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EXPLICIT COMPUTATIONS ON THE DESINGULARIZED
KUMMER SURFACE

V. G. LOPEZ NEUMANN AND CONSTANTIN MANOIL

ABSTRACT. We find formulas for the birational maps from a Kummer surface
KC and its dual £* to their common minimal desingularization S. We show
how the nodes of K and K* blow up. Then we give a description of the group
of linear automorphisms of S.

1. INTRODUCTION

In the 19th century a singular surface I, called the Kummer surface, was at-
tached to a quadratic line complex. A minimal desingularization ¥ of K and a
birational map x1 : K --+» 3 were constructed by geometric methods. One may call
this the classical construction of the Kummer surface, which we recall in Section 4.

Another construction is the following: Let A be an abelian surface, and let o
be the involution of A given by o(z) = —z. The quotient K = A/c has 16 double
points, and one defines a K3 surface S to be K with these 16 nodes blown up ([IJ,
Prop. 8.11). To be consistent with the historical point of view and with our main
reference [3], we call S the desingularized Kummer surface. If A = J(C), where
J(C) is the Jacobian of a curve C of genus 2, then K is called the Kummer surface
belonging to C. The connection between the two constructions of the Kummer
surface is explicitly established in [3], Chapter 17 (see Lemma [5]).

A desingularization S of K is constructed explicitly in [3], Chapter 16, by alge-
braic methods. Denote by K* the projective dual of K. There are birational maps
k:K --»8S and k* : K* --» S and morphisms extending k! : S --» K and
k18 --5» K* to all of S. We denote these extensions also by £~ and x* .
They are minimal desingularizations of /C and IC*.

Origins. Cassels and Flynn explain that the surface S comes from the behavior
of six of the tropes (see Definition [Z3]) under the duplication map. The existence of
S raises more far-reaching questions. Indeed, if the ground field £ is algebraically
closed, one has a commutative diagram:

Jge —L— g
(1.1) - o
I s C*
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where J(C)? is the dual of J(C) as an abelian variety. Here, the maps dy and d,
depend on the choice of a rational point on C. Thus the abelian varieties duality
matches with the projective one. When £ is not algebraically closed, one has to
enlarge the ground field to obtain such diagrams, yet S is a desingularization over
k of both K and K£*. One may ask if there is a unifying object for 7 (C) and J(C)°,
generalizing the abelian varieties duality.

Recent developments. The Jacobian J(C) can be embedded in P and is de-
scribed by 72 quadratic equations ([4]). More computable objects, S and its twists,
appeared in recent attempts by M. Stoll and N. Bruin, to compute the Mordell-Weil
group of J(C). We give a brief account of it in Section 5 of [g].

Cassels and Flynn already suggested that the 2-Selmer group could be investi-
gated by using twists of S. In 2007 A. Logan and R. van Luijk ([7]) and P. Corn ([2])
made use of twists of S to find specific curves with nontrivial 2-torsion elements in
the Tate-Shafarevich groups of their Jacobians.

Our results and structure of this paper. In Section 2 we give a background. The
rare relevant facts, not included in this paper, are contained in [3] and [g].

This paper is structured along two computational ideas. First, to profit from
the algebraic construction of S in [3] in order to describe its linear automorphism.
Second, to link § and ¥ and thus bring line complexes into the picture. Our results
achieve part of the program suggested in [3], at the end of Chapter 16.

In Section 3 we complete the construction in [3], enlarge the set of points where
Kk : K --+ S is explicitly defined and find formulas for k. These formulas allow one
to describe how each singularity of K and K* blows up (see Lemma [3.0]).

In Section 4 we define an explicit isomorphism © between ¥ and S. We observe
that well-known projective isomorphisms W, : K — KC* lift to X to correspondences
given by line complexes of degree 1. Using © we show that the W; lift to S to
commuting involutions (") (Corollary EE12)). With the formulas for s at hand, one
can now find formulas for x*.

In Section 5 we give a description of the group of linear automorphisms of S.

2. PRELIMINARIES

We work over a field k& with char(k) # 2 and with more than 5 elements. By a
curve, we mean a smooth projective irreducible variety of dimension 1. Throughout
this paper, C will be a curve of genus 2. Such a curve admits an affine model:

(21) ¢ YP=FX)=fo+ iX+ -+ f6X° €k[X],  fe#0

and F has distinct roots 61,...,0s. The points a; = (6;,0) are the Weierstrass
points. We denote by co® the points at infinity on the completion C of C’. For a
given point v = (x,y) on C, the conjugate of v under the +Y involution is the point
t = (x,—y). For a divisor X = > n;v; we denote by X = Y n;t;. The class of a
divisor X is denoted by [X] and a divisor in the canonical class by K.

One can regard a point of the Jacobian J(C) as the class of a divisor X =t +u,
where v = (z,y), u = (u,v) is a pair of points on C. Starting from this, Flynn
constructs a projective embedding of the Jacobian as follows ([4]). For a point X =
{t,u} on C? (symmetric product) with v = (x,y), u = (u,v), define:

Fi -2
00:1, oL =z+u, 02 = XU, BO:M,

(z —u)
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where
Fo(z,u) =2fo + fi(z +u) + 2fozu + fzzu(z + u)
+ 2f4(zu)? + f5(zu)?(z + u) + 2fs(xu).
The Jacobian is then the projective locus of z = (zg : ... : 2z15) in P15, where zg =
05 21 = 715 22 = Y03 Zi = Bs—iy = 3,4,5; z; = g, i = 6,...,9; 2 = 14—y,

i = 10,...,14; and z15 = p. For the definition of the functions «, 3, etc. and
details, see [3], Chapter 2.

Definition 2.1. The Kummer surface ' belonging to a curve of genus 2, is the
projective locus in P? of the elements & = (£1 : &3 : &3 :&4) = (00 : 01 : 02 : By).

The equation of the Kummer surface is
(2.2) K: K=K+ K& +Ky=0,
where the K; are forms of degree 4 —i in &1, &3, &5 ([3], formula (3.1.9)). The natural
map from J(C) to K given by
(zo:...:215) — (1a 213 :212:25) = (§1: ... 1 &4)

is 2 to 1; the ramification points correspond to divisor classes [X] with [X] = [X].
The images of these classes are the 16 nodes on K: Ny = (0:0:0: 1) corresponds
to [K¢] and 15 nodes N;; correspond to classes [X;;] = [a; + a;] with i # j.
Definition 2.2. The dual Kummer surface K* C (P3)Y = P? is the projective dual
of K, i.e., to the point £ € K corresponds the point n € K* such that n = (n; : 92 :
n3 : ng) € (P3)Y gives the tangent plane to K at €.

Definition 2.3. There are 6 planes T; containing the 6 nodes Ny and N;j;, j # @
and 10 planes T;;;, containing the 6 nodes N,y for {m,n} C {i,j,k} or {m,n} N
{1,j,k} = (0. These are the tropes; they cut conics on K. They correspond to the
16 singular points of K*. The equations of the T; are:

(2.3) Ti: 026 —0;60+ &5 =0,

Lemma 2.4. For each Weierstrass point a; = (0;,0) there is a projective map
W; : K — K* induced by the addition of a; to a divisor of degree 2. One has
Wi(No) = T; (singular point of K*). Furthermore, W, * o W;(Ny) = Njj.

K3

Proof. See [3], Lemma 4.5.1. O

3. THE DESINGULARIZED KUMMER SURFACE

We recall the facts from [3], Chapter 16 we need, keeping the notation there.

Let p = (po : ... : p5), where the p; are indeterminates, and put P(X) =
Zg p; X7. Let S be the projective locus of the p for which P(X)? is congruent to
a quadratic in X modulo F(X). Put

5
(3.1) Pi(x)=[[(x—6:) => hjx*

i#j k=0
and w; = P;(6;) # 0. Since §; # 6; for i # j, we have w; # 0 and the P; span the
vector space of polynomials of degree at most 5. We have
P(6;)

W

(3.2) P(X) = Z'/ijj(X), where T =
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The K3 surface S is the complete intersection in P° of the quadrics Sy, Si, So
where

(3.3) Si:Si=0 and  S;=) Olwm for i=0,1,2.
J

It is a minimal desingularization of IC and of I*. Here the S; are quadratic forms
in p with coefficients in Z[f1,. .., fo].
The following theorems hold ([3], Theorems 16.5.1 and 16.5.3):

Theorem 3.1. There is a birational map k : KK --+ S defined for general € € K as
follows: Let X = {(z,y), (u,v)} correspond to §. Put G(X) = (X —z)(X —u) and
let M(X) be the cubic determined by the property that Y — M(X) vanishes twice
on X. Let P(X) = 2(5) p; X7 be determined by GP = MmodF. Then k() is the
point with projective coordinates (po : ... : ps).

Let k* : K* --» S be the birational map defined in [3], Theorem 16.5.2.

Theorem 3.2. Let £ € K and n € K* be dual, that is, n gives the tangent to K
at &. Then k(&) = k*(n).

Our first result is the following.

Lemma 3.3. The map k : K --» S from Theorem Bl is given by the formulas
listed below.

Proof. The problem is to make effective the method given in [3], Chapter 16. For
completeness and due to typing errors there, we recall it in [§], in the Appendix.
As presented in [3], the method works for a general element [X] = [(z,y) + (u,v)],
where yv # 0 and x # u.

First, we put y> = F(x), v> = F(u), yv = [Fo(z,u) — Bo(z — u)?]/2 in the
coefficients of P(X), then as the resulting coefficients are symmetric functions of x
and u, we express them in terms of {2 = v +wu and &3 = zu. Finally, we homogenize
the formulas with respect to &1 =1, &s, €3, £4. One first obtains

where
(3.4) P (§) = aj Ko + B (K& + Ky), for0<j<5.

Here a; and 3; are homogeneous forms in & of degree 4 and 2, respectively, and the
K are those in [22). Taking p;(¢) = (p;(€) — B;K)/Ks = a; — B;€3, we obtain
formulas of degree 4 for k, which will be defined also for Ky = 0, extending k to
images of divisor classes [¥X] = [(z,y) + (u,v)] with 2 = v and y = v # 0. However,
the formulas do not work for points with F’(z) = 0 and for the image of [2007].
We will treat the case y = 0 or v = 0 in connection with nodes and tropes.
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Polynomial definition of x.

Po =

p1=

p2 =

p3 =

Pa =

pPs =

— f3fo€1€5 + 1/23665 — 263 fafoba + 26361 f1fo — 31 fs o

— 2636160 f6 f2 — 1/26561 fs€a — 1/26361 60 f5 f5 — €565 fo fs — 26362 f66a
— 1/26s f3&a€] — 3/28367 82 fs 1 — Esbafabals — 3636165 fo S

— 1/26585 fsla + f1f26] + E & fifs +3/28 fr&a + & fa 16 + E fs f1&a
+ & fife — 1/2616€]

281 5 — 2656185 fo fa + 1/286363 f5.fr — 1/261 faf1 + 285 fo fo + 3E € fo
+1/283f567 +1/285 fs&a + 358 fuafs — 1/28365 f2 + 3/2636185 f f3

+ 285 fafo&s — E3E76a S5 fo + €365 foba + 28385 fo fs + E165 + 26060 fo fs

— &3&i & o f1 + 267 f2fa85 + 3/287 6o fsa + &1 [26a&5 + E165 fo 1 + 2663 f5 f2
+ 28363 fof2 — 1/26363 f5 f3 + €36 f6a

26765 fafs — fofs6163 + 361 fafo — €361 fafs + E361 f3 60

+ & f1fell + &80 fafa — 265 f26] + 2638762 fT — 26 f56ad]

— &Lf1fa+ 280 fafa — 26360 fo 267 — 5Ea&5 fo f3&1 + 2836165 f5 fa

— 3¢ f6€alals — 3Es&afs f3€ + 265 fafs + &5 fola + 2f36aE] + 262 f367
+ 265 fs f3&1 — Eafs 16 — €5 fo 167 + &3 fsbabr + Eafaball + 26365 fo fa
+ 363 fofs — 4636 fafobo

— 236185 — G 13+ 286580 fafo — 36 fefsé + 2865 £565

+ &363 f5 f3 — 26387 fafe — E36T8afo fs — 26367 foba + 2636165 f3

— 48381 faf6&3 + 263 f6 [5E5 — E1f1S5 + 261 fafo + 260 fala + 26362 fa f3
— E&afef1 + E76a 58 + 267 165 + €165 foba + 26163 f5 fa + 265 fo fa

E3€3 fofs — 26560 f2&t + E3fafols — 26380 f2E7 + 263 fafobals
— 28385 fo f561 + 263 f2E5 — foF1€1 + 25 fo€1 + 2£56485 + 26a 5 f363
+ 265 f5 467 + Eaf6balt + 263 261 + 265 fo fs

268383 — E3f58267 — 263 f6&561 + f2f] + 364+ & f3& + LEE
+ &3 f5&1 + f6€3) fs- U

Let the point (pg : ... : ps) be represented by P(X) = Z?:o p; X and let

(3.5)

P;(X)
Pi(6;)’

gi(X)=1-2
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where P;(X) is defined by ([B1). We see that g;(0;) = (—1)%, so g:(X)? = 1
mod F(X). There are 6 commuting involutions () of S, defined as follows:

(3.6) eD(P(X)) = g(X)P(X) mod F(X), i=1,...,6.
In terms of coordinates 7;, one has
(3.7) e®(m;) = (~1)%m;.

Definition 3.4. We define Inv(S) to be the group of 32 commuting involutions of
S generated by the (%),

The p=(po:p1:0:0:0:0) form a rational line Ay C S. We shall often write
po +p1X € Ag. Acting on Ag by the involutions gives 31 further lines.

Notation 3.5. We denote:
Ai=eD(Ag), Ay=eDocl(Ag) and Ayjp=e? o oec®(Ag).
The main result in this section describes how the nodes of I and K* blow up.

Lemma 3.6. The map £ blows up the node Ny = (0 : 0 : 0 : 1) of K into the
line Ao and the 15 nodes N;j into the lines A;;. The tropes T; and Tij1, blow up by
K* into the lines A; and Ayjy.

Proof. The node Ny corresponds to the canonical class, so we consider divisors of
the type X = (z,y) 4 (u,v) with u = z+h, h small and v & —y # 0. Then the local
behavior of the Kummer coordinates is £; = 1, &, = 20 +h ~ 2z, &3 = x(x+h) ~ 22
and
Fo(m,z+h) —2yv  4y?

§a= 2 ~ 72
Replacing this in the formulas for x and clearing denominators, then taking the
limit as h — 0 and dividing by y* # 0, we obtain

k(€) =~ (=16zy*:16y*:0:0:0:0)
~ (—2:1:0:0:0:0).

Note that AgNA; =(=6;:1:0:0:0:0), since for (X —0;) € Ay we have
eD(X —0;) = g;(X)(X — 0;) = (X — 6;) mod F(X).

We now show that Ag N A;; = 0 for i # j. Indeed, the intersection point p
should be invariant by () 0 /). A polynomial P(X) represents such a point iff

aP(X) = gi(X)g;(X)P(X) mod F(X) forsome a € k*
iff
FX) | P(X)(a = g:(X)g;(X)).
Replacing X by the roots of F/(X) one sees that P(X) must have at least two roots
among 6y, so it must be of degree at least 2 and therefore cannot represent a point
on Ag. Similarly, Ag N Ay, =0 for i # j # k.

The six A; are strict transforms of the conics I'; cut on K by the tropes T;. To
see this and to define x for points corresponding to divisors X = {x,y} + {6;,0}
with y # 0, write F(X) = fs(X — 6;)P;(X). From this we get formulas for fy,
k=0,...,6 depending on 6; and h;;, j =0,...,5, the coefficients of P;(X), which
we plug into & = (Fy(x,0;)/(x — 6;)?). We substitute then & = 1, & = z + 6;,
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&3 = 26; and &, in the formulas for £. On multiplying by (z — 6;)?/(f2P;(z)) (note
that P;(x) # 0), we obtain

(3.8) P(X) =2(z — 0;)P;(X) + P;(6;)(X — ),
that is,

po = 2hio(z —0;) — Pi(6;)x,
(3.9) p1 = 2hi(x —0;) + Pi(6s),

p; = Zhij (l‘ 91) for 2 < j <5.

Equation (2.3) shows that the points (1 : z + 6; : 26, : £&4) belong to the conic T';.
Formulas (3.9) give parametric equations (in z) of the strict transform of I'; by k.
To confirm that this is A;, one verifies that

P(X)=Pi(0;)g:(X)(X —x) mod F(X).

Applying the results in Section 4 and especially Corollary [£.12] one concludes that:

1) the tropes T; considered as singular points of K*, blow up by «* into A;;

2) each of the fifteen N;; blows up into A;j;

3) the tropes Tjjk, @ # j # k blow up into Ajj;

4) the ten A, (i # j # k) are strict transforms of the ten conics cut on K by
the tropes (planes) not containing Ny. Each of them intersects six A;; since each
node is on six tropes. ([l

4. LINE COMPLEXES

Let u = (uy : ug : uz : ug) and v = (vq : vg : v3 : v4) be distinet points in P3.
Put p;; = w;v; — ujv;. The Grassmann coordinates of the line (u,v) C P3 are

p = (P43 : Paa i pa1 1 pa1 i pa1 i p32) = (X1 o0 Xe).
The Grassmannian quadric G C IP°, representing the lines in P? has the equation:
G(Xq,...,X6) =2X1 X4 +2X0 X5 +2X35Xs =0.

Definition 4.1. A line complex of degree d is a set of lines in P? whose Grassmann
coordinates satisfy a homogeneous equation Q(Xji, ..., Xg) = 0 of degree d.

If d = 1, this is called a linear complex, and if d = 2, it is a quadratic complex.

A line L € G parametrizes a pencil of lines in P3. The lines of a pencil L all
pass through a point (L) = u, called the focus of the pencil, and lie in one plane
h(L) = my, the plane of the pencil.

All lines in a linear complex £ passing through a given point u (respectively,
lying in a plane ), form a pencil L, (respectively, L,). Each linear complex £
establishes a correspondence between points and planes in P3,

I(u) = h(Lu)’ I(W) = f(Lﬂ)a I? = 1,

which is also defined for lines; if [ C P? is the line (u,u'), then I(l) = I(u) N I(u).
The line (1) is the polar line of | with respect to the given linear complex.

Definition 4.2. Two linear complexes are called apolar if the correspondences they
define commute.
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Let H be any quadratic form in six variables such that the quadrics G = 0
and H = 0 intersect transversely, and denote by # = {z € P° | H(x) = 0}.
Let W = GNH and A = the set of lines on WW. The points in W represent the lines
in P> whose Grassmann coordinates p satisfy H(p) = 0. A line L € A represents a
pencil of lines in P3 of the quadratic complex defined by H.

Definition 4.3. The Kummer surface K C P3 associated to the quadratic com-
plex H is the locus of focuses of such pencils: K = {f(L) | L € A}.

Definition 4.4. The dual Kummer surface K*  P3¥ associated to the quadratic
complex H is the locus of planes of such pencils.

From now on we suppose fg = 1.

Lemma 4.5. For any curve C of genus 2, the Kummer surface belonging to the
curve C given by (ZI) coincides with the Kummer surface just defined, if one takes
the quadratic complex H to be given by

H=—4X X5 — 4XoXs — X2 + 25 X3 X6 + 4fo X}
+ 4/ X4 X5 +AfoX2 +4f3X5Xe + (462 — [2)XE.
Proof. See [3], Lemma 17.3.1 and pages 182-183. O

If a point £ € P? is the focus of the pencil corresponding to the line L¢ € A,
then L¢ lies in the plane Il C G corresponding to lines in P3 passing through €.
But then the conic I NH contains L¢, so it is degenerate; Il is tangent to H
and I N"H = LU L'g. The lines of the quadratic complex passing through £ are in
the two pencils L¢ and Ly, each with focus &, lying in the planes m¢ and 7r2 in P3.
The line l¢ = m¢ N wé is represented on G by the point pe = L¢ N L’5 and is called a
singular line of the quadratic complex.

If Le # L/5 the pencils are distinct and £ is a simple point of the Kummer; there
is a one-to-one correspondence & <+ pe. However, if L = Lé, then m¢ = 772 and all
the lines in L¢ are singular lines. The point & is a singular point of the Kummer,
because the map f: A — K is algebraic. Therefore, the variety ¥ parametrizing
singular lines is a desingularization of the Kummer.

Definition 4.6. The birational map k; : I --» X is defined by £1(§) = pe.

Definition 4.7. The birational map ] : K* --» X associates to a plane 7 tangent
to K the intersection point of the lines in A parametrizing the two pencils in H
contained in 7.

The maps s ' and s~ extend to minimal desingularizations x;* : ¥ — K
and k%71 X — K* (see [3] and [6]). The following is proved in [3], page 181:

Lemma 4.8. The surface K* is the projective dual of K; that is, if ¢ = f(L) € K,
then n = h(L) € K* is the tangent plane of K at . Therefore k1(€) = ki(n).

Denote by G (Y, 7) the bilinear form associated to the Grassmannian G. Make
the change of coordinates

_GX. 7))

(4.1) Gi N

3
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with vectors ¥ (6;) as in [3] formula (17.4.3). Let K be the Kummer surface asso-
ciated to the quadratic complex H of Lemma By [6], Section 31 or [3] formula
(17.4.2), a minimal desingularization of K is the K3 surface in P5:

S =Y%oNE1 Ny,  where X;: Y 6i¢2=0 for i=0,1,2.
J

Proposition 4.9. There is an explicit isomorphism © : ¥ — S.

Proof. Let © : ¥ — & be defined by

(42) ®(<1:...:CG)—<\/C—:}_1:...I\/C—Z_6)_(7r1;-..:ﬂ'6).

To pass to variables X; and p;, recall that P(X) = Zg p; X7. By 32) and (&I):

PO __ G _GR,T6)

wj; ! \/&Tz Wi '
Now, as polynomials in X, we have G(Y,?(X)) = P(X), because both have
degree 5 and agree on the six 6;. Explicit formulas for © are:

po = X1+ fiXs P2 = X3+2f4 X5 +2f3 Xy + fsXo ps=2fsX4+2X5
pr=Xo+2f X4+ f3 X5 p3=2f1 X4+ 2f5X5 +2X¢ ps = 2X4. O

Proposition 4.10. Denoting by k~! and nfl the blow-downs from S, respectively,
¥ to K one has ky* = k10 ©.

Proof. Pick a point £ € P and write the equations of the plane Il C G of lines
through & (see equations (4.7) of [§]). Take H to be defined as in Lemma[L5l Now,
IL¢ is tangent to H iff the intersection consists of two lines: Il "H = L¢ U L’g.
Computing in terms of £ the coordinates of pe = L¢ N L’57 we find homogeneous
formulas for X; in &; of degree 4: pe = (X1(&) : ... : X4(§)) = k1(€). Comparing
k(&) = (po(§) : ... p5(&)) from Lemma B3] with

©cki(§) = (Po(§) i -+ Ps5(8)) : K — S

yields p;ps — psp; = 0; K, with K given by (22]), for 4; a homogeneous polynomial
in €. (|

Associated with a quadratic complex H : H = 0 there is a set of 6 mutually
apolar linear complexes Lj, such that the polar of any line in H with respect
to L is in H. If G and H are written in diagonal form, these complexes are

Ly:(. =0 for k=1,...,6. The action of the correspondences I} on lines in P?
translates in coordinates { = ({1 :...: (g) by
(4.3) L(G) = (=1)°*¢,

which restricts to ¥. The Kummer surface is determined by H, so it is invariant
under the transformation I. The set of nodes and tropes is invariant (see [6],
Section 30).

Proposition 4.11. Let Wy be as in Lemma 24 For any k, the map Iy is the
unique automophism of ¥ such that /ﬁ_l oly =Wyrokr L.
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Proof. Let £ € K be a simple point and denote pg = k1(§). For a subset V' C
G, put Iy(V) = {Ix(l) € G | I € V}. The pencils I(L¢) and Ix(Lg) are both
contained in the polar plane of ¢ with respect to L, which by Lemma I3l is
Wi (€). The plane in P° parametrizing lines in Wy, (€) is therefore tangent to H at
Ii(Le) N I (Lg) = I (Le N L) = Ii(pe) = I 0 £1(§). By definition of k] we have
R (Wi(€)) = Iy o ki (€). O

The following corollary illustrates how the projective duality (over k(6)) be-
tween K and K* lifts to S.

Corollary 4.12. For any k, the map %) is the unique automophism of S such
that k* Loelk) = Wi ok L.
Proof. Let € € K and n € K* be dual. We have:

(4.4) Oorin) B 0on(e) B nie) B wr(n).

Note that © 0 I, 0 71 = ¢(®) by @2), [@E3) and B7). Therefore,

H*flog(k)@ﬁf*loG_IOGOIko@_l = Wkonflo@_l =" Wpor L

This is summarized in the following diagram, where the arrows to X and K* are
the minimal desingularizations:

S & v oy & o5
N NG
K — K*
Wy

Now Corollary .12 is useful for finding explicit formulas for x*, because
K=k oW;orn toroW; ' =W orow,!

on an open dense set in K*. We find formulas for W; in [§], Lemma 4.13. The
resulting formulas for x* are huge and not listed in this paper, since on a given
example it is easier to apply successively each map involved.

Lemma 4.13. For any point £ € P? the plane with dual coordinates W;(€) is the
polar plane of €& with respect to L;.

Proof. See [§], Lemma 4.14. O

5. LINEAR AUTOMORPHISMS OF S
Keeping Notation B8] we let
pi =AoNA,,
(5.1) pij = AN Ay =eW(p;),
Pijk = Aij N Ay = (pji).

There are no other lines on S ([B], page 775), so this is the whole structure of
line intersections on S. Now let GL(S) be the group of linear automorphisms of S.

Lemma 5.1. Let A, B € GL(S) such that A, = B, . Then A= B.
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Proof. Let I € GL(S) be the identity. If A € GL(S) and A, =1}, , then A fixes
the p;, so invaries the A;. But then by A invaries also A;;, the unique line other
than Ag which meets A; and Aj, so A fixes p;;, j = 1,...,6. Hence A‘Ai =1,
Similarly, one sees that A is the identity on any of the 32 lineson S, s0 A =1. [

Let A € GL(S). Since A(Ay) is a line, by Lemma [B] there exists a unique
involution & € Inv(S) such that o A(Ag) = Ag. We associate to A the permutation
o € Sg such that

(5.2) g0 A(pi) = po;) fori=1,...,6.
Note that o =id iff e0 A, =1}, iff eo A =1 (by LemmalELI) iff A € Inv(S).

Definition 5.2. GLg(S) is the subgroup of GL(S) of linear automorphisms A such
that A(Ao) = Ao.

Lemma 5.3. Let A € GL(S) and o € Sg be the permutation associated to A by
B2). Then, for any 1 < i <6 we have:

(5.3) Aoe® =¢gle®) o 4,

Proof. Let B = ¢eo0 A. Then B(Ag) = Ag and B(p;) = ps(i), 50 B(Ai) = Ay
The unique line cutting Aa(i) and Aa(j) is Ao(i)o( hence B(Aij) = Ao(i)o(j)~
Then

7)

B(pi;) = B(AiNAyj) = B(Ai) N B(Aij) = Asiiy N Do(i)o(j) = Po(i)o()-

Now one sees that (£0 A)~! 0el®®) o (¢ 0 A) acts like e on p;. By Lemma [E.1]
and knowing that Inv(S) is commutative, we conclude A o e(®) = £(@(D) o A, O

Proposition 5.4. Let ¢ : GL(S) — GLy(S) be the map A — € o A defined by
formula (B2). We have an exact sequence of groups

1 — Inv(S) — GL(S) -5 GLo(S) — 1.
By Proposition 54 Inv(S) = ker(%)) is a normal subgroup of GL(S).

Corollary 5.5. For any linear automorphism A of S not in Inv(S), the centralizer
of A in Inv(S) is not equal to Inv(S).

We now show that GL¢(S) is in bijection with the group of linear automorphisms
of Ag which invariate the set {p;, i = 1,...,6}. Lemma [5.I] and Proposition
below give necessary and sufficient conditions for the existence of nontrivial elements
of GLo(S). For the existence of noncommuting involutions of S, see [§], Section 6.

Proposition 5.6. Let 0 € Sg and let B : Ay — Aqg be a linear automorphism
of Ag such that for 1 <i <6, we have B(p;) = po(;). Then there exists a unique
A € GLy(S) such that A, = B.

Proof. Suppose o and B given. If A exists, it is unique by Lemma[B.land o is the
permutation associated to A defined by (5.2)). Let A be the linear operator of Ps
(polynomials of degree < 5) associated to A. Let a,b,c,d € k such that

A)=aX +b and A(X)=cX +d.
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After some linear algebra and using (B3]), we find that the image of a point p € S
represented by P(X) =}, m;P;(X) is

(5.4) AP(X) =) (Wj I (ay ;) + b)) Po() (X) .

j wa(j)

o)
We have to prove that the point (7] : ... : m}) satisfies equations ([B3]).
We show that ka(j)wg(j)w’i(j) = ajijjz for a quadratic polynomial ¢ ; in §;. We

have:
2 Wy 2

2
ko(HWo ()™ o(j) = ko(j)(ab(j) + D)
and then
)2 Wi )
We (j)

Write /T(X — 0;) in two ways, using the fact that A(p;) = ps(;) or linearity of A:

o = ko(j)(aby(j) +b

i (X —0,05)) = A(X —0;) =cX +d—0;(aX +b) where yij €k.
Replacing X = 0,;), we obtain the formula
o) +d
5.5 =
(5.5) = By b

which gives the relations between the roots of F(X) necessary for the existence of
the linear automorphism B.
Now, we calculate w; replacing each 6; by the formula (5.3]):

Ceo(i) +d Coa(j) +d
w; =TT —6,) = < -
/ g ! I g aﬁg(i) +b a@a(” +b

1 1
= 0,0 — 0(5) (be — ad
(a6 () +0)* T1;(afo(i) +b) 1;{ oty = bop) (be _ad)
%/—/'L constan:
constant ront

Call 7y the constant part of the equation:
w; ~
(5.6) 1 — .
Wa(i)  (aby() +b)"

Replacing (0.6)) in «;, we have:

y ko)
aj = ko) (aByy +b)? =7 .
e (abo(y + 1) (aba( +1)”

To see that «; is quadratic in 6; (for each k;), we use formula (5.H) to obtain:

d—"b
ab; —c= 8T Ghich gives the result for k,(;) = 1;
afo(j) +b
age o 2ac(ad —be),(;) + a’d® — b2
a0 —c* =
! (abo(j) + b)?
which gives the result for ks ;) = 05(;);
~ (be —ad)f, ) Lo _ 92
b —d = —F-"F= which gives the result for ky(;) = QU(J—) . O

aby () + b
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