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ALGEBRAIC FOURIER RECONSTRUCTION

OF PIECEWISE SMOOTH FUNCTIONS

DMITRY BATENKOV AND YOSEF YOMDIN

Abstract. Accurate reconstruction of piecewise smooth functions from a fi-
nite number of Fourier coefficients is an important problem in various ap-
plications. This problem exhibits an inherent inaccuracy, in particular, the
Gibbs phenomenon, and it has been intensively investigated during the last
few decades. Several nonlinear reconstruction methods have been proposed in
the literature, and it is by now well-established that the “classical” convergence
order can be completely restored up to the discontinuities. Still, the maximal
accuracy of determining the positions of these discontinuities remains an open
question.

In this paper we prove that the locations of the jumps (and subsequently the
pointwise values of the function) can be reconstructed with at least “half the
classical accuracy”. In particular, we develop a constructive approximation
procedure which, given the first k Fourier coefficients of a piecewise C2d+1

function, recovers the locations of the jumps with accuracy ∼ k−(d+2), and
the values of the function between the jumps with accuracy ∼ k−(d+1) (similar
estimates are obtained for the associated jump magnitudes). A key ingredient
of the algorithm is to start with the case of a single discontinuity, where a
modified version of one of the existing algebraic methods (due to K. Eckhoff)
may be applied. It turns out that the additional orders of smoothness produce
highly correlated error terms in the Fourier coefficients, which eventually cancel
out in the corresponding algebraic equations. To handle more than one jump,
we apply a localization procedure via a convolution in the Fourier domain,

which eventually preserves the accuracy estimates obtained for the single jump.
We provide some numerical results which support the theoretical predictions.

1. Introduction

Consider the problem of reconstructing a function f : [−π, π] → R from a finite
number of its Fourier coefficients:

ck(f)
def
=

1

2π

ˆ π

−π

f(t) e−ıkt d t, k = 0, 1, . . . ,M.

It is well known that for periodic smooth functions, the truncated Fourier series

FM (f)
def
=

M∑
|k|=0

ck(f) eıkx
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converges to f very fast, subsequently making Fourier analysis very attractive in
a vast number of applications. We have by the classical Lebesgue lemma (see e.g.
[34]) that

max
−π≤x≤π

|f(x) − FM (f) (x)| ≤ (3 + lnM) · EM (f)

where EM (f) is the error of the best uniform approximation to f by trigonometric
polynomials of degree at most M . This number, in turn, depends on the smoothness
of the function. In particular:

(1) If f is d-times continuously differentiable (including at the endpoints) and∣∣f (d)(x)
∣∣ ≤ R, then (see [46, Vol. I, Chapter 3, Theorem 13.6])

(1.1) EM (f) ≤ Cd ·R ·M−d.

(2) If f is analytic, then by classical results of S. Bernstein (see e.g. [34,
Chapter IX]) there exist constants C and q < 1 such that

(1.2) EM (f) ≤ C · qM .

Yet many realistic phenomena exhibit discontinuities, in which case the unknown
function f is only piecewise smooth. As a result, the trigonometric polynomial
FM (f) no longer provides a good approximation to f due to the slow convergence
of the Fourier series (one of the manifestations of this fact is commonly known as the
“Gibbs phenomenon”). It has very serious implications, for example, when using
spectral methods to calculate solutions of PDEs with shocks. Therefore an impor-
tant question arises: “Can such piecewise smooth functions be reconstructed from
their Fourier measurements, with accuracy which is comparable to the ‘classical’
one (such as (1.1) or (1.2))”?

This problem has received much attention, especially in the last few decades
([3, 4, 5, 8, 9, 10, 11, 13, 15, 16, 18, 22, 24, 25, 27, 29, 30, 33, 38, 39, 41, 44] would
be only a partial list). It has long been known that the key problem for Fourier series
acceleration is the detection of the shock locations. By now it is well-established
that classical convergence rates can be restored uniformly up to the discontinuities
(see e.g. [24]), but the corresponding question for the jump locations themselves
is still open. Notice that any linear approximation procedure with free (a priori
unknown) jump locations will not be able to achieve accuracy higher than 1√

M
; see

[19].
Several partial results and conjectures in this direction are known, in particular,

the following. The concentration method of Gelb and Tadmor [18, 21, 41] recov-
ers the jumps with first order accuracy, and it can be extended to higher orders.
Kvernadze [29, 30] proves that his method can recover jumps of a C3 function with
second order accuracy. In [7, 19] we have conjectured that the locations of the
jumps of a piecewise Cd function can be recovered with accuracy k−d from its first
k Fourier coefficients (a similar conjecture is made in [43]). Both Eckhoff [15] and
Banerjee and Geer [3] made the same conjectures with respect to their particu-
lar reconstruction methods. We would also like to mention a related but different
problem: reconstruction of piecewise smooth functions from point measurements.
There, adaptive approximations can achieve asymptotic accuracy k−d for piecewise
Cd functions [2, 35, 31].

With this motivation, our main goal in this paper is to arrive at a better un-
derstanding of the “optimal”, or the “best possible” accuracy of reconstruction,
especially with respect to the locations and the magnitudes of the jumps. As a
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means to achieve this goal, we develop a reconstruction method which allows for
explicit accuracy analysis. Our method is a “hybrid” between a Fourier filtering
technique which is first applied to localize the jumps, and the algebraic approach of
Eckhoff and Kvernadze which is used in order to resolve each discontinuity one at
a time to a high order of accuracy. It is precisely this “localization” which makes
the subsequent analysis tractable.

Our accuracy analysis is “asymptotic” in nature, although we provide the explicit
constants at every step. These constants in general depend upon various a priori
estimates (such as the minimal distance between the jumps, or the upper bound
on the jump magnitudes), which are presumably available. See the discussion in
Section 2 below, in particular (2.4).

Let us now give a brief summary of the main results.

(1) If a function with a single jump has at least 2d + 1 continuous derivatives
everywhere except the jump, then the jump location can be recovered from
the first M Fourier coefficients with error at most ∼ M−d−2 (Theorem
4.13). In addition, a jump in the l-th derivative can be recovered with error
at most ∼ M l−d−1 (Theorem 4.21). A key observation in the analysis is that
the additional orders of smoothness produce highly correlated error terms
in the Fourier coefficients, which eventually cancel out in the corresponding
algebraic equations.

(2) The localization step does not “destroy” the above accuracy estimates (The-
orem 5.2). Thus, the pointwise values of f are recovered with the accuracy
∼ M−d−1 (Theorem 6.1) up to the jumps.

(3) Numerical simulations are consistent with the theoretical accuracy predic-
tions (Section 7).

By means of this constructive approximation procedure with provable asymptotic
convergence properties, we therefore demonstrate that the algebraic reconstruction
methods for piecewise smooth data can be at least “half accurate” compared to the
classical approximation theory for smooth data.

We provide an overview of the reconstruction procedure in Section 2. For expos-
itory reasons, the details of the localization step and the analysis of its accuracy
are postponed until Section 5. The resolution method of a single jump is presented
in Section 3, while Section 4 is devoted to proving its asymptotic convergence or-
der. Finally, the accuracy of the whole reconstruction is analyzed in Section 6 and
some numerical results are presented in Section 7. Some common notations used
throughout the paper are summarized below in Subsection 1.1.

1.1. Notation.

• N denotes the natural numbers, R—the real numbers, C—the complex
numbers.

• Cd denotes the class of smooth functions which are continuously differen-
tiable d times everywhere. C∞ is the class of smooth functions having
continuous derivatives of all orders.

• Br (z) is the ball of radius r centered at z, and ∂Br (z) is the boundary of
such a ball.
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−π ξ1 ξ2 ξK−1 ξK π

A0,1

A0,K

Figure 2.1. A piecewise smooth function

2. The algebraic reconstruction method

Let us assume that f has K > 0 jump discontinuities {ξj}Kj=1 (they can be

located also at ±π, but not necessarily so). Furthermore, we assume that f ∈ Cd

in every segment (ξj−1, ξj), and we denote the associated jump magnitudes at ξj
by

Al,j
def
= f (l)(ξ+j ) − f (l)(ξ−j ).

We write the piecewise smooth f as the sum f = Ψ + Φ, where Ψ(x) is smooth
and periodic and Φ(x) is a piecewise polynomial of degree d, uniquely determined
by {ξj} , {Ai,j} such that it “absorbs” all the discontinuities of f and its first d
derivatives. This idea is very old and goes back at least to A.N. Krylov ([4, 28]).
Eckhoff derives the following explicit representation for Φ(x):

Φ(x) =
K∑
j=1

d∑
l=0

Al,jVl(x; ξj),

Vn (x; ξj) = − (2π)n

(n + 1)!
Bn+1

(
x− ξj

2π

)
ξj ≤ x ≤ ξj + 2π,

(2.1)

where Vn (x; ξj) is understood to be periodically extended to [−π, π] and Bn(x) is
the n-th Bernoulli polynomial. For completeness, let us derive the formula for the
Fourier coefficients of Φ(x) (it can also be found in [15]).

Lemma 2.1. Let Φ(x) be a piecewise polynomial of degree d, with jump discontinu-

ities {ξj}Kj=1 and the associated jump magnitudes {Al,j}j=1,...,K
l=0,...,d . For definiteness,

let us assume that c0(Φ) =
´ π

−π
Φ(x) dx = 0. Then

(2.2) ck(Φ) =
1

2π

K∑
j=1

e−ıkξj

d∑
l=0

(ık)−l−1Al,j .

Proof. Denote Φj (x)
def
=
∑d

l=0 Al,jVl(x; ξj). These are periodic functions in [−π, π]
having a single discontinuity at x = ξj and jump magnitudes {A0,j , . . . , Ad,j}. One
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integration by parts yields for k �= 0,

ck(Φ) =
1

2π

ˆ π

−π

e−ıkx

( K∑
j=0

Φj(x)

)
dx

=
1

2πık

K∑
j=0

A0,j e−ıkξj +
1

ık
ck

( K∑
j=0

Φ′
j

)
,

and so after d + 1-fold repetition we obtain (using Φ
(d+1)
j ≡ 0):

ck(Φ) =
1

2π

d∑
l=0

K∑
j=0

(ık)−l−1Al,j e−ıkξj . �

A key observation is that if Ψ is sufficiently smooth, then the contribution of
ck(Ψ) to ck(f) is negligible for large k. Therefore, for some large enough M one
can build from the equations (2.2) an approximate system:

ck (f) ≈ 1

2π

K∑
j=1

ωk
j

d∑
l=0

Al,j

(ık)l+1
k = M, . . . ,M + d + 1.

Here and in the rest of the paper we use the notation ωj
def
= e−ıξj .

In fact, this system (up to a change of variables and the number of equations) lies
at the heart of the algebraic reconstruction methods of Eckhoff [15], Banerjee and
Geer [3], and Kvernadze [29]. Banerjee and Geer solve it for all the parameters at
once by least squares minimization. Eckhoff and Kvernadze eliminate all the {Ai,j}
first, resulting in a system of polynomial equations for the {ξj}, whose coefficients
have nonlinear dependence on the initial data.

In contrast, we propose to solve this system separately for each ξ = ξj , beacuse
this case reduces to a single polynomial equation with respect to ξ. We achieve this
“separation” by filtering the original Fourier coefficients such that only the part
related to a particular ξj remains. This step requires some a priori knowledge of
the approximate locations of the jumps. Fortunately, such information can easily
be obtained by a variety of methods; see Section 5.

Let us finish this section by presenting the main steps of the reconstruction.
We denote the approximately reconstructed parameters with a tilde sign. If not
stated otherwise, it is understood that these approximations depend on the index
M . It is important to note that we distinguish between the actual smoothness of
the function f and the reconstruction order.

Algorithm 2.2. Let f be a piecewise smooth function with jumps at {ξj}Kj=1, con-

tinuously differentiable d1 times between the jumps. Fix a reconstruction order to
be some nonnegative integer d ≤ d1. Let there be given the first M + d + 2 Fourier
coefficients of f .

(1) Solve the system (3.1) by localization (Algorithm 5.1) and resolution (Al-

gorithm 3.2). This will give us approximate values for the parameters
{
ξ̃j

}
and

{
Ãl,j

}
.



282 DMITRY BATENKOV AND YOSEF YOMDIN

(2) Calculate the sequence

ck(Φ̃) =
1

2π

K∑
j=1

ω̃k
j

d∑
l=0

Ãl,j

(ık)l+1
|k| ≤ M

and subsequently recover the approximate Fourier coefficients of the smooth
part:

ck(Ψ̃)
def
= ck(f) − ck(Φ̃) |k| ≤ M.

Take the final approximation to be

f̃ = Ψ̃ + Φ̃ =
∑

|k|≤M

ck(Ψ̃) eıkx +
K∑
j=1

d∑
l=0

Ãl,jVl(x; ξ̃j).(2.3)

The rest of this paper is devoted to providing all the details of the above al-
gorithm and analyzing its accuracy. In particular, we shall prove that whenever
d1 ≥ 2d + 1, the following estimates hold:∣∣∣ξ̃j − ξj

∣∣∣ ≤ C∗ (d,K) · F1 (A, R,G) ·M−d−2,∣∣∣Ãl,j −Al,j

∣∣∣ ≤ C∗∗ (d,K) · F2 (A, R,G) ·M l−d−1,∣∣∣f̃ (x) − f (x)
∣∣∣ ≤ C∗∗∗ (d,K) · F3 (A, R,G) ·M−d−1,

(2.4)

where

• C∗, C∗∗, C∗∗∗ are some absolute constants depending only on the “size” of
the problem;

• G = G (ξ1, . . . , ξK) represents the geometry of the jump points (such as
minimal distance between two adjacent jumps);

• A = A (|A0,1| , . . . , |Ad1,K |) represents some a priori bounds on the jump
magnitudes, such as lower and upper bounds;

• R is an absolute bound for the Fourier coefficients of the smooth component
Ψ,

(2.5) |ck (Ψ)| ≤ R · k−d−2;

• F1, F2, F3 are some “simple” functions.

In the course of our investigation we shall be defining more specific bounds, but it
will always be assumed that those can be expressed in terms of the above quantities.

Since we are interested in “asymptotic” estimates, we will in general allow the
inequalities (2.4) to hold for all M starting from some index K∗ which may be large
and depend on the parameters of the problem. However, if a particular bound holds
for all k > K∗, then it will in general hold for k = 1, 2, . . . ,K∗ as well, with some

larger multiplicative constants C̃∗ . . . , but which are harder to compute explicitly.
Finally, let us mention that the reconstruction method described above is also

applicable to situations where the function f has different order of smoothness in
each interval. In this case, parameters of each jump can be “resolved” up to its
own corresponding order of accuracy (say ej), while the whole function will be

reconstructed up to the order ∼ M−minj{ej}−1.
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3. Resolving a single jump

Let K = 1, so that f has a single jump ξ and Φ =
∑d

l=0AlVl (x; ξ). Denote

ω
def
= e−ıξ. The goal is to recover Φ from the approximate system of equations

(3.1) ck(f) ≈ ωk

2π

d∑
l=0

Al

(ık)l+1
(= ck(Φ)) k = M, . . . ,M + d + 1.

To find ω, we eliminate {A0, . . . , Ad} from the above equations. The result is
a single polynomial equation having the exact value ω as one of its solutions. In
Eckhoff’s paper [14], this elimination is described in great detail, while here we
present only the end result.

Let

mk
def
= 2π(ık)d+1ck(Φ) = ωk

d∑
l=0

(ık)d−lAl,

pdk(z)
def
=

d+1∑
j=0

(−1)j
(
d + 1

j

)
mk+jz

d+1−j .

(3.2)

Lemma 3.1. The point ω satisfies

pdk(ω) = 0 ∀k ∈ N.

Proof. This is an immediate consequence of Lemma A.4 (see Appendix A). �

Since the exact coefficients mk (and as a result the polynomials pdk (z)) are un-
known, we approximate these with the known quantities,

rk
def
= 2π (ık)d+1 ck(f),

qdk(z)
def
=

d+1∑
j=0

(−1)j
(
d + 1

j

)
rk+jz

d+1−j .
(3.3)

Now we are ready to formulate the procedure of recovering the parameters of a
single jump.

Algorithm 3.2. Let us be given the first M + d + 2 Fourier coefficients of the
function f which has a single jump1 ξ ∈ [−π, π].

(1) Solve the polynomial equation

qdM (z) = 0

and take ω̃ to be the root which is closest to the unit circle. In Section 4
below, we shall provide the justification for this choice.

(2) The jump magnitudes A0, . . . , Ad are reconstructed as follows. By (3.2),
the exact values of Aj satisfy

(3.4) mkω
−k =

d∑
l=0

(ık)d−lAl ∀k ∈ N.

1With the understanding that the points ±π are identified with each other.
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We use the approximations rk ≈ mk, ω̃ ≈ ω and solve the system of linear
equations

(3.5) rkω̃
−k =

d∑
l=0

(ık)d−lÃl k = M, . . . ,M + d

with respect to the unknowns
{
Ãl

}
by any one of the standard methods.

4. Accuracy analysis: a single jump

Our goal in this section is to analyze Algorithm 3.2 and calculate its accuracy.
We shall express all our estimates in terms of the index k, keeping in mind that
it should be replaced with M to be consistent with the definitions of the previous
sections.

4.1. Accuracy analysis: jump location. We start with the determination of
the jump point ω̃. Our strategy will be to investigate the polynomial qdk(z), and
determine the bounds on locations of its roots. We can informally summarize the
main results as follows.

(1) Starting from some k, the roots of qdk(z) are “separated” from each other
by at least ∼ k−1.

(2) If the function f is continuously differentiable at least d1 ≥ 2d + 1 times
everywhere except at ξ, then one of those roots deviates from the “true”
value ω by at most ∼ k−d−2.

We regard qdk(z) as a perturbation of pdk(z). With this point of view, we shall first
describe the roots of pdk(z), and then calculate the “deviations” due to the difference

edk(z) = qdk(z) − pdk(z).

In the subsequent analysis we denote the roots of pdk(z) by z
(k,d)
i for i = 0, 1, . . . , d,

with the convention that z
(k,d)
0 = ω. Also, we denote the roots of qdk(z) by κ

(k,d)
i .

It will be convenient to study pdk (z) in a different coordinate system. For this
purpose, consider the following transformation of the punctured z-plane:

u = T (z) =
ω

z
− 1 z �= 0.

Then the inverse map is given by

(4.1) z = T −1 (u) =
ω

u + 1
u �= −1.

Now we translate the problem into the u-plane.

Definition 4.1. For all k, d ∈ N let

(4.2) sdk(u)
def
=

pdk(z)

ωkzd+1
=

(u + 1)d+1

ωk+d+1
pdk

(
ω

u + 1

)
.

Claim 4.2. sdk(u) is a polynomial function. Furthermore, if u0 �= −1 is a root of
sdk(u), then z0 = T −1 (u0) is a root of pdk(u).

Therefore it makes sense to study the roots of sdk(u). We denote these roots by

σ
(k,d)
i , i = 0, . . . , d. The observation below is an immediate consequence of Lemma

3.1.
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Claim 4.3. sdk(0) = 0.

Therefore we will always take σ
(k,d)
0 = 0.

In what follows, we shall break sdk(u) into a sum of terms and subsequently apply
a perturbation analysis to determine its roots.

Lemma 4.4. The polynomial sdk(u) can be written in the form sdk(u) = s̃dk(u)+hd
k(u)

where

s̃dk(u)
def
=

d+1∑
s=1

as−1,sk
s−1us,

hd
k(u)

def
=

d+1∑
s=2

(
a0,s + a1,sk + · · · + as−2,sk

s−2
)
us,

(4.3)

and also

(4.4) as−1,s =

(
d

s− 1

)
ıdA0(−1)d+1(d + 1 − s)!

(
d + 1

s

)
.

Proof. This is fairly straightforward but a somewhat tedious calculation, utilizing
Lemma A.4 at some point. We leave this as an exercise. �

Next we shall see that the dominant component s̃dk(u) determines the locations

of the roots of sdk(u) up to the first order accuracy, while the other component hd
k(u)

is responsible for second order perturbations of these roots.

We denote the roots of s̃dk(u) by σ̃
(k,d)
i , i = 0, . . . , d with σ̃

(k,d)
0 = 0.

It turns out that s̃dk(u) can be completely characterized.

Definition 4.5. For every α > −1 and n = 0, 1, 2, . . . let L(α)
n (x) denote the

generalized Laguerre polynomial ([1, Chapter 22], [40, Chapter 5.2]):

L(α)
n (x) =

n∑
m=0

(
n + α

n−m

)
(−x)m

m!
.

Lemma 4.6. Assume the above notations. Then

(1) The polynomial s̃dk(u) satisfies

(4.5) s̃dk(u) =
1

k
s̃d1(ku).

(2) Furthermore,

s̃d1(u) = −(−ı)dA0(d + 1)!L(−1)
d+1 (−u).

Proof. Straightforward substituion of (4.4) into (4.3). �

Corollary 4.7. For all k ∈ N, s̃dk(u
∗) = 0 if and only if L(−1)

d+1 (−ku∗) = 0.

Lemma 4.8. The numbers
{
σ̃
(k,d)
i

}
satisfy the following properties:

(1) each σ̃
(k,d)
i is a simple root of s̃dk (u);

(2) σ̃
(k,d)
i < 0 for i = 1, 2, . . . , d;

(3) there exist constants C1, C2 such that for every k ∈ N and 0 ≤ i < j ≤ d,

(4.6) C1k
−1 ≤

∣∣∣σ̃(k,d)
i − σ̃

(k,d)
j

∣∣∣ ≤ C2k
−1.
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Proof. Following Corollary 4.7, we only need to characterize the roots of L(−1)
d+1 (−u).

By [40, Chapter 5.2], for every integer m ≥ 1,

L(−m)
n (x) = (−x)m

(n−m)!

n!
L(m)
n−k(x),

and therefore

L(−1)
d+1 (−u) = u

d!

(d + 1)!
L(1)
d (−u).

The polynomials
{
L(1)
n (x)

}∞

n=0
form an orthogonal system on the interval (0,∞)

(see again [1, Chapter 22], [40, Chapter 5.2]). Parts (1) and (2) follow immediately.
Part (3) follows by taking C1 and C2 to be the minimal and the maximal distance

between the roots of L(1)
d (u), correspondingly. �

Now we show that hd
k(u) perturbs the zeros of s̃dk(u) by at most ∼ k−2. Since

the coefficients hd
k (u) depend linearly on A0, . . . , Ad, we can expect that the bound

will depend on the quantity
∑d

l=0 |Al|. For convenience, let us therefore define

A∗ def
= max

(
1,

d∑
l=0

|Al|
)
.

Lemma 4.9. There exist constants C3,K1 such that for all k > K1A
∗ and for all

i = 0, . . . , d,

(4.7)
∣∣∣σ̃(k,d)

i − σ
(k,d)
i

∣∣∣ ≤ C3A
∗k−2.

Proof. Our method of proof is based on Rouche’s theorem (Theorem A.5). We shall
define a sequence ρ(k) = C3A

∗k−2 (where C3 is to be determined) and consider

disks of radius ρ(k) around each one of the roots σ̃
(k,d)
i . Our goal is to find C3 so

that
∣∣∣s̃dk(uθ)

∣∣∣ > ∣∣hd
k (uθ)

∣∣ for all points uθ = σ̃
(k,d)
i + ρ(k) eıθ on the boundaries of

these disks.

• In order to bound
∣∣∣s̃dk(uθ)

∣∣∣ from below, we shall use Lemma A.6. We need

to bound from below the first derivative at σ̃
(k,d)
i , as well as to bound from

above the second derivative in the disk Bk−1

(
σ̃
(k,d)
i

)
.

(1) We always have

d

du
s̃dk(u)

∣∣∣
u=σ̃

(k,d)
i

=
d

du

(
1

k
s̃d1(ku)

) ∣∣∣
u=σ̃

(k,d)
i

=
d s̃d1(w)

dw

∣∣∣
w=kσ̃

(k,d)
i

.

Now kσ̃
(k,d)
i is always a root of s̃d1(u), therefore the value of

d

du
s̃dk(u)

∣∣∣
u=σ̃

(k,d)
i

is independent of k and thus we can write∣∣∣∣ d

du
s̃dk(u)

∣∣∣
u=σ̃

(k,d)
i

∣∣∣∣ ≥ C4
def
= min

i

∣∣∣∣ d

du
s̃d1(u)

∣∣∣
u=σ̃

(1,d)
i

∣∣∣∣ .
Since all the roots are simple, this is guaranteed to be a strictly positive
bound.
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(2) Now consider a point u∗ ∈ Bk−1

(
σ̃
(k,d)
i

)
. Then

∣∣∣ku∗ − kσ̃
(k,d)
i

∣∣∣ ≤ 1

and therefore ku∗ ∈ B1

(
σ̃
(1,d)
i

)
. Using (4.5) and differentiating twice,

we get

d2

du2
s̃dk (u)

∣∣∣
u=u∗

= k
d2

dw2
s̃d1 (w)

∣∣∣
w=ku∗

.

Let

C5
def
= max

i
max

w∗∈B1

(
σ̃
(1,d)
i

)
∣∣∣∣ d2

dw2
s̃d1 (w)

∣∣∣
w=w∗

∣∣∣∣ .
(3) The constants C4 and C5 therefore satisfy the assumptions of Lemma

A.6. We define C6
def
= min

(
1, C4

C5

)
. The conclusion is that there exists

a constant C7 such that for every function η(k) : N → R satisfying
0 < η(k) < C6

k we have∣∣∣s̃dk (σ̃(k,d)
i + η(k) eıθ

)∣∣∣ > C7η(k).

• Now we shall bound
∣∣hd

k (uθ)
∣∣ from above. Recall that

hd
k(u) =

d+1∑
s=2

(
a0,s + a1,sk + · · · + as−2,sk

s−2
)
us

where ai,j are some linear functions of A0, . . . , Ad. Let ζ(k) : N → R be any

function satisfying 0 < ζ(k) < 1
k , and consider uθ = σ̃

(k,d)
i + ζ(k) eıθ. By

Lemma 4.8,
∣∣∣σ̃(k,d)

i

∣∣∣ < C2k
−1 and therefore |uθ| < 2 · max (1, C2) k

−1. But

then∣∣hd
k (uθ)

∣∣ ≤ |a0,2| |uθ|2 + (|a0,3| + |a1,3| k) |uθ|3 + . . .

+
(
|a0,d+1| + · · · + |ad−1,d+1| kd−1

)
|uθ|d+1 ≤ C8A

∗k−2

for some constant C8.

Set C3
def
= 2C8

C7
and let ρ(k) = C3A

∗k−2. Let k >
2C8

C7C6︸ ︷︷ ︸
def
=K1

A∗. Then ρ(k) < C6

k and

therefore∣∣∣s̃dk (σ̃(k,d)
i + ρ(k) eıθ

)∣∣∣ > C7ρ(k)︸ ︷︷ ︸
=2C8A∗k−2

> C8A
∗k−2 ≥

∣∣∣hd
k

(
σ̃
(k,d)
i + ρ(k) eıθ

)∣∣∣ ,
which completes the proof. �

Remark 4.10. We have in fact shown that for each k > K1 the polynomial sdk(u)
has precisely d + 1 distinct roots.

Now we can go back to the original polynomial pdk(z) and accurately describe

the location of its roots
{
z
(k,d)
i

}
. Recall from Claim 4.2 that z

(k,d)
i = T −1

(
σ
(k,d)
i

)
.

Being careful to avoid the singularity σ
(k,d)
i = −1 (by choosing large enough k),

we now show that the geometry of the roots σ
(k,d)
i is preserved under T −1. In
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particular, the numbers z
(k,d)
i remain separated from each other (following (4.6)),

each of them being close (following Lemma 4.9) to one of the numbers

(4.8) y
(k,d)
i

def
= T −1

(
σ̃
(k,d)
i

)
=

ω

σ̃
(k,d)
i + 1

.

The only thing which is different are the constants.

Lemma 4.11. Let y
(k,d)
i be defined by (4.8). Then:

(1) there exist constants C9, C10,K2 such that for all k > K2 and 0 ≤ i < j ≤ d,

C9k
−1 ≤

∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣ ≤ C10k
−1;

(2) there exist constants C11,K3 such that for all k > K3A
∗,∣∣∣z(k,d)i − y

(k,d)
i

∣∣∣ < C11A
∗ · k−2;

(3) there exist constants C12, C13,K4 such that for all k > K4A
∗ and 0 ≤ i <

j ≤ d,

C12k
−1 ≤

∣∣∣z(k,d)i − z
(k,d)
j

∣∣∣ ≤ C13k
−1.

Proof. If k > 2C2, then
∣∣∣σ̃(k,d)

i

∣∣∣ < 1
2 (see (4.6)). It follows that 1

2 <
∣∣∣σ̃(k,d)

i + 1
∣∣∣ ≤ 1

and so by (4.8),

C1k
−1 <

∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣ < 4C2k
−1.

This proves (1) with C9 = C1, C10 = 4C2 and K2 = 2C2.

If, in addition, k > 2C3

C1
, then

∣∣∣σ̃(k,d)
i − σ

(k,d)
i

∣∣∣ <

∣∣∣σ̃(k,d)
i

∣∣∣
2 < 1

4 and therefore∣∣∣σ(k,d)
i + 1

∣∣∣ > 1
4 . It follows from (4.7) that

∣∣∣z(k,d)i − y
(k,d)
i

∣∣∣ =
∣∣∣σ̃(k,d)

i − σ
(k,d)
i

∣∣∣∣∣∣σ̃(k,d)
i + 1

∣∣∣ ∣∣∣σ(k,d)
i + 1

∣∣∣ < 4C3k
−2 k > max

(
2C2,

2C3

C1
,K1

)
︸ ︷︷ ︸

def
=K3

A∗

and this proves (2) with C11 = 4C3 and K3 as above.

Let k > max

(
K2,K3,

4C11

C9

)
︸ ︷︷ ︸

def
=K4

A∗. Using (1) and (2), we have on one hand,

∣∣∣z(k,d)i − z
(k,d)
j

∣∣∣ < ∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣+ ∣∣∣z(k,d)i − y
(k,d)
i

∣∣∣+ ∣∣∣y(k,d)j − z
(k,d)
j

∣∣∣
<
∣∣∣y(k,d)i − y

(k,d)
j

∣∣∣+ C11

k2
+

C11

k2

<
∣∣∣y(k,d)i − y

(k,d)
j

∣∣∣+ 2 · C9

4k
<

3

2

∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣ < 3

2
C10︸ ︷︷ ︸

def
=C13

k−1,
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and on the other hand,∣∣∣z(k,d)i − z
(k,d)
j

∣∣∣ > ∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣− ∣∣∣y(k,d)j − z
(k,d)
j

∣∣∣− ∣∣∣y(k,d)j − z
(k,d)
j

∣∣∣
>

1

2

∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣ > 1

2
C9︸︷︷︸

def
=C12

k−1.

That proves (3). �

Remaining in the z-plane, we now turn to investigate qdk(z) and its roots
{
κ
(k,d)
i

}
.

Recall that we consider qdk (z) to be a “perturbation” of pdk(z) by another polynomial
edk(z) (see (3.2) and (3.3)):

qdk(z) = pdk(z) + edk(z).

The coefficients of edk(z) depend on the Fourier coefficients of the “smooth part”
of our pieceiwise smooth function f . It turns out that in the general setting,
the coefficients of edk(z) are large compared to those of pdk (z) and therefore the
perturbations of the roots are large too. If, however, there is enough structure in
those coefficients due to additional orders of smoothness, then the perturbation of
the roots is small. This is the essence of the key Lemma 4.12 below.

Recall that f has in fact d1 ≥ d continuous derivatives everywhere in [−π, π]\{ξ},
and denote the additional jump magnitudes at ξ by Ad+1, . . . , Ad1

. For every l ≤ d1,
let Φl denote the piecewise polynomial of degree l with jump point ξ and jump
magnitudes A0, . . . , Al. Then we write

(4.9) f = Φd + (Φd1
− Φd) + Ψ∗

where Ψ∗ is d1-times smooth everywhere in [−π, π]. Thus there exists a constant
R∗ such that

(4.10) |ck (Ψ∗)| ≤ R∗k−d1−2.

Let us also denote

A∗∗ def
= max

(
1,

d1∑
l=d+1

|Al|
)
,

H
def
= (A∗ + A∗∗ + R∗) .

Lemma 4.12. Let d1 ≥ 2d + 1. Then there exist constants C14, C15,K5 such that
for all k > K5H,∣∣∣κ(k,d)

i − z
(k,d)
i

∣∣∣ ≤ {C14 ·H · k−2 i = 1, 2, . . . , d,

C15 ·H · k−d−2 i = 0.

Proof. The idea of the proof is the same as in Lemma 4.9. Namely, we shall seek
the constants C14, C15 and K5 such that if ρ1(k) = C14 · H · k−2 and ρ2(k) =
C15 · H · k−d−2, then for i = 0, 1, . . . , d and k > K5H there exist neighborhoods

D
(k)
i of z

(k,d)
i such that

∣∣pdk(z)∣∣ > ∣∣edk(z)∣∣ on the boundary of D
(k)
i and

• diamD
(k)
i = ρ1(k) for i = 1, 2, . . . , d;

• diamD
(k)
0 = ρ2(k).
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(1) In order to show that
∣∣pdk(z)∣∣ is large in some neighborhood of z

(k,d)
i , let us

first show that
∣∣sdk(u)

∣∣ is large in some neighborhood of σ
(k,d)
i . Recall that

sdk(u) = s̃dk(u)+hd
k(u). We have shown in the proof of Lemma 4.9 that if η(k)

is any function satisfying 0 < η(k) < C6

k , then
∣∣s̃dk(u)

∣∣ > C7η(k) everywhere

on ∂Bη(k)

(
σ̃
(k,d)
i

)
. Furthermore, in this case

∣∣hd
k(u)

∣∣ < C8A
∗k−2. We now

require that

C8A
∗k−2 <

1

2
C7η(k),

which is true if k > 2C8A
∗

C7C6
= K1A

∗. In that case we have∣∣sdk(u)
∣∣ > 1

2
C7η(k) ∀u ∈ Bη(k)

(
σ̃
(k,d)
i

)
.

This is almost what we want—we would like to have such a bound on the
boundary of a neighborhood of σ

(k,d)
i instead of σ̃

(k,d)
i . If i = 0, then these

values coincide, and so we are done. Otherwise, recall that for k > K1A
∗

we also have
∣∣∣σ̃(k,d)

i − σ
(k,d)
i

∣∣∣ ≤ C3A
∗k−2. So in order to make sure that

σ
(k,d)
i belongs to Bη(k)

(
σ̃
(k,d)
i

)
, we just require that η(k) ≥ C3A

∗k−2.

We have thus shown the following:
(a) For every function 0 < η(k) < C6

k and for every k > K1A
∗, the

following bound holds for every u on the boundary of a neighborhood

of σ
(k,d)
0 = 0 of diameter 2η(k):

(4.11)
∣∣sdk(u)

∣∣ > 1

2
C7η(k).

(b) For every k > K1A
∗ and η(k) as above, which additionally satisfies

η(k) ≥ C3A
∗k−2, the above bound holds for every u on the boundary

of a neighborhood of σ
(k,d)
i of the same diameter 2η(k), for every i =

0, 1, . . . , d.
(2) We can now show that similar bounds hold for pdk(z). Again, only the

constants will be different. The map T −1 (4.1), being a Möbius trans-

formation, maps Bη(k)

(
σ̃
(k,d)
i

)
to a circular neighborhood of z

(k,d)
i (which

is not necessarily centered at z
(k,d)
i ) . Let u∗ ∈ Bη(k)

(
σ̃
(k,d)
i

)
. Now∣∣∣u∗ − σ̃

(k,d)
i

∣∣∣ ≤ C6k
−1 and also −C2

k < σ̃
(k,d)
i < 0. Therefore, if k >

2 (C2 + C6), then � (u∗) > − 1
2 and so |u∗ + 1| > 1

2 . On the other hand, in
this case |u∗ + 1| < 2.

Now let u1 and u2 be two points in the u-plane, such that |u1 − u2| = r
and 1

2 < |u1| , |u2| < 2. They are mapped to the z-plane such that

r

4
<

∣∣∣∣ ω

u1 + 1
− ω

u2 + 1

∣∣∣∣ < 4r.

Recalling (4.11) and (4.2), we conclude:
(a) For every function 0 < η(k) < C6

k and every

k > max (K1, 2 (C2 + C6))︸ ︷︷ ︸
def
=K6

A∗,
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there exists a circular neighborhood of ω having diameter between η(k)
2

and 8η(k), such that the magnitude of pdk(z) on the boundary of this
neighborhood satisfies∣∣pdk(z)∣∣ = ∣∣zd+1

∣∣ ∣∣sdk(u)
∣∣ > 2−d−2C7η(k) = C16η (k) .

(b) For every k > K6A
∗ and η(k) as above, which additionally satisfies

η(k) ≥ C3A
∗k−2, the above bound holds for every z on the boundary

of a neighborhood of z
(k,d)
i of the same diameter as above, for every

i = 0, 1, . . . , d.
(3) Once we have the lower bound for

∣∣pdk(z)∣∣ on circles of diameter at most

8η (k) < 8C6

k containing z
(k,d)
i , we can now establish an upper bound for∣∣edk(z)∣∣ on these circles. Let z∗ belong to such a circle. On one hand, its

distance from z
(k,d)
i is at most 8C6

k . On the other hand, by Lemma 4.11,∣∣∣z(k,d)i − ω
∣∣∣ < C13

k for all k > K4A
∗. Therefore |z∗ − ω| < 8C6+C13

k . Denote

C17
def
= 8C6 + C13 and let zθ = ω + ζ(k) eıθ where ζ(k) is some function

satisfying 0 < ζ(k) < C17

k . Our goal now is to find a uniform upper bound

for
∣∣edk(zθ)∣∣.

(a) By (4.9) we have

rk −mk = 2π(ık)d+1 {ck(f) − ck(Φd)}

= ωk ·
d1−d∑
l=1

Ad+l

(ık)l
+ 2π(ık)d+1ck(Ψ

∗)︸ ︷︷ ︸
def
= δk

.(4.12)

Therefore,

edk(zθ) =
d+1∑
j=0

(−1)j
(
d + 1

j

){
ωk+j ·

d1−d∑
l=1

Ad+l

(ı(k + j))l
+ δk+j

}
zd+1−j
θ

=

d1−d∑
l=1

(−ı)lAd+l

d+1∑
j=0

(−1)j

(k + j)
l

(
d + 1

j

)
ωk+jzd+1−j

θ︸ ︷︷ ︸
def
=Λk(zθ)

+
d+1∑
j=0

(−1)j
(
d + 1

j

)
δk+jz

d+1−j
θ .︸ ︷︷ ︸

def
=Δk(zθ)

(b) On one hand, we have the bound (4.10). On the other hand, |zθ| < 2
and therefore,

|Δk(zθ)| ≤ C182
d+1 · 2π · kd+1 |ck (Ψ)| ≤ C19R

∗

kd1−d+1

for some C19.
(c) Now we need to estimate Λk (zθ). First,

zd+1−j
θ =

(
ω + ζ(k) eıθ

)
d+1−j

= ωd+1−j + (d + 1 − j)ωd−jζ(k) eıθ +αj(k)
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where |αj(k)| ≤ C20ζ
2 (k) for some constant C20. Furthermore, using

the estimate of Lemma A.3 we have

Λk (zθ) = ωk+d+1
d1−d∑
l=1

Ad+l

ıl

d+1∑
j=0

(−1)j
(
d + 1

j

)
1

(k + j)l︸ ︷︷ ︸
|·|≤C21·k−d−l−1

+ζ(k) eıθ(d + 1)ωk+d
d1−d∑
l=1

Ad+l

ıl

d∑
j=0

(−1)j
(
d

j

)
1

(k + j)l︸ ︷︷ ︸
|·|≤C22·k−d−l

d1−d∑
l=1

(−ı)lAd+l

d+1∑
j=0

(−1)j

(k + j)l

(
d + 1

j

)
ωk+jαj (k)︸ ︷︷ ︸

|·|≤C23·k−1ζ2(k)

for all k > K7 where K7 is an explicit constant (see Lemma A.3).
Therefore,

|Λk (zθ)| < A∗∗ ×
{
C24 · k−d−2 + C25ζ(k)k−d−1 + C26 · k−1ζ2 (k)

}
.

Combining all of the above estimates we therefore have for k >
max (K4,K7)A

∗,

(4.13)
∣∣edk(zθ)∣∣ < A∗∗ ×

(
C24

kd+2
+

C25

kd+1
ζ(k) +

C26

k
ζ2 (k)

)
+

C19R
∗

kd1−d+1
.

(4) We can finally compare
∣∣pdk (z)

∣∣ and
∣∣edk (z)

∣∣. Let k > max (K4,K7,K6)︸ ︷︷ ︸
def
=K8

A∗

and consider two cases.
(a) Suppose z

(k,d)
i �= ω. Set ρ (k) = C14H

8k2 where C14 is to be determined,
and suppose also that

(4.14) C3A
∗k−2 ≤ ρ (k) <

C6

k
.

We have shown above that there exists a neighborhood D
(k)
i containing

z
(k,d)
i of diameter at most 8ρ (k) = C14 · H · k−2 such that for every

z∗ ∈ ∂D
(k,d)
i we have

∣∣pdk(z∗)∣∣ > C16ρ (k) = C16C14H
8k2 . On the other

hand, for every such z∗ we have by (4.13),

∣∣edk(z∗)∣∣ < A∗∗ ×
(

C24

kd+2
+

C25

kd+1
ρ(k) +

C26

k
ρ2 (k)

)
+

C19R
∗

kd1−d+1

<
A∗∗ ×

(
C24 + C25C6 + C26C

2
6

)
+ C19R

∗

k2
< (A∗∗ + R∗)

C27

k2
.
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Therefore we must choose C14 and k for which the condition C16C14H
8k2 >

C27(A
∗∗+R∗)
k2 is satisfied, together with (4.14). For example:

C14
def
= max

(
8C27

C16
, 8C3

)
,

k > max

(
K8,

C14

8C6

)
︸ ︷︷ ︸

def
=K5

×H.

In this case, qdk(z) has a simple zero κ
(k,d)
i in D

(k)
i so that∣∣∣κ(k,d)

i − z
(k,d)
i

∣∣∣ < C14 (A∗ + A∗∗ + R∗) k−2.

(b) Now consider the case z
(k,d)
0 = ω. Set ρ (k) = C15H

8kd+2 where C15 is to be

determined. We again require that ρ (k) < C6

k . We have shown that

whenever k > K6A
∗, there exists a neighborhood D

(k)
0 containing ω

such that for every z∗ ∈ ∂D
(k)
0 we have

∣∣pdk (z∗)
∣∣ > C16ρ (k) = C15C16H

8kd+2 .
On the other hand, by (4.13) for every such z∗ we have∣∣edk(z∗)∣∣ < A∗∗ ×

(
C24

kd+2
+

C25

kd+1
ρ(k) +

C26

k
ρ2 (k)

)
+

C19R
∗

kd1−d+1

<
A∗∗ ×

(
C24 + C25C6 + C26C

2
6

)
+ C19R

∗

kd+2
<

C27 (A∗∗ + R∗)

kd+2
.

So we require C15C16H
8kd+2 > C27(A

∗∗+R∗)
kd+2 together with C15H

8kd+2 < C6

k . This
is possible, for example, when

C15 =
8C27

C16
,

k > K5H ≥
(
C15H

8C6

) 1
d+1

.

Thus we have completed the proof of Lemma 4.12. �
We can finally combine everything and prove the main result of this section.

Theorem 4.13. Let f have d1 ≥ 2d + 1 continuous derivatives everywhere in

[−π, π] \ {ξ}. Let qdk(z) be as defined in (3.3), and let
{
κ
(k,d)
i

}d

i=0
denote its roots,

such that
∣∣∣κ(k,d)

0

∣∣∣ ≤ · · · ≤
∣∣∣κ(k,d)

d

∣∣∣. Let {φi}di=1 denote the roots of the Laguerre

polynomial L(1)
d , such that |φ1| < · · · < |φd|. Let y(k,d)0 = ω and y

(k,d)
i = T −1

(
−φi

k

)
for i = 1, . . . , d (see (4.8)). Then there exist constants C9, C15, C28 and K9 such
that for every k > K9H the following statements are true.

(1) The numbers
{
y
(k,d)
i

}
lie on the ray Oω, so that

∣∣∣y(k,d)i

∣∣∣ ≥ 1, and

C9k
−1 ≤

∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣ 0 ≤ i < j ≤ d.

(2) Each of the numbers
{
κ
(k,d)
i

}d

i=1
is close to some y

(k,d)
i :∣∣∣κ(k,d)

i − y
(k,d)
i

∣∣∣ ≤ C28 ·H · k−2.
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Roots of L(1)
d

φ1 φ2 φd

y
(k,d)
i = T −1

(
−φi

k

)

ω

ω

y1

yd

yi

κi

zi

κ0

r ∼ k−d−2

r ∼ k−2

∼ k−1

|z| = 1

Figure 4.1. The geometry of
{
κ
(k,d)
i

}
,
{
y
(k,d)
i

}
,
{
z
(k,d)
i

}
. The

superscripts (k, d) are omitted. The picture on the right shrinks
towards the unit circle as k → ∞.

(3) The smallest κ
(k,d)
0 is very close to ω:∣∣∣κ(k,d)

0 − ω
∣∣∣ ≤ C15 ·H · k−d−2.

(4) Algorithm 3.2 provides an approximation for ω which is accurate up to
order k−(d+2).

Proof. We have already proved (1) (for k > K2) and (3) (for k > K3A
∗); see Lemma

4.12. (2) follows from Lemma 4.12 and Lemma 4.11 by choosing C28 = C14 + C11

and k > K5H. In order to prove (4), we need to show that no root κ
(k,d)
i is closer

to the unit circle than κ
(k,d)
0 . From geometric considerations (see Figure 4.1), it is

sufficient to require that∣∣∣κ(k,d)
i − y

(k,d)
i

∣∣∣ ≤ C28 ·H · k−2 <
1

2
C9k

−1 <
1

2
min
j �=i

∣∣∣y(k,d)i − y
(k,d)
j

∣∣∣ ,
which is true whenever

k >
2C28H

C9
.

Therefore we choose

K9 = max

(
K2,K3,K5,

2C28

C9

)
. �

4.2. Accuracy analysis: jump magnitudes. Suppose that d1 ≥ 2d + 1 and let
k > K9H so that our algorithm gives an approximation ω̃(k) with error at most

C15H ·k−d−2, in accordance with Theorem 4.13. Our goal is to analyze the accuracy

of calculating the approximate jump magnitudes A
(k)
l , given by the solution of the

linear system (3.5). For convenience, we denote

Bl
def
= ılAd−l,

B̃
(k)
l

def
= ılÃ

(k)
d−l.
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We consider only the case of exactly d + 1 equations. Thus we can write this
system in the following form:

(4.15)

⎡⎢⎢⎣
rkω̃

−k
(k)

...

rk+dω̃
−k−d
(k)

⎤⎥⎥⎦ = Vk ×

⎡⎢⎢⎣
B̃

(k)
0
...

B̃
(k)
d

⎤⎥⎥⎦
where Vk is the (d + 1) × (d + 1) system matrix

Vk
def
=

⎡⎢⎢⎢⎣
1 k . . . kd

1 (k + 1) . . . (k + 1)d

...
...

...
...

1 (k + d) . . . (k + d)d

⎤⎥⎥⎥⎦ .
By (3.4), the “true” coefficients Bj satisfy

(4.16)

⎡⎢⎣ mkω
−k

...
mk+dω

−k−d

⎤⎥⎦ = Vk ×

⎡⎢⎣ B0

...
Bd

⎤⎥⎦ .
Our goal is to estimate the error ε

(k)
j

def
= Bj − B̃

(k)
j for j = 0, 1, . . . , d. Let

η
(k)
j

def
= rk+jω̃

−k−j
(k) −mk+jω

−k−j .

Then subtracting (4.16) from (4.15) gives

(4.17)

⎡⎢⎢⎢⎢⎣
ε
(k)
0

ε
(k)
1
...

ε
(k)
d

⎤⎥⎥⎥⎥⎦ = V −1
k ×

⎡⎢⎢⎢⎢⎣
η
(k)
0

η
(k)
1
...

η
(k)
d

⎤⎥⎥⎥⎥⎦ .
This is the key relation of this section. In order to estimate the magnitude of

ε
(k)
j , we shall first write out explicit expansions for the quantities η

(k)
j , and then

investigate how these expansions are transformed when multiplied by the matrix
V −1
k . Our analysis will show that the special combination of the structures of both

this matrix and the expansion coefficients results in remarkable cancellations.
Let us start by investigating the structure of the matrix Vk.

Definition 4.14. Let Sk,d denote the (d+ 1)× (d+ 1) square matrix with entries:

(Sk,r)m,n = (−k)n−m

(
n− 1

n−m

)
.

Example 4.15. For d = 4, we have

Sk,4 =

⎛⎜⎜⎜⎜⎝
1 −k k2 −k3 k4

0 1 −2k 3k2 −4k3

0 0 1 −3k 6k2

0 0 0 1 −4k
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .

Definition 4.16. For every k ∈ N let the symbol vk denote the following 1×(d+1)
row vector

vk
def
=
[

1 k . . . kd
]
.
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With this definition, we have

(4.18) Vk =

⎡⎢⎢⎢⎣
vk

vk+1

...
vk+d

⎤⎥⎥⎥⎦ .
Lemma 4.17. Let k ≥ 0, then

(4.19) V −1
k = Sk,d × V −1

0 .

Proof. Let 1 ≤ m ≤ d+ 1 and 0 ≤ t ≤ d. The m-th entry of the vector vk+t ×Sk,d

is equal to

(vk+t × Sk,d)m =

m−1∑
l=0

(k + t)l(−k)m−1−l

(
m− 1

m− 1 − l

)
= tm−1,

and therefore

vk+t × Sk,d = vt.

(4.19) then follows from (4.18). �

Now we would like to expand η
(k)
j . We can obviously assume the equality

ω̃(k) = ω +
α (k)

kd+2
s.t. |α (k)| ≤ C15H.

Now we estimate ω̃(k) by Proposition A.7 as follows:(
ω +

α(k)

kd+2

)−(k+j)

= ω−k−j

(
1 +

α(k)ω−1

kd+2

)−k−j

= ω−k−j

(
1 − (k + j)

α (k)ω−1

kd+2
+ R1 (k, j)

)
where k is large enough so that α(k)ω−1

kd+2 < 3
k+j+2 is satisfied, and

|R1 (k, j)| < (k + j) (k + j + 1)α2 (k)ω−2

2k2(d+2)
(
1 − α(k)ω−1(k+j+2)

3kd+2

) < C29 ·H2k−2d−3.

Obviously, |rk| ≤ C30 ·H · kd. Now by (4.12), we have

η
(k)
j =

(
mk+j + ωk+j ·

d1−d∑
l=1

Ad+l

(ı (k + j))
l
+ δk+j

)
ω̃−k−j
(k) −mk+jω

−k−j

=

(
mk+j + ωk+j ·

d1−d∑
l=1

Ad+l

(ı (k + j))l
+ δk+j

)
ω−k−j

(
1 − (k + j)α (k)ω−1

kd+2

)
−mk+jω

−k−j + rk+jω
−k−jR1 (k)

=
β (k)

kd+2

d∑
l=0

Bl (k + j)l+1 +

d1−d∑
l=1

Ad+l

(ı (k + j))l
+ R2 (k, j)

where |R2 (k, j)| ≤ C31 ·H2k−d−2 and |β (k)| ≤ C32 ·H.
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Therefore we can write

⎡⎢⎢⎢⎢⎢⎢⎢⎣

η
(k)
0
...

η
(k)
j
...

η
(k)
d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= β (k)B0

⎡⎢⎢⎢⎢⎢⎢⎣

k
kd+2

...
k+j
kd+2

...
k+d
kd+2

⎤⎥⎥⎥⎥⎥⎥⎦+ · · · + β (k)Bl

⎡⎢⎢⎢⎢⎢⎢⎢⎣

kl

kd+2

...
(k+j)l

kd+2

...
(k+d)l

kd+2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ . . .

+ β (k)Bd

⎡⎢⎢⎢⎢⎢⎢⎢⎣

kd+1

kd+2

...
(k+j)d+1

kd+2

...
(k+d)d+1

kd+2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+
Ad+1

ı

⎡⎢⎢⎢⎢⎢⎢⎣

1
k
...
1

k+j
...
1

k+d

⎤⎥⎥⎥⎥⎥⎥⎦+ · · · + Ad+l

ıl

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
kl

...
1

(k+j)l

...
1

(k+d)l

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ . . .

+
Ad1

ıd

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
kd+1

...
1

(k+j)d+1

...
1

(k+d)d+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣
R2 (k, 0)

...
R2 (k, j)

...
R2 (k, d)

⎤⎥⎥⎥⎥⎥⎥⎦

(4.20)

In light of (4.17), we would now like to examine the action of the matrix V −1
0

on the vectors on the right-hand side of (4.20).

Lemma 4.18. Let j = 0, 1, . . . , d.

(1) If l = 1, 2, . . . , d, then

(4.21)

⎡⎢⎢⎢⎢⎢⎢⎣

kl

...

(k + j)l

...

(k + d)l

⎤⎥⎥⎥⎥⎥⎥⎦ = V0 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kl
(
l
0

)
...

kl−j
(
l
j

)
...

1 ·
(
l
l

)
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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(2) Otherwise, there exists a function R3 : {0, 1, . . . , d} → R such that

(4.22)

⎡⎢⎢⎢⎢⎢⎢⎣

kd+1

...

(k + j)d+1

...

(k + d)
d+1

⎤⎥⎥⎥⎥⎥⎥⎦ = V0 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

kd+1
(
d+1
0

)
...

kd+1−j
(
d+1
j

)
...

k
(
d+1
1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

R3 (0)
...

R3 (j)
...

R3 (d)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Proof. Straightforward application of the binomial theorem. �

Lemma 4.19. For j = 1, 2, . . . and i = 1, . . . , d + 1 denote

τ ij
def
= (−1)i−1

(
j + i− 2

j − 1

)
.

Then there exists a bounded function R4 : {0, 1, . . . , d} × N → R such that

(4.23)

⎡⎢⎢⎢⎢⎣
1
kj

1
(k+1)j

...
1

(k+d)j

⎤⎥⎥⎥⎥⎦ = V0 ×

⎡⎢⎢⎢⎢⎢⎣
τ1
j

kj

τ2
j

kj+1

...
τd+1
j

kj+d

⎤⎥⎥⎥⎥⎥⎦+
1

kd+j+1

⎡⎢⎢⎢⎢⎢⎢⎣

R4 (0, j)
...

R4 (l, j)
...

R4 (d, j)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Proof. First recall the well-known power series expansion2

1

(1 + x)j
=

∞∑
n=0

(−1)n
(
j − 1 + n

j − 1

)
xn.

Now let l = 0, 1, . . . , d.

(1) On one hand, the (l + 1)-st entry in the product on the right-hand side of
(4.23) is equal to

gj,l
def
=

d∑
i=0

(−1)i
(
j−1+i

i

)
ki+j

li.

(2) On the other hand, by Proposition A.7 we have for some bounded function
R4 : {0, 1, . . . , d} × N → R,

1

(k + l)j
=

1

kj
· 1(

1 + l
k

)j =
1

kj

{
d∑

i=0

(−1)i
(
j − 1 + i

j − 1

)(
l

k

)i

+
R4 (l, j)

kd+1

}

=
d∑

i=0

(−1)i
(
j−1+i

i

)
ki+j

li︸ ︷︷ ︸
=gj,l

+
R4 (l, j)

kj+d+1
.

Thus (4.23) is proved. �

It is now easily seen that the multiplication by V −1
0 “orders up” the vectors

in (4.20) by decreasing powers of k. Further multiplication by Sk,d from the left
preserves this structure, as is evident from the following calculation.

2It can be proven by induction on j, using the identity
∑n

k=0

(r+k
r

)
=

(r+n+1
r+1

)
.
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Lemma 4.20. Let ci,j be arbitrary constants. Then there exist constants γi,j such
that

(4.24) Sk,d ×

⎡⎢⎢⎢⎣
c1,j
kj
c2,j
kj+1

...
cd+1,j

kj+d

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
γ1,j

kj
γ2,j

kj+1

...
γd+1,j

kj+d

⎤⎥⎥⎥⎦ .
Proof. Let i = 1, . . . , d+1 and consider the i-th entry of the above product, say yi:

yi =

d+1∑
l=1

(Sk,d)i,l ×
cl,j

kj+l−1
=

d∑
l=0

(−k)l+1−i

(
l

l + 1 − i

)
× cl+1,j

kl+j
=

1

kj+i−1
γi,j

where γi,j =
∑d

l=i−1(−1)l+1−i
(

l
l−(i−1)

)
cl+1,j . This proves the claim. �

We can now prove the main result of this section.

Theorem 4.21. Assume that d1 ≥ 2d+ 1 and k > K9H, so that by Theorem 4.13
we have

∣∣ω̃(k) − ω
∣∣ ≤ C15 ·H ·k−d−2. Then there exist constants C33,K10 such that

for every k > K10H and l = 0, 1, . . . , d the error in determining Al is∣∣∣Ã(k)
l −Al

∣∣∣ ≤ C33 ·H2 · kl−d−1.

Proof. Combine (4.17), (4.20), (4.21), (4.22), (4.23) and (4.24). �

5. Localizing the discontinuities

As we have seen, both the location and the magnitudes of the jump can be
reconstructed with high accuracy. The remaining ingredient in our method is to
divide the initial function into regions containing a single jump, and subsequently
apply the reconstruction algorithm in each region.

Our approach is to multiply the initial function f by a “bump” gj which vanishes
outside some neighborhood of the j-th jump. This step requires a priori estimates
of the jump positions, which can fortunately be obtained by a variety of methods,
for example:

(1) the concentration method of Gelb and Tadmor [22, 18, 41];
(2) the method of partial sums due to Banerjee and Geer [3];
(3) Eckhoff’s method with order zero (the Prony method).

All of the above methods provide accurate estimates of {ξj} up to first order. For
definiteness, we present the description of the last method and a rigorous proof of
its convergence in Appendix C.

Because of the Fourier uncertainty principle, the Fourier series of our bump will
have inifinite support and therefore every practically computable convolution will
always be an approximation to the exact one. Nevertheless, an error of order at
most k−d1−2 in the Fourier coefficients will be “absorbed” in the constant R∗ (4.10)
and therefore we will still have accurate estimates for the reconstruction of each
separate jump. This will require us to use bump functions which are C∞. An
explicit construction of such a function is provided in Appendix B.

We assume that the following quantities are known a priori:

• the lower and upper bounds for the jump magnitudes of order zero: J1 ≤
|A0,j | ≤ J2;

• the minimal distance between any two jumps |ξi − ξj | ≥ J3 > 0;
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• a constant T for which

(5.1)

∣∣∣∣∣∣2π (ık) ck (f) −
K∑
j=1

A0,jω
k
j

∣∣∣∣∣∣ ≤ T · k−1.

Our localization algorithm can be summarized as follows.

Algorithm 5.1. Let f be a piecewise smooth function of order d1 ≥ 2d+1 with K

jumps {ξj}Kj=1 and jump magnitudes {Al,j}j=1,...,K
l=0,...,d . Let there be given the Fourier

coefficients {ck (f)}2M+d+1
|k|=0 , where M is large enough (see below).

(1) Using the a priori bounds J1, J2, J3, T , obtain approximate locations of the

jumps
{
ξ̂j

}
via Algorithm C.3. In particular, the error

∣∣∣ξ̂j − ξj

∣∣∣ should not

exceed J3

3 , and this will be possible if M is not smaller than required by
Theorem C.9.

(2) For each ξ̂j:

(a) Construct the bump gj centered at ξ̂j with parameters t = 2 · J3

3 and
E = J3, according to Appendix B. Calculate its Fourier coefficients in
the range k = −3M . . . 3M according to (B.2).

(b) Now let hj = f · gj. For each k = 0, 1, . . . ,M + d + 1 calculate

(5.2) c̃k
(M)(hj) =

2M∑
i=−2M

ci(f)ck−i(gj).

(c) Use the above approximate Fourier coefficients c̃k
(M) (hj) as the input

to Algorithm 3.2 for reconstructing all the parameters of a single jump.

Theorem 5.2. Algorithm 5.1 will produce estimates of all these parameters with
the accuracy as stated in Theorems 4.13 and 4.21, R∗ being replaced with some

other constant R̂∗ = R̂∗ (R∗, T, J2, J3).

Proof. It is clear that the exact function hj = f · gj has exactly one jump at ξ and
jump magnitudes A0,j , . . . , Ad,j . In order to prove that Theorems 4.13 and 4.21

can be applied, it is sufficient to show that the error
∣∣∣c̃k(M) (hj) − ck (hj)

∣∣∣ is of the

order k−(d1+2). By the Fourier convolution theorem the exact Fourier coefficients
of hj are equal to:

ck(hj) =
∞∑

i=−∞
ci(f)ck−i(gj),

while our algorithm approximates these by the truncated convolution (5.2). Let us
estimate the convolution tail

Δc
(M)
k (hj) =

−2M∑
i=−∞

ci(f)ck−i(gj) +

∞∑
i=2M

ci(f)ck−i(gj).

On one hand, the Fourier coefficients of f can be bounded using (5.1):

|ck (f)| ≤ C34 (J2 + T ) k−1.

On the other hand, taking α = d1 + 1 we have by Theorem B.1,

|ck (gj)| ≤
C35

Jd1+1
3

· 1

kd1+2
.
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Finally,∣∣∣Δc
(M)
k (hj)

∣∣∣ ≤ C36 (J2 + T )

Jd1+1
3

∞∑
i=2M

1

id1+3
≤ C36 (J2 + T )

Jd1+1
3

ζ(d1 + 3, 2M)

≤ C37 · (J2 + T )

Jd1+1
3

M−d1−2

where ζ(s, q) is the Hurwitz zeta function. Therefore Algorithm 3.2 will produce

estimates of
{
ξ̃j

}
and

{
Ãl,j

}
with accuracy as guaranteed by Theorems 4.13 and

4.21 where

R̂∗ = R∗ +
(J2 + T )

Jd1+1
3

. �

6. Final accuracy

In this section we are going to calculate the overall accuracy of approximation.
Let us therefore suppose that d1 ≥ 2d + 1, and so using the Fourier coefficients
c−2M (f), . . . , c2M (f) we have reconstructed the singular part Φ(x) with accuracy
specified by Theorem 5.2. Recall from (2.3) that our final approximation is defined
by

f̃ =
∑

|k|≤M

(
ck(f) − ck(Φ̃)

)
eıkx +Φ̃

where Φ̃ =
∑K

j=1

∑d
l=0 Ãl,jVl(x; ξ̃j). Intuitively, the approximation error function

f̃ − f will look as depicted in Figure 6.1—very small almost everywhere except in

some shrinking neighborhoods of the jump points. Let y ∈ [−π, π] \ {ξj}Kj=1. If

we take M large enough so that the error estimate of Theorem 4.13 will be less
than the distance to the nearest jump |y − ξj |, then y will lie in the “flat” region of

Figure 6.1 and the error
∣∣∣f̃ (y) − f (y)

∣∣∣ will be small. This is precisely the content

of our final theorem.

Theorem 6.1. Let f : [−π, π] → R have K jump discontinuities {ξj}Kj=1, and let it

be d1-times continuously differentiable between the jumps. Let r > 0. Then for every

integer d satisfying 2d + 1 ≤ d1, there exist explicit functions F = F
(
A, R̂∗

)
, G =

G
(
A, R̂∗, r

)
depending on all of the a priori bounds such that for all M > G

Algorithm 2.2 reconstructs the locations and the magnitudes of the jumps with ac-
curacy provided by Theorem 5.2, and with the following pointwise accuracy in the
“jump-free region”:∣∣∣f̃(y) − f(y)

∣∣∣ ≤ F ·M−d−1 y ∈ [−π, π] \

⎛⎝ K⋃
j=1

Br (ξj)

⎞⎠ .

Proof. Define

fM
def
=
∑

|k|≤M

(ck(f) − ck(Φ)) eıkx +Φ.

We write the overall approximation error as∣∣∣f̃(y) − f(y)
∣∣∣ ≤ ∣∣∣f̃(y) − fM (y)

∣∣∣+ |fM (y) − f(y)| .(6.1)
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Figure 6.1. The approximation error

Let us examine the two terms on the right-hand side separately.
According to our previous notation, Ψ = f − Φ is a d-times continuously differ-

entiable everywhere function. Therefore, using (2.5) we have the estimate

(6.2)

|fM (y) − f(y)| =

∣∣∣∣∣∣
∑

|k|≤M

ck(Ψ) eıky −Ψ(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|k|>M

ck(Ψ) eıky

∣∣∣∣∣∣ ≤ C38 ·R ·M−d−1.

Let Θ
def
= Φ̃ − Φ denote the “singular error function” (see Figure 6.1). Then the

second term in (6.1) can be written as:

∣∣∣f̃(y) − fM (y)
∣∣∣ =

∣∣∣∣∣∣
∑

|k|≤M

(
ck(Φ) − ck(Φ̃)

)
eıky +

(
Φ̃(y) − Φ(y)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|k|≤M

ck(Θ) eıky −Θ (y)

∣∣∣∣∣∣ .
Write

ξ̃j = ξj + α (M) |α (M)| ≤ Fα

(
A∗, A∗∗, R̂∗

)
·M−d−2,

Ãl,j = Al,j + βl (M) |βl (M)| ≤ Fβ

(
A∗, A∗∗, R̂∗

)
·M l−d−1

where Fα and Fβ are provided by Theorem 5.2. For every ε < r, we define

Ul,ε (y)
def
= Vl (y; ξj + ε) − Vl (y; ξj) .
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Using the formula (2.1) we therefore have

Θ (y) =

K∑
j=1

d∑
l=0

{
Ãl,jVl

(
y; ξ̃j

)
−Al,jVl (y; ξj)

}

=
K∑
j=1

d∑
l=0

βl (M)Vl (y; ξj)︸ ︷︷ ︸
def
=Z(y)

+
K∑
j=1

d∑
l=0

Ãl,jUl,α(M) (y)︸ ︷︷ ︸
def
=W (y)

,

and so

(6.3)
∣∣∣f̃(y) − fM (y)

∣∣∣ ≤
∣∣∣∣∣∣
∑

|k|>M

ck (Z) eıky

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

|k|<M

ck (W ) eıky −W (y)

∣∣∣∣∣∣ .
The functions Vl belong to Cl, and therefore by the well-known estimate (see also
(1.1)), there exist constants Sl such that∣∣∣∣∣∣

∑
|k|>M

ck (Vl) eıky

∣∣∣∣∣∣ ≤ Sl ·M−l

and therefore

(6.4)

∣∣∣∣∣∣
∑

|k|>M

ck (Z) eıky

∣∣∣∣∣∣ ≤ C39 · Fβ ·M−d−1.

Let us now investigate W (y). Let L denote an upper bound for the magnitudes
of the jumps:

|Al,j | < L j = 1, . . . ,K; l = 0, 1, . . . , d1.

Clearly, the functions Ul,ε (y) satisfy the following properties.

(1) |Ul,ε (y)| ≤ C40ε for some absolute constant C40 (recall that y is in the
“jump-free region”). This bound can be obtained by just Taylor-expanding
the functions Vl (y; ξj + ε) at ε = 0. In particular, for ε = α (M) we have

(6.5) |W (y)| ≤
K∑
j=1

d∑
l=0

∣∣∣Ãl,j

∣∣∣ ∣∣Ul,α(M) (y)
∣∣ ≤ C41 · L · Fα ·M−d−2.

(2) In the “no man’s land” of length α (M) between ξj and ξ̃j , Ul,ε is bounded
by C42 · L. Furthermore, as we have just seen, in the flat regions Ul,α(M)

is bounded by C40FαM
−d−2. Therefore the Fourier coefficients of W are

certainly bounded by

|ck (W )| ≤ C43 · L · Fα ·M−d−2

and so

(6.6)

∣∣∣∣∣∣
∑

|k|<M

ck (W ) eıky

∣∣∣∣∣∣ ≤ C44 · L · Fα ·M−d−1.

Combining (6.1), (6.2), (6.3), (6.4), (6.5) and (6.6) completes the proof. �
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(B) The roots of qdM (z)

Figure 7.1. Reconstruction of a single jump

7. Numerical results

In this section we present results of various numerical simulations whose primary
goal is to validate the asymptotic accuracy predictions for large M . We have used
a straightforward implementation and made no attempt to optimize it further. In
particular, the Fourier coefficients are assumed to be known with arbitrary precision
(this is important for the localization, see below).

7.1. Recovery of a single jump. Given d, d1 and M , a piecewise function with
one discontinuity is generated according to the formula

f(x) =

d1∑
l=0

AlVl(x; ξ) +

M∑
k=−M

fk eıkx

where the numbers ξ ∈ [−π, π], {Al ∈ R}d1

l=0 and {fk ∈ C}Mk=−M are chosen at ran-

dom, such that fk ∼ k−d1−2 and f−k = f̄k. The Fourier coefficients are calculated
with the exact formula

ck(f) =
e−ıkξ

2π

d1∑
l=0

Al

(ık)
l+1

+ fk.

These coefficients are then passed to the reconstruction routine for a single jump,
of order d. This routine implements Algorithm 3.2 in a standard MATLAB envi-
ronment with double-precision calculations.

The following experiments were carried out.

(1) Keeping d and d1 fixed, we compared the accuracy of recovering the jump
location and all the jump magnitudes for different values of M . The results
can be seen in Figure 7.1. We also plot the distribution of roots of the
corresponding polynomials qdM (z); compare with Figure 4.1.

(2) Keeping d1 fixed, we compared the accuracy for different reconstruction
orders d = 1, . . . , d1. The results are presented in Figure 7.2.

(3) Keeping the reconstruction order d fixed, we compared the accuracy for
different smoothness values d1. The results are presented in Figure 7.3.
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Figure 7.2. Dependence of the accuracy on the order with fixed
smoothness, with increasing M .
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Figure 7.3. Dependence of the accuracy on the smoothness with
fixed order, with increasing M .

The optimality of d = d1

2 − 1, as well as the asymptotic order of convergence,
are clearly seen to fit the theoretical predictions. The instability and eventual
breakup of the measured accuracy for large values of M is due to the finite-precision
calculations.

7.2. Localization. We have restricted ourselves to the following simplified setting:
the function has two jumps at ξ1 = 0 and ξ2 = 3, and we localize the jump at the

origin by a bump having width 8
3 around the initial approximation ξ̂1 = 1

40 . The
explicit formulas for the Fourier coefficients of the bump are derived in Appendix B.
We have used Mathematica in order to carry out the computations with arbitrary
precision.

The results can be seen in Figure 7.4. Localization convergence can clearly be
seen here, although it starts from very large coefficients. This seems to suggest
that although the asymptotic accuracy order is correct, more research is required
in order for the proposed localization procedure (i.e. Fourier convolution) to be
suitable for practical applications. In particular, the various constants appearing
in the bounds of Section 5 need to be carefully analyzed.
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Figure 7.4. Localization: accuracy of recovering the jump. The
predicted accuracy M−d−2 is drawn for comparison.

8. Discussion

In this paper we have demonstrated that nonlinear Fourier reconstruction of
piecewise smooth functions can achieve accuracy with asymptotic order of at least
half the order of smoothness. As indicated by our theoretical results as well as
the numerical simulations, a reconstruction method whose order is more than half
the order of smoothness becomes less accurate. So it appears that the algebraic
approach has certain limitations, and the interesting question is whether these
limitations are inherent or superficial. We hope that our results may provide a clue
towards obtaining sharp upper bounds.

From the practical point of view, the one-jump case seems to be promising as
we have good convergence for moderate values of M . While the multiple-jump
case needs further investigation in order to attain similar results, in the end it may
prove beneficial, since in this case we would not need to know a priori the number
of jumps but still have high resolution in the well-separated regions, by successively
applying the localization each time.

In addition, it seems that Eckhoff’s conjecture is false as stated in [15], namely
that the jumps of a piecewise smooth Cd function can be reconstructed with ac-
curacy k−d−2. Using a method of highest possible order doesn’t take into account
the stiffness of the problem. In fact, it can be shown that the Lipschitz constant of

the solution map {ck(f)}M+d+1
k=M → {ξj , Al,j} of order d is proportional to Md. We

plan to present these results elsewhere.
Hopefully, our analysis can be related to the algebraic reconstruction schemes of

Kvernadze and Banerjee and Geer as well.
We would like to point out the connection of the algebraic system (2.2) as well as

the well-known Prony system of equations (C.1) (which plays a central role in many
branches of mathematics, see [37] and [32]) to other recent nonlinear reconstruction
methods in Signal Processing, in particular: finite rate of innovation techniques
[42, 12], reconstruction of shapes from moments [26, 23] and piecewise D-finite
moment inversion [6, 7]. We therefore hope that our results can be extended to
these subjects as well.
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Appendix A. Miscellaneous auxiliary related results

In this appendix we provide proofs of several combinatorial auxiliary results.
Let E denote the discrete “shift” operator in k, i.e., for every function g(k) :

R → R we have

E g(k)
def
= g(k + 1).

Furthermore, let Δ denote the discrete difference operator, i.e., Δ = E− I where I
is the identity operator. Then by the binomial theorem we have

(A.1) Δdg(k) = (E− I)
d
g(k) = (−1)d

d∑
j=0

(−1)j
(
d

j

)
g(k + j).

Lemma A.1. Let p(k) = a0k
n + a1k

n−1 + · · · + an be a polynomial of degree n.
Then

Δnp(k) = a0n!,

Δn+1p(k) = 0.

Proof. See e.g. [17]. �
Now assume that g (k) : R+ → R is a given function. Let us perform a change

of variable y = 1
k , and define G(y)

def
= g

(
1
y

)
= g(k). With this notation, we have

Δg (k) = g(k + 1) − g(k) = g

(
1

y
+ 1

)
− g

(
1

y

)
= G

(
y

1 + y

)
−G (y) .

We subsequently define the “dual” operator D as:

D {G(y)} def
= G

(
y

1 + y

)
−G (y) .

The operator D has an interesting property of “killing” the lowest-order Taylor
coefficient at 0.

Proposition A.2. Let H(y) be analytic at y = 0, such that H(y) = hmym +
hm+1y

m+1 + . . . . Then for n ∈ N, the function Dn {H (y)} is analytic at 0 with
Taylor expansion

Dn {H (y)} = h∗
m+ny

m+n + h∗
m+n+1y

m+n+1 + . . . .

Proof. The proof is by induction on n. The basis n = 0 is given. Assuming that
U(y)=Dn−1{H(y)} is analytic at 0 and U(y)=u∗

m+n−1y
m+n−1+u∗

m+n−1y
m+n−1+

. . . , consider the function D {U (y)} = Dn {H(y)}. Let z = y
1+y , and so for |y| < 1

we have
z (y) = y

(
1 − y + y2 + . . .

)
= y − y2 + . . . .

Making the analytic change of coordinates y → z (y) we conclude that the Taylor
expansion of U (z (y)) at the origin is

U (z (y)) = u∗
m+n−1z

m+n−1 + · · · = u∗
m+n−1y

m+n−1 + . . . .

That is, the leading coefficient is the same as in the Taylor expansion of U (y).
Therefore

D {U (y)} = U (z) − U (y)

= u∗∗
m+ny

m+n + u∗∗
m+n+1y

m+n+1 + . . . .

This expansion holds in some neighborhood of the origin. �
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Lemma A.3. Let l, d ∈ N. Then there exist positive constants C45,K11 such that
for all k > K11, ∣∣∣∣∣∣

d∑
j=0

(−1)j
(
d

j

)
1

(k + j)l

∣∣∣∣∣∣ < C45

kd+l
.

Proof. Let g(k) = 1
kl . It is easy to check (see (A.1)) that

Al,d(k)
def
=

d∑
j=0

(−1)j
(
d

j

)
1

(k + j)l
= Δdg(k).

The proof of the claim is in two steps. First, we shall develop the expression
Al,d(k) into power series in 1

k converging for sufficiently large k. Then, based on
this representation we shall establish the required bound.

Let y = 1
k . According to our notation, let G (y) = g

(
1
y

)
= g (k) and so Al,d(k) =

Dd {G (y)} def
= F (y). Furthermore, for all j = 0, 1, . . . we have

k + j =
1

y
+ j =

1 + jy

y

and so

F (y) =

d∑
j=0

(−1)
j

(
d

j

)
G

(
y

1 + jy

)
.

Substituting G (y) = yl, we conclude that F (y) is a real analytic function of y in
the disk |y| < 1

d , and so it can be written as a converging power series

F (y) =
∞∑
i=0

fiy
i.

Applying Proposition A.2 to G (y) we conclude that f0 = · · · = fl+d−1 = 0. There-
fore the expansion

(A.2) Al,d (k) =
∞∑

i=l+d

fi
ki

holds for k > d.
Let us now estimate the magnitude of the coefficients fi. Since (A.2) is valid for

k = d + 1, then there exists a constant C46 such that
∣∣∣fi (d + 1)

−i
∣∣∣ < C46 for all

i ∈ N and therefore

|fi| < C46 (d + 1)
i
.

But then for arbitrary k ≥ d + 2 we have

|Al,d (k)| =

∣∣∣∣∣
∞∑
i=0

fl+d+i

kl+d+i

∣∣∣∣∣ < C46 (d + 1)l+d

kl+d

∞∑
i=0

(d + 1)i

ki

≤ C46 (d + 1)
l+d

kl+d
· 1

1 − d+1
d+2

≤ C45

kl+d
. �
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Lemma A.4. Let ω ∈ C, a0, . . . , an ∈ C and n, k ∈ N. Denote bk
def
= ωk ·

(a0 + a1k + · · · + ank
n). Then

n+1∑
j=0

(−1)
j

(
n + 1

j

)
bk+jω

n+1−j ≡ 0.

Proof. Denote

p(k)
def
= a0 + a1k + . . . ank

n.

Then we rewrite the given expression as

n+1∑
j=0

(−1)j
(
n + 1

j

)
bk+jω

n+1−j =
n+1∑
j=0

(−1)j
(
n + 1

j

)
p(k + j)ωn+k+1

= (−1)d+1ωn+k+1Δn+1p(k).

(Lemma A.1) = 0.

The claim is therefore proved. �

Theorem A.5 (Rouche’s theorem). Let the polynomial q(z) ∈ C[z] be a sum q(z) =
p(z) + e(z). Let z0 be a simple zero of p(z). If there exists ρ ∈ R+ such that

|p(z)| > |e(z)| ∀z ∈ ∂Bρ(z0),

then q(z) has a simple zero inside Bρ(z0).

Lemma A.6. Let there be given a sequence of polynomials Pk(z) : C → C and a
point z0 ∈ C such that

(1) Pk(z0) = 0 for all k ∈ N;
(2)

∣∣P ′
k(z0)

∣∣ ≥ C47 for all k ∈ N and some constant C47 independent of k;
(3) for every fixed k the following inequality holds for all z ∈ Bk−1(z0),∣∣P ′′

k (z)
∣∣ ≤ C48k

where C48 is a constant independent of k.

Let ρ(k) : N → R satisfy

0 < ρ(k) < min

(
1

k
,
C47

C48k

)
.

Then there exists a constant C49 independent of ρ(k) such that for all k, the
following holds for every z ∈ ∂Bρ(k)(z0):∣∣Pk(z)

∣∣ ≥ C49ρ(k).

Proof. Let us write the truncated Taylor expansion of Pk around z0 with remainder
in Lagrange form:

Pk

(
z0 + ρ(k)eıθ

)
= Pk(z0) + P ′

k(z0)ρ(k) eıθ︸ ︷︷ ︸
=E1

+
P ′′
k (ξ)

2
ρ2(k) e2ıθ︸ ︷︷ ︸
=E2

for some ξ ∈ Bρ(z0). Now since ρ(k) ≤ 1
k we have

|E1| ≥ C47ρ(k),

|E2| ≤
C48kρ

2(k)

2
.
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On the other hand,

ρ(k) ≤ C47

C48k
,

C48kρ
2(k)

2
≤ C47ρ(k)

2
.

Therefore |E1|
2 ≥ |E2| and so by taking C49

def
= C47

2 we have
∣∣Pk(z)

∣∣ ≥ C49ρ(k).
�

Proposition A.7. Let n ∈ N be given. Then for |x| < 3
n+2 the following estimate

holds:

(1 + x)
−n

= 1 − nx +
n (n + 1)

2
x2R5 (x) where |R5 (x)| < 1

1 − x(n+2)
3

.

In general, for approximation of order d, we have for |x| < d+2
n+d+1 ,

(1 + x)
−n

= 1 − nx +
n (n + 1)

2
x2 + · · · + (−1)

d n× · · · × (n + d− 1)

d!
xd

+ (−1)d+1 n× · · · × (n + d)

(d + 1)!
xd+1R6 (x)

where

|R6 (x)| < 1

1 − (n+d+1)
d+2 x

.

Proof. Standard majorization of the Taylor series tail by a geometric series. �

Appendix B. Explicit construction of a bump

In this appendix we present an explicit construction of the bump function which
we used in our numerical simulations. We also derive an explicit bound for the size
of its Fourier coefficients to be used in the proof of localization accuracy.

Let there be given two parameters t and E with 2E > t, together with the point
ξ ∈ R. Our goal is to build a function g = gE,t(x; ξ) which satisfies the following
conditions:

(G1) g ≡ 0 for x /∈ [ξ − E, ξ + E];
(G2) g ≡ 1 for x ∈

[
ξ − t

2 , ξ + t
2

]
;

(G3) g ∈ C∞ (R);
(G4) the Fourier coefficients of g decay as rapidly as possible.

The idea is to take a standard C∞ mollifier, scale it and convolve with a box
function.

We define two new parameters: the scaling factor s and the width of the box
r. Note that our construction implies r ≥ 2s, because otherwise the result of the
convolution will not have a flat segment in the middle.

Let us therefore take the standard C∞ mollifier

Ψ(x) =

{
e−1/(1−x2) for |x| < 1,

0 otherwise,

and scale it between −s and s for some s > 0:

ms(x) =
1

sΔ
Ψ
(x
s

)
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where

Δ =
1

s

ˆ s

−s

Ψ
(x
s

)
dx =

ˆ 1

−1

Ψ(y) d y ∼ 0.443994.

Now we take a box function centered at ξ, having width r:

br(x; ξ) =

{
1 for − r

2 ≤ x− ξ ≤ r
2 ,

0 otherwise.

Finally, we convolve the two and get a smooth bump:

g = gr,s(x; ξ) = br(x; ξ) ∗ms(x) =
1

sΔ

ˆ ξ+ r
2

ξ− r
2

Ψ

(
x− t

s

)
d t.

The new parameters s, r should be compatible with the original E, t. In par-
ticular, we want to have a strip of width t in the center, and the extent of the
whole bump should not exceed E. Therefore we have the following compatibility
conditions:

s +
t

2
<

r

2
,

2s +
r

2
< E.

(B.1)

The function g so constructed, clearly satisfies conditions (G1)–(G3) above. Let
us now maximize the decay of its Fourier coefficients. By definition:

ck(g) =
1

2πsΔ

ˆ π

−π

e−ıkx

{ˆ ξ+ r
2

ξ− r
2

Ψ

(
x− t

s

)
d t

}
dx.

Notice first that Ψ(z) is zero outside the region −1 ≤ z ≤ 1, therefore we can
make the change of variables z → t− x, t → t and rewrite the integral as

ck(g) =
1

2πsΔ

ˆ s

−s

eıkz Ψ
(z
s

){ˆ ξ+ r
2

ξ− r
2

e−ıkt d t

}
d z.

So now the two integrals are completely separated. Explicit calculation gives

ˆ ξ+ r
2

ξ− r
2

e−ıkt d t = −
ı e−

1
2 ık(r+2ξ)

(
−1 + eıkr

)
k

.

Now we scale back: z = sy and obtain the explicit formula

ck(g) = −
ı e−

1
2 ık(r+2ξ)

(
−1 + eıkr

)
k

· 1

2πΔ

ˆ 1

−1

eıksy Ψ(y) d y

= −
ı e−

1
2 ık(r+2ξ)

(
−1 + eıkr

)
2πΔk

c−ks(Ψ).

(B.2)

Finally, we would like to determine the optimal values for s and r so that |ck (g)|
decrease as rapidly as possible with k → ∞.

First note that since Ψ ∈ C∞, then for every α > 1 there exists a constant
C50 (α) such that

|ck (Ψ)| ≤ C50 · |k|−α .
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Figure B.1. The construction of the bump

The formula (B.2) suggests that we should take s to be as large as possible.
Applying the conditions (B.1) we get that the following values maximize s:

s∗ =
1

3

(
E − t

2

)
,

r∗ =
2

3
(E + t) .

We have thus proved the following result:

Theorem B.1. Given E, t with 2E > t and a point ξ, let gE,t (x; ξ) be the bump
constructed above. Then it satisfies the conditions (G1)–(G4) such that for every
α > 1 there exists a constant C51 = C51 (α) such that for all k ∈ N,

|ck (gE,t)| ≤ C51 · (2E − t)
−α

k−1−α.

Appendix C. Initial estimates via Prony’s method

In this appendix we present a rigorous proof that the Eckhoff’s method of order
zero produces sufficiently accurate estimates of the jump locations {ξj}, to be used
in Algorithm 5.1. Denote ωj = e−ıξj . For d = 0, the system (2.2) becomes

(C.1)

K∑
j=1

A0,jω
k
j︸ ︷︷ ︸

=mk

≈ 2π (ık) ck(f).

(C.1) is a well-known system of equations which is sometimes called the Prony
system ([37]) or Sylvester-Ramanujan system ([32]). The original method of solu-
tion (due to Baron de Prony, [36]) is to exploit the following fact.

Lemma C.1. The sequence {mk} satisfies the recurrence relation with constant
coefficients

K∑
i=0

mk+iqi = 0

where {qi} are the coefficients of the polynomial

Q(z)
def
=

K∏
j=1

(z − ωj) =
K∑
i=0

qiz
i.
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Proof. We have Q(ωj) = 0 for all j = 1, . . . ,K. Therefore

K∑
i=0

qimk+i =
K∑
i=0

qi

K∑
j=1

A0,jω
k+i
j =

K∑
j=1

A0,jω
k
j

K∑
i=0

qiω
i
j =

K∑
j=1

A0,jω
k
jQ (ωj) = 0.

�

Corollary C.2. Let qK = 1 for normalization. Then for all k ∈ N the coefficient

vector {qi}K−1
i=0 is the solution of the linear system

(C.2)

⎡⎢⎢⎢⎣
mk mk+1 · · · mk+K−1

mk+1 mk+2 · · · mk+K

...
...

...
...

mk+K−1 mk+K · · · mk+2K−2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

def
=Hk

×

⎡⎢⎢⎢⎣
q0
q1
...

qK−1

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
mk+K

mk+K+1

...
mk+2K−1

⎤⎥⎥⎥⎦ .

After this preparation, we can now describe the algorithm for obtaining initial
estimates using Prony’s method. Recall that our a priori bounds are given by
J1, J2, J3 and T ; see Section 5.

Algorithm C.3. Let us be given the first M + 2K − 1 Fourier coefficients ck(f)

of a function f with K unknown discontinuities {ξj}Kj=1, which is continuously

differentiable between these discontinuities. Denote the magnitudes of the jumps by

{Aj}Kj=1.

(1) Calculate the sequence

rk = 2π (ık) ck(f).

(2) Solve the system

(C.3)

⎡⎢⎢⎢⎣
rM rM+1 · · · rM+K−1

rM+1 rM+2 · · · rM+K

...
...

...
...

rM+K−1 rM+K · · · rM+2K−2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

def
=H̃M

×

⎡⎢⎢⎢⎣
q̃0
q̃1
...

q̃K−1

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
rM+K

rM+K+1

...
rM+2K−1

⎤⎥⎥⎥⎦ .

(3) Take the estimated {ω̃j} to be the roots of the polynomial

Q̃(z) = zK +
K−1∑
i=0

q̃iz
i

and then set

ξ̃j = − arg ω̃j .

Now we would like to analyze the accuracy of Algorithm C.3. First, we need
to estimate the error in solving the system (C.3). We use standard result from
numerical linear algebra.

Lemma C.4. Consider the linear system Ax = b and let x0 be the exact solution.
Let this system be perturbed:

(A + ΔA) x = b + Δb
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and let x0 + Δx denote the exact solution of this perturbed system. Denote

δx =
‖Δx‖
‖x0‖

δA =
‖ΔA‖
‖A‖ δb =

‖Δb‖
‖b‖ κ = ‖A‖‖A−1‖ (condition number)

for some vector norm ‖ · ‖ and the induced matrix norm. Then

(C.4) δx ≤ κ

1 − κ · δA (δA + δb) .

Proof. See e.g. [45]. �

Consider (C.3). The error in the right-hand side is given by (5.1). Therefore we
now need to estimate the condition number of the matrix Hk. Although all the
entries are bounded, it may still happen3 that κ (Hk) is unbounded. Fortunately,
this is not the case. To see this, we are going to factorize Hk into a component
which depends on k, and a component which doesn’t.

Lemma C.5. Let V = V (ξ1, . . . , ξK) denote the Vandermonde matrix on the nodes
{ωj}, i.e.,

V =

⎡⎢⎢⎢⎣
1 1 . . . 1
ω1 ω2 . . . ωK

...
...

. . .
...

ωK−1
1 ωK−1

2 . . . ωK−1
K

⎤⎥⎥⎥⎦ .
Then for all k ∈ N,

Hk = V × diag
{
A0,jω

k
j

}
× V T .

Proof. Direct computation from the definitions (C.1) and (C.2). �

Corollary C.6. For all k ∈ N,

κ (Hk) ≤
J2
J1

κ2 (V ) .

Remark C.7. κ (V ) is well studied in e.g. [20]. It essentially depends on the minimal
distance between the nodes. In particular,

‖V −1‖ ∼ max
1≤i≤K

n∏
j=1,j �=i

1

|ωj − ωi|
.

Lemma C.8. There exist constants C52,K12 such that for all i = 0, 1, . . . , d and
for all k > K12

TJ2

J2
1
κ2 (V ),

|qi − q̃i| ≤ C52
TJ2
J2
1

κ2 (V ) k−1.

Proof. In the context of Lemma C.4, our original system is Hkq = m (C.2) and

the perturbed system is H̃kq̃ = m̃ (C.3). Note that |mk| ≥ J1 · C53 for some C53.

3Consider, for instance, Hk =

[
1 1 + 1

k
1 1− 1

k

]
.
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From previous considerations we therefore have

δHk =
‖H̃k −Hk‖

‖Hk‖
≤ C54

T

J1
· 1

k
,

δm ≤ C55 ·
T

J1
· 1

k
,

κ (Hk) ≤
J2
J1

κ2 (V ) .

We would like to estimate δq according to (C.4). If

k > 2C54︸︷︷︸
def
=K12

T

J1
· J2
J1

κ2 (V ) ,

then κ2 (Hk) δHk ≤ 1
2 and so

δq ≤ 2 (C54 + C55)︸ ︷︷ ︸
def
=C52

J2
J1

κ2 (V )
T

J1
· 1

k
. �

We can finally estimate the accuracy of Algorithm C.3. To shorten notation, let

F = F (A,G, T )
def
=

TJ2
J2
1

κ2 (V ) .

Theorem C.9. For every 0 < α < 1 there exist constants C56 (α) ,K13 (α, F ) such
that for every k > K13 Algorithm C.3 reconstructs the locations of the jumps with
accuracy ∣∣∣ξj − ξ̃j

∣∣∣ ≤ C56 · F · kα−1.

Proof. We have shown that the perturbation Q − Q̃ has coefficients of magnitude
k−1. We will use the same reasoning as in Section 4 in order to estimate the quantity
|ωj − ω̃j |, which is the perturbation of the roots of Q (z). Let |z| < 2. Since the
coefficients of Q (z) do not depend on k, we can obviously find constants C57 and
C58 such that

(1) |Q′ (ωj)| ≥ C57,
(2) |Q′′ (z)| < C58.

By reasoning similar to Lemma A.6 we conclude that there exist constants C59 <
1, C60 such that for every function 0 < ρ (k) < C59 we have

(C.5) |Q (z)| > C60ρ (k) ∀z ∈ ∂Bρ(k) (ωj) .

Now let

ρ (k) = F · kα−1.

If k >
(

F
C59

) 1
1−α

, then ρ (k) < C59 and so (C.5) holds. On the other hand, by

Lemma C.8 we have that ∣∣∣(Q− Q̃
)

(z)
∣∣∣ ≤ C61 · F · k−1.
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Now finally we require that k >
(

C61

C60

) 1
α

, in which case∣∣∣(Q− Q̃
)

(z)
∣∣∣ ≤ C61 · F · k−1 < C60Fkα−1 < |Q (z)|

and therefore Q̃(z) has a simple zero inside Bρ(k) (ωj).

Thus we have shown that |ω̃j − ωj | ≤ F · kα−1. Write ω̃j = ωj + β (k) kα−1

where |β (k)| < F . Then by Taylor expansion of the logarithm we will have (recall
|ωj | = 1) for large enough k > K13 (α),∣∣∣ξ̃j − ξj

∣∣∣ = |argωj − arg ω̃j | =

∣∣∣∣arg

(
ωj

ω̃j

)∣∣∣∣ ≤ C56 (α) · F · kα−1. �

References

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards Applied Math. Ser., 55,
U.S. Govt. Printing Office, Washington, D. C., 1964. MR0167642 (29:4914)

[2] F. Arandiga, A. Cohen, R. Donat, and N. Dyn. Interpolation and approximation of piece-
wise smooth functions. SIAM Journal on Numerical Analysis, 43:41, 2005. MR2177955

(2006h:41002)
[3] N.S. Banerjee and J.F. Geer. Exponentially accurate approximations to periodic Lipschitz

functions based on Fourier series partial sums. Journal of Scientific Computing, 13(4):419–
460, 1998. MR1676752 (2000b:65020)

[4] A. Barkhudaryan, R. Barkhudaryan, and A. Poghosyan. Asymptotic behavior of Eckhoff’s
method for Fourier series convergence acceleration. Analysis in Theory and Applications,
23(3):228–242, 2007. MR2350105 (2010e:42002)

[5] P. Barone and R. March. Reconstruction of a piecewise constant function from noisy Fourier
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