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UNIFORM-IN-TIME SUPERCONVERGENCE

OF HDG METHODS FOR THE HEAT EQUATION

BRANDON CHABAUD AND BERNARDO COCKBURN

Abstract. We prove that the superconvergence properties of the hybridiz-
able discontinuous Galerkin method for second-order elliptic problems do hold
uniformly in time for the semidiscretization by the same method of the heat
equation provided the solution is smooth enough. Thus, if the approxima-
tions are piecewise polynomials of degree k, the approximation to the gra-
dient converges with the rate hk+1 for k ≥ 0 and the L2-projection of the
error into a space of lower polynomial degree superconverges with the rate√

log(T/h2)hk+2 for k ≥ 1 uniformly in time. As a consequence, an element-

by-element postprocessing converges with the rate
√

log(T/h2)hk+2 for k ≥ 1
also uniformly in time. Similar results are proven for the Raviart-Thomas and
the Brezzi-Douglas-Marini mixed methods.

1. Introduction

In this paper, we obtain uniform-in-time superconvergence error estimates for
the semidiscretization by hybridizable discontinuous Galerkin (HDG) methods of
the model parabolic equation

ut −Δu = f in Ω× R
+,(1.1a)

u = g on ∂Ω× R
+,(1.1b)

u(t = 0) = u0 on Ω,(1.1c)

where Ω is a polyhedral domain of Rn.
Let us describe our results. The particular HDG method we consider is the so-

called local discontinuous Galerkin-hybridizable (LDG-H) method; see [6]. When
applied to the Poisson equation, this method uses polynomials of degree k ≥ 0 to
approximate u and each component of the flux q = −∇u. The first analysis of
a LDG-H method was obtained in [5]. Soon after, the analysis of a wide class of
discontinuous Galerkin methods including the LDG-H methods was obtained in [8].
Recently, a new analysis of the LDG-H methods was proposed [7] which is based
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on the use of suitably chosen projections. In all of the above-mentioned papers,
it was shown that the LDG-H methods have convergence properties shared with
the Raviart-Thomas (RT) [17] and the Brezzi-Douglas-Marini (BDM) [2] methods.
Indeed, it was shown that the approximation to q converges with order k + 1 for
k ≥ 0 and that the L2-projection of the error in u into a space of lower polynomial
degree superconverges with order k+2 for k ≥ 1. As a consequence, an element-by-
element postprocessing could be computed which converged to u with order k+2 for
k ≥ 1. In this paper, we show that these results also hold in our setting uniformly
in time provided the exact solution is smooth enough; though the estimate of the
error of the postprocessed approximation has the additional factor

√
log(T/h2).

Let us place our results in historical context. In 1981, [16], the first error esti-
mates for the semidiscrete RT method of arbitrary degree on polygonal domains
and for the semidiscrete RT method of degree k = 1 for smooth domains in R

2

were obtained. In 1987, [18], the semidiscrete RT methods of arbitrary degree were
studied in R

2 and optimal error estimates in negative-order norms were obtained
by using the so-called quasiprojection method introduced in [9]. Superconvergent
approximations were then obtained (for translation invariant meshes and periodic
boundary conditions) by convolution as suggested in [1]. These were the first su-
perconvergence estimates for semidiscrete mixed methods. In 1989, [22], super-
convergence was obtained for the gradient of the approximation provided by the
continuous Galerkin method with piecewise-linear approximations; nonsmooth ini-
tial conditions u0 were considered. In 1993, [13], superconvergence of the flux q
along the Gaussian lines for rectangular RT methods was proven for smooth solu-
tions. In 1998, [4], the results of the pioneering work done in [16] for the RT method
of degree k = 1 for the homogeneous equation with nonsmooth initial data u0 and
smooth domains in R

2 were extended to the case of RT methods of arbitrary de-
gree k. The extension of the results in [13] to this setting was achieved at the same
time. In 2009, [23], superconvergence of the so-called semidiscrete H1-Galerkin
mixed method was obtained for rectangular elements.

There are some similarities between our aim and approach and those in [13,
4]. Indeed, in [13, 4], the superconvergence results for mixed methods for second-
order elliptic problems obtained in [10, 11, 14] were extended to the semidiscrete
mixed methods. In a similar manner, here we extend to our parabolic setting the
superconvergence results for the discretization by HDG methods of second-order
elliptic problems [5, 8, 7].

In [13, 4], estimates of a suitably defined projection of the errors are obtained by
using energy techniques and, in [4], also by parabolic duality arguments. Similarly,
we consider the projection introduced in [7] and proceed to estimate the projec-
tion of the errors. Moreover, we also use energy techniques and parabolic duality
arguments. The energy techniques are very well known and can be found in the
monograph [21]. The parabolic duality technique was also used in 1991, [12], in the
framework of adaptive methods. Here, we use a variation of the duality arguments
used in [12] and [4]. It is based on an estimate of the L1(0, T ;L2(Ω))-norm of the
solution of the dual problem and incorporates the fact that the projection of the
error we are trying to estimate lies in a finite dimensional space.

Finally, note that, since the results we obtain here for the HDG methods easily
carry over to mixed methods, our approach provides a new way to obtain super-
convergence results for those methods in the case of smooth solutions. To the
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knowledge of the authors, the closest results in the available literature are those
obtained in [4]. However, note that here we are considering polyhedral domains in
any space dimension and inhomogeneous equations, whereas in [4] the domains are
planar and smooth, and the equations are homogeneous.

The paper is organized as follows. In section 2, we state and discuss our main
results for the HDG method under consideration. Their detailed proof is displayed
in sections 3, 4 and also in the Appendix, where some auxiliary results are obtained.
We end in section 5 by discussing extensions of our results to the RT and BDM
mixed methods.

2. Main results

2.1. The HDG method. To describe the HDG method under consideration, we
begin by discretizing the domain Ω by a triangulation Th made of simplexes. For
simplicity, we take the triangulation to be conforming. We denote by Eh the union
of faces F of the simplexes K of the triangulation Th.

For each time t on the interval [0, T ], the method yields a scalar approximation
uh(t) to u(t), a vector approximation qh(t) to q(t), and a scalar approximation
ûh(t) to the trace of u(t) on element boundaries, in spaces of the form

Wh = {w ∈ L2(Ω) : w|K ∈ W (K) ∀ K ∈ Th},(2.1a)

V h = {v ∈ [L2(Ω)]n: v|K ∈ V (K) ∀ K ∈ Th},(2.1b)

Mh = {μ ∈ L2(Eh) : μ|F ∈ M(F ) ∀ F ∈ Eh},(2.1c)

respectively, where

W (K) = Pk(K), V (K) = Pk(K), and M(F ) = Pk(F ).

Here Pk(K) := [Pk(K)]n and Pk(K) is the space of polynomials of total degree at
most k.

The HDG method provides approximations uh in Wh, qh in V h, and the numer-
ical trace ûh in Mh, which are determined by requiring that

(qh, r)Th
− (uh,∇ · r)Th

+ 〈ûh, r · n〉∂Th
= 0,(2.2a)

(∂tuh, w)Th
− (qh,∇w)Th

+ 〈q̂h · n, w〉∂Th
= (f, w)Th

,(2.2b)

〈ûh, μ〉∂Ω = 〈g, μ〉∂Ω,(2.2c)

〈q̂h · n, μ〉∂Th\∂Ω = 0,(2.2d)

uh|t=0 = ΠWu0,(2.2e)

hold for all r∈V h, w ∈ Wh, and μ ∈ Mh, with a numerical trace for the flux defined
by

q̂h = qh + τ
(
uh − ûh

)
n, on ∂Th,(2.2f)

for some nonnegative stabilization function τ defined on ∂Th, which we assume to
be piecewise constant on ∂Th. As explained in [6], these methods are called the
LDG-hybridizable (LDG-H) methods because the above numerical trace is that of
the LDG method applied separately on each mesh element. The projection operator
ΠW is the one introduced in [7]; it will be defined later.
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Above and throughout, we use the notation

(v, w)Th
=

∑
K∈Th

(v, w)K and 〈v, w〉∂Th
=

∑
K∈Th

〈v, w〉∂K ,

where we write (u, v)D =
∫
D
uv dx whenever D is a domain of Rn, and 〈u, v〉D =∫

D
uv dx whenever D is a domain of Rn−1. For vector functions v and w, the

notations are similarly defined with the integrand being the dot product v · w.
This completes the definition of the method.

The postprocessing. Finally, as done in [5, 8, 7], we describe the postprocessing
to compute the new approximation u�

h; we follow [15, 19, 20]. Let Wk+1(K) denote
the L2(K)-orthogonal complement of Pk−1(K) in Pk+1(K). Then on the simplex
K ∈ Th, we take u�

h as the element of Pk+1(K) defined as the only solution of

(u�
h, w)K = (uh, w)K for all w ∈ Pk−1(K),(2.3a)

(∇u�
h,∇w)K =− (qh,∇w)K for all w ∈ Wk+1(K).(2.3b)

2.2. Estimates of the projection of the errors. Here we state and discuss our
main result, namely, upper bounds for each component of the projection Πh of the
errors:

(ε q
h , ε

u
h) := Πh(q − qh, u− uh).

The projection Πh was introduced in [7] for the study of HDG methods for elliptic
problems. Let us describe it.

The projection. The projection Πh into V h × Wh was introduced in [7]; it is
defined as follows. Given (q, u) ∈ H1(Th)×H1(Th), where

H1(Th) =
∏

K∈Th

H1(K), H1(Th) = H1(Th)
n,

the function Πh(q, u) = (ΠV q, ΠWu) on an arbitrary simplex K ∈ Th is the element
of V h ×Wh which solves

(ΠV q,v)K = (q,v)K for all v ∈ Pk−1(K),(2.4a)

(ΠWu,w)K = (u,w)K for all w ∈ Pk−1(K),(2.4b)

〈ΠV q · n+ τΠWu, μ〉F = 〈q · n+ τu, μ〉F for all μ ∈ Pk(F ),(2.4c)

for all faces F of the simplex K.
Note that Πh(qh, uh) = (qh, uh) and so (ε q

h , ε
u
h) := (ΠV q − qh, ΠWu− uh).

Norms. We use ‖ · ‖D to denote the L2(D)-norm for any D. If D = Ω, we simply
write ‖ · ‖. We denote the norm and seminorm on any Sobolev space X by ‖ · ‖X
and | · |X , respectively. We also denote ‖ · ‖X(0,T ;Y (Ω)) by ‖ · ‖X(Y ), and set

||| (q, u) |||1,T,Ω := ‖q‖L2(L2) + ‖ut‖L1(L2),

||| (q, u) |||2,T,Ω := ‖q(0)‖+ ‖qt‖L1(L2) + ‖ut‖L2(L2).



SUPERCONVERGENCE OF HDG METHODS FOR THE HEAT EQUATION 111

Elliptic regularity. For some of the estimates, we are going to assume that the
domain Ω is such that for any function Ψ ∈ H1

0 (Ω) we have the elliptic regularity
inequality

(2.5) ‖Ψ‖H2(Ω) ≤ Creg ‖ΔΨ‖.

It is well known that this holds whenever Ω is a convex polyhedral domain.
When we use this assumption, we are also going to use some quantities we define

next. For each simplex K ∈ Th, ρK denotes the radius of the largest ball included
in the simplex K. We set ρ := minK∈Th

ρK . We also set κ > 1 to be the solution
of

(2.6) κ log κ = T/ρ2.

In some of our estimates, the factor
√
log κ appears. Note, however, that this

factor is not big. For example, if T/ρ2 ≈ 10100, we have that
√
log κ ≈ 15. For

quasiuniform triangulations, ρ ≈ h and so, when T ≈ 1, this means that h ≈ 10−50,
which would correspond to an extremely refined triangulation of Ω.

Finally, we introduce an auxiliary projection. We denote by P� the L
2-projection

into the space Wh,� defined as

Wh,� := {w ∈ L2(Ω) : w|K ∈ P�(K) ∀K ∈ Th}.

We are now ready to state our main result.

Theorem 2.1. For any T > 0 and any k ≥ 0, we have

‖εuh‖L∞(L2) ≤ C ||| (q, u)−Πh(q, u) |||1,T,Ω,

‖ε q
h ‖L∞(L2) ≤ C ||| (q, u)−Πh(q, u) |||2,T,Ω.

Moreover, if the elliptic regularity inequality (2.5) holds and k ≥ 1, we have

‖Pk−1ε
u
h‖L∞(L2) ≤ C Creg

√
log κ h ||| (q, u)−Πh(q, u) |||2,T,Ω.

Here C is a constant independent of the exact solution and of the discretization
parameters.

This result, which is proven in section 3, extends to our parabolic setting, similar
results for HDG methods for second-order elliptic problems [7]. Note the appear-
ance of the factor

√
log κ as a consequence of the parabolic duality argument we use

in our approach. Note also that the convergence properties of the postprocessing
u�
h are determined by those of Pk−1uh and qh, as can be seen from the equations

(2.3) defining it. This fact is going to be fully exploited in the next corollary. For
the sake of completeness, we provide another L∞(L2) estimate of εuh in section 4.
It is of the same form of that of Pk−1ε

u
h in our main result, but its constant C is

more sensitive to variations of the stabilization function τ ; see Theorem 4.1.

An immediate consequence of this result is the following.

Corollary 2.1. For any T > 0 and any k ≥ 0, we have

‖u− uh‖L∞(L2) ≤ ‖ΠWu− u‖L∞(L2) + C||| (q, u)−Πh(q, u) |||1,T,Ω,

‖q − qh‖L∞(L2) ≤ ‖q −ΠV q‖L∞(L2) + C||| (q, u)−Πh(q, u) |||2,T,Ω.
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Moreover, if the elliptic regularity inequality (2.5) holds and k ≥ 1, we have

‖u− u�
h‖L∞(L2) ≤ C hk+2 |u |L∞(0,T ;Hk+2(Ω))

+ C Creg

√
log κh ||| (q, u)−Πh(q, u) |||2,T,Ω,

where C is a constant independent of the exact solution and of the discretization
parameters.

To obtain actual rates of convergence, we only have to combine this result with
the following approximation result.

Theorem 2.2 ([7]). Suppose k≥0, τ |∂K is nonnegative and τmax
K := max τ |∂K>0.

Then the system (2.4) is uniquely solvable for ΠV q and ΠWu. Furthermore, there
is a constant C independent of K and τ such that

‖ΠV q − q ‖K ≤ C h
�q+1
K |q|H�q+1(K) + C h�u+1

K τ∗K |u|H�u+1(K),

‖ΠWu− u‖K ≤ C h�u+1
K |u|H�u+1(K) + C

h
�q+1
K

τmax
K

|∇ · q|H�q (K),

for 	u, 	q in [0, k]. Here τ∗K := max τ |∂K\F∗ , where F ∗ is a face of K at which τ |∂K
is maximum.

In particular, we can see that if the stabilization function τ is uniformly bounded,
the approximation error of the projection is of order k+1 in both variables. Hence,
Corollary 2.1 implies that, if the exact solution is smooth enough, the HDG ap-
proximation (qh, uh) converges with order k + 1 for any k ≥ 0 uniformly in time.
Moreover, if k ≥ 1 and the domain Ω satisfies the elliptic regularity condition (2.5),
then u�

h converges with the rate of
√
log κhk+2 uniformly in time.

3. Proofs

In this section, we provide a detailed proof of the uniform-in-time estimates
of the projection of the errors of Theorem 2.1. We proceed in several steps. In
the first step, we obtain the equations satisfied by the projection of the errors;
the orthogonality properties satisfied by the projection Πh play a crucial role in
rendering this set of equations suitable for the analysis. The following two steps
are devoted to getting the first two estimates by using standard parabolic energy
arguments. In steps 4 and 5, we prove the remaining estimate by using a parabolic
duality argument.

Step 1: The equations of the projection of the errors. The projection of
the errors satisfy the following equations. They are stated in terms of the following
projection of the error at the boundaries of the elements

εûh := PM (u− ûh) = PMu− ûh,

where PM denotes the L2-orthogonal projection onto Mh.
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Lemma 3.1. We have

(ε q
h , r)Th

− (εuh,∇ · r)Th
+ 〈εûh, r · n〉∂Th

= (ΠV q − q, r)Th
,(3.1a)

(∂tε
u
h, w)Th

− (ε q
h ,∇w)Th

+ 〈εq̂h · n, w〉∂Th
= (ΠWut − ut, w)Th

,(3.1b)

〈εûh, μ〉∂Ω = 0,(3.1c)

〈εq̂h · n, μ〉∂Th\∂Ω = 0,(3.1d)

εuh|t=0 = 0,(3.1e)

for all r ∈ V h, w ∈ Wh, and μ ∈ Mh, where

εq̂h · n := ε q
h · n+ τ (εuh − εûh) on ∂Th.(3.1f)

Proof. Let us begin by noting that the exact solution (q, u) satisfies

(q, r)Th
− (u,∇ · r)Th

+ 〈u, r · n〉∂Th
= 0,

(ut, w)Th
− (q,∇w)Th

+ 〈q · n, w〉∂Th
= (f, w)Th

,

for all r ∈ V h and w ∈ Wh. By the orthogonality properties (2.4a) and (2.4b) of
ΠV and ΠW , respectively, and since PM is the L2-projection into Mh and satisfies
the orthogonality property

(3.2) 〈τ (PMu− u), μ〉∂Th
= 0 for all μ ∈ Mh

because τ is piecewise constant on ∂Th, this implies that

(ΠV q, r)Th
− (ΠWu,∇ · r)Th

+ 〈PMu, r · n〉∂Th
= (ΠV q − q, r)Th

,

(ΠWut, w)Th
− (ΠV q,∇w)Th

+〈ΠV q · n+ τ (ΠWu− PMu), w〉∂Th
= (f+ΠWut − ut, w)Th

,

for all r ∈ V h and w ∈ Wh. Subtracting the first two equations defining the HDG
method, (2.2a) and (2.2b), from the above two equations, respectively, we readily
obtain (3.1a) and (3.1b).

The equation (3.1c) follows directly from the equation (2.2c) defining the HDG
method and the boundary condition on the exact solution.

To prove (3.1d) we proceed as follows. By the definition of εq̂h, (3.1f),

〈μ, εq̂h · n〉∂Th\∂Ω = 〈(ΠV q − qh) · n+ τ (ΠWu− uh − PMu+ ûh), μ〉∂Th\∂Ω.

Hence, by the orthogonality property of the projection (ΠV , ΠW ), (2.4c), and prop-
erty (3.2) of the projection PM , we obtain that

〈μ, εq̂h · n〉∂Th\∂Ω = 〈(q − qh) · n+ τ (u− uh − u+ ûh), μ〉∂Th\∂Ω

= 〈q · n, μ〉∂Th\∂Ω − 〈q̂h · n, μ〉∂Th\∂Ω,

and the equation (3.1d) follows since both of the above terms are zero. Indeed, the
first is equal to zero because q is in H(div,Ω) and the second because the normal
component of q̂h is single valued by the equation (2.2d) defining the HDG method.

It remains to prove the equation (3.1e). But by the equation (2.2e) defining the
HDG method, uh|t=0 = ΠWu0, and so

εuh|t=0 = ΠWu0 − uh|t=0 = ΠWu0 −ΠWu0 = 0.

This completes the proof. �
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Step 2: Estimate of εuh in L∞(L2) by an energy argument.

Lemma 3.2. For any T > 0, we have

1

2
‖εuh(T )‖2 +

∫ T

0

[‖ε q
h ‖2 + ‖

√
τ (εuh − εûh)‖2∂Th

]

=

∫ T

0

[(ΠV q − q, ε q
h )Th

+ (ΠWut − ut, ε
u
h)Th

].

Proof. Taking r := ε q
h in (3.1a), w = εuh in (3.1b), μ = −εq̂h · n in (3.1c) and

μ = −εûh in (3.1d), and adding the resulting four equations, we get

‖ε q
h ‖2 +

1

2

d

dt
‖εuh‖2 +Θh = (ΠV q − q, ε q

h )Th
+ (ΠWut − ut, ε

u
h)Th

,

where

Θh =− (εuh,∇ · ε q
h )Th

+ 〈εûh, ε
q
h · n〉∂Th

− (ε q
h ,∇ εuh)Th

+ 〈εq̂h · n, εuh〉∂Th
− 〈εûh, ε

q̂
h · n〉∂Th

.

But, by integration by parts,

Θh =− 〈εuh, ε
q
h · n〉∂Th

+ 〈εûh, ε
q
h · n〉∂Th

+ 〈εq̂h · n, εuh〉∂Th
− 〈εûh, ε

q̂
h · n〉∂Th

= 〈εq̂h · n− ε q
h · n, εuh − εûh〉Th

= ‖
√
τ(εuh − εûh)‖2∂Th

,

by the definition of εq̂h, (3.1f). The identity we want to prove follows after inte-
grating in time over the interval (0, T ) and using the fact that εuh(0) = 0 by (3.1e).
This completes the proof. �
Corollary 3.1. For any T > 0, we have

‖εuh(T )‖2 +
∫ T

0

[‖ε q
h ‖2 + 2 ‖

√
τ (εuh − εûh)‖2∂Th

]

≤ [‖ΠV q − q‖L2(L2) + ‖ΠWut − ut‖L1(L2)]
2.

In this manner, the first estimate of Theorem 2.1 is obtained. To prove this
corollary, we are going to use the following auxiliary result. Its proof is detailed in
the Appendix; see subsection A.1.

Proposition 3.1. Assume that, for all t > 0, we have

ζ2(t) +

∫ t

0

Z(s) ds ≤ A(t) +

∫ t

0

B(s) ζ(s) ds,

for some nonnegative functions A,B in L∞(R+). Then, for any T > 0,

ζ2(T ) +

∫ T

0

Z(s) ds ≤
([

max
0≤t≤T

A(t)

]1/2
+

1

2

∫ T

0

B(s) ds

)2

.

Proof of Corollary 3.1. Applying Cauchy-Schwarz inequality to each term of the
right-hand side of the identity of Lemma 3.2, we get

1

2
‖εuh(T )‖2 +

∫ T

0

[‖ε q
h ‖2 + ‖

√
τ (εuh − εûh)‖2∂Th

]

≤
∫ T

0

[‖ΠV q − q‖ ‖ε q
h ‖+ ‖ΠWut − ut‖ ‖εuh‖],
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and so

1

2
‖εuh(T )‖2 +

∫ T

0

[
1

2
‖ε q

h ‖2 + ‖
√
τ(εuh − εûh)‖2∂Th

]

≤ 1

2
‖ΠV q − q‖2L2(L2) +

∫ T

0

‖ΠWut − ut‖ ‖εuh‖.

The estimate now readily follows by using Proposition 3.1. This completes the
proof. �

Step 3: Estimate of ε q
h in L∞(L2) by an energy argument.

Lemma 3.3. For any T > 0, we have

1

2
[‖ε q

h (T )‖2 + ‖
√
τ (εuh − εûh)(T )‖2∂Th

] +

∫ T

0

‖∂tεuh‖2

=
1

2
[‖ε q

h (0)‖2 + ‖
√
τ (εuh − εûh)(0)‖2∂Th

]

+

∫ T

0

[(ΠV qt − qt, ε
q
h )Th

+ (ΠWut − ut, ∂tε
u
h)Th

].

Proof. To prove this result, we use a slightly different set of equations for the
projection of the errors than the ones displayed in Lemma 3.1. We keep all of those
equations except for (3.1a) and (3.1c), which are replaced by the equations obtained
by differentiating them with respect to time:

(∂tε
q
h , r)Th

− (∂tε
u
h,∇ · r)Th

+ 〈∂tεûh, r · n〉∂Th
= (ΠV qt − qt, r)Th

,

(∂tε
u
h, w)Th

− (ε q
h ,∇w)Th

+ 〈εq̂h · n, w〉∂Th
= (ΠWut − ut, w)Th

,

〈∂tεûh, μ〉∂Ω = 0,

〈εq̂h · n, μ〉∂Th\∂Ω = 0,

εuh|t=0 = 0,

for all r ∈ V h, w ∈ Wh, and μ ∈ Mh, where εq̂h · n := ε q
h · n+ τ (εuh − εûh) on ∂Th.

To prove the identity, just take r := ε q
h , w = ∂tε

u
h, μ = −εq̂h · n, and μ = −∂tε

û
h

in the above equations, add the resulting four equations, and proceed exactly as in
the proof of Lemma 3.2. This completes the proof. �

Corollary 3.2. For any T > 0, we have

‖ε q
h (T )‖2Th

+ ‖
√
τ(εuh − εûh)(T )‖2∂Th

+

∫ T

0

‖∂tεuh‖2

≤ [‖(ΠV q − q)(0)‖+ ‖ΠV qt − qt‖L1(L2) + ‖ΠWut − ut‖L2(L2)]
2.

Note that this result implies the second estimate of Theorem 2.1.
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Proof. After applying the Cauchy-Schwarz inequality to terms of the right-hand
side of the identity of Lemma 3.3, we obtain

1

2
[‖ε q

h (T )‖2 + ‖
√
τ(εuh − εûh)(T )‖2∂Th

] +

∫ T

0

‖∂tεuh‖2

≤ 1

2
[‖ε q

h (0)‖2 + ‖
√
τ(εuh − εûh)(0)‖∂Th

]

+

∫ T

0

[‖ΠV qt − qt‖ ‖ε
q
h ‖+ ‖ΠWut − ut‖ ‖∂tεuh‖],

and so,

1

2
[‖ε q

h (T )‖2 + ‖
√
τ(εuh − εûh)(T )‖2∂Th

] +
1

2

∫ T

0

‖∂tεuh‖2

≤ 1

2
[‖ε q

h (0)‖2 + ‖
√
τ(εuh − εûh)(0)‖2∂Th

]

+

∫ T

0

‖ΠV qt − qt‖ ‖ε
q
h ‖+

1

2
‖ΠWut − ut‖2L2(L2).

Next, we note that if we differentiate the equation in Lemma 3.2 and evaluate
the result at t = 0, we obtain that

‖ε q
h (0)‖2 + ‖

√
τ(εuh − εûh)(0)‖2∂Th

= ((ΠV q − q)(0), ε q
h (0))Th

,

since εuh(0) = 0. This implies that

‖ε q
h (0)‖2 + ‖

√
τ (εuh − εûh)(0)‖2∂Th

≤ ‖(ΠV q − q)(0)‖2,
and so,

1

2
[‖ε q

h (T )‖2 + ‖
√
τ(εuh − εûh)(T )‖2∂Th

] +
1

2

∫ T

0

‖∂tεuh‖2

≤ 1

2
‖(ΠV q − q)(0)‖2 +

∫ T

0

‖ΠV qt − qt‖ ‖ε
q
h ‖+

1

2
‖ΠWut − ut‖2L2(L2).

The inequality now follows by using Proposition 3.1. This completes the proof. �

Step 4: Preliminaries to L∞(L2) estimates by parabolic duality. To esti-
mate Pk−1ε

u
h in the L∞(L2)-norm by duality, the natural approach is to consider

the identity

‖ε(T )‖ ≤ sup
Θ∈Wh

(ε(T ),Θ)

‖Θ‖ ,

and then estimate the expression (ε(T ),Θ) by using the error equations of Step 1
and the solution of the dual problem

Φ+∇Ψ = 0 on Ω× (0, T ),(3.3a)

Ψt −∇ ·Φ = 0 on Ω× (0, T ),(3.3b)

Ψ = 0 on ∂Ω× (0, T ),(3.3c)

Ψ(T ) = Θ on Ω.(3.3d)

Together with the estimates obtained in the previous sections, we will need the
parabolic regularity estimates gathered in the following result. Their proof is given
in the Appendix; see subsection A.2.



SUPERCONVERGENCE OF HDG METHODS FOR THE HEAT EQUATION 117

Proposition 3.2. We have that

‖∇Ψ‖2L2(L2) ≤
1

2
‖Θ‖2 ∀ Θ ∈ L2(Ω),

‖ΔΨ‖L1(L2) ≤ (δ/2)1/2‖∇Θ‖+ 1

2
(log(T/δ))1/2‖Θ‖ ∀ Θ ∈ H1(Ω),

for all δ ∈ (0, T ).

Unfortunately, we cannot use the second inequality since it assumes that Θ lies
in H1(Ω). To overcome this difficulty, we use the fact that εuh belongs to a finite
dimensional space to obtain the following characterization of its L2-norm.

To state it, we need to introduce some notation. Let Th′ be a triangulation of
Ω obtained by refining each of the simplexes of the triangulation Th, and let W 0

h′

be the space of continuous functions which are polynomials of degree k on each
element of Th′ . Finally let Ph′ be the L2-projection from Wh to W 0

h′ .
We are now ready to state the result. Its proof is given in the Appendix; see

subsection A.3.

Lemma 3.4. For any triangulation Th of Ω, we can always find a refinement Th′

for which we have

‖∇Ph′θ‖ ≤ C

ρ
‖θ‖ ∀θ ∈ Wh,

‖ε‖ ≤ 2 sup
θ∈Wh

(ε,Ph′θ)

‖θ‖ ∀ε ∈ Wh.

Here the constant C depends solely on k and n.

As a consequence, we have the following new set of parabolic regularity estimates.
Recall that, by equation (2.6), κ log κ = T/ρ2.

Corollary 3.3. Let (Φ, Ψ) be the solution of the dual problem with Θ := Ph′θ where
θ ∈ Wh and Ph′ satisfies Lemma 3.4. Then

‖∇Ψ‖2L2(L2) ≤
1

2
‖θ‖2,

‖ΔΨ‖L1(L2) ≤ C
√
log κ ‖θ‖.

Proof. The first inequality is obtained by setting Θ := Ph′θ in the first inequality
of Proposition 3.2 and using the fact that Ph′ is the L2-projection.

The second inequality is obtained as follows. From the second inequality of
Proposition 3.2 with Θ := Ph′θ and the first inequality of Lemma 3.4, we have

‖ΔΨ‖L1(L2) ≤ C (δ/2ρ2)1/2‖θ‖+ 1

2
(log(T/δ))1/2‖θ‖ =

(
C√
2
+

1

2

)√
log κ‖θ‖,

if we take δ := T/κ. This completes the proof. �

We are now ready to obtain our L∞(L2) estimates.

Step 5: Estimate of Pk−1ε
u
h in L∞(L2) by parabolic duality. We begin by

obtaining an expression for (Pk−1ε
u
h(T ), Θ)Th

in terms of the errors ε q
h , ε

u
h and the

solution of the dual problem. In it, Ih is any interpolation operator from L2(Ω)
into Wh ∩H1

0 (Ω) and PW is the L2-projection into Wh.
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Lemma 3.5. For any T > 0, the quantity (Pk−1ε
u
h(T ), Θ)Th

is equal to∫ T

0

[(ε q
h ,−ΠBDM ∇Ψ +∇ IhΨ)Th

+ (ΠV q − q,ΠBDM ∇Ψ −∇PWΨ)Th

+ (∂tε
u
h, Pk−1Ψ − IhΨ)Th

+ (ΠWut − ut, IhΨ − Pk−1Ψ)Th
].

Proof. Since Ψ(T ) = Θ by (3.3d) and εuh(0) = 0 by (3.1e), we have

(Pk−1ε
u
h(T ), Θ)Th

=

∫ T

0

[(∂tPk−1ε
u
h, Ψ)Th

+ (Pk−1ε
u
h, Ψt)Th

]

=

∫ T

0

[(∂tε
u
h, Pk−1Ψ)Th

+ (εuh, Pk−1∇ ·Φ)Th
],

by the definition of the L2-projection Pk−1 and by the second equation of the dual
problem (3.3b). Now, using a well-known property of the projection ΠBDM, we get
that

(Pk−1ε
u
h(T ), Θ)Th

=

∫ T

0

[(∂tε
u
h, Pk−1Ψ)Th

+ (εuh,∇ ·ΠBDMΦ)Th
],

and by the first error equation (3.1a) with r := ΠBDMΦ,

(Pk−1ε
u
h(T ), Θ)Th

=

∫ T

0

[(∂tε
u
h, Pk−1Ψ)Th

+ (ε q
h ,Π

BDMΦ)Th

− (ΠV q − q,ΠBDMΦ)Th
+ 〈εûh,ΠBDMΦ · n〉∂Th

]

=

∫ T

0

[(∂tε
u
h, Pk−1Ψ)Th

+ (ε q
h ,Π

BDMΦ)Th

− (ΠV q − q,ΠBDMΦ)Th
],

since 〈εûh,Π
BDMΦ · n〉∂Th

= 〈εûh,Π
BDMΦ · n〉∂Ω = 0 because ΠBDMΦ ∈ H(div) and

because εûh = 0 on ∂Ω by the error equation (3.1c).
Let us now work on the second integrand of the right-hand side. By the first

equation of the dual problem (3.3a),

(ε q
h ,Π

BDMΦ)Th
= (ε q

h ,−ΠBDM ∇Ψ +∇ IhΨ)Th
− (ε q

h ,∇ IhΨ)Th

= (ε q
h ,−ΠBDM ∇Ψ +∇ IhΨ)Th

− (∂tε
u
h, IhΨ)Th

+ (ΠWut − ut, IhΨ)Th
− 〈εq̂h · n, IhΨ〉∂Th

by the second error equation (3.1b) with w := IhΨ . Finally, we get that

(ε q
h ,Π

BDMΦ)Th
= (ε q

h ,−ΠBDM ∇Ψ+∇ IhΨ)Th
−(∂tε

u
h, IhΨ)Th

+(ΠWut−ut, IhΨ)Th

since 〈εq̂h · n, IhΨ〉∂Th
= 〈εq̂h · n, IhΨ〉∂Ω = 0. Indeed, the normal component of εq̂h

is single valued by the error equation (3.1d) and IhΨ = 0 on ∂Ω by the boundary
condition of the dual problem (3.3c).

Inserting this expression into the last identity for (Pk−1ε
u
h(T ), Θ)Th

and rear-
ranging terms, we obtain

(Pk−1ε
u
h(T ), Θ)Th

=

∫ T

0

[(ε q
h ,−ΠBDM ∇Ψ +∇ IhΨ)Th

− (ΠV q − q,ΠBDMΦ)Th

+ (∂tε
u
h, Pk−1Ψ − IhΨ)Th

+ (ΠWut − ut, IhΨ)Th
].
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Following the same argument used in the proof of Lemma 4.1, we get that

−(ΠV q − q,ΠBDMΦ)Th
= (ΠV q − q,ΠBDM ∇Ψ −∇PWΨ)Th

(ΠWut − ut, IhΨ)Th
= (ΠWut − ut, IhΨ − Pk−1Ψ)Th

,

and the result follows. This completes the proof. �

We now use the second inequality of Lemma 3.4 with ε := Pk−1ε
u
h(T ) and Θ :=

Ph′θ for any θ ∈ Wh to obtain the following estimate.

Corollary 3.4. For any T > 0, we have

‖Pk−1ε
u
h(T )‖ ≤ H1(Θ) ‖ε q

h ‖L∞(L2) +H2(Θ) ‖q −ΠV q‖L∞(L2)

+H3(Θ) ‖∂tεuh‖L2(L2) +H4(Θ) ‖ΠWut − ut‖L2(L2),

where

H1(Θ) :=2 sup
θ∈Wh

‖ΠBDM ∇Ψ −∇ IhΨ‖L1(L2)

‖θ‖ ,

H2(Θ) :=2 sup
θ∈Wh

‖ΠBDM ∇Ψ −∇PWΨ‖L1(L2)

‖θ‖ ,

H3(Θ) :=2 sup
θ∈Wh

‖Pk−1Ψ − IhΨ‖L2(L2)

‖θ‖ ,

H4(Θ) :=2 sup
θ∈Wh

‖IhΨ − Pk−1Ψ‖L2(L2)

‖θ‖ .

Lemma 3.6. For k ≥ 1, we have

H1(Θ) ≤ C Creg

√
log κh,

H2(Θ) ≤ C Creg

√
log κh,

H3(Θ) ≤ C h,

H4(Θ) ≤ C h,

where C is a constant independent of the exact solution and of the discretization
parameters.

Proof. Using standard approximation properties (see, in particular, the approxi-
mation properties of ΠBDM of [3, Proposition 3.6]), we have that

‖ΠBDM ∇Ψ −∇ IhΨ‖ ≤C h |Ψ |H2(Ω),

‖ΠBDM ∇Ψ −∇PWΨ‖ ≤C h |Ψ |H2(Ω),

‖Pk−1Ψ − IhΨ‖ ≤C h ‖∇Ψ‖,
‖IhΨ − Pk−1Ψ‖ ≤C h ‖∇Ψ‖.

The result follows by using the elliptic regularity assumption (2.5) (on the first two
inequalities) and the parabolic regularity estimates of Corollary 3.3. This completes
the proof. �

Inserting the bounds of Lemma 3.6 into the inequality of Corollary 3.4, we get
the last estimate of Theorem 2.1. This completes the proof of Theorem 2.1.
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Step 6: Estimate of u− u�
h in L∞(L2). To end this section, and for the sake of

completeness, let us obtain the last estimate of Corollary 2.1.
By the equations defining the postprocessed approximation u�

h, (2.3), we have
that

(u− u�
h, w)K = (Pk−1ε

u
h, w)K for all w ∈ Pk−1(K),

(∇(u− u�
h),∇w)K =− (ε q

h ,∇w)K for all w ∈ Wk+1(K).

Hence, a simple argument gives that

‖u− u�
h‖K ≤ C hk+2

K |u|Hk+2(K) + C ‖Pk−1ε
u
h‖K + C hK ‖ε q

h ‖K ,

and the last estimate of Corollary 2.1 follows.

4. An estimate of εuh in L∞(L2)

In this section, for the sake of completeness, we provide an estimate of εuh.

4.1. The estimate. Recall that τ∗K := max τ |∂K\F∗ , where F ∗ is a face of K at
which τ |∂K is maximum, and τmax

K := max τ |∂K ; see the approximation result of
Theorem 2.2 at the end of section 2.

Theorem 4.1. Assume that the elliptic regularity inequality (2.5) holds and that
k ≥ 1. Then, for any T > 0, we have

‖εuh‖L∞(L2) ≤ Ch ||| (q, u)−Πh(q, u) |||2,T,Ω.

Here

C := C (1 + Creg (Cτ∗
√
log κ+ Cτmax h/ρ)),

where

Cτ∗ := max
K∈Th

{1, hK τ∗K} and Cτmax := max
K∈Th

{1, 1/(hK τmax
K )}.

Note that, as long as h/ρ, Cτ∗ , and Cτmax remain bounded, the above estimate
of εuh is essentially the same as that of Pk−1ε

u
h given by Theorem 2.1. For h/ρ to

remain bounded, we need regular and quasiuniform triangulations Th. For Cτ∗ and
Cτmax to remain bounded, we need to properly choose τ∗K and τmax

K . Taking τ∗K to
be order one and τmax

K of order 1/hK ensures that Cτ∗ and Cτmax are uniformly
bounded, and that the order of convergence of the projection Πh is optimal; see
Theorem 2.2. Note, however, that if we take τmax

K to be of order one, Cτmax is not
bounded anymore. In fact, for quasiuniform triangulations, it is of order 1/h and
we lose the superconvergence of the projection of the error εuh. Note that this is not
the case for Pk−1ε

u
h, which does superconverge with order k + 2 in this case.

4.2. Proof of the estimate. To prove this result, we proceed as in Step 5 in the
previous section. Thus, we begin with the following identity.

Lemma 4.1. For any T > 0, we have

(εuh(T ), Θ)Th
=−

∫ T

0

[−(ε q
h ,ΠV Φ−Φ)Th

+ (q −ΠV q,ΠV ∇Ψ −∇PWΨ)Th

+ (∂tε
u
h, ΠWΨ − Ψ)Th

− (ΠWut − ut, ΠWΨ − Pk−1Ψ)Th
].
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Proof. To obtain this identity, we begin by noting that

(εuh(T ), Θ)Th
=

∫ T

0

d

dt
(εuh, Ψ)Th

,

since Ψ(T ) = Θ by (3.3d) and εuh(0) = 0 by (3.1e). Then

(εuh(T ), Θ)Th
=

∫ T

0

[(∂tε
u
h, Ψ)Th

+ (εuh, Ψt)Th
] =

∫ T

0

[(∂tε
u
h, Ψ)Th

+ (εuh,∇ ·Φ)Th
]

by the second equation of the dual problem (3.3b). If we now integrate by parts
the last term in the right-hand side and use the orthogonality property (2.4a) for
ΠV , we get

(εuh(T ), Θ)Th
=−

∫ T

0

[−(∂tε
u
h, Ψ)Th

+ (∇εuh,ΠV Φ)Th
− 〈εuh,Φ · n〉∂Th

]

=−
∫ T

0

[−(∂tε
u
h, Ψ)Th

− (εuh,∇ ·ΠV Φ)Th
+ 〈εuh, (ΠV Φ−Φ) · n〉∂Th

].

By the first error equation of Lemma 3.1 with r := ΠV Φ,

(εuh(T ), Θ)Th
=−

∫ T

0

[−(∂tε
u
h, Ψ)Th

− (ε q
h ,ΠV Φ)Th

− 〈εûh,ΠV Φ · n〉∂Th

+ (ΠV q − q,ΠV Φ)Th
+ 〈εuh, (ΠV Φ−Φ) · n〉∂Th

]

=−
∫ T

0

[−(∂tε
u
h, Ψ)Th

− (ε q
h ,ΠV Φ)Th

+ (ΠV q − q,ΠV Φ)Th

+ 〈εuh − εûh, (ΠV Φ−Φ) · n〉∂Th
− 〈εûh,Φ · n〉∂Th

]

= −
∫ T

0

[−(∂tε
u
h, Ψ)Th

− (ε q
h ,ΠV Φ)Th

+ (ΠV q − q,ΠV Φ)Th

+ 〈εuh − εûh, (ΠV Φ−Φ) · n〉∂Th
],

since 〈εûh,Φ · n〉∂Th
= 〈εûh,Φ · n〉∂Ω = 0 because Φ ∈ H(div) and because εûh = 0

on ∂Ω, by the error equation (3.1c).
Next, let us work only on the second term of the integrand of the right-hand

side. We have, by the first equation of the dual problem (3.3a),

−(ε q
h ,ΠV Φ)Th

= − (ε q
h ,ΠV Φ−Φ)Th

+ (ε q
h ,∇Ψ)Th

= − (ε q
h ,ΠV Φ−Φ)Th

− (∇ · ε q
h , ΠWΨ)Th

+ 〈ε q
h · n, Ψ〉∂Th

,

by the orthogonality property (2.4b) of ΠW . Then

−(ε q
h ,ΠV Φ)Th

=− (ε q
h ,ΠV Φ−Φ)Th

+ (ε q
h ,∇ΠWΨ)Th

+ 〈ε q
h · n, Ψ −ΠWΨ〉∂Th

,

=− (ε q
h ,ΠV Φ−Φ)Th

+ (∂tε
u
h, ΠWΨ)Th

− (ΠWut − ut, ΠWΨ)Th

+ 〈εq̂h · n, ΠWΨ〉∂Th
+ 〈ε q

h · n, Ψ −ΠWΨ〉∂Th
,
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by the second error equation with w := ΠWεuh. Hence

−(ε q
h ,ΠV Φ)Th

=− (ε q
h ,ΠV Φ−Φ)Th

+ (∂tε
u
h, ΠWΨ)Th

− (ΠWut − ut, ΠWΨ)Th

+ 〈(εq̂h − ε q
h ) · n, ΠWΨ − Ψ〉∂Th

+ 〈εq̂h · n, Ψ〉∂Th

=− (ε q
h ,ΠV Φ−Φ)Th

+ (∂tε
u
h, ΠWΨ)Th

− (ΠWut − ut, ΠWΨ)Th

+ 〈τ (εuh − εûh), ΠWΨ − Ψ〉∂Th
,

by the definition of εq̂h, (3.1f), and because 〈εq̂h · n, Ψ〉∂Th
= 0. Indeed, by the error

equation (3.1d), the normal component of εq̂h is single valued and we have that

〈εq̂h · n, Ψ〉∂Th
= 〈εq̂h · n, Ψ〉∂Ω. The fact that this expression is equal to zero follows

from the boundary condition for the dual problem (3.3c).
Inserting the above expression in the last identity of (εuh(T ), Θ)Th

and rearranging
terms, we get

(εuh(T ), Θ)Th
=−

∫ T

0

[−(ε q
h ,ΠV Φ−Φ)Th

+ (ΠV q − q,ΠV Φ)Th

+ (∂tε
u
h, ΠWΨ − Ψ)Th

− (ΠWut − ut, ΠWΨ)Th

+ 〈εuh − εûh, (ΠV Φ−Φ) · n+ τ (ΠWΨ − Ψ)〉∂Th
]

=−
∫ T

0

[−(ε q
h ,ΠV Φ−Φ)Th

+ (ΠV q − q,ΠV Φ)Th

+ (∂tε
u
h, ΠWΨ − Ψ)Th

− (ΠWut − ut, ΠWΨ)Th
],

by the orthogonality property (2.4c). The result now follows since

(ΠV q − q,ΠV Φ)Th
= (q −ΠV q,ΠV ∇Ψ)Th

= (q −ΠV q,ΠV ∇Ψ −∇PWΨ)Th
,

by the definition of PWΨ and the orthogonality property of ΠV , (2.4a), and since

(ΠWut − ut, ΠWΨ)Th
= (ΠWut − ut, ΠWΨ − Pk−1Ψ)Th

,

by the definition of Pk−1Ψ and the orthogonality property of ΠW , (2.4b). This
completes the proof. �

We immediately have the following consequence of the above result.

Corollary 4.1. For any T > 0, we have

‖εuh(T )‖ ≤ H1(Θ) ‖ε q
h ‖L∞(L2) +H2(Θ) ‖q −ΠV q‖L∞(L2)

+H3(Θ) ‖∂tεuh‖L2(L2) +H4(Θ) ‖ΠWut − ut‖L2(L2),

where

H1(Θ) := 2 sup
θ∈Wh

‖ΠV Φ−Φ‖L1(L2)

‖θ‖ ,

H2(Θ) := 2 sup
θ∈Wh

‖ΠV ∇Ψ −∇PWΨ‖L1(L2)

‖θ‖ ,

H3(Θ) := 2 sup
θ∈Wh

‖ΠWΨ − Ψ‖L2(L2)

‖θ‖ ,

H4(Θ) := 2 sup
θ∈Wh

‖ΠWΨ − Pk−1Ψ‖L2(L2)

‖θ‖ ,

and (Φ, Ψ) is the solution of the dual problem (3.3) with Θ := Ph′θ.
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Lemma 4.2. Assume that the elliptic regularity inequality (2.5) holds. Then, for
k ≥ 1, we have

‖ΠV Φ−Φ‖ ≤C Creg Cτ∗ h ‖ΔΨ‖,
‖∇Ψ −∇PWΨ‖ ≤C Creg h ‖ΔΨ‖,

‖ΠWΨ − Ψ‖ ≤C Creg Cτmax h2 ‖ΔΨ‖,
‖Ψ − Pk−1Ψ‖ ≤C h ‖∇Ψ‖,

where Cτ∗ := maxK∈Th
{1, hK τ∗K}, Cτmax := maxK∈Th

{1, 1/(hK τmax
K )}, and C is

a constant independent of the exact solution and of the discretization parameters.

Proof. A direct application of Theorem 2.2 gives

‖ΠV Φ−Φ‖ ≤C Cτ∗ h |Ψ |H2(Ω),

‖ΠWΨ − Ψ‖ ≤C Cτmax h2 |Ψ |H2(Ω).

Also, since PW is the L2-projection into Wh, we have

‖∇Ψ −∇PWΨ‖ ≤ C h |Ψ |H2(Ω).

The first three estimates now follow after using the elliptic regularity assumption
(2.5). The last inequality follows from the fact that Pk−1 is the L2-projection into
Wh,k−1 and that k ≥ 1. This completes the proof. �

Combining the approximation estimates of the lemma just proved with the par-
abolic regularity estimates

‖ΔΨ‖L2(L2) ≤
1√
2
‖∇Ph′θ‖ ≤ C

ρ
‖θ‖, by Lemma 3.4,

‖ΔΨ‖L1(L2) ≤ C
√
log κ ‖θ‖,

by Corollary 3.3, we immediately get the following result.

Lemma 4.3. For k ≥ 1, we have

H1(Θ) ≤ C Creg Cτ∗
√

log κh,

H2(Θ) ≤ C Creg Cτ∗
√

log κh,

H3(Θ) ≤ C Creg Cτmax h2/ρ,

H4(Θ) ≤ C h+ C Creg Cτmax h2/ρ,

where C is a constant independent of the exact solution and of the discretization
parameters.

The estimate of Theorem 4.1 can now be obtained by inserting the estimates of
the above lemma in the estimates of Corollary 4.1. This completes the proof of
Theorem 4.1.

5. Extensions

In this section, we extend to the classical RT and BDM methods, the results
obtained for the HDG method. In this way, we extend to the parabolic setting con-
sidered in this paper similar superconvergence results of the RT and BDM methods
for the elliptic case.
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The hybridized RT mixed method. As pointed out in [6], the hybridized ver-
sion of the RT method on simplexes is obtained from the one used here for the HDG
method by setting τ = 0 and changing the local space V (K) to Pk(K) +xPk(K).

It is well known [3] that we can define the function Πh(q, u) = (ΠV q, ΠWu) on
an arbitrary simplex K ∈ Th as the element of V h ×Wh which solves

(ΠV q,v)K = (q,v)K for all v ∈ Pk−1(K),

(ΠWu,w)K = (u,w)K for all w ∈ Pk(K),

〈ΠV q · n, μ〉F = 〈q · n, μ〉F for all μ ∈ Pk(F ),

for all faces F of the simplex K. Note the remarkable similarity with the definition
of the projection Πh for the HDG method (2.4). As a consequence, the equations
of the projection of the errors are exactly those contained in Lemma 3.1. The only
difference is that the right-hand side of the second equation, (3.1b), is identically
equal to zero because ΠW is nothing but the L2-projection into the space Wh. Thus,
all the results in section 3 and those in section 4 hold without the terms involving
ΠWut − ut in the right-hand sides. Finally, note that the terms involving ∂tε

u
h also

disappear because ΠW is the L2-projection into the space Wh.
In particular, Corollary 3.1 gives

‖εuh(T )‖L∞(L2) ≤ ‖ΠV q − q‖L2(L2),

Corollary 3.2 gives

‖ε q
h (T )‖L∞(L2) ≤ ‖(ΠV q − q)(0)‖+ ‖ΠV qt − qt‖L1(L2),

and Corollary 4.1 gives

‖εuh(T )‖ ≤ H1(Θ) ‖ε q
h ‖L∞(L2) +H2(Θ) ‖q −ΠV q‖L∞(L2),

where

H1(Θ) := 2 sup
θ∈Wh

‖ΠV Φ−Φ‖L1(L2)

‖θ‖ ,

H2(Θ) := 2 sup
θ∈Wh

‖ΠV ∇Ψ −∇PWΨ‖L1(L2)

‖θ‖ .

Thus, we easily obtain the following results.

Theorem 5.1. For any T > 0 and any k ≥ 0, we have

‖εuh‖L∞(L2) ≤ C ||| (q, 0)−Πh(q, 0) |||1,T,Ω,

‖ε q
h ‖L∞(L2) ≤ C ||| (q, 0)−Πh(q, 0) |||2,T,Ω.

Moreover, if the elliptic regularity inequality (2.5) holds and k ≥ 1, we have

‖εuh‖L∞(L2) ≤ C Creg h ||| (q, 0)−Πh(q, 0) |||2,T,Ω.

Here C is a constant independent of the exact solution and of the discretization
parameters.

Corollary 5.1. For any T > 0 and any k ≥ 0, we have

‖u− uh‖L∞(L2) ≤ ‖ΠWu− u‖L∞(L2) + ||| (q, 0)−Πh(q, 0) |||1,T,Ω,

‖q − qh‖L∞(L2) ≤ ‖q −ΠV q‖L∞(L2) + ||| (q, 0)−Πh(q, 0) |||2,T,Ω.
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Moreover, if the elliptic regularity inequality (2.5) holds and k ≥ 1, we have

‖u− u∗
h‖L∞(L2) ≤ C hk+2 |u |L∞(0,T ;Hk+2(Ω))

+ C Creg

√
log κh ||| (q, 0)−Πh(q, 0) |||2,T,Ω,

where C is a constant independent of the exact solution and of the discretization
parameters.

We can still get a superconvergence result for k = 0. To see this, note that in
this case, the identity of Lemma 4.1 becomes

(εuh(T ), Θ)Th
=−

∫ T

0

[−(ε q
h ,ΠV Φ−Φ)Th

+ (q −ΠV q,ΠV ∇Ψ)Th
]

=−
∫ T

0

[−(ε q
h ,ΠV Φ−Φ)Th

+ (q −ΠV q,ΠV ∇Ψ −∇Ψ)Th
]

−
∫ T

0

(q −ΠV q,∇Ψ)Th
.

Let us work on the integrand of the last term. Since q−ΠV q ∈ H(div) and Ψ = 0
on ∂Ω, we get that

(q −ΠV q,∇Ψ)Th
= −(∇ · (q −ΠV q), Ψ)Th

,

and since PW ∇ · q = ∇ ·ΠV q,

(q −ΠV q,∇Ψ)Th
= −((Id− PW )∇ · q, Ψ)Th

= −((Id− PW )∇ · q, (Id− PW )Ψ)Th

= ((Id− PW )(ut − f), (Id− PW )Ψ)Th
.

This implies that

(εuh(T ), Θ)Th
=−

∫ T

0

[−(ε q
h ,ΠV Φ−Φ)Th

+ (q −ΠV q,ΠV ∇Ψ −∇Ψ)Th
]

−
∫ T

0

((Id− PW )(ut − f), (Id− PW )Ψ)Th
,

and we readily get the following result.

Theorem 5.2. If the elliptic regularity inequality (2.5) holds and k = 0, we have

‖εuh‖L∞(L2) ≤Creg

√
log κh ||| (q, 0)−Πh(q, 0) |||2,T,Ω

+ Creg h ‖(Id− PW )(ut − f)‖L2(L2)

and

‖u− u∗
h‖L∞(L2) ≤ C hk+2 |u |L∞(0,T ;Hk+2(Ω))

+ Creg

√
log κh ||| (q, 0)−Πh(q, 0) |||2,T,Ω

+ Creg h ‖(Id− PW )(ut − f)‖L2(L2),

where C is a constant independent of the exact solution and of the discretization
parameters.

Let us end this subsection by pointing out that the same results hold for the RT
methods on rectangles and cubes.
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The hybridized BDM mixed method. In a similar manner, the hybridized
version of the BDM method on simplexes is obtained from the one used here for
the HDG method by setting τ = 0 and changing the local space W (K) to Pk−1(K).

It is well known [3] that we can define the function Πh(q, u) = (ΠV q, ΠWu) on
an arbitrary simplex K ∈ Th as the element of V h ×Wh which solves

(ΠV q,∇w + v)K = (q,∇w + v)K for all (w,v) ∈ Pk−1(K)×Ξk(K),

(ΠWu,w)K = (u,w)K for all w ∈ Pk(K),

〈ΠV q · n, μ〉F = 〈q · n, μ〉F for all μ ∈ Pk(F ),

for all faces F of the simplex K. Here Ξk(K) stands for the space of functions in
Pk(K) whose divergence is zero and whose normal component on ∂K is also zero.

Once again, the equations of the projection of the errors are exactly those con-
tained in Lemma 3.1 with the right-hand side of the second equation, (3.1b), equal
to zero because ΠW is nothing but the L2-projection into the space Wh. Thus,
all the results in section 3 and those in section 4 hold without the terms ∂tε

u
h and

ΠWut − ut in the right-hand sides.
Proceeding exactly as in the case of the hybridized RT method, we obtain that

Theorem 5.1 and Corollary 5.1 are also valid for the BDM method provided we
replace the conditions k ≥ 0 and k ≥ 1 by k ≥ 1 and k ≥ 2, respectively. We
must do this because the BDM method is only defined for k ≥ 1 and because when
k = 1, ∇PWΨ = 0, and H2 is of order one, not of order h.

The same results hold for the BDM methods on rectangles and cubes.

Other extensions. Let us end by pointing out that the results in this paper can
be trivially extended to more general second-order elliptic operators. Extensions to
nonsmooth initial data and fully discrete methods constitute the subject of ongoing
work.

Appendix A. Proofs of some auxiliary results

A.1. Proof of the integral inequality of Proposition (3.1). Pick any T > 0

and set, for t ∈ [0, T ], χ(t) := maxt∈[0,T ] A(t) +
∫ t

0
B(s) ζ(s) ds. Then d

dtχ(t) =

B(t) ζ(t) ≤ B(t)
√
χ(t), and so

√
χ(T ) ≤

√
χ(0) + 1

2

∫ T

0
B(s) ds. The result now

easily follows.

A.2. Proof of Proposition 3.2 on parabolic regularity. We only prove the
last inequality, which is not that well known. For any δ ∈ (0, T ), we have

‖ΔΨ‖L1(0,T ;L2(Ω)) =

∫ T−δ

0

‖ΔΨ(s)‖L2(Ω) ds+

∫ T

T−δ

‖ΔΨ(s)‖L2(Ω) ds

≤ (log(T/δ))1/2

(∫ T−δ

0

(T − s)‖ΔΨ(s)‖2L2(Ω) ds

)1/2

+ δ1/2

(∫ T

T−δ

‖ΔΨ(s)‖2L2(Ω) ds

)1/2

,
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and the inequality follows from the standard estimates∫ T

0

‖ΔΨ(s)‖2L2(Ω) ds ≤
1

2
‖∇Θ‖2 and

∫ T

0

(T − s)‖ΔΨ(s)‖2L2(Ω) ds ≤
1

4
‖Θ‖2.

This completes the proof of Proposition 3.2.

A.3. Proof of Lemma 3.4 on the operators Ph′. To prove this result, we begin
by describing how to obtain the refinements of Th, Th′ . Given any integer N > 0,
the elements of the triangulation Th′ are obtained by refining each simplex K ∈ Th

as follows. Let {λj}n+1
j=1 be the set of barycentric coordinates of the simplex K.

Then the refinement of K = {x : λi(x) ∈ [0, 1], i = 1, . . . , n + 1}, consists of

all the nonempty sets of the form
⋂n+1

j=1 Kj,�j ,N , where 	j ∈ {0, 1, . . . , N − 1} for

j = 1, . . . , n+ 1. Here, by Kj,�,N we mean the slab {x ∈ K : λj(x) ∈ 1
N [	, 	+ 1]}.

The first inequality can now be obtained as a direct consequence of the con-
struction of the space W 0

h′ ; the constant C only depends on N and n. The second
inequality follows easily if we prove that

(A.1) ‖(Id− Ph′)θ‖ ≤ 1

2
‖θ‖,

for all θ ∈ Wh. Indeed, since

(ε, θ) = (ε, (Id− Ph′)θ) + (ε,Ph′θ) ≤ 1

2
‖ε‖ ‖θ‖+ (ε,Ph′θ),

the second identity follows from the fact that ‖ε‖ = supθ∈Wh

(ε,θ)
‖θ‖ given that ε ∈

Wh.
It remains to prove the inequality (A.1). To do that, we note that, since Ph′ is

the L2-projection into W 0
h′ ,

‖(Id− Ph′)θ‖ ≤ ‖θ − w′‖,
for any w′ ∈ W 0

h′ . We are thus going to construct a special w′ such that

‖θ − w′‖ ≤ 1

2
‖θ‖.

We define w′ as follows. By construction of Th′ , we can write that

K = K i
N ∪Kb

N ,

where Kb
N :=

⋃n+1
j=1 Kj,0,N and K i

N := K \Kb
N . On each K ∈ Th, we set w′ := θ

on K i
N . We then define w′ on Ωb

h′ :=
⋃

K∈Th
Kb

N as the L2-projection of θ into the
affine set

W b
h′ := {w′ ∈ L2(Ωb

h′) ∩W 0
h′ : w′ = θ on ∂K i

N for all K ∈ Th}.
Then we have that

‖θ − w′‖2 = ‖θ − w′‖2Ωb
h′

≤ 2 ‖θ‖2Ωb
h′

= 2
∑

K∈Th

‖θ‖2Kb
N
.

By construction, we have that, for N > n + 1, the simplex (1 − (n + 1)/N)K is
congruent to K i

N and so, since the volume of Kb
N equals the volume of K minus the

volume of K i
N , we have that the volume of Kb

N is equal to (1− (1− (n+ 1)/N)n)
times the volume of K. Hence, a simple scaling argument shows that, for N > n+1,

‖θ − w′‖2 ≤ 2 (1− (1− (n+ 1)/N)n)C ‖θ‖2,
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for some constant C depending only on k. So, for big enough N , we get that

‖θ − w′‖2 ≤ 1

4
‖θ‖2.

This completes the proof of Lemma 3.4.
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