
2 ,

which is a direct consequence of the last result.

Theorem 2.3. Suppose that the exact solution (T,M, θ, VV) of (1.1a) belongs to
[Hk+1(Ωh)]

4. Then, for k ≥ 1 and h sufficiently small, we have

‖e‖ ≤ (1 + CCregh) ‖δ‖ .

For k = 0, we have

‖e‖ ≤ (1 + CCreg) ‖δ‖ .
Here C is a constant independent of the data of the problem and of the discretization
parameters.

Note that the error estimate appearing in the above theorem shows that, if the
matrix-valued function S is chosen is such a way that CS is uniformly bounded, the
HDG method is optimally convergent, that is, ‖u− uh‖ = O(hk+1) for smooth solu-
tions for each u = T,M, θ, VV, and locking-free. The method is locking-free because
the constant CS does not depend on the parameter d and because the seminorms
appearing on the right-hand side of the estimate can be bounded uniformly with
respect to d; see [5].
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2.7. Superconvergence at the nodes. Our next result states that the numerical
traces of the HDG solution superconverge. To state this result we need to introduce
the Green’s functions associated with the problem under consideration. For any
superindex 	 = T,M, θ, VV and any y ∈ (0, 1) we define (Φ�

T,y,Φ
�
M,y,Φ

�
θ,y,Φ

�
VV,y) as

the solution of

dΦ�
VV,y

dx
= Φ�

θ,y − d2
Φ�

T,y

GA
,

dΦ�
θ,y

dx
=

Φ�
M,y

EI
,

dΦ�
M,y

dx
= Φ�

T,y,
dΦ�

T,y

dx
= 0,

(2.8a)

in (0, y) ∪ (y, 1) that satisfies the boundary conditions

(2.8b) Φ�
VV,y(0) = Φ�

VV,y(1) = Φ�
θ,y(0) = Φ�

θ,y(1) = 0,

and the jump conditions

[[Φ�
VV,y]](y) = −δ�T , [[Φ�

θ,y]](y) = δ�M ,

[[Φ�
M,y]](y) = −δ�θ, [[Φ�

T,y]](y) = δ�VV.
(2.8c)

Here, δab = 1 if a = b, and δab = 0 otherwise. The jump operator, [[ · ]], is defined
by

[[ϕ]](x) := ϕ(x−)− ϕ(x+) for x ∈ Eh

where ϕ(x∓) := limε↓0 ϕ(x∓ ε). We define, for z ∈ {0, 1},
(Φ�

T,z,Φ
�
M,z,Φ

�
θ,z,Φ

�
VV,z) := lim

y→z
(Φ�

T,y,Φ
�
M,y,Φ

�
θ,y,Φ

�
VV,y).

We are now ready to present our superconvergence result of the numerical traces.

Theorem 2.4. Under the same assumptions as in Theorem 2.3, we have

|(u− ûh)(xi)| ≤ Ck−1h
k|(T,M, θ, VV)|k+1 ‖δui ‖+ C ‖e‖ ‖δui ‖

for u = T,M, θ, VV, and i = 0, 1, . . . , N . Here

δui := (
∥∥Φu

T,xi
−ΠTΦ

u
T,xi

∥∥2 + ∥∥Φu
M,xi

−±Φu
M,xi

∥∥2
+
∥∥Φu

θ,xi
−ΠθΦ

u
θ,xi

∥∥2 + ∥∥Φu
VV,xi

−ΠVVΦ
u
VV,xi

∥∥2) 1
2 ,

and Ck−1 is a constant that depends solely on the polynomial degree k.

Note that, for any given k ≥ 0, if q, EI, GA are very smooth functions in Ωh, the

exact solution (T,M, θ, VV) belongs to
[
Hk+1(Ωh)

]4
; see [5]. This regularity result is

also valid for the Green’s functions since in this case we take q = 0. Hence, we can

assume that (Φu
T,xi

,Φu
M,xi

,Φu
θ,xi

,Φu
VV,xi

) belongs to
[
Hk+1(Ωh)

]4
. As a consequence,

‖δui ‖ = O(hk+1) and the above result states that, if the constant CS is uniformly
bounded, all of the numerical traces superconverge with order 2k+1 at each node.
A similar result was proved for the DG methods for Timoshenko beams studied in
[5] and [1].

Let us point out that if the data EI and GA are constants on each K ∈ Ωh,
then, for k ≥ 3, Theorem 2.4 implies that êu(xi) = 0, for u = T,M, θ, or VV and for
any node xi. Indeed, in this case the Green’s functions are piecewise polynomials
of degree at most 3 and hence |(Φu

T,xi
,Φu

M,xi
,Φu

θ,xi
,Φu

VV,xi
)|k+1 = 0.

An immediate application of the superconvergence result of Theorem 2.4 is an
element-by-element postprocessing of the approximate solution provided by the
HDG method. All of the four components of the postprocessed solution converge
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to the exact solution with order 2k + 1, not only at the nodes, but also uniformly
at the interior of Ωh. For details, see [2].

3. Approximation properties of the projection: Proof of Theorem 2.1

In this section we provide a detailed proof of Theorem 2.1. We only give the
proof for k ≥ 1. The proof for k = 0 is easier.

Fix an interval K ∈ Th and set du := uk−Πuu, gu := u−uk, for u = T,M, θ, VV;
Here uk denotes the L2-projection into Pk(K). Since δu = gu + du, we only need
to estimate du. To do that, we proceed as follows. From the definition of the
projection (2.3a)-(2.3e) and the definition of the L2-projection into Pk(K), we have

(dT , v1)K = (dM , v2)K = (dθ, v3)K = (dVV, v4)K = 0,(3.1a)

for all (v1, v2, v3, v4) ∈ [Pk−1(K)]4, and[
dθ
dT

]
n− S

[
dM
dVV

]
=

[
gθ
gT

]
n− S

[
gM
gVV

]
on ∂K.(3.1b)

By equations (3.1a), we see that we can write du = Cu Lk for u = T,M, θ, VV, where
Lk denotes the scaled Legendre polynomial of degree k. Hence, we can write (3.1b)
in the following form,

[
I −S+

I S−

]⎡⎢⎢⎣
Cθ

CT

CM

CVV

⎤⎥⎥⎦ =

⎡⎢⎢⎣
[
gθ
gT

]+
− S+

[
gM
gVV

]+
(−1)k

[
gθ
gT

]−
+ (−1)kS−

[
gM
gVV

]−
⎤⎥⎥⎦ ,

from the above equation we can see that the system has a unique solution if and
only if the matrix (S+ +S−) is not singular. Hence we obtain, after some algebraic
manipulation,[

CM

CVV

]
= (−1)k(S− + S+)−1

[
gθ
gT

]−
+ (−1)k(S− + S+)−1S−

[
gM
gVV

]−
− (S− + S+)−1

[
gθ
gT

]+
+ (S− + S+)−1S+

[
gM
gVV

]+
,[

Cθ

CT

]
= (−1)kS+(S− + S+)−1

[
gθ
gT

]−
+ (−1)kS+(S− + S+)−1S−

[
gM
gVV

]−
+ S−(S− + S+)−1

[
gθ
gT

]+
− S+(S− + S+)−1S−

[
gM
gVV

]+
,

and conclude that

‖(dT , dM , dθ, dVV)‖K = ‖Lk‖K(|CT |+ |CM |+ |Cθ|+ |CVV|)
≤ CS ‖Lk‖K‖(gT , gM , gθ, gVV)‖∂K
≤ CS h

1/2 ‖(gT , gM , gθ, gVV)‖∂K
≤ CCS h

s |(T,M, θ, VV)|s,K ,

for all 1 ≤ s ≤ k + 1, by the trace inequality and the approximation properties of
the L2-projection.

By the triangle inequality, we have

‖(δT , δM , δθ, δVV)‖K ≤ ‖dT , dM , dθ, dVV‖K + ‖gT , gM , gθ, gVV‖K ,
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and the estimate of Theorem 2.1 readily follows. This completes the proof.

4. Estimates of the projection of the errors: Proof of Theorem 2.2

This subsection is devoted to the proof of Theorem 2.2. We proceed in two steps.
In the first, we use a key identity obtained by duality to prove Theorem 2.2. In the
second, we prove the identity.

4.1. Step 1: The duality identity and the proof of Theorem 2.2. Our proof
is based on the following auxiliary result.

Lemma 4.1. For any (ηT , ηM , ηθ, ηVV) ∈ [L2(Ωh)]
4, set

E := (ΠT eT , ηT )Ωh
+ (ΠMeM , ηM )Ωh

+ (Πθeθ, ηθ)Ωh
+ (ΠVVeVV, ηVV)Ωh

.

Then

E = (δT ,Πθψθ)Ωh
− (ΠT eT , δψθ

)Ωh

−(δT , d
2ΠTψT /GA)Ωh

+ (ΠT eT , d
2δψT

/GA)Ωh

−(δM ,ΠMψM/EI)Ωh
+ (ΠMeM , δψM

/EI)Ωh

+(δθ,ΠTψT )Ωh
− (Πθeθ, δψT

)Ωh
.

Here, on each K, we take St as the stabilization function for defining the projection
(ΠTψT ,ΠMψM ,Πθψθ,ΠVVψVV).

We delay the proof of this identity to the end of this subsection. We are now
ready to prove Theorem 2.2.

Proof of Theorem 2.2. We first consider the case k ≥ 1. Setting

(ηT , ηM , ηθ, ηVV) = (ΠT eT ,ΠMeM ,Πθeθ,ΠVVeVV)

in the identity of Lemma 4.1 gives

‖Πe‖2 = (δT ,Πθψθ)Ωh
− (ΠT eT , δψθ

)Ωh

−(δT , d
2ΠTψT /GA)Ωh

+ (ΠT eT , d
2δψT

/GA)Ωh

−(δM ,ΠMψM/EI)Ωh
+ (ΠMeM , δψM

/EI)Ωh

+(δθ,ΠTψT )Ωh
− (Πθeθ, δψT

)Ωh
.

Using the fact that Πuψu = ψu − δψu
for u = T,M, θ, and VV, we get

‖Πe‖2 = T1 + T2 + T3 + T4

where

(4.1)

T1 = (δT , ψθ)Ωh
− (δT , δψθ

)Ωh
− (ΠT eT , δψθ

)Ωh

T2 = −(δT , d
2ψT /GA)Ωh

+ (δT , d
2δψT

/GA)Ωh
+ (ΠT eT , d

2δψT
/GA)Ωh

T3 = −(δM , ψM/EI)Ωh
+ (δM , δψM

/EI)Ωh
+ (ΠMeM , δψM

/EI)Ωh

T4 = (δθ, ψT )Ωh
− (δθ, δψT

)Ωh
− (Πθeθ, δψT

)Ωh
.
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By the orthogonality property of the projection, (2.3), we can rewrite these equation
as
(4.2)

T1 = (δT , ψθ − (ψθ)k−1)Ωh
− (δT , δψθ

)Ωh
− (ΠT eT , δψθ

)Ωh

T2 = −(δT , d
2(ψT /GA− (ψT /GA)k−1))Ωh

+ (δT , d
2δψT

/GA)Ωh

+ (ΠT eT , d
2δψT

/GA)Ωh

T3 = −(δM , ψM/EI − (ψM/EI)k−1)Ωh
+ (δM , δψM

/EI)Ωh

+ (ΠMeM , δψM
/EI)Ωh

T4 = (δθ, ψT − (ψT )k−1)Ωh
− (δθ, δψT

)Ωh
− (Πθeθ, δψT

)Ωh
.

An estimate on ‖Πe‖ now follows by estimating Ti for i = 1, 2, 3, 4. We only show
the details of how to estimate T2, since the remaining terms can be estimated in
a similar fashion. Applying the Cauchy-Schwarz inequality to each term in T2, we
get

|T2| ≤ ‖δT ‖
∥∥d2(ψT /GA− (ψT /GA)k−1)

∥∥+ (‖δT ‖+ ‖ΠT eT ‖)
∥∥d2δψT

/GA
∥∥ .

By the approximation properties of the L2-projection, we get that

|T2| ≤ Chd2 ‖δT ‖ ‖ψT /GA‖1 + ‖d2/GA‖∞(‖δT ‖+ ‖ΠT eT ‖) ‖δψT
‖ ,

by the fact that 0 < d < 1, GA is very smooth, and by Theorem 2.1 we get that

|T2| ≤ C h ‖δT ‖ ‖ψT ‖1‖1/GA‖1 + C h(‖δT ‖+ ‖ΠT eT ‖) |(ψT , ψM , ψθ, ψVV)|1.
By the elliptic regularity estimate (2.7), we have |(ψT , ψM , ψθ, ψVV)|1 ≤ Creg ‖Πe‖ ,
we get that

|T2| ≤ CCregh ‖δT ‖ ‖Πe‖+ CCregh ‖Πe‖2 .
The remaining terms T1, T3, and T4 can be estimated similarly, and hence we obtain

‖Πe‖2 ≤ |T1|+ |T2|+ |T3|+ |T4| ≤ CCregh ‖δ‖ ‖Πe‖+ CCregh ‖Πe‖2 .
If we assume that h is small enough so that CCregh < 1 then

‖Πe‖2 ≤ CCregh ‖δ‖ ‖Πe‖ ,
and the first estimate of Theorem (2.2) follows.

Next we consider the case k = 0. In this case (4.1) is still valid, but we do not
have (4.2) since the L2-projection into polynomials of degree k − 1 is no longer
defined. Nevertheless, we can still estimate Ti for i = 1, 2, 3, 4 in their form given
by (4.1). We provide the details for only T1. Applying Cauchy-Schwarz inequality
to each term in T1 we get

|T1| ≤ ‖δT ‖ ‖ψθ‖+ (‖δT ‖+ ‖ΠT eT ‖) ‖δψθ
‖ .

By Theorem 2.1 we have that

|T1| ≤ ‖δT ‖ ‖ψθ‖+ (‖δT ‖+ ‖ΠT eT ‖)Ch |(ψT , ψM , ψθ, ψVV)|1,

and, by the elliptic regularity inequality (2.7) we have

|T1| ≤ CCreg ‖δ‖ ‖Πe‖+ CCregh ‖Πe‖2 .
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Since the remaining terms can be estimated in a similar fashion, we obtain

‖Πe‖2 ≤ CCreg ‖δ‖ ‖Πe‖+ CCregh ‖Πe‖2 .

The second estimate of Theorem (2.2) now follows if we assume that CCregh < 1.
This completes the proof. �

4.2. Step 2: Proof of the duality identity of Lemma 4.1. To prove Lemma
4.1, we begin by obtaining a couple of auxiliary identities. The first is the following.

Lemma 4.2. Let (v1, v2, v3, v4) ∈ [H1(Ωh)]
4 and we take St as the stabilization

function of the projection (ΠT v1,ΠMv2,Πθv3,ΠVVv4) . Then

− 〈êθ − eθ, δv2n〉∂Ωh
+ 〈êM − eM , δv3n〉∂Ωh

− 〈êT − eT , δv4n〉∂Ωh
+ 〈êVV − eVV, δv1n〉∂Ωh

= 0.

Proof. Let Θ be the left-hand side of the identity we want to prove, that is,

Θ := −〈
[
êθ − eθ
êT − eT

]
,

[
δv2
δv4

]
n〉∂Ωh

+ 〈
[
êM − eM
êVV − eVV

]
,

[
δv3
δv1

]
n〉∂Ωh

.

Noting that êu − eu = uh − ûh for u = T,M, θ, VV, and that, by the definition of the
numerical traces (2.2b), we have[

êθ − eθ
êT − eT

]
=

[
θh − θ̂h
Th − T̂h

]
= S

[
Mh − M̂h

VVh − V̂Vh

]
n,

we get

Θ = −〈S
[
Mh − M̂h

VVh − V̂Vh

]
,

[
δv2
δv4

]
〉∂Ωh

+ 〈
[
Mh − M̂h

VVh − V̂Vh

]
, St

[
δv2
δv4

]
〉∂Ωh

= 0

because

[
δv3
δv1

]
= St

[
δv2
δv4

]
n, by (2.3e). This completes the proof. �

Lemma 4.3. Let (u1, u2, u3, u4), (v1, v2, v3, v4) ∈ [H1(Ωh)]
4 with the stabilization

functions S, St, respectively. Then

− 〈δu3
, δv2n〉∂Ωh

+ 〈δu2
, δv3n〉∂Ωh

− 〈δu1
, δv4n〉∂Ωh

+ 〈δu4
, δv1n〉∂Ωh

= 0.

Proof. Let Θ be the left-hand side of the identity we want to prove, that is,

Θ := − 〈
[
δu3

δu1

]
,

[
δv2
δv4

]
n〉∂Ωh

+ 〈
[
δu2

δu4

]
,

[
δv3
δv1

]
n〉∂Ωh

.

Since, by (2.3e), we have that

[
δu3

δu1

]
= S

[
δu2

δu4

]
n, and

[
δv3
δv1

]
= St

[
δv2
δv4

]
n, we readily

obtain that

Θ = − 〈S
[
δu2

δu4

]
n,

[
δv2
δv4

]
n〉∂Ωh

+ 〈
[
δu2

δu4

]
, St

[
δv2
δv4

]
〉∂Ωh

= 0.

This completes the proof. �

We are now ready to prove Lemma 4.1.
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Proof of Lemma 4.1. By the definition of E and the equations defining the dual
solution (2.6), we have

E = (ΠT eT , ψ
′
VV)Ωh

− (ΠT eT , ψθ)Ωh
+ (ΠT eT , d

2ψT /GA)Ωh

− (ΠMeM , ψ′
θ)Ωh

+ (ΠMeM , ψM/EI)Ωh

+ (Πθeθ, ψ
′
M )Ωh

− (Πθeθ, ψT )Ωh
− (ΠVVeVV, ψ

′
T )Ωh

.

Since, for any pair (eu, ψv), we have that

(Πueu, ψ
′
v)Ωh

= (Πueu, (Πvψv)
′)Ωh

+ (Πuu, δ
′
ψv

)

= (Πueu, (Πvψv)
′)Ωh

− ((Πueu)
′, δψv

)Ωh
+ 〈Πuu, δψv

n〉∂Ωh

= (Πueu, (Πvψv)
′)Ωh

+ 〈Πuu, δψv
n〉∂Ωh

,

by the orthogonality properties (2.3a) to (2.3d) of the projection. Hence

E = (ΠT eT , (ΠVVψVV)
′)Ωh

− (ΠT eT , ψθ)Ωh
+ (ΠT eT , d

2ψT /GA)Ωh

− (ΠMeM , (Πθψθ)
′)Ωh

+ (ΠMeM , ψM/EI)Ωh

+ (Πθeθ, (ΠMψM )′)Ωh
− (Πθeθ, ψT )Ωh

− (ΠVVeVV, (ΠTψT )
′)Ωh

+ 〈ΠT eT , δψVV
n〉∂Ωh

− 〈ΠMeM , δψθ
〉∂Ωh

+ 〈Πθeθ, δψM
n〉∂Ωh

− 〈ΠVVeVV, δψT
n〉∂Ωh

.

Taking (v1, v2, v3, v4) = (−ΠTψT ,ΠMψM ,−Πθψθ,ΠVVψVV) in the error equations
(2.4) and carrying out some very simple algebraic manipulations, we obtain

E = H + (δT ,Πθψθ)Ωh
− (ΠT eT , δψθ

)Ωh

+ (ΠT eT , d
2δψT

/GA)Ωh
− (δT , d

2ΠTψT /GA)Ωh

+ (ΠMeM , δψM
/EI)Ωh

− (δM ,ΠMψM/EI)Ωh

+ (δθ,ΠTψT )Ωh
− (Πθeθ, δψT

)Ωh

where

H := 〈êT ,ΠVVψVV n〉∂Ωh
+ 〈ΠT eT , δψVV

n〉∂Ωh

− 〈êM ,Πθψθ n〉∂Ωh
− 〈ΠMeM , δψθ

n〉∂Ωh

+ 〈êθ,ΠMψM n〉∂Ωh
+ 〈ΠT eθ, δψM

n〉∂Ωh

− 〈êVV,ΠTψT n〉∂Ωh
− 〈ΠVVeVV, δψT

n〉∂Ωh
.

It remains to show that H = 0.
Since ψM and ψVV are single-valued on Eh, and ψVV = 0 on ∂Ω, we can take

m := ψM and w := ψVV in the error equations (2.4e) and (2.4f), respectively, to get

〈êθ, ψM n〉∂Ωh
= 〈êT , ψVV n〉∂Ωh

= 0.

Moreover, since êM and êVV are single-valued on Eh, and êVV = 0, ψθ = 0 on ∂Ωh,
we have

〈êM , ψθ n〉∂Ωh
= 〈êVV, ψT n〉∂Ωh

= 0.
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This implies that

H = 〈êT , (ΠVVψVV − ψVV)n〉∂Ωh
+ 〈ΠT eT , δψVV

n〉∂Ωh

− 〈êM , (Πθψθ − ψθ)n〉∂Ωh
− 〈ΠMeM , δψθ

n〉∂Ωh

+ 〈êθ, (ΠMψM − ψM )n〉∂Ωh
+ 〈Πθeθ, δψM

n〉∂Ωh

− 〈êVV, (ΠTψT − ψT )n〉∂Ωh
− 〈ΠVVeVV, δψT

n〉∂Ωh

=− 〈êT −ΠT eT , δψVV
n〉∂Ωh

+ 〈êM −ΠMeM , δψθ
n〉∂Ωh

− 〈êθ −Πθeθ, δψM
n〉∂Ωh

+ 〈êVV −ΠVVeVV, δψT
n〉∂Ωh

= H1 +H2,

where

H1 =− 〈êT − eT , δψVV
n〉∂Ωh

+ 〈êM − eM , δψθ
n〉∂Ωh

− 〈êθ − eθ, δψM
n〉∂Ωh

+ 〈êVV − eVV, δψT
n〉∂Ωh

,

H2 =− 〈δT , δψVV
n〉∂Ωh

+ 〈δM , δψθ
n〉∂Ωh

− 〈δθ, δψM
n〉∂Ωh

+ 〈δVV, δψT
n〉∂Ωh

.

But H1 = 0 by Lemma 4.2 with (v1, v2, v3, v4) = (ψT , ψM , ψθ, ψVV), and H2 = 0 by
Lemma 4.3 with (u1, u2, u3, u4)=(T,M, θ, VV) and (v1, v2, v3, v4)=(ψT , ψM , ψθ, ψVV).
This completes the proof. �

5. Error of the numerical traces: Proof of Theorem 2.4

To prove this theorem we proceed in two steps. In the first, we obtain repre-
sentation formulas for the errors in the numerical traces. In the second, we use
approximation results to estimate them. We prove the result only for k ≥ 1; the
proof for the case k = 0 is not difficult.

5.1. Step 1: Representation of the errors. The following lemma provides a
representation formula for the errors in the numerical traces.

Lemma 5.1. Let xi ∈ Eh be an arbitrary node and let Φu
T,xi

, Φu
M,xi

, Φu
θ,xi

, Φu
VV,xi

,

for u = T,M, θ, or VV, be the functions defined by (2.8a), (2.8b), and (2.8c). Then

êu(xi) = Γu
1 (xi) + Γu

2 (xi)

where

Γu
1 (xi) = (VV′ − (VV′)k−1,Φ

u
T,xi

−ΠTΦ
u
T,xi

)Ωh

− (θ′ − (θ′)k−1,Φ
u
M,xi

− ΦM,xi
Φu

M,xi
)Ωh

+ (M ′ − (M ′)k−1,Φ
u
θ,xi

−ΠθΦ
u
θ,xi

)Ωh

− (T ′ − (T ′)k−1,Φ
u
VV,xi

−ΠVVΦ
u
VV,xi

)Ωh
,

Γu
2 (xi) = (eM/EI,Φu

M,xi
−ΠMΦu

M,xi
)Ωh

− (eθ,Φ
u
T,xi

−ΠTΦ
u
T,xi

)Ωh

+ (d2eT /GA,Φu
T,xi

−ΠTΦ
u
T,xi

)Ωh
− (eT ,Φ

u
θ,xi

−ΠθΦ
u
θ,xi

)Ωh
.

To prove this lemma we need an auxiliary result which establishes a relation
between the errors in the numerical traces and the Green’s functions.

Lemma 5.2. Set

Θu
i := 〈êVV,Φu

T,xi
n〉∂Ωh

− 〈êθ,Φu
M,xi

n〉∂Ωh
+ 〈êM ,Φu

θ,xi
n〉∂Ωh

− 〈êT ,Φu
VV,xi

n〉∂Ωh
.
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Then, we have Θu
i = Θu

i,1 +Θu
i,2 +Θu

i,3 where

Θu
i,1 = 〈êVV − eVV, (Φ

u
T,xi

− v1)n〉∂Ωh
− 〈êθ − eθ, (Φ

u
M,xi

− v2)n〉∂Ωh

+ 〈êM − eM , (Φu
θ,xi

− v3)n〉∂Ωh
− 〈êT − eT , (Φ

u
VV,xi

− v4)n〉∂Ωh
,

Θu
i,2 = (e′VV,Φ

u
T,xi

− v1)Ωh
− (e′θ,Φ

u
M,xi

− v2)Ωh

+ (e′M ,Φu
θ,xi

− v3)Ωh
− (e′T ,Φ

u
VV,xi

− v4)Ωh
,

Θu
i,3 = (eM/EI,Φu

M,xi
− v2)Ωh

− (eθ,Φ
u
T,xi

− v1)Ωh

+ (d2eT /GA,Φu
T,xi

− v1)Ωh
− (eT ,Φ

u
θ,xi

− v3)Ωh
,

for (v1, v2, v3, v4) ∈ [V k
h ]

4.

Proof. Adding and subtracting the term

〈êVV, v1 n〉∂Ωh
− 〈êθ, v2 n〉∂Ωh

+ 〈êM , v3 n〉∂Ωh
− 〈êT , v4 n〉∂Ωh

to the original expression for Θu
i , we see that

Θu
i = 〈êVV, (Φu

T,xi
− v1)n〉∂Ωh

− 〈êθ, (Φu
M,xi

− v2)n〉∂Ωh

+ 〈êM , (Φu
θ,xi

− v3)n〉∂Ωh
− 〈êT , (Φu

VV,xi
− v4)n〉∂Ωh

+ 〈êVV, v1 n〉∂Ωh
− 〈êθ, v2 n〉∂Ωh

+ 〈êM , v3 n〉∂Ωh
− 〈êT , v4 n〉∂Ωh

.

Rewriting the last four terms above by using the error equations (2.4a)-(2.4d), we
obtain

Θu
i = 〈êVV, (Φu

T,xi
− v1)n〉∂Ωh

− 〈êθ, (Φu
M,xi

− v2)n〉∂Ωh

+ 〈êM , (Φu
θ,xi

− v3)n〉∂Ωh
− 〈êT , (Φu

VV,xi
− v4)n〉∂Ωh

+ (eVV, v
′
1)Ωh

− (eθ, v
′
2)Ωh

+ (eM , v′3)Ωh
− (eT , v

′
4)Ωh

+ (eθ, v1)Ωh
− (d2eT /GA, v1)Ωh

− (eM/EI, v2)Ωh
+ (eT , v3)Ωh

.

Note that, by the definition of the Green’s functions, we have

(eVV, (Φ
u
T,xi

)′)Ωh
= 0,

(eθ, (Φ
u
M,xi

)′)Ωh
= (eθ,Φ

u
T,xi

)Ωh
,

(eM , (Φu
θ,xi

)′)Ωh
= (eM ,Φu

M,xi
/EI)Ωh

,

(eT , (Φ
u
VV,xi

)′)Ωh
= (eT ,Φ

u
θ,xi

− d2Φu
T,xi

/GA)Ωh
.

Inserting these equations into the last expression for Θu
i , and rearranging terms,

we obtain

Θu
i = Θu

i,3 + 〈êVV, (Φu
T,xi

− v1)n〉∂Ωh
− 〈êθ, (Φu

M,xi
− v2)n〉∂Ωh

+ 〈êM , (Φu
θ,xi

− v3)n〉∂Ωh
− 〈êT , (Φu

VV,xi
− v4)n〉∂Ωh

− (eVV, (Φ
u
T,xi

− v1)
′)Ωh

+ (eθ, (Φ
u
M,xi

− v2)
′)Ωh

− (eM , (Φu
θ,xi

− v3)
′)Ωh

+ (eT , (Φ
u
VV,xi

− v4)
′)Ωh

.

It remains to show that

Θu
i,1 +Θu

i,2 = 〈êVV, (Φu
T,xi

− v1)n〉∂Ωh
− 〈êθ, (Φu

M,xi
− v2)n〉∂Ωh

+ 〈êM , (Φu
θ,xi

− v3)n〉∂Ωh
− 〈êT , (Φu

VV,xi
− v4)n〉∂Ωh

− (eVV, (Φ
u
T,xi

− v1)
′)Ωh

+ (eθ, (Φ
u
M,xi

− v2)
′)Ωh

− (eM , (Φu
θ,xi

− v3)
′)Ωh

+ (eT , (Φ
u
VV,xi

− v4)
′)Ωh

.
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This follows by integrating by parts on each of the last four terms. This completes
the proof. �

We are now ready to prove our representation result.

Proof of Lemma 5.1. We begin by noting that, by the definition of the Green’s
functions, (2.8b) and (2.8c), we have

Θu
i = êu(xi).

On the other hand, setting

(v1, v2, v3, v4) = (ΠTΦ
u
T,xi

,ΠMΦu
M,xi

,ΠθΦ
u
θ,xi

,ΠVVΦ
u
VV,xi

)

in Lemma 5.2, we obtain

(5.1) êu(xi) = Θu
i,1 +Θu

i,2 +Θu
i,3

with

Θu
i,1 = 〈êVV − eVV, (Φ

u
T,xi

−ΠTΦ
u
T,xi

)n〉∂Ωh
− 〈êθ − eθ, (Φ

u
M,xi

−ΠMΦu
M,xi

)n〉∂Ωh

+ 〈êM − eM , (Φu
θ,xi

−ΠθΦ
u
θ,xi

)n〉∂Ωh
− 〈êT − eT , (Φ

u
VV,xi

−ΠVVΦ
u
VV,xi

)n〉∂Ωh
,

Θu
i,2 = (e′VV,Φ

u
T,xi

−ΠTΦ
u
T,xi

)Ωh
− (e′θ,Φ

u
M,xi

−ΠMΦu
M,xi

)Ωh

+ (e′M ,Φu
θ,xi

−ΠθΦ
u
θ,xi

)Ωh
− (e′T ,Φ

u
VV,xi

−ΠVVΦ
u
VV,xi

)Ωh
,

Θu
i,3 = (eM/EI,Φu

M,xi
−ΠMΦu

M,xi
)Ωh

− (eθ,Φ
u
T,xi

−ΠTΦ
u
T,xi

)Ωh

+ (d2eT /GA,Φu
T,xi

−ΠTΦ
u
T,xi

)Ωh
− (eT ,Φ

u
θ,xi

−ΠθΦ
u
θ,xi

)Ωh
,

Clearly,

(5.2) Θu
i,3 = Γu

2 (xi).

By Lemma 4.2 with (v1, v2, v3, v4) = (ΦT,xi
,ΦM,xi

,Φθ,xi
,ΦVV,xi

) we have that

(5.3) Θu
i,1 = 0.

By the orthogonality property, (2.3), of the projection we have

Θu
i,2 = (e′VV − (e′VV)k−1,Φ

u
T,xi

−ΠTΦ
u
T,xi

)Ωh

− (e′θ − (e′θ)k−1,Φ
u
M,xi

−ΠMΦu
M,xi

)Ωh

+ (e′M − (e′M )k−1,Φ
u
θ,xi

−ΠθΦ
u
θ,xi

)Ωh

− (e′T − (e′T )k−1,Φ
u
VV,xi

−ΠVVΦ
u
VV,xi

)Ωh
.

Since

e′u − (e′u)k−1 = (u′ − u′
h)− (u′ − u′

h)k−1

= u′ − (u′)k−1 + (u′
h)k−1 − u′

h

= u′ − (u′)k−1,

we see that

(5.4) Θu
i,2 = Γu

1 (xi).

The result now follows from (5.1), (5.2), (5.3), and (5.4). �
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5.2. Step 2: Proof of Theorem 2.4. We are now ready to prove Theorem 2.4.
By Lemma 5.1 we have that

(5.5) |êu(xi)| ≤ |Γu
1 (xi)|+ |Γu

2 (xi)|
where Γu

1 (xi) = T1 + T2 + T3 + T4 with

T1 = (VV′ − (VV′)k−1,Φ
u
T,xi

−ΠTΦ
u
T,xi

)Ωh
,

T2 = −(θ′ − (θ′)k−1,Φ
u
M,xi

−ΠMΦu
M,xi

)Ωh
,

T3 = (M ′ − (M ′)k−1,Φ
u
θ,xi

−ΠθΦ
u
θ,xi

)Ωh
,

T4 = −(T ′ − (T ′)k−1,Φ
u
VV,xi

−ΠVVΦ
u
VV,xi

)Ωh
,

and Γu
2 (xi) = S1 + S2 + S3 + S4 with

S1 = (eM/EI,Φu
M,xi

−ΠMΦu
M,xi

)Ωh
,

S2 = −(eθ,Φ
u
T,xi

−ΠTΦ
u
T,xi

)Ωh
,

S3 = (d2eT /GA,Φu
T,xi

−ΠTΦ
u
T,xi

)Ωh
,

S4 = −(eT ,Φ
u
θ,xi

−ΠθΦ
u
θ,xi

)Ωh
.

Let us estimate the term T1. By the approximation properties of the L2-projection
and Theorem 2.1, we get

T1 ≤ ‖VV′ − (VV′)k−1‖ ·
∥∥Φu

T,xi
−ΠTΦ

u
T,xi

∥∥
≤ Chs|VV′|s

∥∥δui ∥∥
≤ Chs|(T,M, θ, VV)|s+1 ‖δui ‖ ,

for any s ∈ [1, k]. We estimate the terms T2, T2, and T3 in a similar fashion and
obtain

|Γu
1 (xi)| ≤ Chs|(T,M, θ, VV)|s+1| ‖δui ‖ .

Next, we obtain an estimate on Γu
2 (xi). We only show how to estimate S1 since

the remaining terms in Γu
2 (xi) can be estimated similarly. By Theorem 2.3, and

Lemma 2.1, we get

S1 ≤ ‖eM/EI‖ ·
∥∥Φu

M,xi
−ΠMΦu

T,xi

∥∥ ≤ C ‖e‖ ‖δui ‖ .
This implies that

|Γu
2 (xi)| ≤ C ‖e‖ ‖δui ‖ .

Inserting the estimates of |Γu
1 (xi)| and |Γu

2 (xi)| with s = k into (5.5) completes the
proof of Theorem 2.4.

6. Numerical results

In this section, we display numerical results to verify our theoretical findings.
We solve the equations (1.1a) with q(x) = ex, (EI)(x) = ex, (GA)(x) = e−x,
together with the boundary conditions (1.1b) w(0) = w(1) = θ(0) = θ(1) = 0. We

take S :=

[
αθ τ
τ −αT

]
to be constant on ∂Ωh.

We display our numerical results in Tables 6.1 and 6.2. In Table 6.1, we present
a history of convergence study for the projection of the errors, namely,

Πe := (ΠT eT ,ΠMeM ,Πθeθ,ΠVVeVV).

Therein, “mesh = i” means we employed a uniform mesh with 2i elements to obtain
the results of that particular row of the table. For polynomial degrees k = 0, 1, 2, 3
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we display the error ‖Πe‖. We also display numerical orders of convergence which
are computed as follows. Let eu(i) denote the error where a mesh with 2i elements
has been employed to obtain the HDG solution. As usual, the order of convergence,
ri, at level i is defined as ri := log

(
eu(i− 1)/eu(i)

)
/log 2. Observe that the results

displayed in Table 6.1 validate the superconvergence of order k + 2 for k ≥ 1, and
optimal convergence for k = 0, predicted by Theorem 2.2.

In Table 6.2 we carry out a similar study for the errors in the numerical traces.
We display the error

‖ ê ‖∞ := max
u∈{T,M,θ,VV}

(
max
x∈Eh

|(u− ûh)(x)|
)
,

and its order of convergence. We see that the 2k+1 order superconvergence of the
numerical traces predicted by Theorem 2.4 is verified.

In these examples we took the thickness parameter d = 10−2, but let us note
that in the numerical experiments which we do not report here that we observed
similar results and exactly the same convergence orders when we took d = 10−8.

We do not report here any numerical results for validating the optimal order L2

convergence of the error because these results have already been presented in [4].

Table 6.1. History of convergence of the projection of the error.

k = 0 k = 1 k = 2 k = 3

mesh ‖Πe‖ order ‖Πe‖ order ‖Πe‖ order ‖Πe‖ order

αθ ≡ 0, αT ≡ 0, τ ≡ 1

3 1.44E-01 0.94 4.56E-04 2.95 3.87E-07 4.54 1.78E-09 4.97
4 7.36E-02 0.97 5.81E-05 2.97 2.06E-08 4.24 5.62E-11 4.99
5 3.72E-02 0.98 7.34E-06 2.99 1.22E-09 4.07 1.76E-12 4.99
6 1.87E-02 0.99 9.22E-07 2.99 7.54E-11 4.02 5.50E-14 5.00

αθ ≡ 1, αT ≡ 0, τ ≡ 1

3 9.75E-02 0.98 4.62E-04 2.95 5.49E-07 4.31 3.11E-09 4.98
4 4.92E-02 0.99 5.88E-05 2.97 3.20E-08 4.10 9.80E-11 4.99
5 2.47E-02 0.99 7.43E-06 2.99 1.96E-09 4.03 3.07E-12 5.00
6 1.24E-02 1.00 9.33E-07 2.99 1.22E-10 4.01 9.59E-14 5.00

αθ ≡ 0, αT ≡ 1, τ ≡ 1

3 1.43E-01 0.94 3.79E-04 2.94 5.77E-07 4.60 1.75E-09 4.96
4 7.29E-02 0.97 4.87E-05 2.96 2.92E-08 4.30 5.52E-11 4.99
5 3.68E-02 0.98 6.17E-06 2.98 1.70E-09 4.10 1.73E-12 5.00
6 1.85E-02 0.99 7.77E-07 2.99 1.04E-10 4.03 5.41E-14 5.00

αθ ≡ 1, αT ≡ 1, τ ≡ 0

3 5.56E-02 0.57 1.07E-04 3.16 3.46E-07 4.31 2.16E-09 5.01
4 3.60E-02 0.62 1.25E-05 3.10 1.99E-08 4.12 6.73E-11 5.00
5 2.16E-02 0.74 1.51E-06 3.05 1.21E-09 4.04 2.10E-12 5.00
6 1.21E-02 0.84 1.84E-07 3.03 7.54E-11 4.01 6.56E-14 5.00

αθ ≡ 1, αT ≡ 1, τ ≡ 1

3 5.42E-02 0.89 1.74E-04 2.87 5.20E-07 4.33 2.76E-09 4.97
4 2.95E-02 0.88 2.29E-05 2.93 2.99E-08 4.12 8.68E-11 4.99
5 1.59E-02 0.89 2.94E-06 2.96 1.83E-09 4.03 2.72E-12 5.00
6 8.41E-03 0.92 3.72E-07 2.98 1.14E-10 4.01 8.50E-14 5.00
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Table 6.2. History of convergence of the numerical traces.

k = 0 k = 1 k = 2 k = 3

mesh ‖ ê ‖∞ order ‖ ê ‖∞ order ‖ ê ‖∞ order ‖ ê ‖∞ order

αθ ≡ 0, αT ≡ 0, τ ≡ 1

3 1.43E-01 0.96 4.33E-04 2.95 2.36E-07 4.99 3.21E-11 6.98
4 7.23E-02 0.98 5.52E-05 2.97 7.42E-09 4.99 2.49E-13 7.05
5 3.64E-02 0.99 6.97E-06 2.99 2.33E-10 5.00 1.95E-15 7.00
6 1.83E-02 1.00 8.76E-07 2.99 7.29E-12 5.00 1.52E-17 7.00

αθ ≡ 1, αT ≡ 0, τ ≡ 1

3 1.01E-01 0.97 4.33E-04 2.95 2.36E-07 4.99 3.21E-11 6.98
4 5.10E-02 0.99 5.52E-05 2.97 7.42E-09 4.99 2.43E-13 7.04
5 2.56E-02 0.99 6.97E-06 2.99 2.33E-10 5.00 1.91E-15 6.99
6 1.28E-02 1.00 8.76E-07 2.99 7.29E-12 5.00 1.50E-17 6.99

αθ ≡ 0, αT ≡ 1, τ ≡ 1

3 1.42E-01 0.97 3.58E-04 2.94 3.84E-07 4.97 9.76E-12 6.92
4 7.17E-02 0.98 4.60E-05 2.96 1.21E-08 4.99 7.73E-14 6.98
5 3.61E-02 0.99 5.84E-06 2.98 3.80E-10 4.99 6.08E-16 6.99
6 1.81E-02 1.00 7.36E-07 2.99 1.19E-11 5.00 4.78E-18 6.99

αθ ≡ 1, αT ≡ 1, τ ≡ 0

3 5.30E-02 0.58 8.87E-05 3.22 1.48E-07 4.95 4.21E-11 6.98
4 3.43E-02 0.63 1.01E-05 3.14 4.70E-09 4.98 3.31E-13 6.99
5 2.06E-02 0.74 1.19E-06 3.08 1.48E-10 4.99 2.60E-15 6.99
6 1.15E-02 0.84 1.44E-07 3.04 4.64E-12 4.99 2.03E-17 7.00

αθ ≡ 1, αT ≡ 1, τ ≡ 1

3 5.32E-02 0.92 1.48E-04 2.84 2.36E-07 4.97 4.04E-12 6.88
4 2.81E-02 0.92 1.97E-05 2.91 7.44E-09 4.99 3.24E-14 6.96
5 1.49E-02 0.92 2.53E-06 2.96 2.33E-10 4.99 2.57E-16 6.98
6 7.75E-03 0.94 3.22E-07 2.98 7.31E-12 4.99 2.02E-18 6.99

7. Concluding remarks

We have shown that optimal HDG methods can be devised which are free from
shear-locking. We achieved this by a careful study of the relation between the
definition of the numerical traces and the corresponding convergence properties of
the methods. Key to our analysis was a new projection operator which is tailored
to fit the structure of the numerical traces of the HDG method. We have shown
that HDG solution superconverges to the projection of the exact solution for all
the unknowns. This immediately results in optimal error estimates for all the
unknowns. In this sense, the error analysis is simplified only to the study of the
approximation properties of the projection operator.

This provides a powerful approach for devising locking-free HDG methods for
more challenging problems arising in solid mechanics, like the Reissner-Mindlin
plates problem. This constitutes the subject of ongoing work.

Appendix A. Proof of the regularity property

of the dual problem

The proof is based on the following simple lemma.

Lemma A.1. Let f ∈ L2(Ω) and set fn(x) :=
∫ x

0
fn−1(t) dt, for n ≥ 1 with

f0 := f . Then ‖fn‖ ≤ ‖f‖.
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We are now ready to prove the elliptic regularity inequality (2.7). A straightfor-
ward computation shows that the solution of (2.6) is given by

(A.1)

ψT = −η1VV + cT , ψM = −η2VV + η1θ + cTx+ cM ,

ψθ =

∫ x

0

1

EI
(−η2VV + η1θ + cT t+ cM ) dt− η1M + cθ,

ψVV =

∫ x

0

∫ t

0

1

EI
(−η2VV + η1θ + cT s+ cM ) dsdt

+

∫ x

0

d2

GA
η1VV dt− η2M + cθx+ cVV.

where ct, cM , cθ, and cVV are constants of integration. Using the boundary con-
ditions ψθ(0) = ψVV(0) = 0, we immediately get cθ = cVV = 0. The remaining
boundary conditions, ψθ(1) = ψVV(1) = 0, yield the following linear system for cT
and cM : (

a11 a12
a12 a22

)(
cT
cM

)
=

(
b1
b2

)
,

where

a11 =

∫ 1

0

1

EI
t dt, a12 =

∫ 1

0

1

EI
dt, a21 =

∫ 1

0

∫ t

0

1

EI
s dsdt, a22 =

∫ 1

0

∫ t

0

1

EI
dsdt,

and b1 =
∫ 1

0
1
EI (η

2
VV − η1θ) dt+

∫ 1

0
ηM dt and

b2 =

∫ 1

0

∫ t

0

1

EI
(η2VV − η1θ) dsdt−

∫ 1

0

d2

GA
η1VV dt+

∫ 1

0

η1M dt.

By Lemma A.1 we can easily show that |bi| ≤ C ‖η‖ for i = 1, 2, where the constant
C depends solely on EI and GA. Note that the dependence on d can be suppressed
since d ≤ 1. Furthermore, we can also suppress the dependence of C on EI and
GA since these, and hence their reciprocals, are functions of order one on Ω. Thus,
we have that |cT | ≤ C ‖η‖, and that |cM | ≤ C ‖η‖. Inserting these estimates into
(A.1) and applying Lemma A.1 once more, we finally obtain (2.7).

References

[1] F. Celiker, Discontinuous Galerkin methods for Structural Mechanics, Ph.D. thesis, Univer-

sity of Minnesota, 2005.
[2] F. Celiker and B. Cockburn, Element-by-element post-processing of discontinuous Galerkin

methods for Timoshenko beams, J. Sci. Comput. 27 (2006), 177–187. MR2285774
(2007i:74042)
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