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ACCURACY-ENHANCEMENT OF DISCONTINUOUS GALERKIN

SOLUTIONS FOR CONVECTION-DIFFUSION EQUATIONS

IN MULTIPLE-DIMENSIONS

LIANGYUE JI, YAN XU, AND JENNIFER K. RYAN

Abstract. Discontinuous Galerkin (DG) methods exhibit “hidden accuracy”
that makes superconvergence of this method an increasing popular topic to ad-
dress. Previous investigations have focused on the superconvergent properties
of ordinary differential equations and linear hyperbolic equations. Addition-
ally, superconvergence of order k + 3

2
for the convection-diffusion equation

that focuses on a special projection using the upwind flux was presented by
Cheng and Shu. In this paper we demonstrate that it is possible to extend the
smoothness-increasing accuracy-conserving (SIAC) filter for use on the multi-
dimensional linear convection-diffusion equation in order to obtain 2k+m order
of accuracy, where m depends upon the flux and takes on the values 0, 1

2
, or

1. The technique that we use to extract this hidden accuracy was initially in-

troduced by Cockburn, Luskin, Shu, and Süli for linear hyperbolic equations
and extended by Ryan et al. as a smoothness-increasing accuracy-conserving
filter. We solve this convection-diffusion equation using the local discontinuous
Galerkin (LDG) method and show theoretically that it is possible to obtain
O(h2k+m) in the negative-order norm. By post-processing the LDG solution
to a linear convection equation using a specially designed kernel such as the
one by Cockburn et al., we can compute this same order accuracy in the L2-
norm. Additionally, we present numerical studies that confirm that we can
improve the LDG solution from O(hk+1) to O(h2k+1) using alternating fluxes
and that we actually obtain O(h2k+2) for diffusion-dominated problems.

1. Introduction

Discontinuous Galerkin (DG) methods exhibit “hidden accuracy” that makes the
superconvergence of this method an increasing popular topic to address. Previous
investigations have focused on the superconvergent properties of ordinary differen-
tial equations, linear hyperbolic equations, and using a special projection of the
solution [1, 4, 3, 23]. This paper shows that by using an alternative convolution
kernel approach we can obtain accuracy of order 2k+m for the multi-dimensional
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time-dependent linear convection equation,

ut +
d∑

i=1

ai uxi
+ aou− εΔu = 0, (x, t) ∈ Ω× (0, T ],(1.1)

u(x, 0) = u0(x),(1.2)

where ai, i = 0, . . . , d are constant, ε ≥ 0, and k is the highest degree polynomial
used in the approximation and m = 0, 1

2 , 1, depends upon the flux. For simplicity,
we always consider the domain Ω to have unit length in each coordinate direction.

In order to solve this problem computationally, we implement the local discontin-
uous Galerkin (LDG) method [6, 8, 9]. This technique uses an approximation space
consisting of piecewise polynomials of degree less than or equal to k. However, to
deal with the higher-order derivative term, we implement an alternative auxiliary
formulation common in differential equations. The LDG method is a particularly
nice method that is suitable for unstructured meshes as well as parallelization due
to the properties of the approximation space and the choice of the numerical flux.

Superconvergence of convection-diffusion equations has been addressed by Ad-
jerid and Klauser in [1]. They demonstrated that it was possible to obtain k+2
order of accuracy at the Radau points for convection dominated differential equa-
tions. The same order of accuracy is obtained for diffusion dominated problems for
the derivative of the solution at the roots of the derivative of the Radau polynomi-
als. Additionally, superconvergence for the convection-diffusion partial differential
equation that focuses on a special projection using the upwind flux was presented
by Cheng and Shu in [4]. This superconvergence was of the order k + 3

2 . Celiker
and Cockburn found superconvergence of order 2k+1 for the numerical traces at
the nodes of the mesh for conservative solutions [3]. Recently, Zhang, Xie, and
Zhang [23] built upon the work of Celiker and Cockburn and relate the leading
terms of the discretization errors of the minimal dissipation LDG method to the
right and left Radau polynomials, as well as to the Legendre polynomials for the
consistent DG method. However, our method focuses on extracting this “extra” ac-
curacy from the solution by using a specially designed convolution kernel to obtain
superconvergence.

In this paper, we provide a theoretical and computational extension of this convo-
lution kernel approach to obtain superconvergence for the multi-dimensional linear
convection-diffusion equation that improves the convergence rate from order k+1
for the LDG method to 2k+m, m = 0, 1

2 , 1, for the filtered LDG method, where m
depends upon the flux. This convolution kernel falls under the area of smoothness-
increasing accuracy-conserving (SIAC) filters studied by Ryan, Kirby et al. [17].
This technique was initially introduced for discontinuous Galerkin approximations
by Cockburn, Luskin, Shu, and Süli for linear hyperbolic equations [7]. It is based
upon previous work by Mock and Lax [12] and Bramble and Schatz [2]. We solve
this convection-diffusion equation using the LDG method and show theoretically
that it is possible to obtain O(h2k+1) in the negative-order norm, provided an al-
ternating flux is chosen. By applying the SIAC filter to the LDG solution of a
linear convection-diffusion equation, we can compute this same order accuracy in
the L2-norm. Additionally, we present numerical studies that confirm that we can
improve the LDG solution from O(hk+1) to O(h2k+1) and that we actually obtain
O(h2k+2) for diffusion-dominated problems.



ACCURACY-ENHANCEMENT OF DISCONTINUOUS GALERKIN SOLUTIONS 1931

The paper is organized as follows. In Section 2, we introduce the LDG method
and SIAC filtering as well as the relevant notation that will be required for the proof
of our method. In Section 3 we prove the negative-order norm estimates for the
multi-dimensional linear convection-diffusion equation. These results are confirmed
numerically in Section 4.

2. Notations, definitions and projections

We begin by defining the necessary notations used in the proof of accuracy en-
hancement of discontinuous Galerkin solutions for linear convection-diffusion equa-
tions. This is done for projections and interpolations for the finite element spaces
used in the error analysis.

2.1. Tessellation and function spaces. Let Th denote a tessellation of the do-
main Ω with shape-regular elements K. Let Γ denote the union of the boundary
faces of elements K ∈ Th, i.e., Γ =

⋃
K∈Th

∂K, and Γ0 = Γ\∂Ω.
In order to describe the flux functions define e to be a face shared by the “left”

and “right” elements KL and KR (we refer to [21] and [20] for a proper definition
of “left” and “right” in our context). The normal vectors νL and νR on edge e
point exterior to KL and KR, respectively. If ψ is a function on KL and KR, but
possibly discontinuous across e, let ψL denote (ψ|KL

)|e and ψR denote (ψ|KR
)|e,

the left and right traces, respectively.
Let Qk(K) be the space of tensor product polynomials of degree at most k ≥ 0

on K ∈ Th in each variable. The finite element spaces are denoted by

Vh =
{
ϕ ∈ L2(Ω) : ϕ|K ∈ Qk(K), ∀K ∈ Th

}
,

Σh =
{
η = (η1, · · · , ηd)T ∈ (L2(Ω))d : ηl|K ∈ Qk(K), l = 1 · · · d, ∀K ∈ Th

}
.

For purposes of the negative-order norm estimates, it is also allowable to consider
the space

Vh =
{
ϕ ∈ L2(Ω) : ϕ|K ∈ Pk(K), ∀K ∈ Th

}
,

Σh =
{
η = (η1, · · · , ηd)T ∈ (L2(Ω))d : ηl|K ∈ Pk(K), l = 1 · · · d, ∀K ∈ Th

}
,

where Pk(K) is the usual polynomial space. For the one-dimensional case, we
have Qk(K) = Pk(K). Note that functions in Vh and Σh are allowed to have
discontinuities across element interfaces. Furthermore, we note that this flexibility
in the choice of the function spaces (Pk or Qk) applies to the negative-order norm
error estimates of the LDG solution, but that the post-processing kernel is applied
in a tensor product fashion and therefore for the superconvergence extraction by
the kernel we require Qk polynomials.

We use the following notation for the L2-norm in Ω and on the boundary

‖η‖Ω =

(∫
Ω

η2dx

) 1
2

, ‖η‖∂Ω =

(∫
∂Ω

η2ds

) 1
2

,(2.1)

and define the �-norm in Ω as

‖η‖�,Ω =

⎛⎝ ∑
|α|≤�

‖Dαη‖2Ω

⎞⎠ 1
2

, � > 0.(2.2)
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Without loss of generality, we use the notation ‖η‖� instead of ‖η‖�,Ω. We also use
the following inner product notation

(w, v)Ω =
∑
K

∫
K

wv dK, (q,p)Ω =
∑
K

∫
K

q·p dK.(2.3)

Lastly, given � > 0, we define the negative-order norm on the domain Ω as

‖η‖−�,Ω = sup
Φ∈C∞

0 (Ω)

(η,Φ)Ω
‖Φ‖�,Ω

.(2.4)

We define the following notation for the difference quotients

∂h,jv(x) =
1

h

(
v

(
x+

1

2
hej

)
− v

(
x− 1

2
hej

))
,(2.5)

here ej is the multi-index whose jth component is 1 and all others 0. For any
multi-index α = (α1, · · · , αd) we set the αth-order difference quotient

∂α
h v(x) = (∂α1

h,1 · · · ∂
αd

h,d)v(x).(2.6)

2.2. Projection and interpolation properties. For the accuracy enhancement
of the DG solution to be effective, it is necessary to perform an L2-projection of
the initial function. In what follows, we will consider the standard L2-projection
P for scalar functions and Π for vector-valued functions. Denote Ω =

⋃
K as the

domain. K is any element in our mesh with Γ =
⋃
∂K being the sum of all the

boundary elements ∂K. It is well known that (cf. [5])

‖ηe‖Ω + h‖ηe‖L∞(Ω) + h
1
2 ‖ηe‖Γ ≤ Chk+1‖η‖k+1,Ω,(2.7)

‖pe‖Ω + h‖pe‖L∞(Ω) + h
1
2 ‖pe‖Γ ≤ Chk+1‖p‖k+1,Ω,

where ηe = Pη − η and pe = Πp − p. We note that the positive constant C is
independent of h. These properties of the projection will be used to estimate the
negative-order norm in Lemmas 3.3–3.5.

2.3. Regularity for the convection-diffusion equation. An essential ingredi-
ent in the error analysis is given by the regularity result:

Lemma 2.1. For any time t we have the property for equation (1.1)

‖u(x, t)‖�,Ω ≤ C‖u(x, 0)‖�,Ω(2.8)

and (∫ T

0

‖u(x, t)‖2�+1,Ω dt

)1/2

≤ C‖u(x, 0)‖�,Ω,(2.9)

for � ≥ 0, where C is a constant depends on a, ε and final time T .

Remark 2.1. The proof of Lemma 2.1 is trivial and can be found by simply applying
the method of separation of variables.
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2.4. The LDG method for convection-diffusion equations. In this section,
we consider the LDG method for convection-diffusion equations in Ω,

ut +
d∑

i=1

ai uxi
+ aou− εΔu = 0, (x, t) ∈ Ω× (0, T ],(2.10)

with ε ≥ 0 and smooth initial conditions,

u(x, 0) = u0(x).(2.11)

We assume that periodic boundary conditions are given.
In order to define the LDG scheme, we begin by defining μ =

√
ε and rewriting

the equations using an auxiliary formulation,

ut +

d∑
i=1

ai uxi
+ aou− μ∇· q = 0,(2.12a)

q − μ∇u = 0.(2.12b)

The approximate solution, (uh(x, t), qh(x, t)), given by the LDG method are sought
in the finite element space Vh and Σh. That is, for any ψ ∈ Vh and φ ∈ Σh, (uh, qh)
satisfies ∫

K

(uh)tψ dK−
d∑

i=1

∫
K

uh(ai ψxi
) dK +

∫
K

aouhψ dK +

∫
K

μqh· ∇ψ dK

+
d∑

i=1

∫
∂K

aiνiũhψ ds−
∫
∂K

μq̂h·νψ ds = 0,(2.13a) ∫
K

qh·φ dK+

∫
K

μuh∇·φ dK −
∫
∂K

μûhν·φ ds = 0,(2.13b)

where ν = (ν1, . . . , νd) is the unit outward normal vector for the integration domain.
The “hat” and “tilde” terms in (2.13) in the cell boundary terms obtained from
integration by parts are the so-called “numerical fluxes”, which are single-valued
functions defined on the edges. These fluxes are designed based on different guiding
principles for the given partial differential equation in order to ensure stability [20].
For the numerical experiments, the choice of ũh is chosen to satisfy the upwind
condition depending on the sign of ai, i = 1, . . . , d. Without lost of generality, we
assume ai ≥ 0, i = 1, . . . , d, which gives

ũh = uL
h(2.14)

and ûh, q̂h are chosen to be alternating fluxes, i.e.,

ûh = uL
h , q̂h = qR

h(2.15)

or

ûh = uR
h , q̂h = qL

h .(2.16)

Summing (2.13) over K, we get

((uh)t, ψ)Ω +B1(qh, uh;ψ) = 0,(2.17)

(qh,φ)Ω +B2(uh;φ) = 0,(2.18)



1934 LIANGYUE JI, YAN XU, AND JENNIFER K. RYAN

where the bilinear forms B1 and B2 are defined as

B1(qh, uh;ψ) = −
d∑

i=1

(uh, aiψxi
)Ω + (uh, aoψ)Ω + (qh, μ∇ψ)Ω

+
∑
K

(
d∑

i=1

∫
∂K

aiνiũhψ ds−
∫
∂K

μq̂h·νψ ds

)
,

B2(uh;φ) = (uh, μ∇·φ)Ω −
∑
K

∫
∂K

μûhν·φ ds.

Although this paper focuses on the use of scheme (2.13), we can easily obtain a
different method to solve the convection-diffusion equation depending on the choice
of numerical fluxes [19, 22]. The choice of the flux will give different accuracy results
that affect the estimates for negative-order norm. Therefore, we concentrate on the
general results for the convection-diffusion equation where the flux is not specified.
However, to complete our superconvergence result we will need the following lemma:

Lemma 2.2. If u, q and uh, qh are solutions to (2.12) and (2.13), respectively,
then for T > 0 we have

max
t

‖u− uh‖Ω +

(∫ T

0

‖q − qh‖2Ω dt

)1/2

≤ Chk+m,(2.19)

where C is a constant independent of h that depends on ‖u0‖Hk+1 and T . m is
some constant that depends on the choice of numerical flux in (2.13).

Remark 2.2. For Lemma 2.2, m ≥ 0 and can be taken to be 0, 1
2 or 1. In this

paper, we consider the case where m = 1, this is for the choice of fluxes given in
(2.14) and (2.15) or (2.16). We refer the reader to [19] and [22] for details.

2.5. Smoothness-increasing accuracy-conserving filters. In order to obtain
the superconvergence of the LDG method in the L2-norm, we implement a smooth-
ness-increasing accuracy-enhancing (SIAC) filter. This filter works by essentially
inducing smoothness in the field by convolving the solution against a specially
chosen kernel,

(2.20) u�
h = K2k+1,k+1

h � uh.

In this formulation, u�
h is the filtered solution, uh is the LDG solution calculated

at the final time, and K2k+1,k+1
h (x) = K2k+1,k+1(x/h)/hd is the convolution ker-

nel. This kernel allows the extraction of hidden accuracy that is detected by the
negative-order norm. It is a linear combination of B-splines of order k+1 obtained
by convolving the characteristic function over the interval (− 1

2 ,
1
2 ) with itself k

times. Using B-splines makes this kernel computationally efficient, provided the
mesh is uniform, as the kernel is translation invariant and is locally supported in
at most 2k +2 elements. The one-dimensional convolution kernel is of the form

(2.21) K2k+1,k+1
h (x) =

1

h

k∑
γ=−k

c2k+1,k+1
γ ψ(k+1)

(x
h
− γ

)
,

and, given an arbitrary x = (x1, . . . , xd) ∈ Rd, we set

ψ(k+1)(x) = ψ(k+1)(x1) · · ·ψ(k+1)(xd).(2.22)
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The kernel for the multidimensional space considered is of the form

(2.23) K2k+1,k+1
h (x) =

∑
γ∈Zd

c2k+1,k+1
γ ψ(k+1)(x− γ).

The coefficients, c2k+1,k+1
γ , are tensor products of the one-dimensional coefficients.

These one-dimensional coefficients are chosen such that K2(k+1),k+1 ∗ p = p for
polynomials p of degree 2k.

The original use of this kernel was by Mock and Lax [12] and Bramble and
Schatz [2] for continuous finite element solutions. Cockburn, Luskin, Shu, and
Süli [7] specifically addressed linear hyperbolic equations using the discontinuous
Galerkin method and demonstrate that it is feasible to raise the order of accuracy
of the DG solution from k+1 to 2k+1. Below we discuss the kernel properties as
well as the computational efficiency.

2.5.1. Kernel Properties. This convolution kernel has the two following important
properties that are used to show its accuracy enhancing capabilities:

Proposition 2.3 (Bramble and Schatz [2]). Let Ω0 + 2supp(K2k+1,k+1
h (x)) ⊂⊂

Ω1 ⊂ Ω then

‖u−K2k+1,k+1
h � u‖0,Ω0

≤ Ch2k+1|u|0,Ω1
,(2.24)

where C depends solely on Ω0,Ω1, d, k, c
2k+1,k+1
γ , and is independent of h.

The second important property allows us to express derivatives of the convolution
with the kernel in terms of simple difference quotients.

Proposition 2.4 (Bramble and Schatz [2]). Let Ω0 + 2supp(K2k+1,k+1
h (x)) ⊂⊂

Ω1 ⊂ Ω and α be any multi-index with αi ≤ k + 1, i = 1, . . . , d. Then for any fixed
integer s (positive or negative) we have

‖Dα(K2k+1,k+1
h � u)‖s,Ω0

≤ C‖∂α
hu‖s,Ω1

, for all u ∈ Hs(Ω1),(2.25)

where C depends solely on Ω0,Ω1, d, k, c
2k+1,k+1
γ , and is independent of h.

Using Propositions 2.3 and 2.4 we state an approximation result which allows
the kernel to extract the hidden accuracy in the negative-order norm.

Theorem 2.5 (Bramble and Schatz [2]). For T > 0, let u be the exact solution

of the problem (2.10). Let Ω0 + 2supp(K2k+1,k+1
h (x)) ⊂⊂ Ω1 ⊂ Ω, where U is any

approximation to u, then

‖u(T )−K2k+1,k+1
h � U‖0,Ω0

≤ C1h
2k+1|u|2k+1,Ω1

+ C2

∑
|α|≤k+1

‖∂α
h (u− U)‖−(k+1),Ω1

.

where C1 and C2 depends solely on Ω0,Ω1, d, k, c
2k+1,k+1
γ , independent of h.

Remark 2.3. For our problem we only consider periodic boundary conditions and
we take U = uh to be an approximation obtained by using the LDG method. We
can obtain the estimation for the whole domain, i.e., Ω0 = Ω by considering Ω\Ω0

as the interior part of a new period.
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We neglect to provide the details of this proof, which is shown in [7] and [2] as
well as that of Ryan and Cockburn [13] and Thomée [18], where a similar result
was presented for the derivatives of the post-processed solution for linear hyperbolic
equations.

2.5.2. Computational Efficiency. We emphasize that this accuracy enhancement
is achieved by post-processing the approximate solution only once, at the end of
the computation, at t = T . This makes for efficient computation of the post-
processed approximation. Additionally, it is computationally efficient due to the
locally compact support property and can further be improved by choosing specific
points within an element as evaluation points, such as the gauss points. This allows
the post-processed solution to be evaluated through small matrix-vector operations.

For further illustration of the computational efficiency, let us investigate the one-
dimensional computation. Using the uniform mesh assumption the exact evaluation
of u∗

h(x) is evaluated by using (2.20) and (2.21). This allows us to write the post-
processed solution as

u∗
h(x) =

k′∑
m=−k′

k∑
l=0

u
(l)
j+m(T )C(m, l, k, x),(2.26)

for x ∈ Ij , where Ij is the element of the mesh that the evaluation point lies.
In this equation, k′ = �(3k + 1)/2�, and C(m, l, k, x) is a polynomial of degree

2k+1 depending on the evaluation point, x. We note that u
(l)
j+m(T ) are the coeffi-

cients in the LDG approximation at the final time. The post-processing coefficients,
C(m, l, k, x), of the post-processing matrix are given by

(2.27) C(m, l, k, x) =
1

h

k∑
γ=−k

c2k+1,k+1
γ

∫
Ij+m

ψ(k+1)

(
y − x

h
− γ

)
ϕ
(l)
j+m(y) dy

where ϕ
(l)
j+m represents the basis of the approximation that are contained in Vh.

As mentioned previously, we can choose to evaluate the post-processed solution at
specific points within an element, such as the Gauss-Legendre points. Then the
post-processing matrix values are the same for every element and only need to
be computed once. We note that this post-processing operation can be computed
in O(N) operations as given in [10]. See [15, 17, 10] for efficient computation in
two-dimension.

3. Theoretical error estimates

In this section, we show that for a given time T , the approximate solution,
uh(T ), converges with higher order in the L2-norm when convolved with a specially
designed kernel.

Theorem 3.1. Let uh be the approximate solution to the linear convection-diffusion

equation (2.10) given by the LDG method (2.13). Let K2k+1,k+1
h be a convolution

kernel consisting of 2k+1 B-splines of order k+1 such that it reproduces polynomials
of degree 2k (2.21). Assuming that the initial data, uo, is smooth enough, we then
obtain the error estimate

(3.1) ‖u− u�
h‖Ω ≤ C(uo, T )h

2k+m,

where u�
h = K2k+1,k+1

h � uh and m = 0, 1
2 or 1.
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We accomplish this by showing higher-order convergence in the negative-order
norm. Then, as noted in [7], because we are dealing with a linear equation, we then
have

(3.2) ‖∂α
h (u− uh)‖−�,Ω ≤ C‖∂α

hu0‖�,Ω h2k+m.

Therefore, as long as this increased accuracy can be demonstrated in the negative-
order norm, then we have O(h2k+m) accuracy for the post-processed solution in
the L2-norm. This is shown by combining Theorem 2.5 and as well as the proof
of higher-order convergence in the negative-order norm, which then allows this
convolution kernel to extract the hidden accuracy in the LDG solution.

3.1. Negative order norm estimates in multi-dimensions. In this section we
will give the detailed proof for:

Theorem 3.2. Let uh be the approximate solution to the linear convection-diffusion
equation (2.10) given by the LDG method (2.13). Assuming that the initial data,
uo, is smooth enough, we then obtain the error estimate in negative-order norm

(3.3) ‖u− uh‖−(k+1),Ω ≤ C(uo, T )h
2k+m

where C(uo, T ) depends on the ‖uo‖k+1,Ω and T, independent of h, and m = 0, 1
2

or 1, depending on the choice of numerical fluxes.

The main idea behind the proof is to use the dual argument. This approach is
clear when we consider the definition of the negative-order norm. That is, given
that � > 0, we wish to estimate

‖u(T )− uh(T )‖−�,Ω = sup
Φ∈C∞

0 (Ω)

(u(T )− uh(T ),Φ)Ω
‖Φ‖�,Ω

,(3.4)

for the result in Theorem 3.2 to be valid. We follow the analysis in [7].
Our dual equation is defined as: find a function ϕ such that ϕ(·, t) is one-periodic

for all t ∈ [0, T ] and

ϕt +
d∑

i=1

aiϕxi
− aoϕ+ εΔϕ = 0, Ω× [0, T )(3.5)

ϕ(x, T ) = Φ(x).(3.6)

Note that if we multiply (2.10) by ϕ and (3.5) by u, we have

d

dt
(u, ϕ)Ω = 0.(3.7)

This relation allows us to estimate the term (u(T ) − uh(T ),Φ)Ω appearing in the
definition of the negative norm (3.4). That is,

(u(T )− uh(T ),Φ)Ω = (u(0)− uh(0), ϕ(0))Ω −
∫ T

0

((uh)t, ϕ)Ωdt−
∫ T

0

(uh, ϕt)Ωdt.

We can rewrite this following [7] by adding and subtracting the piecewise polynomial
function χ ∈ Vh. We use this along with the continuity of ϕ, the periodic boundary
conditions, definition of the dual equation and the method in order to write

((uh)t, ϕ)Ω + (uh, ϕt)Ω(3.8)

= ((uh)t, ϕ− χ)Ω +B1(qh, uh;ϕ− χ) + (uh, ϕt)Ω −B1(qh, uh;ϕ).
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Let us consider more closely the term (uh, ϕt)Ω−B1(qh, uh;ϕ), which is correspond-
ing to the second-order derivative term and is the main different part comparing to
the derivation in [7]. Using the definition of B1 and the continuity of ϕ and the pe-
riodic nature of the boundary conditions, the modified expression for B1(qh, uh;ϕ)
is then

B1(qh, uh;ϕ) = −
d∑

i=1

(uh, aiϕxi
)Ω + (aouh, ϕ)Ω + (qh, μ∇ϕ)Ω

= (qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω + (qh, μΠ(∇ϕ))Ω

−
d∑

i=1

(uh, aiϕxi
)Ω + (aouh, ϕ)Ω,

where Π(∇ϕ) is the L2-projection of ∇ϕ onto the piecewise polynomial space Σh.
Next, we use the equation for qh, (2.18), and take φ = Π(∇ϕ). This gives

B1(qh, uh;ϕ) =(qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω − μB2(uh; Π(∇ϕ))

−
d∑

i=1

(uh, aiϕxi
)Ω + (aouh, ϕ)Ω,

so that

(uh, ϕt)Ω −B1(qh, uh;ϕ) =(uh, ϕt +
d∑

i=1

aiϕxi
− aoϕ)Ω

− (qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω + μB2(uh; Π(∇ϕ)).

Recall the definition of the dual equation (3.5)

ϕt +
d∑

i=1

aiϕxi
− aoϕ = −εΔϕ.

Using this, combined with the above, we have

(uh, ϕt)Ω −B1(qh, uh;ϕ) =− (uh, εΔϕ)Ω + μB2(uh;∇ϕ)

− (qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω − μB2(uh;∇ϕ−Π(∇ϕ)).

We now use the definition of B2 to obtain

−(uh, εΔϕ)Ω + μB2(uh;∇ϕ) =−
∑
K

∫
∂K

εûhν· ∇ϕds = 0,

where the last equality stems from the continuity of ∇ϕ and the periodic boundary
conditions of ϕ. We remind the reader that the numerical fluxes are single valued
and are given by equation (2.14) together with (2.15) or (2.16). Because we assume
that we have periodic boundary conditions, the boundary fluxes will also cancel.
Finally, (3.8) becomes

((uh)t, ϕ)Ω + (uh, ϕt)Ω =((uh)t, ϕ− χ)Ω +B1(qh, uh;ϕ− χ)

− (qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω − μB2(uh;∇ϕ−Π(∇ϕ)).



ACCURACY-ENHANCEMENT OF DISCONTINUOUS GALERKIN SOLUTIONS 1939

Therefore we have the estimate

(u(T )− uh(T ),Φ)Ω

= (u(0)− uh(0), ϕ(0))Ω −
∫ T

0

((uh)t, ϕ)Ωdt−
∫ T

0

(uh, ϕt)Ωdt

= (u(0)− uh(0), ϕ(0))Ω −
∫ T

0

(
((uh)t, ϕ− χ)Ω +B1(qh, uh;ϕ− χ)

)
dt

+

∫ T

0

(
(qh, μ

(
∇ϕ−Π(∇ϕ)

))
Ω
+ μB2(uh;∇ϕ−Π(∇ϕ))

)
dt

= Θ1 +Θ2 +Θ3,

where

Θ1 = (u(0)− uh(0), ϕ(0))Ω,

Θ2 = −
∫ T

0

(
((uh)t, ϕ− χ)Ω +B1(qh, uh;ϕ− χ)

)
dt,

Θ3 =

∫ T

0

(
(qh, μ

(
∇ϕ−Π(∇ϕ)))Ω + μB2(uh;∇ϕ− Π(∇ϕ))

)
dt.

We now give separate estimates for Θ1, Θ2, and Θ3.

Lemma 3.3 (Estimating the first term: projection). There exists a positive con-
stant C1, independent of h, such that

|Θ1| ≤ C1 h
2k+2‖u0‖k+1‖ϕ(0)‖k+1.(3.9)

Proof. In practice we usually choose uh(x, 0) = Pu0(x) which is the standard L2-
projection of the initial function. This gives the following for Θ1:

Θ1 = (u(0)− uh(0), ϕ(0))Ω = (u0 − Pu0, ϕ(0))Ω

= (u0 − Pu0, ϕ(0)− Pϕ(0))Ω,

where the last equality is due to the property of the L2-projection. Using the
Cauchy-Schwarz inequality, we then have

|Θ1| ≤ ‖u0 − Pu0‖Ω‖ϕ(0)− Pϕ(0)‖Ω ≤ C1 h
2k+2‖u0‖k+1‖ϕ(0)‖k+1. �

Lemma 3.4 (Estimating the second term: residual). There exists a positive con-
stant C2, independent of h, such that

|Θ2| ≤ C2 h
k

⎛⎝(∫ T

0

‖uh − u‖2Ωdt
)1/2

+

(∫ T

0

‖qh − q‖2Ωdt
)1/2

⎞⎠(∫ T

0

‖ϕ‖2k+1dt

)1/2

.

(3.10)

Proof. Θ2 is defined as

Θ2 = −
∫ T

0

(((uh)t, ϕ− χ)Ω +B1(qh, uh;ϕ− χ)) dt.

Let χ = Pϕ and consider the terms inside the integral. We then have that

((uh)t, ϕ− Pϕ)Ω = 0
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and

B1(qh, uh;ϕ− Pϕ) = −
d∑

i=1

(uh, ai(ϕ− Pϕ)xi
)Ω

+ (uh, ao(ϕ− Pϕ))Ω + (qh, μ∇(ϕ− Pϕ))Ω

+
∑
K

(
d∑

i=1

∫
∂K

aiνiũh(ϕ− Pϕ)ds−
∫
∂K

μq̂h·ν(ϕ− Pϕ)ds

)

=

d∑
i=1

(ai(uh)xi
, (ϕ− Pϕ))Ω + (aouh, ϕ− Pϕ)Ω − (μ∇· qh, (ϕ− Pϕ))Ω

−
∑
K

(
d∑

i=1

∫
∂K

aiνiuh(ϕ− Pϕ)ds−
∫
∂K

μqh·ν(ϕ− Pϕ)ds

)

+
∑
K

(
d∑

i=1

∫
∂K

aiνiũh(ϕ− Pϕ)ds−
∫
∂K

μq̂h·ν(ϕ− Pϕ)ds

)

=
∑
K

(
d∑

i=1

∫
∂K

aiνi(ũh − uh)(ϕ− Pϕ)ds−
∫
∂K

μ(q̂h − qh)·ν(ϕ− Pϕ)ds

)

=
∑
K

d∑
i=1

∫
∂K

aiνi(ũh − u+ u− uh)(ϕ− Pϕ)ds

−
∑
K

∫
∂K

μ(q̂h − q + q − qh)·ν(ϕ− Pϕ)ds.

Using an inverse inequality, we can estimate Θ2 by

|Θ2| ≤ h−1

∫ T

0

Ĉ2‖uh − u‖Ω‖ϕ− Pϕ‖Ωdt+ h−1

∫ T

0

μ‖qh − q‖Ω‖ϕ− Pϕ‖Ωdt

≤ C2 h
k

⎛⎝(∫ T

0

‖uh − u‖2Ωdt
)1/2

+

(∫ T

0

‖qh − q‖2Ωdt
)1/2

⎞⎠(∫ T

0

‖ϕ‖2k+1dt

)1/2

.

�

Lemma 3.5 (Estimating the third term: consistency). There exists a positive
constant C3, independent of h, such that

|Θ3| ≤ C3 h
k

(∫ T

0

‖uh − u‖2Ωdt
)1/2 (∫ T

0

‖ϕ‖2k+2dt

)1/2

.(3.11)

Proof. Recall that Θ3 is given by

Θ3 =

∫ T

0

((qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω + μB2(uh;∇ϕ−Π(∇ϕ))) dt.

Using the property of the L2-projection, we know that (qh, μ
(
∇ϕ−Π(∇ϕ)

)
)Ω = 0

so that we are left with the part of the expression containing B2. Applying the
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definition of B2, we have

B2(uh;∇ϕ−Π(∇ϕ)) = (uh,∇· (∇ϕ−Π(∇ϕ)))Ω −
∑
K

∫
∂K

ûhν· (∇ϕ−Π(∇ϕ))ds

= −(∇uh, (∇ϕ−Π(∇ϕ)))Ω +
∑
K

∫
∂K

(uh − ûh)ν· (∇ϕ−Π(∇ϕ))ds

=
∑
K

∫
∂K

(uh − u+ u− ûh)ν· (∇ϕ−Π(∇ϕ))ds,

which gives the estimate

|B2(uh;∇ϕ−Π(∇ϕ))|
≤ Cah

−1/2‖uh − u‖ΩCbh
k+1/2‖∇ϕ‖k+1 ≤ C3h

k‖uh − u‖Ω‖ϕ‖k+2.

Therefore, we have

|Θ3| ≤ C3 h
k

(∫ T

0

‖uh − u‖2Ωdt
)1/2 (∫ T

0

‖ϕ‖2k+2dt

)1/2

. �

Combining Lemmas 3.3, 3.4, 3.5, we can now estimate the numerator used in
the negative-order norm:

(u(T )− uh(T ),Φ)Ω = Θ1 +Θ2 +Θ3

≤ C1h
2k+2‖u0‖k+1‖ϕ(0)‖k+1 + C3h

k

(∫ T

0

‖uh − u‖2Ωdt
)1/2 (∫ T

0

‖ϕ‖2k+2dt

)1/2

+ C2h
k

⎛⎝(∫ T

0

‖uh − u‖2Ωdt
)1/2

+

(∫ T

0

‖qh − q‖2Ωdt
)1/2

⎞⎠(∫ T

0

‖ϕ‖2k+1dt

)1/2

≤ C1h
2k+2‖u0‖k+1‖Φ‖k+1 + C3h

2k+m

(∫ T

0

‖ϕ‖2k+2dt

)1/2

+ C2h
2k+m

(∫ T

0

‖ϕ‖2k+1dt

)1/2

.

Notice that for the second and third terms, the convergence depends on the fluxes
(cf. Lemma 2.2). Therefore, after using Lemma 2.1 we have the estimate for the
negative norm given by

‖u(T )− uh(T )‖−(k+1),Ω = sup
Φ∈C∞

0 (I)

(u(T )− uh(T ),Φ)Ω
‖Φ‖k+1,I

≤ Chs,

where s = min(2k + 2, 2k + m). For our purposes, we have chosen an alternating
flux with m = 1. This same argument for the divided differences of the error,
(∂α

h (u(T )− uh(T )),Φ)Ω, can be repeated to obtain the same convergence result.

4. Numerical studies

In this section, we present numerical results confirming that we can indeed im-
prove on the convergence rate of the DG solution from O(hk+1) to O(h2k+1) for
the linear convection-diffusion equation. We consider both convection-dominated
and diffusion-dominated flows in one- and two-dimensions. All the examples are
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calculated by using the LDG method with an alternating flux with m = 1 as in [8]
on a uniform (quadrilateral) mesh. We use an L2-projection of the initial condi-
tions and calculate our errors using a six-point Gaussian quadrature. We use the
standard third-order SSP Runge-Kutta scheme [11] and take the time-step such
that the spatial errors dominate. In each example, we can clearly see that we get at
least O(h2k+1) after post-processing. We note that the usual convection-diffusion
equation in the one-dimensional case was presented in [7] showing the expected im-
provement to 2k+1 order of accuracy and therefore we neglect this example below.
The superconvergence of the pure convection equation is well documented [7, 15]
and therefore we neglect to present examples in this paper.

We note that the theoretical estimates presented hold for a uniform mesh as-
sumption. This gives the translation invariance of the post-processing kernel, and
this kernel only relies on (nearest) neighboring information. However, in [10] it was
demonstrated that higher-order information can also be extracted when the mesh
is nonuniform and the nonuniformity is given by an analytic function. This would
require re-evaluating the kernel for each post-processing evaluation point, making
the computational complexity of the post-processing step increase. However, we
note that the application of the post-processor is done only at the final time and
therefore the computational costs are neglegiable compared with calculation of the
LDG solution.

Example 4.1. We begin by presenting the linear scalar heat equation with a
smooth solution on the domain Ω = [0, 2π]:

ut = uxx, Ω× (0, T ], u(x, 0) = sin(x), x ∈ Ω(4.1)

with periodic boundary conditions. The errors are presented in Table 4.1 and Figure
4.1 and are computed at time T = 2.
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Figure 4.1. Plot of pointwise errors in log scale before (left) and
after post-processing (right) for the linear heat equation solved at
time T = 2 using the LDG method. The SIAC filter reduces the
oscillations in the LDG solution and improves the smoothness and
accuracy.

In Table 4.1, we can clearly see that for the linear heat equation we can improve
on the LDG scheme from O(hk+1) to O(h2k+2) may be due to the superconver-
gence of the scheme for the heat equation. The theory only guarantees O(h2k+1)
superconvergence, however, we speculate for diffusion-dominated flows the order of



ACCURACY-ENHANCEMENT OF DISCONTINUOUS GALERKIN SOLUTIONS 1943

Table 4.1. L2- and L∞-errors before and after post-processing
for the linear heat equation solved at time T = 2 using the LDG
method. Although the theory only guarantees O(h2k+1) conver-
gence in the L2-norm, we clearly see O(h2k+2) in both the L2- and
L∞-norms.

Before post-processing After post-processing

Mesh L2-error order L∞-error order L2-error order L∞-error order

P1

10 5.80E-003 – 7.69E-003 – 1.61E-004 – 2.62E-004 –

20 1.44E-003 2.01 1.92E-003 2.00 1.03E-005 3.96 1.66E-005 3.97

40 3.60E-004 2.00 4.83E-004 1.99 6.50E-007 3.99 1.05E-006 3.99

80 9.01E-005 2.00 1.21E-004 2.00 4.07E-008 4.00 6.60E-008 4.00

160 2.25E-005 2.00 3.02E-005 2.00 2.55E-009 4.00 4.13E-009 4.00

P2

10 2.91E-004 – 3.89E-004 – 1.83E-005 – 2.58E-005 –

20 3.63E-005 3.00 4.97E-005 2.97 3.02E-007 5.92 4.30E-007 5.91

40 4.54E-006 3.00 6.25E-006 2.99 4.79E-009 5.98 6.81E-009 5.98

80 5.67E-007 3.00 7.82E-007 3.00 7.49E-011 6.00 1.07E-010 6.00

160 7.09E-008 3.00 9.78E-008 3.00 1.17E-012 6.00 1.67E-012 6.00

P3

10 1.12E-005 – 1.31E-005 – 2.18E-006 – 3.08E-006 –

20 7.01E-007 4.00 8.16E-007 4.01 9.31E-009 7.87 1.32E-008 7.87

40 4.38E-008 4.00 5.14E-008 3.99 3.72E-011 7.97 5.26E-011 7.97

80 2.74E-009 4.00 3.22E-009 4.00 1.46E-013 7.99 2.07E-013 7.99

160 1.71E-010 4.00 2.08E-010 3.95 5.71E-016 8.00 8.08E-016 8.00

convergence will be closer to 2k+2. Additionally, we see significant improvement in
the magnitude of the errors. Plots of the pointwise errors are given in Figure 4.1.
The SIAC filter clearly works to rid the LDG errors of oscillations and improve the
order of accuracy.

Example 4.2. We next present a linear scalar convection-diffusion equation with
convection-dominated flow. We assume we have a smooth solution on the domain
Ω = [0, 2π]. The equation we consider is

ut + ux = 0.01uxx, Ω× (0, T ], u(x, 0) = sin(x), x ∈ Ω,(4.2)

with periodic boundary conditions. The errors again are computed at T = 2 and
the results are presented in Table 4.2 and Figure 4.2.

In this example we detect the effect after post-processing if we choose a larger
convection coefficient and a smaller diffusion coefficient. We notice that the results
are very similar to the linear wave equation, where we obtain improvement to order
2k+1 after post-processing.

Example 4.3. The last of the one-dimensional examples that we present is the
nonlinear viscous Burgers equation with forcing function on the domain Ω = [0, 2π]:

ut +

(
u2

2

)
x

= εuxx + f(x, t), Ω× (0, T ], u(x, 0) = sin(x), x ∈ Ω.(4.3)
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Table 4.2. L2- and L∞-errors before and after post-processing
for the linear convection-diffusion equation with small diffusion
coefficient solved at time T = 2 using the LDG method. We clearly
see improvement to O(h2k+1) after post-processing.

Before post-processing After post-processing

Mesh L2-error order L∞-error order L2-error order L∞-error order

P1

10 4.18E-002 – 4.72E-002 – 5.79E-003 – 8.42E-003 –

20 1.05E-002 2.00 1.30E-002 1.85 6.68E-004 3.11 9.54E-004 3.14

40 2.61E-003 2.00 3.39E-003 1.95 7.95E-005 3.07 1.13E-004 3.07

80 6.53E-004 2.00 8.62E-004 1.97 9.65E-006 3.04 1.37E-005 3.04

160 1.63E-004 2.00 2.17E-004 1.99 1.18E-006 3.02 1.68E-006 3.03

P2

10 2.09E-003 – 2.77E-003 – 1.50E-004 – 2.11E-004 –

20 2.62E-004 3.00 3.60E-004 2.94 2.76E-006 5.76 3.92E-006 5.75

40 3.28E-005 3.00 4.53E-005 2.99 5.29E-008 5.71 7.50E-008 5.71

80 4.11E-006 3.00 5.67E-006 3.00 1.12E-009 5.56 1.59E-009 5.56

160 5.13E-007 3.00 7.09E-007 3.00 2.65E-011 5.40 3.75E-011 5.40

P3

10 8.11E-005 – 9.41E-005 – 1.58E-005 – 2.24E-005 –

20 5.08E-006 4.00 5.95E-006 3.98 6.77E-008 7.87 9.58E-008 7.87

40 3.17E-007 4.00 3.73E-007 4.00 2.72E-010 7.96 3.84E-010 7.96

80 1.98E-008 4.00 2.33E-008 4.00 1.08E-012 7.98 1.52E-012 7.98

160 1.25E-009 4.00 1.46E-009 3.95 4.27E-015 7.98 6.03E-015 7.98
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Figure 4.2. Plot of pointwise errors in log scale before (left)
and after post-processing (right) for the linear convection-diffusion
solved at time T = 2 using the LDG method. The SIAC filter
reduces the oscillations in the LDG solution and improves the
smoothness and accuracy.

Here we take ε = 1 and f(x, t) = 0.5 sin(2x)e−2εt with boundary conditions that are
periodic. The exact solution for this equation is u(x, t) = sin(x)e−εt. We present
the errors computed at final time T = 2 in Table 4.3 and Figure 4.3.
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Table 4.3. L2- and L∞-errors before and after post-processing
for the nonlinear viscous Burgers equation with forcing function
solved at time T = 2 using the LDG method. We clearly see
improvement to O(h2k+1) after post-processing.

Before post-processing After post-processing

Mesh L2-error order L∞-error order L2-error order L∞-error order

P1

10 2.30E-003 – 7.32E-003 – 4.33E-004 – 6.48E-004 –

20 5.74E-004 2.00 1.87E-003 1.97 4.52E-005 3.26 6.63E-005 3.29

40 1.43E-004 2.00 4.76E-004 1.97 5.00E-006 3.18 7.23E-006 3.20

80 3.59E-005 2.00 1.20E-004 1.99 5.85E-007 3.10 8.38E-007 3.11

160 8.98E-006 2.00 3.01E-005 2.00 7.07E-008 3.05 1.01E-007 3.06

P2

10 1.15E-004 – 3.85E-004 – 1.93E-005 – 2.73E-005 –

20 1.44E-005 3.00 4.95E-005 2.96 3.36E-007 5.84 4.77E-007 5.84

40 1.81E-006 3.00 6.23E-006 2.99 5.85E-009 5.84 8.32E-009 5.84

80 2.26E-007 3.00 7.81E-007 3.00 1.09E-010 5.75 1.54E-010 5.75

160 2.83E-008 3.00 9.78E-008 3.00 2.22E-012 5.61 3.15E-012 5.61

P3

10 4.45E-006 – 1.31E-005 – 2.18E-006 – 3.08E-006 –

20 2.79E-007 4.00 8.16E-007 4.01 9.32E-009 7.87 1.32E-008 7.87

40 1.75E-008 4.00 5.14E-008 3.99 3.73E-011 7.97 5.27E-011 7.97

80 1.09E-009 4.00 3.22E-009 4.00 1.47E-013 7.99 2.08E-013 7.99

160 6.83E-011 4.00 2.01E-010 4.00 5.79E-016 7.99 8.19E-016 7.99
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Figure 4.3. Plot of pointwise errors in log scale before (left)
and after post-processing (right) for the nonlinear viscous Burg-
ers equation with forcing function solved at time T = 2 using the
LDG method. The SIAC filter reduces the oscillations in the LDG
solution and improves the smoothness and accuracy.

This example is calculated by using the LDGmethod [8]. We note that the theory
presented in this paper does not cover this example. However, we can clearly see in
Table 4.3 that we improve the errors in both L2 and L∞ from O(hk+1) to O(h2k+1)
after post-processing. In Figure 4.3, we see that the oscillations in the errors of the
LDG solutions are reduced and the order is improved.
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We now present a series of two-dimensional numerical examples on domain Ω =
[0, 2π]× [0, 2π] confirming our theoretical results.

Example 4.4. Table 4.4 presents the L2- and L∞-errors before and after post-
processing for the two-dimensional linear heat equation,

ut = uxx + uyy, Ω× (0, T ],(4.4)

u(x, y, 0) = sin(x) sin(y), x ∈ Ω,(4.5)

with periodic boundary conditions. The errors are computed at time T = 2 using
the Qk polynomial basis.

Table 4.4. L2- and L∞-errors before and after post-processing
for the two-dimensional linear heat equation solved at time T =
2 using the LDG method. Although the theory only guarantees
O(h2k+1) convergence in the L2-norm, we clearly see O(h2k+2) in
both the L2- and L∞-norms.

Before post-processing After post-processing

Mesh L2-error order L∞-error order L2-error order L∞-error order

Q1

10×10 3.09E-004 – 2.03E-003 – 4.45E-005 – 9.72E-005 –

20×20 7.77E-005 1.99 5.16E-004 1.97 2.42E-006 4.20 5.42E-006 4.17

40×40 1.94E-005 2.00 1.31E-004 1.98 1.38E-007 4.13 3.13E-007 4.11

80×80 4.86E-006 2.00 3.27E-005 2.00 8.23E-009 4.07 1.87E-008 4.06

Q2

10×10 1.56E-005 – 6.31E-005 – 3.55E-006 – 7.11E-006 –

20×20 1.96E-006 2.99 7.52E-006 3.07 5.83E-008 5.93 1.16E-007 5.93

40×40 2.45E-007 3.00 8.94E-007 3.07 9.19E-010 5.99 1.85E-009 5.98

80×80 3.06E-008 3.00 1.09E-007 3.04 1.44E-011 6.00 2.90E-011 6.00

Q3

10×10 6.01E-007 – 3.36E-006 – 4.18E-007 – 8.35E-007 –

20×20 3.78E-008 3.99 2.18E-007 3.94 1.78E-009 7.87 3.56E-009 7.87

40×40 2.36E-009 4.00 1.39E-008 3.97 7.12E-012 7.97 1.42E-011 7.97

80×80 1.48E-010 4.00 8.71E-010 4.00 2.80E-014 7.99 5.60E-014 7.99

Although the theory only guarantees us convergence of order 2k+1, again we
clearly see the O(h2k+2) convergence in both the L2- and L∞-norms for the two-
dimensional linear heat equation after post-processing. Proving the 2k+2 super-
convergence theoretically is currently being in investigated.

Example 4.5. The next two-dimensional example that we present is a convection-
dominated example,

ut + ux + uy = 0.01uxx + 0.01uyy, Ω× (0, T ],(4.6)

u(x, y, 0) = sin(x) sin(y), x ∈ Ω.(4.7)
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Table 4.5. L2- and L∞-errors before and after post-processing
for the convection-dominated equation, ut + ux + uy = 0.01uxx +
0.01uyy, solved at time T = 2 using the Qk-polynomial approxi-
mations. We clearly see improved order of convergence over the
LDG solution.

Before post-processing After post-processing

Mesh L2-error order L∞-error order L2-error order L∞-error order

Q1

10×10 1.13E-002 – 7.24E-002 – 2.57E-003 – 5.29E-003 –

20×20 3.54E-003 1.68 2.36E-002 1.62 1.56E-004 4.04 3.39E-004 3.97

40×40 9.98E-004 1.83 6.72E-003 1.81 9.34E-006 4.06 2.06E-005 4.04

80×80 2.54E-004 1.97 1.71E-003 1.97 5.64E-007 4.05 1.25E-006 4.04

Q2

10×10 7.13E-004 – 1.79E-003 – 1.87E-004 – 3.74E-004 –

20×20 9.44E-005 2.92 3.41E-004 2.39 3.07E-006 5.93 6.14E-006 5.93

40×40 1.27E-005 2.90 4.58E-005 2.90 4.85E-008 5.98 9.74E-008 5.98

80×80 1.60E-006 2.98 5.69E-006 3.01 7.58E-010 6.00 1.53E-009 6.00

Q3

10×10 2.63E-005 – 1.14E-004 – 2.19E-005 – 4.38E-005 –

20×20 1.86E-006 3.82 9.73E-006 3.55 9.35E-008 7.87 1.87E-007 7.87

40×40 1.23E-007 3.92 7.13E-007 3.77 3.73E-010 7.97 7.47E-010 7.97

80×80 7.75E-009 3.99 4.55E-008 3.97 1.47E-012 7.99 2.93E-012 7.99

Where again periodic boundary conditions are used and the errors are computed at
T = 2. The errors for the L2- and L∞-norms are presented in Table 4.5 using the
Qk polynomial approximation. For this convection-dominated example, we clearly
see errors of the order 2k+1, as the theory predicts.

Example 4.6. The last example that we present is when the convection and dif-
fusion coefficients are equal. That is,

ut + ux + uy = uxx + uyy, Ω× (0, T ],(4.8)

u(x, y, 0) = sin(x+ y), x ∈ Ω,(4.9)

where periodic boundary conditions are used. The errors for L2 and L∞ are com-
puted at T = 2 using the Pk polynomial basis and are presented in Table 4.6. This
example is similar to the one-dimensional case. If we denote z = x + y, then we
can convert the equation to the one-dimensional case. The numerical test confirms
this by showing similar 2k + 1 order error as in [7].
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Table 4.6. L2- and L∞-errors before and after post-processing
for ut + ux + uy = uxx + uyy, I × (0, T ), solved at time T = 2.
Errors for two-dimensional Pk polynomial basis.

Before post-processing After post-processing

Mesh L2-error order L∞-error order L2-error order L∞-error order

P1

10×10 8.33E-004 – 2.31E-003 – 6.74E-004 – 9.54E-004 –

20×20 1.70E-004 2.29 7.50E-004 1.63 8.83E-005 2.93 1.25E-004 2.93

40×40 3.92E-005 2.12 2.09E-004 1.84 1.11E-005 2.99 1.58E-005 2.99

80×80 9.59E-006 2.03 5.48E-005 1.93 1.39E-006 3.00 1.97E-006 3.00

P2

10×10 6.46E-005 – 4.99E-004 – 1.43E-005 – 2.02E-005 –

20×20 8.35E-006 2.95 6.58E-005 2.92 3.88E-007 5.21 5.49E-007 5.21

40×40 1.07E-006 2.97 8.49E-006 2.95 1.10E-008 5.14 1.56E-008 5.14

80×80 1.35E-007 2.98 1.08E-006 2.98 3.26E-010 5.08 4.62E-010 5.08

P3

10×10 5.17E-006 – 4.78E-005 – 6.85E-007 – 9.69E-007 –

20×20 3.38E-007 3.94 3.22E-006 3.89 3.50E-009 7.61 4.95E-009 7.61

40×40 2.16E-008 3.97 2.09E-007 3.94 2.14E-011 7.36 3.02E-011 7.36

80×80 1.37E-009 3.98 1.33E-008 3.98 1.85E-013 6.85 2.61E-013 6.85

5. Concluding remarks

By implementing a smoothness-increasing accuracy-conserving filter, we can
provably improve the quality of LDG solutions from O(hk+1) to O(h2k+m). The
proof of these results for the multi-dimensional linear convection-diffusion equa-
tions requires investigating the negative-order norm of the LDG method. For a
uniform mesh, the kernel then extracts this hidden accuracy out of the LDG solu-
tion to obtain order 2k+m accuracy in the L2-norm of the filtered solution. We
theoretically demonstrated that we obtain O(h2k+m) in the negative-order norm
and numerically confirmed that we do indeed see improved convergence in both the
L2- and L∞-norms after filtering. These results can easily be extended to include
multi-dimensional systems, provided the matrix is diagonalizable.

We note that the 2k+m order seen in the negative-order norm is an inherent
property for the discontinuous Galerkin solution. It does not rely on the mesh as-
sumption and the special kernel that we use. However, the proofs of the accuracy
extracting capabilities rely heavily on the translation invariance of the mesh. We
speculate that in order to fully see the 2k+1 order accuracy on unstructured trian-
gular meshes, the convolution kernel must be redesigned. Additionally, the proofs
of the higher order accuracy for the negative-order norm do not rely on using the
Qk polynomial space, however the applicability of the kernel does. These related
issues remain a challenging open problem.

Furthermore, in this paper we only consider periodic boundary conditions. For
other types of boundary conditions, it is possible to estimate the negative-order
norm which captures the superconvergent points of the numerical methods. In
order to post-process this type of solution we would need the one-sided kernel in
[14, 16].
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Last, we point out that our numerical experiments indicate that the post-proc-
essing technique can be applied to nonlinear convection-diffusion equations. This
is the subject of current research.
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7. B. Cockburn, M. Luskin, C.-W. Shu, E. Süli, Enhanced accuracy by post-processing for finite
element methods for hyperbolic equations, Mathematics of Computation, 72 (2003), pp. 577-
606. MR1954957 (2004g:65129)

8. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), pp. 2440-2463.
MR1655854 (99j:65163)

9. B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin methods for convection-
dominated problems, Journal on Scientific Computing, 16 (2001), pp. 173-261. MR1873283
(2002i:65099)

10. S. Curtis, R. M. Kirby, J. K. Ryan and C.-W. Shu, Postprocessing for the discontinuous
Galerkin method over nonuniform meshes, SIAM Journal on Scientific Computing, 30 (2007),
pp. 272-289. MR2377442 (2009a:65249)

11. S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability preserving high-order time discretiza-
tion methods, SIAM Review, 43 (2001), pp. 89–112. MR1854647 (2002f:65132)

12. M.S. Mock and P.D. Lax, The computation of discontinuous solutions of linear hyperbolic
equations, Communications on Pure and Applied Mathematics, 18 (1978), pp. 423-430.
MR0468216 (57:8054)

13. J.K. Ryan and B. Cockburn, Local Derivative Post-processing for the discontinuous Galerkin

method, Journal of Computational Physics, 228 (2009), pp. 8642-8664. MR2558770
(2010j:65192)

14. J.K. Ryan and C.-W. Shu, One-sided post-processing for the discontinuous Galerkin methods,
Methods and Applications of Analysis, 10 (2003), pp. 295-307. MR2074753

15. J.K. Ryan, C.-W. Shu, and H. Atkins, Extension of a post-processing technique for the discon-
tinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem,
SIAM Journal on Scientific Computing, 26 (2005), pp. 821-843. MR2126114 (2005m:65222)

16. P. van Slingerland, J.K. Ryan, and C.W. Vuik, Position-Dependent Smoothness-Increasing
Accuracy-Conserving (SIAC) Filtering for Accuracy for Improving discontinuous Galerkin
solutions, SIAM Journal on Scientific Computing, 33 2011, pp. 802-825

17. M. Steffan, S. Curtis, R.M. Kirby, and J.K. Ryan, Investigation of smoothness enhancing
accuracy-conserving filters for improving streamline integration through discontinuous fields,
IEEE-TVCG, 14 (2008), pp. 680-692.

18. V. Thomée, High order local approximations to derivatives in the finite element method,
Mathematics of Computation, 31 (1977), pp. 652-660. MR0438664 (55:11572)

http://www.ams.org/mathscinet-getitem?mr=2142188
http://www.ams.org/mathscinet-getitem?mr=2142188
http://www.ams.org/mathscinet-getitem?mr=0431744
http://www.ams.org/mathscinet-getitem?mr=0431744
http://www.ams.org/mathscinet-getitem?mr=2261012
http://www.ams.org/mathscinet-getitem?mr=2261012
http://www.ams.org/mathscinet-getitem?mr=2585178
http://www.ams.org/mathscinet-getitem?mr=2585178
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=1712278
http://www.ams.org/mathscinet-getitem?mr=1712278
http://www.ams.org/mathscinet-getitem?mr=1954957
http://www.ams.org/mathscinet-getitem?mr=1954957
http://www.ams.org/mathscinet-getitem?mr=1655854
http://www.ams.org/mathscinet-getitem?mr=1655854
http://www.ams.org/mathscinet-getitem?mr=1873283
http://www.ams.org/mathscinet-getitem?mr=1873283
http://www.ams.org/mathscinet-getitem?mr=2377442
http://www.ams.org/mathscinet-getitem?mr=2377442
http://www.ams.org/mathscinet-getitem?mr=1854647
http://www.ams.org/mathscinet-getitem?mr=1854647
http://www.ams.org/mathscinet-getitem?mr=0468216
http://www.ams.org/mathscinet-getitem?mr=0468216
http://www.ams.org/mathscinet-getitem?mr=2558770
http://www.ams.org/mathscinet-getitem?mr=2558770
http://www.ams.org/mathscinet-getitem?mr=2074753
http://www.ams.org/mathscinet-getitem?mr=2126114
http://www.ams.org/mathscinet-getitem?mr=2126114
http://www.ams.org/mathscinet-getitem?mr=0438664
http://www.ams.org/mathscinet-getitem?mr=0438664


1950 LIANGYUE JI, YAN XU, AND JENNIFER K. RYAN

19. Y. Xu and C.-W. Shu, Error estimates of the semi-discrete local discontinuous Galerkin
method for nonlinear convection-diffusion and KdV equations, Computer Methods in Applied
Mechanics and Engineering, 196 (2007), pp. 3805-3822. MR2340006 (2009e:65139)

20. Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent
partial differential equations, Communications in Computational Physics, 7 (2010), pp. 1-46.
MR2673127 (2011g:65204)

21. J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM

Journal on Numerical Analysis, 40 (2002), pp. 769-791. MR1921677 (2003e:65181)
22. Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous

Galerkin methods for scalar conservation laws, SIAM Journal on Numerical Analysis, 42
(2004), pp. 641-666. MR2084230 (2005h:65149)

23. Z. Zhang, Z. Xie and Z. Zhang, Superconvergence of discontinuous Galerkin methods
for convection-diffusion problems, Journal on Scientific Computing, 41 (2009), pp. 70-93.
MR2540105 (2010k:65141)

Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD

Delft, The Netherlands.

Current address: Department of Mathematics, University of Science and Technology of China,
Hefei, Anhui 230026, P.R. China.

E-mail address: jlyue@mail.ustc.edu.cn

Department of Mathematics, University of Science and Technology of China, Hefei,

Anhui 230026, People’s Republic of China

E-mail address: yxu@ustc.edu.cn

Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD

Delft, The Netherlands

E-mail address: J.K.Ryan@tudelft.nl

http://www.ams.org/mathscinet-getitem?mr=2340006
http://www.ams.org/mathscinet-getitem?mr=2340006
http://www.ams.org/mathscinet-getitem?mr=2673127
http://www.ams.org/mathscinet-getitem?mr=2673127
http://www.ams.org/mathscinet-getitem?mr=1921677
http://www.ams.org/mathscinet-getitem?mr=1921677
http://www.ams.org/mathscinet-getitem?mr=2084230
http://www.ams.org/mathscinet-getitem?mr=2084230
http://www.ams.org/mathscinet-getitem?mr=2540105
http://www.ams.org/mathscinet-getitem?mr=2540105

	1. Introduction
	2. Notations, definitions and projections
	2.1. Tessellation and function spaces
	2.2. Projection and interpolation properties
	2.3. Regularity for the convection-diffusion equation
	2.4. The LDG method for convection-diffusion equations
	2.5. Smoothness-increasing accuracy-conserving filters

	3. Theoretical error estimates
	3.1. Negative order norm estimates in multi-dimensions

	4. Numerical studies
	5. Concluding remarks
	References

