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EXPLICIT COMPUTATIONS ON THE DESINGULARIZED

KUMMER SURFACE

V. G. LOPEZ NEUMANN AND CONSTANTIN MANOIL

Abstract. We find formulas for the birational maps from a Kummer surface
K and its dual K∗ to their common minimal desingularization S. We show
how the nodes of K and K∗ blow up. Then we give a description of the group
of linear automorphisms of S.

1. Introduction

In the 19th century a singular surface K, called the Kummer surface, was at-
tached to a quadratic line complex. A minimal desingularization Σ of K and a
birational map κ1 : K ��� Σ were constructed by geometric methods. One may call
this the classical construction of the Kummer surface, which we recall in Section 4.

Another construction is the following: Let A be an abelian surface, and let σ
be the involution of A given by σ(x) = −x. The quotient K = A/σ has 16 double
points, and one defines a K3 surface S to be K with these 16 nodes blown up ([1],
Prop. 8.11). To be consistent with the historical point of view and with our main
reference [3], we call S the desingularized Kummer surface. If A = J (C), where
J (C) is the Jacobian of a curve C of genus 2, then K is called the Kummer surface
belonging to C. The connection between the two constructions of the Kummer
surface is explicitly established in [3], Chapter 17 (see Lemma 4.5).

A desingularization S of K is constructed explicitly in [3], Chapter 16, by alge-
braic methods. Denote by K∗ the projective dual of K. There are birational maps
κ : K ��� S and κ∗ : K∗ ��� S and morphisms extending κ−1 : S ��� K and
κ∗−1 : S ��� K∗ to all of S. We denote these extensions also by κ−1 and κ∗−1.
They are minimal desingularizations of K and K∗.

Origins. Cassels and Flynn explain that the surface S comes from the behavior
of six of the tropes (see Definition 2.3) under the duplication map. The existence of
S raises more far-reaching questions. Indeed, if the ground field k is algebraically
closed, one has a commutative diagram:

(1.1)

J (C) d0−−−−−→ J (C)0

π

⏐⏐⏐⏐⏐�
⏐⏐⏐⏐⏐� π0

K d∗
0−−−−−→ K∗
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where J (C)0 is the dual of J (C) as an abelian variety. Here, the maps d0 and d∗0
depend on the choice of a rational point on C. Thus the abelian varieties duality
matches with the projective one. When k is not algebraically closed, one has to
enlarge the ground field to obtain such diagrams, yet S is a desingularization over
k of both K and K∗. One may ask if there is a unifying object for J (C) and J (C)0,
generalizing the abelian varieties duality.

Recent developments. The Jacobian J (C) can be embedded in P
15 and is de-

scribed by 72 quadratic equations ([4]). More computable objects, S and its twists,
appeared in recent attempts by M. Stoll and N. Bruin, to compute the Mordell-Weil
group of J (C). We give a brief account of it in Section 5 of [8].

Cassels and Flynn already suggested that the 2-Selmer group could be investi-
gated by using twists of S. In 2007 A. Logan and R. van Luijk ([7]) and P. Corn ([2])
made use of twists of S to find specific curves with nontrivial 2-torsion elements in
the Tate-Shafarevich groups of their Jacobians.

Our results and structure of this paper. In Section 2 we give a background. The
rare relevant facts, not included in this paper, are contained in [3] and [8].

This paper is structured along two computational ideas. First, to profit from
the algebraic construction of S in [3] in order to describe its linear automorphism.
Second, to link S and Σ and thus bring line complexes into the picture. Our results
achieve part of the program suggested in [3], at the end of Chapter 16.

In Section 3 we complete the construction in [3], enlarge the set of points where
κ : K ��� S is explicitly defined and find formulas for κ. These formulas allow one
to describe how each singularity of K and K∗ blows up (see Lemma 3.6).

In Section 4 we define an explicit isomorphism Θ between Σ and S. We observe
that well-known projective isomorphismsWi : K −→ K∗ lift to Σ to correspondences
given by line complexes of degree 1. Using Θ we show that the Wi lift to S to
commuting involutions ε(i) (Corollary 4.12). With the formulas for κ at hand, one
can now find formulas for κ∗.

In Section 5 we give a description of the group of linear automorphisms of S.

2. Preliminaries

We work over a field k with char(k) �= 2 and with more than 5 elements. By a
curve, we mean a smooth projective irreducible variety of dimension 1. Throughout
this paper, C will be a curve of genus 2. Such a curve admits an affine model:

(2.1) C′ : Y 2 = F (X) = f0 + f1X + · · ·+ f6X
6 ∈ k[X], f6 �= 0

and F has distinct roots θ1, . . . , θ6. The points ai = (θi, 0) are the Weierstrass
points. We denote by ∞± the points at infinity on the completion C of C′. For a
given point r = (x, y) on C, the conjugate of r under the ±Y involution is the point
r̄ = (x,−y). For a divisor X =

∑
niri we denote by X =

∑
nir̄i. The class of a

divisor X is denoted by [X] and a divisor in the canonical class by KC .
One can regard a point of the Jacobian J(C) as the class of a divisor X = r+ u,

where r = (x, y), u = (u, v) is a pair of points on C. Starting from this, Flynn
constructs a projective embedding of the Jacobian as follows ([4]). For a point X =
{r, u} on C(2) (symmetric product) with r = (x, y), u = (u, v), define:

σ0 = 1, σ1 = x+ u, σ2 = xu, β0 =
F0(x, u)− 2yv

(x− u)2
,
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where

F0(x, u) =2f0 + f1(x+ u) + 2f2xu+ f3xu(x+ u)

+ 2f4(xu)
2 + f5(xu)

2(x+ u) + 2f6(xu)
3.

The Jacobian is then the projective locus of z = (z0 : . . . : z15) in P
15, where z0 =

δ; z1 = γ1; z2 = γ0; zi = β5−i, i = 3, 4, 5; zi = α9−i, i = 6, . . . , 9; zi = σ14−i,
i = 10, . . . , 14; and z15 = ρ. For the definition of the functions α, β, etc. and
details, see [3], Chapter 2.

Definition 2.1. The Kummer surface K belonging to a curve of genus 2, is the
projective locus in P

3 of the elements ξ = (ξ1 : ξ2 : ξ3 : ξ4) = (σ0 : σ1 : σ2 : β0).

The equation of the Kummer surface is

(2.2) K : K = K2ξ
2
4 +K1ξ4 +K0 = 0,

where the Ki are forms of degree 4−i in ξ1, ξ2, ξ3 ([3], formula (3.1.9)). The natural
map from J(C) to K given by

(z0 : . . . : z15) �−→ (z14 : z13 : z12 : z5) = (ξ1 : . . . : ξ4)

is 2 to 1; the ramification points correspond to divisor classes [X] with [X] = [X].
The images of these classes are the 16 nodes on K: N0 = (0 : 0 : 0 : 1) corresponds
to [KC ] and 15 nodes Nij correspond to classes [Xij ] = [ai + aj ] with i �= j.

Definition 2.2. The dual Kummer surface K∗ ⊂ (P3)� = P
3 is the projective dual

of K, i.e., to the point ξ ∈ K corresponds the point η ∈ K∗ such that η = (η1 : η2 :
η3 : η4) ∈ (P3)� gives the tangent plane to K at ξ.

Definition 2.3. There are 6 planes Ti containing the 6 nodes N0 and Nij , j �= i
and 10 planes Tijk containing the 6 nodes Nmn for {m,n} ⊂ {i, j, k} or {m,n} ∩
{i, j, k} = ∅. These are the tropes ; they cut conics on K. They correspond to the
16 singular points of K∗. The equations of the Ti are:

(2.3) Ti : θ2i ξ1 − θiξ2 + ξ3 = 0,

Lemma 2.4. For each Weierstrass point ai = (θi, 0) there is a projective map
Wi : K −→ K∗ induced by the addition of ai to a divisor of degree 2. One has
Wi(N0) = Ti (singular point of K∗). Furthermore, W−1

i ◦Wj(N0) = Nij.

Proof. See [3], Lemma 4.5.1. �

3. The desingularized Kummer surface

We recall the facts from [3], Chapter 16 we need, keeping the notation there.
Let p = (p0 : . . . : p5), where the pj are indeterminates, and put P (X) =∑5
0 pjX

j . Let S be the projective locus of the p for which P (X)2 is congruent to
a quadratic in X modulo F (X). Put

(3.1) Pj(X) =
∏
i �=j

(X − θi) =

5∑
k=0

hjkX
k

and ωj = Pj(θj) �= 0. Since θi �= θj for i �= j, we have ωj �= 0 and the Pj span the
vector space of polynomials of degree at most 5. We have

(3.2) P (X) =
∑
j

πjPj(X), where πj =
P (θj)

ωj
.
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The K3 surface S is the complete intersection in P
5 of the quadrics S0, S1, S2

where

(3.3) Si : Si = 0 and Si =
∑
j

θijωjπ
2
j for i = 0, 1, 2.

It is a minimal desingularization of K and of K∗. Here the Si are quadratic forms
in p with coefficients in Z[f1, . . . , f6].

The following theorems hold ([3], Theorems 16.5.1 and 16.5.3):

Theorem 3.1. There is a birational map κ : K ��� S defined for general ξ ∈ K as
follows: Let X = {(x, y), (u, v)} correspond to ξ. Put G(X) = (X − x)(X − u) and
let M(X) be the cubic determined by the property that Y − M(X) vanishes twice

on X. Let P (X) =
∑5

0 pjX
j be determined by GP ≡ MmodF . Then κ(ξ) is the

point with projective coordinates (p0 : . . . : p5).

Let κ∗ : K∗ ��� S be the birational map defined in [3], Theorem 16.5.2.

Theorem 3.2. Let ξ ∈ K and η ∈ K∗ be dual, that is, η gives the tangent to K
at ξ. Then κ(ξ) = κ∗(η).

Our first result is the following.

Lemma 3.3. The map κ : K ��� S from Theorem 3.1 is given by the formulas
listed below.

Proof. The problem is to make effective the method given in [3], Chapter 16. For
completeness and due to typing errors there, we recall it in [8], in the Appendix.
As presented in [3], the method works for a general element [X] = [(x, y) + (u, v)],
where yv �= 0 and x �= u.

First, we put y2 = F (x), v2 = F (u), yv = [F0(x, u) − β0(x − u)2]/2 in the
coefficients of P (X), then as the resulting coefficients are symmetric functions of x
and u, we express them in terms of ξ2 = x+u and ξ3 = xu. Finally, we homogenize
the formulas with respect to ξ1 = 1, ξ2, ξ3, ξ4. One first obtains

κ(ξ) = (p̃0(ξ) : . . . : p̃5(ξ)) ,

where

(3.4) p̃j(ξ) = αjK2 + βj(K1ξ4 +K0), for 0 ≤ j ≤ 5.

Here αj and βj are homogeneous forms in ξ of degree 4 and 2, respectively, and the
Kj are those in (2.2). Taking pj(ξ) = (p̃j(ξ) − βjK)/K2 = αj − βjξ

2
4 , we obtain

formulas of degree 4 for κ, which will be defined also for K2 = 0, extending κ to
images of divisor classes [X] = [(x, y) + (u, v)] with x = u and y = v �= 0. However,
the formulas do not work for points with F ′(x) = 0 and for the image of [2∞+].
We will treat the case y = 0 or v = 0 in connection with nodes and tropes.
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Polynomial definition of κ.

p0 = − f3f6ξ1ξ
3
3 + 1/2f2

5 ξ2ξ
3
3 − 2ξ33f4f6ξ2 + 2ξ23ξ

2
1f1f6 − ξ23ξ

2
1f5f2

− 2ξ23ξ1ξ2f6f2 − 1/2ξ23ξ1f5ξ4 − 1/2ξ23ξ1ξ2f5f3 − ξ23ξ
2
2f6f3 − 2ξ23ξ2f6ξ4

− 1/2ξ3f3ξ4ξ
2
1 − 3/2ξ3ξ

2
1ξ2f5f1 − ξ3ξ2f4ξ4ξ1 − 3ξ3ξ1ξ

2
2f6f1

− 1/2ξ3ξ
2
2f5ξ4 + f1f2ξ

4
1 + ξ31ξ2f1f3 + 3/2ξ31f1ξ4 + ξ22f4f1ξ

2
1 + ξ32f5f1ξ1

+ ξ42f1f6 − 1/2ξ1ξ2ξ
2
4

p1 = 2ξ41f
2
2 − 2ξ3ξ1ξ

2
2f6f2 + 1/2ξ21ξ

2
2f5f1 − 1/2ξ41f3f1 + 2ξ42f2f6 + 3ξ31ξ4f2

+ 1/2ξ3f
2
3 ξ

3
1 + 1/2ξ32f5ξ4 + ξ3ξ

2
1ξ2f4f3 − 1/2ξ23ξ

2
2f

2
5 + 3/2ξ3ξ1ξ

2
2f5f3

+ 2ξ23f4f6ξ
2
2 − ξ3ξ

2
1ξ2f5f2 + ξ3ξ

2
2f6ξ4 + 2ξ3ξ

3
2f6f3 + ξ21ξ

2
4 + 2ξ31ξ2f2f3

− ξ3ξ
2
1ξ2f6f1 + 2ξ21f2f4ξ

2
2 + 3/2ξ21ξ2f3ξ4 + ξ1f4ξ4ξ

2
2 + ξ1ξ

3
2f6f1 + 2ξ1ξ

3
2f5f2

+ 2ξ23ξ
2
1f6f2 − 1/2ξ23ξ

2
1f5f3 + ξ23ξ4f6ξ1

p2 = 2ξ21ξ
2
2f4f3 − f6f5ξ1ξ

3
3 + ξ23ξ

2
1f3f6 − ξ23ξ

2
1f4f5 + ξ23ξ1f

2
5 ξ2

+ ξ3f1f6ξ
3
1 + ξ3ξ

3
1f3f4 − 2ξ3f5f2ξ

3
1 + 2ξ3ξ

2
1ξ2f

2
4 − 2ξ3f5ξ4ξ

2
1

− ξ41f1f4 + 2ξ41f3f2 − 2ξ3ξ2f6f2ξ
2
1 − 5ξ3ξ

2
2f6f3ξ1 + 2ξ3ξ1ξ

2
2f5f4

− 3ξ3f6ξ4ξ2ξ1 − 3ξ3ξ2f5f3ξ
2
1 + 2ξ42f3f6 + ξ32f6ξ4 + 2f3ξ4ξ

3
1 + 2ξ2f

2
3 ξ

3
1

+ 2ξ32f5f3ξ1 − ξ2f5f1ξ
3
1 − ξ22f6f1ξ

2
1 + ξ22f5ξ4ξ1 + ξ2f4ξ4ξ

2
1 + 2ξ3ξ

3
2f6f4

+ ξ23ξ
2
2f6f5 − 4ξ23ξ1f4f6ξ2

p3 = − 2f2
6 ξ1ξ

3
3 − ξ23ξ

2
1f

2
5 + 2ξ23ξ

2
1f4f6 − ξ23ξ2f6f5ξ1 + 2ξ23f

2
6 ξ

2
2

+ ξ3ξ
3
1f5f3 − 2ξ3ξ

3
1f2f6 − ξ3ξ

2
1ξ2f6f3 − 2ξ3ξ

2
1f6ξ4 + 2ξ3ξ1ξ

2
2f

2
5

− 4ξ3ξ1f4f6ξ
2
2 + 2ξ3f6f5ξ

3
2 − ξ41f1f5 + 2ξ41f4f2 + 2ξ31f4ξ4 + 2ξ31ξ2f4f3

− ξ31ξ2f6f1 + ξ21ξ2f5ξ4 + 2ξ21f
2
4 ξ

2
2 + ξ1ξ

2
2f6ξ4 + 2ξ1ξ

3
2f5f4 + 2ξ42f6f4

p4 = ξ23ξ
2
1f6f5 − 2ξ23ξ2f

2
6 ξ1 + ξ3f3f6ξ

3
1 − 2ξ3ξ2f

2
5 ξ

2
1 + 2ξ3f4f6ξ2ξ

2
1

− 2ξ3ξ
2
2f6f5ξ1 + 2ξ3f

2
6 ξ

3
2 − f6f1ξ

4
1 + 2f5f2ξ

4
1 + 2f5ξ4ξ

3
1 + 2ξ2f5f3ξ

3
1

+ 2ξ22f5f4ξ
2
1 + ξ2f6ξ4ξ

2
1 + 2ξ32f

2
5 ξ1 + 2ξ42f6f5

p5 = 2(f6ξ
2
1ξ

2
3 − ξ3f5ξ2ξ

2
1 − 2ξ3f6ξ

2
2ξ1 + f2ξ

4
1 + ξ31ξ4 + ξ31f3ξ2 + f4ξ

2
2ξ

2
1

+ ξ32f5ξ1 + f6ξ
4
2)f6. �

Let the point (p0 : . . . : p5) be represented by P (X) =
∑5

i=0 piX
i and let

(3.5) gi(X) = 1− 2
Pi(X)

Pi(θi)
, i = 1, . . . , 6
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where Pi(X) is defined by (3.1). We see that gi(θj) = (−1)δij , so gi(X)2 ≡ 1

mod F (X). There are 6 commuting involutions ε(i) of S, defined as follows:

(3.6) ε(i)(P (X)) = gi(X)P (X) mod F (X), i = 1, . . . , 6.

In terms of coordinates πj , one has

(3.7) ε(i)(πj) = (−1)δijπj .

Definition 3.4. We define Inv(S) to be the group of 32 commuting involutions of
S generated by the ε(i).

The p = (p0 : p1 : 0 : 0 : 0 : 0) form a rational line Δ0 ⊂ S. We shall often write
p0 + p1X ∈ Δ0. Acting on Δ0 by the involutions gives 31 further lines.

Notation 3.5. We denote:

Δi = ε(i)(Δ0) , Δij = ε(i) ◦ ε(j)(Δ0) and Δijk = ε(i) ◦ ε(j) ◦ ε(k)(Δ0) .

The main result in this section describes how the nodes of K and K∗ blow up.

Lemma 3.6. The map κ blows up the node N0 = (0 : 0 : 0 : 1) of K into the
line Δ0 and the 15 nodes Nij into the lines Δij. The tropes Ti and Tijk blow up by
κ∗ into the lines Δi and Δijk.

Proof. The node N0 corresponds to the canonical class, so we consider divisors of
the type X = (x, y)+(u, v) with u = x+h, h small and v ≈ −y �= 0. Then the local
behavior of the Kummer coordinates is ξ1 = 1, ξ2 = 2x+h ≈ 2x, ξ3 = x(x+h) ≈ x2

and

ξ4 =
F0(x, x+ h)− 2yv

h2
≈ 4y2

h2
.

Replacing this in the formulas for κ and clearing denominators, then taking the
limit as h → 0 and dividing by y4 �= 0, we obtain

κ(ξ) ≈ (−16xy4 : 16y4 : 0 : 0 : 0 : 0)
≈ (−x : 1 : 0 : 0 : 0 : 0).

Note that Δ0 ∩Δi = (−θi : 1 : 0 : 0 : 0 : 0), since for (X − θi) ∈ Δ0 we have

ε(i)(X − θi) ≡ gi(X)(X − θi) ≡ (X − θi) mod F (X).

We now show that Δ0 ∩ Δij = ∅ for i �= j. Indeed, the intersection point p

should be invariant by ε(i) ◦ ε(j). A polynomial P (X) represents such a point iff

αP (X) ≡ gi(X)gj(X)P (X) mod F (X) for some α ∈ k̄∗

iff
F (X) | P (X)(α− gi(X)gj(X)).

Replacing X by the roots of F (X) one sees that P (X) must have at least two roots
among θk, so it must be of degree at least 2 and therefore cannot represent a point
on Δ0. Similarly, Δ0 ∩Δijk = ∅ for i �= j �= k.

The six Δi are strict transforms of the conics Γi cut on K by the tropes Ti. To
see this and to define κ for points corresponding to divisors X = {x, y} + {θi, 0}
with y �= 0, write F (X) = f6(X − θi)Pi(X). From this we get formulas for fk,
k = 0, . . . , 6 depending on θi and hij , j = 0, . . . , 5, the coefficients of Pi(X), which
we plug into ξ4 = (F0(x, θi)/(x − θi)

2). We substitute then ξ1 = 1, ξ2 = x + θi,



DUAL KUMMER SURFACE 1155

ξ3 = xθi and ξ4 in the formulas for κ. On multiplying by (x− θi)
2/(f2

6Pi(x)) (note
that Pi(x) �= 0), we obtain

(3.8) P (X) = 2(x− θi)Pi(X) + Pi(θi)(X − x),

that is,

(3.9)
p0 = 2hi0(x− θi)− Pi(θi)x,
p1 = 2hi1(x− θi) + Pi(θi),
pj = 2hij(x− θi) for 2 ≤ j ≤ 5.

Equation (2.3) shows that the points (1 : x + θi : xθi : ξ4) belong to the conic Γi.
Formulas (3.9) give parametric equations (in x) of the strict transform of Γi by κ.
To confirm that this is Δi, one verifies that

P (X) ≡ Pi(θi)gi(X)(X − x) mod F (X).

Applying the results in Section 4 and especially Corollary 4.12, one concludes that:
1) the tropes Ti considered as singular points of K∗, blow up by κ∗ into Δi;
2) each of the fifteen Nij blows up into Δij ;
3) the tropes Tijk, i �= j �= k blow up into Δijk;
4) the ten Δijk (i �= j �= k) are strict transforms of the ten conics cut on K by

the tropes (planes) not containing N0. Each of them intersects six Δij since each
node is on six tropes. �

4. Line complexes

Let u = (u1 : u2 : u3 : u4) and v = (v1 : v2 : v3 : v4) be distinct points in P
3.

Put pij = uivj − ujvi. The Grassmann coordinates of the line 〈u, v〉 ⊂ P
3 are

p = (p43 : p24 : p41 : p21 : p31 : p32) = (X1 : . . . : X6).

The Grassmannian quadric G ⊂ P
5, representing the lines in P

3 has the equation:

G(X1, . . . , X6) = 2X1X4 + 2X2X5 + 2X3X6 = 0.

Definition 4.1. A line complex of degree d is a set of lines in P
3 whose Grassmann

coordinates satisfy a homogeneous equation Q(X1, . . . , X6) = 0 of degree d.

If d = 1, this is called a linear complex, and if d = 2, it is a quadratic complex.
A line L ∈ G parametrizes a pencil of lines in P

3. The lines of a pencil L all
pass through a point f(L) = u, called the focus of the pencil, and lie in one plane
h(L) = πu, the plane of the pencil.

All lines in a linear complex L passing through a given point u (respectively,
lying in a plane π), form a pencil Lu (respectively, Lπ). Each linear complex L
establishes a correspondence between points and planes in P

3,

I(u) = h(Lu), I(π) = f(Lπ), I2 = 1,

which is also defined for lines; if l ⊂ P
3 is the line 〈u, u′〉, then I(l) = I(u) ∩ I(u′).

The line I(l) is the polar line of l with respect to the given linear complex.

Definition 4.2. Two linear complexes are called apolar if the correspondences they
define commute.
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Let H be any quadratic form in six variables such that the quadrics G = 0
and H = 0 intersect transversely, and denote by H = {x ∈ P

5 | H(x) = 0}.
Let W = G ∩H and A = the set of lines on W . The points in W represent the lines
in P

3 whose Grassmann coordinates p satisfy H(p) = 0. A line L ∈ A represents a
pencil of lines in P

3 of the quadratic complex defined by H.

Definition 4.3. The Kummer surface K ⊂ P
3 associated to the quadratic com-

plex H is the locus of focuses of such pencils: K = {f(L) | L ∈ A}.

Definition 4.4. The dual Kummer surface K∗ ⊂ P
3� associated to the quadratic

complex H is the locus of planes of such pencils.

From now on we suppose f6 = 1.

Lemma 4.5. For any curve C of genus 2, the Kummer surface belonging to the
curve C given by (2.1) coincides with the Kummer surface just defined, if one takes
the quadratic complex H to be given by

H =− 4X1X5 − 4X2X6 −X2
3 + 2f5X3X6 + 4f0X

2
4

+ 4f1X4X5 + 4f2X
2
5 + 4f3X5X6 + (4f4 − f2

5 )X
2
6 .

Proof. See [3], Lemma 17.3.1 and pages 182–183. �

If a point ξ ∈ P
3 is the focus of the pencil corresponding to the line Lξ ∈ A,

then Lξ lies in the plane Πξ ⊂ G corresponding to lines in P
3 passing through ξ.

But then the conic Πξ ∩ H contains Lξ, so it is degenerate; Πξ is tangent to H
and Πξ ∩H = Lξ ∪L′

ξ. The lines of the quadratic complex passing through ξ are in

the two pencils Lξ and L′
ξ, each with focus ξ, lying in the planes πξ and π′

ξ in P
3.

The line lξ = πξ ∩ π′
ξ is represented on G by the point pξ = Lξ ∩ L′

ξ and is called a
singular line of the quadratic complex.

If Lξ �= L′
ξ the pencils are distinct and ξ is a simple point of the Kummer; there

is a one-to-one correspondence ξ ↔ pξ. However, if Lξ = L′
ξ, then πξ = π′

ξ and all
the lines in Lξ are singular lines. The point ξ is a singular point of the Kummer,
because the map f : A −→ K is algebraic. Therefore, the variety Σ parametrizing
singular lines is a desingularization of the Kummer.

Definition 4.6. The birational map κ1 : K ��� Σ is defined by κ1(ξ) = pξ.

Definition 4.7. The birational map κ∗
1 : K∗ ��� Σ associates to a plane π tangent

to K the intersection point of the lines in A parametrizing the two pencils in H
contained in π.

The maps κ−1
1 and κ∗

1
−1 extend to minimal desingularizations κ−1

1 : Σ −→ K
and κ∗

1
−1 : Σ −→ K∗ (see [3] and [6]). The following is proved in [3], page 181:

Lemma 4.8. The surface K∗ is the projective dual of K; that is, if ξ = f(L) ∈ K,
then η = h(L) ∈ K∗ is the tangent plane of K at ξ. Therefore κ1(ξ) = κ∗

1(η).

Denote by G(
−→
X,

−→
Y ) the bilinear form associated to the Grassmannian G. Make

the change of coordinates

(4.1) ζi =
G(

−→
X,−→v (θi))√

ωi
,
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with vectors −→v (θi) as in [3] formula (17.4.3). Let K be the Kummer surface asso-
ciated to the quadratic complex H of Lemma 4.5. By [6], Section 31 or [3] formula
(17.4.2), a minimal desingularization of K is the K3 surface in P

5:

Σ = Σ0 ∩ Σ1 ∩ Σ2, where Σi :
∑
j

θijζ
2
j = 0 for i = 0, 1, 2.

Proposition 4.9. There is an explicit isomorphism Θ : Σ −→ S.

Proof. Let Θ : Σ −→ S be defined by

(4.2) Θ(ζ1 : . . . : ζ6) =

(
ζ1√
ω1

: . . . :
ζ6√
ω6

)
= (π1 : · · · : π6).

To pass to variables Xj and pj , recall that P (X) =
∑5

0 pjX
j . By (3.2) and (4.1):

P (θi)

ωi
= πi =

ζi√
ωi

=
G(

−→
X,−→v (θi))

ωi
.

Now, as polynomials in X, we have G(
−→
X,−→v (X)) = P (X), because both have

degree 5 and agree on the six θi. Explicit formulas for Θ are:

p0 = X1 + f1X4 p2 = X3+2f4X5+2f3X4 + f5X6 p4 = 2f5X4 + 2X5

p1 = X2 + 2f2X4 + f3X5 p3 = 2f4X4 + 2f5X5 + 2X6 p5 = 2X4. �

Proposition 4.10. Denoting by κ−1 and κ−1
1 the blow-downs from S, respectively,

Σ to K one has κ−1
1 = κ−1 ◦Θ.

Proof. Pick a point ξ ∈ P
3 and write the equations of the plane Πξ ⊂ G of lines

through ξ (see equations (4.7) of [8]). Take H to be defined as in Lemma 4.5. Now,
Πξ is tangent to H iff the intersection consists of two lines: Πξ ∩ H = Lξ ∪ L′

ξ.

Computing in terms of ξ the coordinates of pξ = Lξ ∩ L′
ξ, we find homogeneous

formulas for Xi in ξi of degree 4: pξ = (X1(ξ) : . . . : X6(ξ)) = κ1(ξ). Comparing
κ(ξ) = (p0(ξ) : . . . : p5(ξ)) from Lemma 3.3 with

Θ ◦ κ1(ξ) = (p̂0(ξ) : · · · : p̂5(ξ)) : K −→ S

yields p̂ip5 − p̂5pi = δiK, with K given by (2.2), for δi a homogeneous polynomial
in ξ. �

Associated with a quadratic complex H : H = 0 there is a set of 6 mutually
apolar linear complexes Lk, such that the polar of any line in H with respect
to Lk is in H. If G and H are written in diagonal form, these complexes are
Lk : ζk = 0 for k = 1, . . . , 6. The action of the correspondences Ik on lines in P

3

translates in coordinates ζ = (ζ1 : . . . : ζ6) by

(4.3) Ik(ζi) = (−1)δikζi,

which restricts to Σ. The Kummer surface is determined by H, so it is invariant
under the transformation Ik. The set of nodes and tropes is invariant (see [6],
Section 30).

Proposition 4.11. Let Wk be as in Lemma 2.4. For any k, the map Ik is the
unique automophism of Σ such that κ∗

1
−1 ◦ Ik = Wk ◦ κ1

−1.
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Proof. Let ξ ∈ K be a simple point and denote pξ = κ1(ξ). For a subset V ⊂
G, put Ik(V ) = {Ik(l) ∈ G | l ∈ V }. The pencils Ik(Lξ) and Ik(L

′
ξ) are both

contained in the polar plane of ξ with respect to Lk, which by Lemma 4.13 is
Wk(ξ). The plane in P

5 parametrizing lines in Wk(ξ) is therefore tangent to H at
Ik(Lξ) ∩ Ik(L

′
ξ) = Ik(Lξ ∩ L′

ξ) = Ik(pξ) = Ik ◦ κ1(ξ). By definition of κ∗
1 we have

κ∗
1(Wk(ξ)) = Ik ◦ κ1(ξ). �

The following corollary illustrates how the projective duality (over k(θk)) be-
tween K and K∗ lifts to S.

Corollary 4.12. For any k, the map ε(k) is the unique automophism of S such
that κ∗−1 ◦ ε(k) = Wk ◦ κ−1.

Proof. Let ξ ∈ K and η ∈ K∗ be dual. We have:

(4.4) Θ ◦ κ∗
1(η)

(4.8)
= Θ ◦ κ1(ξ)

(4.10)
= κ(ξ)

(3.2)
= κ∗(η).

Note that Θ ◦ Ik ◦Θ−1 = ε(k), by (4.2), (4.3) and (3.7). Therefore,

κ∗−1 ◦ ε(k) (4.4)
= κ∗

1
−1 ◦Θ−1 ◦Θ ◦ Ik ◦Θ−1 (4.11)

= Wk ◦ κ−1
1 ◦Θ−1 (4.10)

= Wk ◦ κ−1.

This is summarized in the following diagram, where the arrows to K and K∗ are
the minimal desingularizations:

S Θ←− Σ
Ik−→ Σ

Θ−→ S
↘ ↓ ↓ ↙

K −→
Wk

K∗

�

Now Corollary 4.12 is useful for finding explicit formulas for κ∗, because

κ∗ = κ∗ ◦Wi ◦ κ−1 ◦ κ ◦W−1
i = ε(i) ◦ κ ◦W−1

i

on an open dense set in K∗. We find formulas for Wi in [8], Lemma 4.13. The
resulting formulas for κ∗ are huge and not listed in this paper, since on a given
example it is easier to apply successively each map involved.

Lemma 4.13. For any point ξ ∈ P
3 the plane with dual coordinates Wi(ξ) is the

polar plane of ξ with respect to Li.

Proof. See [8], Lemma 4.14. �

5. Linear automorphisms of S
Keeping Notation 3.5, we let

(5.1)

pi = Δ0 ∩Δi,

pij = Δi ∩Δij = ε(i)(pj),

pijk = Δij ∩Δijk = ε(i)(pjk).

There are no other lines on S ([5], page 775), so this is the whole structure of
line intersections on S. Now let GL(S) be the group of linear automorphisms of S.

Lemma 5.1. Let A,B ∈ GL(S) such that A|Δ0
= B|Δ0

. Then A = B.
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Proof. Let I ∈ GL(S) be the identity. If A ∈ GL(S) and A|Δ0
= I|Δ0

, then A fixes
the pi, so invaries the Δi. But then by A invaries also Δij , the unique line other
than Δ0 which meets Δi and Δj , so A fixes pij , j = 1, . . . , 6. Hence A|Δi

= I|Δi
.

Similarly, one sees that A is the identity on any of the 32 lines on S, so A = I. �

Let A ∈ GL(S). Since A(Δ0) is a line, by Lemma 5.1 there exists a unique
involution ε ∈ Inv(S) such that ε◦A(Δ0) = Δ0. We associate to A the permutation
σ ∈ S6 such that

(5.2) ε ◦A(pi) = pσ(i) for i = 1, . . . , 6.

Note that σ = id iff ε ◦A|Δ0
= I|Δ0

iff ε ◦A = I (by Lemma 5.1) iff A ∈ Inv(S).

Definition 5.2. GL0(S) is the subgroup of GL(S) of linear automorphisms A such
that A(Δ0) = Δ0.

Lemma 5.3. Let A ∈ GL(S) and σ ∈ S6 be the permutation associated to A by
(5.2). Then, for any 1 ≤ i ≤ 6 we have:

(5.3) A ◦ ε(i) = ε(σ(i)) ◦A.

Proof. Let B = ε ◦ A. Then B(Δ0) = Δ0 and B(pi) = pσ(i), so B(Δi) = Δσ(i).
The unique line cutting Δσ(i) and Δσ(j) is Δσ(i)σ(j), hence B(Δij) = Δσ(i)σ(j).
Then

B(pij) = B(Δi ∩Δij) = B(Δi) ∩B(Δij) = Δσ(i) ∩Δσ(i)σ(j) = pσ(i)σ(j).

Now one sees that (ε ◦ A)−1 ◦ ε(σ(i)) ◦ (ε ◦ A) acts like ε(i) on pj . By Lemma 5.1

and knowing that Inv(S) is commutative, we conclude A ◦ ε(i) = ε(σ(i)) ◦A. �

Proposition 5.4. Let ψ : GL(S) −→ GL0(S) be the map A �→ ε ◦ A defined by
formula (5.2). We have an exact sequence of groups

1 −→ Inv(S) −→ GL(S) ψ−→GL0(S) −→ 1.

By Proposition 5.4, Inv(S) = ker(ψ) is a normal subgroup of GL(S).

Corollary 5.5. For any linear automorphism A of S not in Inv(S), the centralizer
of A in Inv(S) is not equal to Inv(S).

We now show that GL0(S) is in bijection with the group of linear automorphisms
of Δ0 which invariate the set {pi, i = 1, . . . , 6}. Lemma 5.1 and Proposition 5.6
below give necessary and sufficient conditions for the existence of nontrivial elements
of GL0(S). For the existence of noncommuting involutions of S, see [8], Section 6.

Proposition 5.6. Let σ ∈ S6 and let B : Δ0 −→ Δ0 be a linear automorphism
of Δ0 such that for 1 ≤ i ≤ 6, we have B(pi) = pσ(i). Then there exists a unique
A ∈ GL0(S) such that A|Δ0

= B.

Proof. Suppose σ and B given. If A exists, it is unique by Lemma 5.1 and σ is the

permutation associated to A defined by (5.2). Let Ã be the linear operator of P5

(polynomials of degree ≤ 5) associated to A. Let a, b, c, d ∈ k̄ such that

Ã(1) = aX + b and Ã(X) = cX + d .
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After some linear algebra and using (5.3), we find that the image of a point p ∈ S
represented by P (X) =

∑
j πjPj(X) is

(5.4) Ã(P (X)) =
∑
j

(
πj

ωj

ωσ(j)
(aθσ(j) + b)

)
︸ ︷︷ ︸

π′
σ(j)

Pσ(j)(X) .

We have to prove that the point (π′
1 : . . . : π′

6) satisfies equations (3.3).

We show that kσ(j)ωσ(j)π
′2
σ(j) = αjωjπ

2
j for a quadratic polynomial αj in θj . We

have:
kσ(j)ωσ(j)π

′2
σ(j) = kσ(j)(aθσ(j) + b)2

ωj

ωσ(j)
ωjπ

2
j ,

and then
αj = kσ(j)(aθσ(j) + b)2

ωj

ωσ(j)
.

Write Ã(X − θi) in two ways, using the fact that A(pi) = pσ(i) or linearity of Ã:

μj(X − θσ(j)) = Ã(X − θj) = cX + d− θj(aX + b) where μj ∈ k̄ .

Replacing X = θσ(j), we obtain the formula

(5.5) θj =
cθσ(j) + d

aθσ(j) + b
,

which gives the relations between the roots of F (X) necessary for the existence of
the linear automorphism B.

Now, we calculate ωj replacing each θj by the formula (5.5):

ωj =
∏
i �=j

(θi − θj) =
∏
i �=j

(
cθσ(i) + d

aθσ(i) + b
−

cθσ(j) + d

aθσ(j) + b

)

=
1

(aθσ(j) + b)4
1∏

i(aθσ(i) + b)︸ ︷︷ ︸
constant

∏
i �=j

⎛
⎝(θσ(i) − θσ(j)) (bc− ad)︸ ︷︷ ︸

constant

⎞
⎠ .

Call γ the constant part of the equation:

(5.6)
ωj

ωσ(j)
=

γ(
aθσ(j) + b

)4 .

Replacing (5.6) in αj , we have:

αj = kσ(j)(aθσ(j) + b)2
γ(

aθσ(j) + b
)4 = γ

kσ(j)(
aθσ(j) + b

)2 .

To see that αj is quadratic in θj (for each kj), we use formula (5.5) to obtain:

aθj − c =
ad− bc

aθσ(j) + b
which gives the result for kσ(j) = 1;

a2θ2j − c2 =
2ac(ad− bc)θσ(j) + a2d2 − b2c2

(aθσ(j) + b)2

which gives the result for kσ(j) = θσ(j);

bθj − d =
(bc− ad)θσ(j)

aθσ(j) + b
which gives the result for kσ(j) = θ2σ(j) . �
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E-mail address: constantin.manoil@edu.ge.ch
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