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N-TUPLES OF POSITIVE INTEGERS WITH THE SAME SUM

AND THE SAME PRODUCT

YONG ZHANG AND TIANXIN CAI

Abstract. In this paper, by using the theory of elliptic curves, we prove that
for every k, there exists infinitely many primitive sets of k n-tuples of positive
integers with the same sum and the same product.

1. Introduction

In 1981, J. G. Mauldon [3] proposed the Problem E2872: Find five different
triples of positive integers with the same sum and the same product. In 1982, L.
L. Foster and G. Robins [1] gave ten triples with the sum 132600 and the product
27365472133173. In 1996, A. Schinzel [4] proved that for every k, there exist infin-
itely many primitive sets of k triples of positive integers with the same sum and
the same product, i.e., the system of equations

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi1 + xi2 + xi3 = A,

xi1xi2xi3 = B,

xij > 0, A > 0, B > 0,

i = 1, · · ·, k, j = 1, 2, 3,

has k solutions for every k ∈ N − {0}. A set S of triples is called primitive if the
greatest common divisor of all elements of all triples of S is 1.

More information on this problem can be found in [2]: D16 Triples with the same
sum and the same product and D24 Sum equals product.

In this paper, we consider the generalized system of equations

(1.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi1 + · · ·+ xin = A,

xi1 · · ·xin = B,

xij > 0, A > 0, B > 0,

i = 1, · · ·, k, j = 1, · · ·, n, n ≥ 4.

By using the theory of elliptic curves, we prove the following theorem.

Theorem 1.1. For every k, there exist infinitely many primitive sets of k n-tuples
of positive integers with the same sum and the same product.
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2. An important lemma

In [4], A. Schinzel proved that:
The system of equations

x1 + x2 + x3 = x1x2x3 = 6

has infinitely many solutions in rational numbers xj > 0.
The equation

x1 + · · ·+ xn = x1 · · ·xn, n ≥ 3

always has at least one solution (1, 1, · · ·, 1, 2, n) such that it has the same sum and
product 2n.

To prove the theorem, we consider an analogous system of equations and get the
following lemma.

Lemma 2.1. The system of equations

(2.1) x1 + · · ·+ xn = x1 · · ·xn = 2n

has infinitely many solutions in rational numbers xj > 0 for n ≥ 3.

Proof. Because of Schinzel’s result, we can assume that n ≥ 4. Taking x1 =
1, · · ·, xn−3 = 1, we have

(2.2)

{
xn−2 + xn−1 + xn = n+ 3,

xn−2xn−1xn = 2n.

Eliminating xn of (2.2), we get

x2
n−2xn−1 + xn−2x

2
n−1 − (n+ 3)xn−2xn−1 + 2n = 0,

leading to

(
xn−2

xn−1
)2 +

xn−2

xn−1
− (n+ 3)

xn−2

xn−1

1

xn−1
+ 2n(

1

xn−1
)3 = 0.

Taking

u =
xn−2

xn−1
, v =

1

xn−1
,

we have

u2 + u− (n+ 3)uv + 2nv3 = 0.

Let

(2.3) y = 216n(2u+ 1− (n+ 3)v), x = −72nv + 3(n+ 3)2,

and we get

En : y2 =x3 − 27(n+ 3)(n3 + 9n2 − 21n+ 27)x+ 54n6 + 972n5 + 3402n4

− 5832n3 + 7290n2 − 26244n+ 39366.

This is a family of elliptic curves, which is defined over Q. We study the rational
points on En.

The discriminant of En is Δ = 215312n3(n3 + 9n2 − 27n+ 27), and when n ≥ 4,
we have Δ > 0, this means that En is nonsingular. Meanwhile, the cubic equation

x3 − 27(n+ 3)(n3 + 9n2 − 21n+ 27)x

+ 54n6 + 972n5 + 3402n4 − 5832n3 + 7290n2 − 26244n+ 39366 = 0
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has three different real roots x1(n), x2(n), x3(n). Suppose x1(n) < x2(n) < x3(n),
then from the relationship of roots and coefficients, we have{

x1(n) + x2(n) + x3(n) = 0,

x1(n)x2(n)x3(n) = −f(n),

where f(n) = 54n6+972n5+3402n4− 5832n3+7290n2− 26244n+39366. An easy
calculation shows that f(n) > 0 when n ≥ 4, then

x1(n) < 0 < x2(n) < x3(n), −x1(n) = x2(n) + x3(n).

It is easy to check that the points P = (3(n+3)2, 216n), Q = (3(n−3)2, 108n(n−
1)) and R = (3(n + 3)2 − 72n, 216n(n − 2)) lie on En. Using the Group Law on
elliptic curves, we obtain the points

[2]P = O, P +Q+R = O

and

[2]R =

(
3(n4 + 2n3 + 13n2 − 36n+ 36)

(n− 2)2
,−216(2n3 − 6n2 + 7n− 2)

(n− 2)3

)
,

[3]R =

(
3(n6 − 36n4 + 126n3 − 180n2 + 108n− 15)/(n2 − 3n+ 3)2,

108(n− 1)(n− 2)(7n4 − 33n3 + 67n2 − 66n+ 28)/(n2 − 3n+ 3)3
)
,

where O denotes the point at infinity on En and [m] is the isogeny multiplication
by m, which is defined by [m](P ) = P + · · · + P (m terms). This means that P is
a point of order 2 and P,Q,R lie on a line.

To prove that there are infinitely many rational points on En, it is enough to find
a point on En with x-coordinate not in Z. When the numerator of the x-coordinate
of [3]R is divided by (n2 − 3n + 3)2, the remainder equals r = −36(3n3 − 12n2 +
18n− 10) and r �= 0 when n ≥ 4, so the x-coordinate of [3]R is not a polynomial.
For 4 ≤ n ≤ 109 one can check that r/(n2 − 3n+ 3)2 is not an integer, and that it
is nonzero and less than 1 in modulus for n > 109. Hence for all n ≥ 4 the point
[3]R has nonintegral x-coordinate and hence, by the Nagell-Lutz Theorem (see p.
56 of [5]), is of infinite order. Then there are infinitely many rational points on En.

From the transformation (2.3), we have

u =
y − 3xn− 9x+ 9n3 + 81n2 + 27n+ 243

432n
, v =

3(n+ 3)2 − x

72n
,

leading to

xn−2 =
y − 3xn− 9x+ 9n3 + 81n2 + 27n+ 243

6(−x+ 3n2 + 18n+ 27)
, xn−1 =

72n

3(n+ 3)2 − x
;

then

xn = n+ 3− xn−2 − xn−1 =
−y − 3xn− 9x+ 9n3 + 81n2 + 27n+ 243

6(−x+ 3n2 + 18n+ 27)
.
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Therefore,

(x1, · · ·, xn−3, xn−2, xn−1, xn)

=

(
1, · · ·, 1, y − 3xn− 9x+ 9n3 + 81n2 + 27n+ 243

6(−x+ 3n2 + 18n+ 27)
,

72n

3(n+ 3)2 − x
,
−y − 3xn− 9x+ 9n3 + 81n2 + 27n+ 243

6(−x+ 3n2 + 18n+ 27)

)

is a solution of (2.1).
In view of xj > 0, j = 1, · · ·, n, we have the condition

x < 3(n+ 3)2, |y| < −3xn− 9x+ 9n3 + 81n2 + 27n+ 243.

From the graph of |y| = −3xn− 9x+9n3 +81n2 +27n+243, it is easy to see that
when

x <
3(n3 + 9n2 + 3n+ 27)

n+ 3
,

the above condition is satisfied, because

3(n3 + 9n2 + 3n+ 27)

(n+ 3)
− 3(n+ 3)2 = − 72n

(n+ 3)
< 0

for n ≥ 4, and

|y| = g

(
3(n3 + 9n2 + 3n+ 27)

n+ 3

)
= 0,

where g(x) = −3xn− 9x+ 9n3 + 81n2 + 27n+ 243.
Since |y| = −3xn − 9x + 9n3 + 81n2 + 27n + 243 is the equation of the pair of

tangent at P = (3(n + 3)2, 216n) and −P = (3(n + 3)2,−216n), they intersect at
the point (

3(n3 + 9n2 + 3n+ 27)

n+ 3
, 0

)
.

It is easy to see that

x2(n) <
3(n3 + 9n2 + 3n+ 27)

n+ 3
< x3(n).

In virtue of the theorem of Poincaré and Hurwitz (see [6], Chap. V, p. 78, Satz
11), En has infinitely many rational points in every neighborhood of any one of
them. The point [3]R satisfies the inequality |y| < −3xn−9x+9n3+81n2+27n+243,
since

3(n6 − 36n4 + 126n3 − 180n2 + 108n− 15)

(n2 − 3n+ 3)2
− 3(n3 + 9n2 + 3n+ 27)

n+ 3

=
−36(3n2 − 7n+ 6)(3n2 − 6n+ 4)

(n2 − 3n+ 3)2(n+ 3)
< 0,

when n ≥ 4. Hence, there are infinitely many rational points of En satisfying
|y| < −3xn− 9x+ 9n3 + 81n2 + 27n+ 243. Therefore, we can find infinitely many
solutions in rational numbers xj > 0, j = 1, · · ·, n satisfying (2.1). �

As an example, when n = 4, we have R = (−141, 1728), [2]R = (363,−6264),
[3]R = (1443/49, 334368/343).
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Figure 1. E4 : y2 = x3 − 28539x+ 1765206 and |y| = 2223− 21x

From the transformation (2.3), we have

u =
y + 6048x− 864

1728
, v =

147− x

288
,

leading to

x2 =
21x− 2223− y

6(x− 147)
, x3 =

288

147− x
;

then

x4 = 8− 1− x2 − x3 =
21x− 2223 + y

6(x− 147)
.

Therefore,

(x1, x2, x3, x4) =

(
1,

21x− 2223− y

6(x− 147)
,

288

147− x
,
21x− 2223 + y

6(x− 147)

)

is a solution of (2.1) for n = 4.
In Figure 1, we display the elliptic curve E4 and the lines |y| = 2223− 21x. It is

easy to see that if (x, y) on E4 and x ≤ x2(4), we have |y| < 2223− 21x, then there
are infinitely many solutions in rational numbers xj > 0, j = 1, · · ·, 4 for (2.1). By
an easy calculation, we have the following examples. The points

(x, y) = (3, 1296),

(
1443

49
,
334368

343

)
,

(
−3423813

34969
,
12443156928

6539203

)
,
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lead to

(x1, x2, x3, x4) = (1, 4, 2, 1),

(
1,

49

20
,
128

35
,
25

28

)
,

(
1,

103058

24497
,
34969

29737
,
68644

42449

)
,

respectively.

3. Proof of the theorem

Proof of Theorem 1.1. The method is as used in [4]. Take any k positive rational so-
lutions (xi1, ···, xin), where xi1 = 1, ···, xi,n−3 = 1, of (2.1). Let d = lcmi,j (xij , j =
1, · · ·, n, i ≤ k), we set

xij =
aij
d
, aij ∈ N− {0},

(
gcdi,j (aij), d

)
= 1,

where ai1 = d, · · ·, ai,n−3 = d. Then

(3.1)

n∑
i=1

aij = 2nd,

n∏
i=1

aij = 2ndn (i ≤ k),

hence

gcdi,j (aij) = 1.

For two sets of solutions {(xi1, · · ·, xin), i ≤ k} and {(x′
i1, · · ·, x′

in), i ≤ k}, if the
sets of n-tuples {(ai1, · · ·, ain), i ≤ k} and {(a′i1, · · ·, a′in), i ≤ k} coincides, then we
have d = d′ by (3.1). Hence, the sets of solutions themselves coincide. Since there
are infinitely many choices of k elements from an infinite set, then for every k there
exist infinitely many primitive sets of k n-tuples of positive integers with the same
sum and the same product. �

Example 1. For n = 4, we have three rational quadruples

(1, 4, 2, 1),

(
1,

49

20
,
128

35
,
25

28

)
,

(
1,

103058

24497
,
34969

29737
,
68644

42449

)
.

Then d = 778514660, leading to three integral quadruples

(778514660, 3114058640, 1557029320, 778514660),

(778514660, 1907360917, 2847139328, 695102375),

(778514660, 3275183240, 915488420, 1258930960),

with the sum 6228117280 and product 2938712953198523150291392472986880000 =
211547411417413142274.

Example 2. For n = 5, we have two rational quintuples

(1, 1, 1, 2, 5),

(
1, 1,

841

221
,
1690

493
,
289

377

)
.

Then d = 6409, leading to two integral quintuples

(6409, 6409, 6409, 12818, 32045), (6409, 6409, 24389, 21970, 4913),

with the sum 64090 and the product 108131283474484110490.
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Example 3. For n = 6, we have two rational sextuples

(1, 1, 1, 1, 2, 6),

(
1, 1, 1,

1058

273
,
1323

299
,
388

483

)
.

Then d = 6279, leading to two integral sextuples

(6279, 6279, 6279, 6279, 12558, 37674), (6279, 6279, 6279, 24334, 27783, 4394),

with the sum 75348 and the product 735400878605353561179852.

4. Further consideration

The referee asks whether there exists infinitely many n-tuples of positive integers
with the same sum, the same product, and the same second elementary symmetric
function

∑
i<j xixj . It’s an interesting problem. However, we think it needs a new

method even for n = 3.
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