
MATHEMATICS OF COMPUTATION
Volume 82, Number 281, January 2013, Pages 555–579
S 0025-5718(2012)02625-1
Article electronically published on June 27, 2012

SQUARING IN CYCLOTOMIC SUBGROUPS

KORAY KARABINA

Abstract. We propose new squaring formulae for cyclotomic subgroups of
the multiplicative group of certain finite fields. Our formulae use a compressed
representation of elements having the property that decompression can be per-
formed at a very low cost. The squaring formulae lead to new exponentiation
algorithms in cyclotomic subgroups which outperform the fastest previously-
known exponentiation algorithms when the exponent has low Hamming weight.
Our algorithms can be adapted to accelerate the final exponentiation step of
pairing computations.

1. Introduction

One challenge in cryptography is to achieve a desired level of security in the
most efficient way. The efficiency can generally be improved if one can implement
a cryptosystem with more compact parameters. An example in the context of dis-
crete logarithm cryptosystems is the performance of 256-bit elliptic curve groups
defined over 256-bit finite fields versus 256-bit subgroups of the multiplicative group
of 3072-bit finite fields. Even though both systems are believed to provide 128-bit
security with a careful choice of parameters, the former leads to a more efficient
implementation than the latter mainly because the points in the corresponding el-
liptic curve group are represented with fewer bits than the elements in the subgroup
of the multiplicative group of the corresponding finite field.

In recent years, there have been several proposals to represent the elements
of cyclotomic subgroups of the multiplicative group of finite fields with fewer bits
than is required in their natural representation and to compute with the compressed
representation of elements [26, 9, 5, 18, 8, 22, 11, 30, 29, 25, 15, 16, 27, 14]. These
methods help close the gap between the efficiency of elliptic curve cryptosystems
and finite field based cryptosystems. A related research objective is to improve
the efficiency of finite field arithmetic using the special structure of cyclotomic
subgroups. The most recent work is by Granger and Scott [12] who improved and
extended the results in [10] and [28]. They showed that if q ≡ 1 (mod 6), then
the squaring operation in the order-(q2 − q+ 1) cyclotomic subgroup of F∗

q6 can be

performed at a cost of only 6 multiplications in Fq (or 3 squarings in Fq2).
We should emphasize that there are squaring algorithms that work with com-

pressed representations of elements and that are faster than the method proposed
in [12] for the order-(q2 − q + 1) cyclotomic subgroup G of F∗

q6 . For example, if

g ∈ G, then one can adapt the XTR technique [18] to compute TrFq6/Fq2
(g2) from

Received by the editor October 22, 2010 and, in revised form, August 22, 2011.

2010 Mathematics Subject Classification. Primary 94A60, 12E20, 14G50.
Key words and phrases. Cyclotomic subgroups, squaring, exponentiation, pairing-based

cryptography.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

555

556 KORAY KARABINA

TrFq6/Fq2
(g) at a cost dominated by 2 multiplications in Fq. However, since the trace

function is not multiplicative, cyptographic protocols that require multiplying more
than two elements in G do not seem to benefit from this fast trace-based squaring
method. In particular, given only the traces of elements, the cost of recovering the
full representation of these elements (decompression) and also the cost of multipli-
cation with the trace representation greatly dominate the cost of multiplying two
elements given in their natural representations in Fq6 . In addition, even though the
trace-based methods yield single-exponentiation and double-exponentiation algo-
rithms that are faster than their conventional counterparts, it is not known how to
use trace-based methods in general multi-exponentiation algorithms. Therefore, it
is natural to look for squaring formulae that work with compressed representations
and can be effectively incorporated into cryptographic applications.

In Section 2 we classify the known squaring techniques for cyclotomic subgroups
in two categories: those that work with natural representation of elements, and
those that work with compressed representation of elements. We will focus on
the order (q2 − q + 1)-cyclotomic subgroup G of F∗

q6 as this seems to be the most
interesting case with respect to some potential applications in pairing-based cryp-
tography. In Section 3, we present a new formula for squaring elements in G when
q ≡ 1 (mod 6). We first describe a function C that compresses elements g ∈ G by a
factor of 3/2, and describe a decompression function D that can be computed very
efficiently and satisfies D(C(g)) = g for all g ∈ G. Our new squaring method works
with this compressed form of elements. Given C(g), the cost of computing C(g2)
is dominated by 4 multiplications in Fq (or 2 squarings in Fq2). Note that this
is 33% faster than the method described in [12]. The efficient decompression will
permit us to effectively utilize the squaring formula in exponentiation algorithms,
especially when the exponent has low Hamming weight. In Section 4, we discuss
some applications of our squaring formula and provide some comparisons based on
operation counts. In Section 5, we describe a more general technique to search
for efficient squaring formulae. As a result, we discover other squaring formulae
some of which seem to offer better performance in particular cases. Section 5 also
shows that some of the previously-known squaring formulae can be obtained via
our search method. In Section 6, we compare our new squaring formulae and the
squaring formulae in [12]. We conclude in Section 7.

2. A review of squaring and exponentiation algorithms in

cyclotomic subgroups of F∗
q6

Let Fq be a finite field with q elements and characteristic not equal to 2 or 3.
For simplicity, we first assume that q = p is prime. We denote by GΦ6(p) the
order-Φ6(p) cyclotomic subgroup of F∗

p6 . Here, Φi(p) denotes the ith cyclotomic

polynomial evaluated at p, and |Gs| = s. Note that |GΦ6(p)| = p2 − p + 1. Since
Fp6 is the smallest extension of Fp that contains GΦ6(p), an element g ∈ GΦ6(p)

is naturally represented with 6 Fp-elements. However, exploiting the algebraic
structure of GΦ6(p), one can represent g ∈ GΦ6(p) with 3 or even with 2 Fp-elements
yielding more compact representations by factor 2 or 3. Trace-based compression
and torus-based compression are the two known methods to achieve factor 2 and
3 compression in GΦ6(p) [26, 18, 22]. We summarize next the fastest previously-
known squaring algorithms in GΦ6(p). These algorithms fall into two categories:

SQUARING IN CYCLOTOMIC SUBGROUPS 557

those that work with compressed representation of elements, and those that work
with full representation of elements.

2.1. Compressed representations.

2.1.1. Trace-based squaring: Let Trpi,pj denote the trace function TrFpi/Fpj
:

Fpi → Fpj . Elements g ∈ GΦ6(p) can be uniquely represented by their traces
Trp6,p3(g) (up to conjugation over Fp3) [26], or Trp6,p2(g) (up to conjugation over
Fp2) [18]. More interestingly, one can compute Trp6,p3(g2) and Trp6,p2(g2) given
Trp6,p3(g) and Trp6,p2(g), respectively. The corresponding squaring algorithms are
known as LUC squaring and XTR squaring, respectively.

LUC-squaring: Trp6,p3(g2) = Trp6,p3(g)2 − 2. The cost of LUC-squaring is dom-
inated by 1 squaring in Fp3 .

XTR-squaring: Trp6,p2(g2)=Trp6,p2(g)2−2Trp6,p2(g)p. The cost of XTR-squaring
is dominated by 1 squaring in Fp2 (since the cost of the Frobenius c �→ cp is negli-
gible for c ∈ Fp2 when using an optimal normal basis).

2.1.2. Torus-based squaring: Let Fp6 = Fp3(σ) where σ is a root of x2 − c for
some quadratic non-residue c ∈ Fp3 . Elements g = g0 + g1σ ∈ GΦ6(p) \ {±1} can
be uniquely represented by α = (g0 + 1)/g1 ∈ Fp3 . In fact, if α ∈ Fp3 is the
compact representation of g ∈ GΦ6(p), then g = (α + σ)/(α − σ) and g2 = (α2 +

c+2ασ)/(α2+ c− 2ασ); see [22, 23]. Now, given g2
i

= (x+ yσ)/(x− yσ) ∈ GΦ6(p)

for some x, y ∈ Fp3 , one can write g2
i+1

= (x2 + y2c + 2xyσ)/(x2 + y2c − 2xyσ).
In order to avoid the inversion operation in the squaring formula, one can encode
an element g = (x+ yσ)/(x− yσ) ∈ GΦ6(p) \ {±1} with P(g) = [x, y] and compute

P(g2) = [x2 + y2c, 2xy], the (unique) representative of g2. This is the so-called
squaring with mixed/projective coordinates, which was introduced in [11]. We call
this the TB2-squaring method as it uses factor-2 torus-based compression.

TB2-squaring: P(g2) = [x2 + y2c, 2xy], where P(g) = [x, y]. The cost of TB2-
squaring is dominated by 2 multiplications in Fp3 because x2 + y2c = (x+ yc)(x+
y)−(c+1)xy and we can ignore the cost of addition, subtraction, and multiplication
by c.

Remark 2.1. Given g = (α + σ)/(α − σ) ∈ GΦ6(p) for some α ∈ Fp3 , one can
exploit the algebraic structure of GΦ6(p) to further compress α to two Fp-elements
[22, 11]. One can then define TB3-squaring analogous to TB2-squaring. However,
to the author’s knowledge, this extra structure has not yet been exploited to derive
efficient TB3-squaring formulae. For example, it was reported in [11] that the cost
of a TB3-squaring that uses the factor-3 torus-based compressed representation
of elements in GΦ6(p) is 21 multiplications, 38 additions and 1 inversion in Fp

(when p ≡ 2, 5 (mod 9)). Even though the inversion can be eliminated by using
mixed/projective coordinates as in TB2-squaring, the cost is still dominated by 21
multiplications in Fp, which is more expensive than the above TB2-squaring.

2.2. Full representations. The squaring formulae that work with the natural
representation of g can be summarized as below.

558 KORAY KARABINA

General squaring: Let Fp6 = Fp3(σ), where σ is a root of σ2−c for some quadratic
non-residue in Fp3 . Let g = g0 + g1σ ∈ F∗

p6 . Then g2 = (g20 + g21c) + 2g0g1σ can

be computed at a cost dominated by 2 multiplications in Fp3 because g20 + g21c =
(g0 + g1c)(g0 + g1) − (c + 1)g0g1 and we may again ignore the cost of addition,
subtraction, and multiplication by c.

SL-squaring: Let p ≡ 2, 5 (mod 9) and g ∈ GΦ6(p) ⊂ F∗
p6 . Using the algebraic

relations induced by gp
3+1 = gp

2−p+1 = 1 on the coefficients of the vector repre-
sentation of g over Fp, Stam and Lenstra [28] showed that g2 can be computed at
a cost dominated by 6 multiplications in Fp. Moreover, when p ≡ 2 (mod 3) or

p ≡ 3 (mod 4), the algebraic relations induced by gp
3+1 = 1 on the coefficients of

the vector representation of g over Fp3 were used to compute g2 at a cost domi-
nated by 2 squarings in Fp3 . We call the Stam-Lenstra methods SL1-squaring and
SL2-squaring, respectively.

GPS-squaring: Let p ≡ 1 (mod 12) and g ∈ GΦ6(p) ⊂ F∗
p6 . Using the algebraic

relations induced by gp
3+1 = gp

2−p+1 = 1 on the coefficients of the vector represen-
tation of g over Fp, Granger, Page and Smart [10] showed that g2 can be computed
at a cost dominated by 3 multiplications and 6 squarings in Fp.

GS-squaring: Let q ≡ 1 (mod 6) be a prime power and g ∈ GΦ6(q) ⊂ F∗
q6 .

Granger and Scott [12], using the algebraic relations induced by gq
3+1 = gq

2−q+1 =
1 on the coefficients of the vector representation of g over Fq2 , showed that g2 can
be computed at a cost dominated by 3 squarings in Fq2 .

Table 1 summarizes the dominating costs of the above-mentioned squaring algo-
rithms. We let Mi and Si denote multiplication and squaring costs in Fpi . We may
assume a) M3i = 6Mi using Karatsuba’s technique; b) S2i = 2Mi using general
squaring as above; and c) S3i = Mi + 4Si using Chung and Hasan’s generalized
Tom-Cook squaring formulae SQR3 [6].

Table 1. A summary of squaring algorithms in GΦ6(p).

Algorithms Cost Restriction

Compressed representation

LUC 1S3 = 1M1 + 4S1 decompression

XTR 1S2 = 2M1 decompression

TB2 2M3 = 12M1

Full representation

General 2M3 = 12M1

SL1 6M1 p ≡ 2, 5 (mod 9)

SL2 2S3 = 2M1 + 8S1 p ≡ 2 (mod 3), p ≡ 3 (mod 4)

GPS 3M1 + 6S1 p ≡ 1 (mod 12)

GS 3S2 = 6M1 p ≡ 1 (mod 6)

We should note that the squaring algorithms described above for GΦ6(p) can
be generalized to obtain squaring algorithms for GΦ6i(p) ⊂ F∗

p6i when all prime

divisors of i divide 6. Indeed, one can replace p by q = pi in the arguments and
note that GΦ6i(p) = GΦ6(q) ⊂ F∗

q6 .
1 The dominating costs of the corresponding

1Under this generalization the GPS-squaring algorithm seems to scale better than the one
described in [10] for i = 2, 3 and 4.

SQUARING IN CYCLOTOMIC SUBGROUPS 559

squaring algorithms may be obtained by replacing each Mj and Sj in Table 1 by
Mj·i and Sj·i, respectively (and the restrictions on p in Table 1 should then be read
as restrictions on q).

Even though XTR-squaring seems to be the fastest squaring algorithm forGΦ6i(p)

⊂ F∗
p6i (or, GΦ6(q) ⊂ F∗

q6 with q = pi) for i ∈ {1, 2, 3, 4}, it suffers from the non-

multiplicative property of the trace function as mentioned in Section 1. Conse-
quently, GS-squaring and SL1-squaring seem to be the best squaring algorithms
that can be easily deployed in cryptographic algorithms. In addition, GS-squaring
has the extra advantage that it allows the use of pairing-friendly or towering-
friendly fields for more efficient implementation of pairing-based cryptographic
protocols; see [17, 3].

3. A new squaring formula in cyclotomic subgroups

Let q = pi ≡ 1 (mod 6) be a prime power and GΦ6(q) ⊂ F∗
q6 . We let Fq2 = Fq(w)

where w2 = c, c ∈ Fq is a quadratic non-residue, w ∈ Fq2 is a cubic non-residue;
and Fq6 = Fq2(σ) where σ3 = w. Then it is easy to show that

wq = −w,(3.1)

σq = mσ,(3.2)

where m ∈ Fq is some primitive sixth root of unity.
If g ∈ Fq6 , then we write

g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ
2,

where gi ∈ Fq. In particular, if g ∈ GΦ6(q), then

gq
3+1 = gq

2−q+1 = 1(3.3)

and using (3.3) together with (3.1) and (3.2) we obtain the following nine relations
for gi’s:

P1 : 2g0g4 − g22 − (2g1g5 − g23)c = 0,

P2 : −2g1g2 + g24 + 2g0g3 − g25c = 0,

P3 : g20 − 1− (g21 + 2g2g5 − 2g3g4)c = 0,

P4 : (1− g0)g5 + 2g2g3 − g1g4 = 0,

P5 : (−1− g0)g4 + g22 + (g23 − g1g5)c = 0,

P6 : (g0 + 1)g3 + g1g2 − g24 − g25c = 0,

P7 : (g0 − 1)g2 + (g3g1 − 2g5g4)c = 0,

P8 : (1 + 2g0)g1 − g2g4 − g3g5c = 0,

P9 : g0(g0 − 1) + (g21 − g2g5 − g3g4)c = 0.

Note that each relation Pi is independent of the choice of the primitive sixth
root of unity m. Therefore, without loss of generality, we associate a 7-variate
polynomial Pi(X) = Pi(x0, . . . , x5, y) to each relation Pi above. That is, if g =
(g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ

2 ∈ GΦ6(q), then Pi(g0, . . . , g5, c) = 0 for
all i = 1, . . . , 9. Thus, every element in GΦ6(q) corresponds to an Fq-point in the
variety defined by the ideal 〈P1(X), . . . , P9(X)〉.

In fact, we may think of each Pi(X) as a 7-variate polynomial defined over the
field of rational numbers Q, and define an ideal I = 〈P1(X), . . . , P9(X)〉 over Q.

560 KORAY KARABINA

Next, we compute a Groebner basis over Q of I with respect to some fixed ordering
on the set of monomials, which in turn yields a factor-3/2 compression function
C for elements g ∈ GΦ6(q) with the property that given C(g), g can be recovered
uniquely at a cost dominated by an inversion in Fq. We describe the compression
and decompression functions in the following theorem.

Theorem 3.1. Let q ≡ 1 (mod 6) be a prime power. Let Fq2 = Fq(w) where
w2 = c, c ∈ Fq is a quadratic non-residue, w ∈ Fq2 is a cubic non-residue; and let
Fq6 = Fq2(σ) where σ3 = w. Let g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ

2 ∈
GΦ6(q) \ {1} ⊂ F∗

q6 . Define the compression function C and the decompression
function D as follows:

C(g) = [g2, g3, g4, g5],

D([g̃2, g̃3, g̃4, g̃5]) = (g̃0 + g̃1w) + (g̃2 + g̃3w)σ + (g̃4 + g̃5w)σ
2,

where {
g̃1 =

g̃2
5c+3g̃2

4−2g̃3
4g̃2

, g̃0 = (2g̃21 + g̃2g̃5 − 3g̃3g̃4)c+ 1, if g̃2 	= 0;

g̃1 = 2g̃4g̃5
g̃3

, g̃0 = (2g̃21 − 3g̃3g̃4)c+ 1, if g̃2 = 0.

Then D is well-defined for all C(g) with g ∈ GΦ6(q) \ {1}, and D(C(g)) = g for all
g ∈ GΦ6(q) \ {1}.

Proof. Let g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ
2 ∈ GΦ6(q) \ {1}. If g2 = 0

and g3 = 0 then one can verify using the relations Pi that g1 = g4 = g5 = 0 and
g0 = 1. Therefore, g2 and g3 cannot both be zero proving that D is well-defined for
all C(g) with g ∈ GΦ6(q) \ {1}.

To show that D(C(g)) = g for all g ∈ GΦ6(q) \ {1}, we compute a Groebner
basis over Q of the ideal I = 〈P1(X), . . . P9(X)〉 with respect to the lexicographical
ordering of the monomials with x0 > x1 > x5 > x4 > x3 > x2 > y. It can be
verified using Magma with the commands

R < x0, x1, x5, x4, x3, x2, y >:= PolynomialRing(RationalField(), 7);

B1 := [R!P1,R!P2,R!P3,R!P4,R!P5,R!P6,R!P7,R!P8,R!P9];

I1 := ideal < R|B1 >;

GB1 := GroebnerBasis(I1);

B2 := [R!P1,R!P2,R!P3,R!P4,R!P5,R!P6,R!P7,R!P8,R!P9,R!x2];

I2 := ideal < R|B2 >;

GB2 := GroebnerBasis(I2);

that

x0 − (2x2
1 + x2x5 − 3x3x4)y − 1,

x1x2 +
x3

2
− 3x2

4

4
− x2

5y

4

are two polynomials in the basis GB1; and

x1x3 − 2x4x5

is a polynomial in the basis GB2. �

SQUARING IN CYCLOTOMIC SUBGROUPS 561

By Theorem 3.1, we know that if g = (g0 + g1w)+ (g2 + g3w)σ+(g4 + g5w)σ
2 ∈

GΦ6(q) then C(g) = [g2, g3, g4, g5] determines g uniquely. This suggests a squaring
formula that uses the compressed representation of elements in GΦ6(q) which we
present in Theorem 3.2.

Theorem 3.2. Let q ≡ 1 (mod 6) be a prime power. Let Fq2 = Fq(w) where w2 =
c, c ∈ Fq is a quadratic non-residue, w ∈ Fq2 is a cubic non-residue; and let Fq6 =
Fq2(σ) where σ

3 = w. Let g = (g0+g1w)+(g2+g3w)σ+(g4+g5w)σ
2 ∈ GΦ6(q) ⊂ F∗

q6 .

Let C be the compression function defined in the statement of Theorem 3.1. Let
h = g2, where h = (h0 + h1w) + (h2 + h3w)σ + (h4 + h5w)σ

2. Then

C(g2) = [h2, h3, h4, h5],

where

h2 = 2(g2 + 3cB4,5),

h3 = 3(A4,5 − (c+ 1)B4,5)− 2g3,

h4 = 3(A2,3 − (c+ 1)B2,3)− 2g4,

h5 = 2(g5 + 3B2,3),

Ai,j = (gi + gj)(gi + cgj),

Bi,j = gigj .

Proof. Using w2 = c and σ3 = w, we find that

h0 = g20 + (g21 + 2g3g4 + 2g2g5)c,

h1 = 2(g0g1 + g2g4 + g3g5c),

h2 = 2(g0g2 + (g4g5 + g1g3)c),

h3 = 2(g0g3 + g1g2) + g24 + g25c,

h4 = g22 + 2g0g4 + (g23 + 2g1g5)c,

h5 = 2(g0g5 + g2g3 + g1g4).

Under the correspondence xi ↔ gi and y ↔ c, we define the 7-variate polynomials
hi(X). Next, we compute representatives of hi(X)’s for i ∈ {2, 3, 4, 5} in the
quotient ring R/I, where R = Q[x0, . . . , x5, y] with respect to the lexicographical
ordering of monomials with x0 > x1 > x5 > x4 > x3 > x2 > y, and where
I = 〈P1(X), . . . , P9(X)〉 is the ideal over Q defined earlier. It can be verified using
Magma with the commands:

R < x0, x1, x5, x4, x3, x2, y >:= PolynomialRing(RationalField(), 7);

B := [R!P1,R!P2,R!P3,R!P4,R!P5,R!P6,R!P7,R!P8,R!P9];

I := ideal < R|B >;

R2 := R/I;

R2!h2; R2!h3; R2!h4; R2!h5;

that

h2 = 2(g2 + 3g4g5c) = 2(g2 + 3cB4,5),

h3 = 3(g24 + g25c)− 2g3 = 3(A4,5 − (c+ 1)B4,5)− 2g3,

h4 = 3(g22 + g23c)− 2g4 = 3(A2,3 − (c+ 1)B2,3)− 2g4,

h5 = 2(g5 + 3g2g3) = 2(g5 + 3B2,3)

in the quotient ring R/I. �

562 KORAY KARABINA

Corollary 3.3. Let q ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂ F∗
q6 . Then C(g2) can be

computed at a cost dominated by 4 multiplications in Fq.

4. Applications

The squaring formula in Theorem 3.2 works with a compressed representation
of elements in GΦ6(q). The decompression cost for this representation is far less
than that of other compressed-squaring algorithms such as XTR-squaring (LUC-
squaring) where decompression is performed by finding a root of a third (second)
degree irreducible polynomial defined over Fq2 (Fq3). When the full representation
of a compressed element C(g) is needed (for example, in the multiplication step of
square-and-multiply type exponentiation algorithms), the decompression function
D can recover g uniquely at a cost dominated by an inversion in Fq. Consequently,
comparing Corollary 3.3 with Table 1, our compressed-squaring algorithm together
with the decompression function yields an exponentiation algorithm which is espe-
cially fast when the exponent has low Hamming weight.

4.1. Exponentiation in GΦ6(q). Let q = pi ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂
F∗
q6 . We present an exponentiation algorithm that uses the squaring formula in

Theorem 3.2.
Let e be an �-bit exponent with binary representation

e = e�−1e�−2 . . . e2e1e0,

where e�−1 = 1. Let He = {i : 1 ≤ i ≤ �− 1 and ei = 1}. Then

ge =
�−1∏
i=0

g2
i

= ge0
∏
i∈He

D(C(g2i)).

Now, if

g2
i

= (gi,0 + gi,1w) + (gi,2 + gi,3w)σ + (gi,4 + gi,5w)σ
2,

then by Theorem 3.1,

C(g2i) = [gi,2, gi,3, gi,4, gi,5]

and, assuming without loss of generality that gi,2 	= 0,

D(C(g2i)) = (xi +
yi
zi
w) + (gi,2 + gi,3w)σ + (gi,4 + gi,5w)σ

2,

where

xi = (2g2i,1 + gi,2gi,5 − 3gi,3gi,4)c+ 1, yi = g2i,5c+ 3g2i,4 − 2gi,3, and zi = 4gi,2.

Hence, ge can be computed as follows:

(1) Compute C(g2i) for 1 ≤ i ≤ � − 1 with (� − 1) successive squarings using

Theorem 3.2 and store C(g2i) for each i ∈ He.
(2) Compute and store (xi, yi, zi) for each i ∈ He.
(3) Compute yi/zi for each i ∈ He.

(4) Compute ge = ge0
∏

i∈He
D(C(g2i)).

Now, let |He| = N , and let Mi, Si and Ii denote multiplication, squaring and
inversion costs in Fq = Fpi , respectively. By Corollary 3.3, step (1) in the above
algorithm has cost dominated by (4(� − 1))Mi and requires storage of 4N Fq-
elements. Using Montgomery’s simultaneous inversion trick [20, 13], steps (2) and
(3) have cost dominated by N((1Si + 2Mi) + 2Si) + 3(N − 1)Mi + 1Ii + (N)Mi

SQUARING IN CYCLOTOMIC SUBGROUPS 563

and storage of 3N + 1 Fq-elements. Finally, step (4) can be computed at a cost of
(N)M6i.

Corollary 4.1. Let q = pi ≡ 1 (mod 6) and g ∈ GΦ6(q) ⊂ F∗
q6 . Let e be an �-bit

exponent. Let He = {i : 1 ≤ i ≤ � − 1 and ei = 1}, and let |He| = N . Then, ge

can be computed at a cost dominated by

(4(�− 1))Mi + (6N − 3)Mi + (N)M6i + (3N)Si + 1Ii,

with a storage of 7N + 1 Fq-elements.

Note that the cost of exponentiation using GS-squaring (see [12] or Section 2)
in the same setting as in Corollary 4.1 would be dominated by

6(�− 1)Mi + (N)M6i.(4.1)

Hence, by Corollary 4.1, we would expect a 33% speed-up over GS-exponentiation
as N/� → 0.

4.2. Speeding up pairing computations. Let E : y2 = x3 + b be a curve in
the Barreto-Naehrig (BN) family of pairing-friendly curves with embedding degree
k = 12 [2]. Then E is defined over Fp with |E(Fp)| = r, where the primes p and r
are parametrized as follows:

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

r(u) = 36u4 + 36u3 + 18u2 + 6u+ 1.

In general, a pairing computation on E is performed in two steps: Miller loop
and final exponentiation. Scott [24] showed that the final exponentiation in the
pairing computation can be done in two parts. In the first part, an element in
F∗
p12 is raised to the power (p6 − 1)(p2 + 1). This is the so-called easy part and

requires a small number of multiplications, pth powerings and a single inversion,
and yields an element g ∈ GΦ6(p2) = GΦ12(p) ⊂ F∗

p12 . In the second part of the final
exponentiation, the so-called hard part, g is raised to the power

Φ12(p)/r = (p4 − p2 + 1)/r = λ3p
3 + λ2p

2 + λ1p+ λ0,

where

λ3(u) = 1,

λ2(u) = 6u2 + 1,

λ1(u) = −36u3 − 18u2 − 12u+ 1,

λ0(u) = −36u3 − 30u2 − 18u− 2.

Note that when the BN parameter u is chosen to have low Hamming weight, one

can first compute gu, gu
2

= (gu)u and gu
3

= (gu
2

)u to minimize the number of
multiplications in the hard part of the final exponentiation.

To be more concrete, one can choose u = −(262 + 255 + 1) to obtain a BN-
curve E defined over a 254-bit prime p with 254-bit prime order group E(Fp)
[21]. In our operation counts, we will assume: a) M2 = 3M1 and M12 = 54M1

using Karatsuba’s technique; b) S2 = 2M1 (see general squaring in Section 2.2);
c) I2 = 1I1+2M1+2S1 [19]; and d) M1 = S1 and I1 = 50M1 (see [4, Section 3.1]).

GS-exponentiation seems to be the fastest of the previously-known methods to
compute the hard part of the final exponentiation in the pairing computation. Using

564 KORAY KARABINA

this method, each of g−u, g−u2

and g−u3

can be computed at a cost dominated by
(see (4.1))

6(�− 1)Mi + (N)M6i = 1224M1,(4.2)

where � = 63 and N = 2.
Now, we describe an exponentiation algorithm similar to the one in Section 4.1

but avoiding the storage requirements. Instead of performing simultaneous inver-
sion, we begin the algorithm by computing compressed-squarings and perform a
one-time inversion (decompression) when a multiplication is required. Then we
switch to GS-squaring. In summary, given g and −u = 262 + 255 + 1, g−u can be
computed as follows:

(1) Compute C(g255) with 55 successive squarings using Theorem 3.2.

(2) Decompress C(g255) to obtain g2
55

= D(C(g255)).
(3) Compute g2

62

with 7 successive GS-squarings.

(4) Compute g−u = g · g255 · g262 .
The cost of step (2) is dominated by

(3S2 + 2M2) + 1I2 + 1M2 = 6M1 + 6M1 + 54M1 + 3M1 = 69M1.

Similar to our previous analysis, one can verify that the cost of the above hybrid
exponentiation algorithm is dominated by

(55 · 4)M2 + (7 · 6)M2 + 69M1 + 2M12 = 963M1.(4.3)

Comparing (4.2) and (4.3), we would expect around a 21% speed-up for computing

gu, gu
2

and gu
3

in the hard part of the final exponentiation. According to [4,

Section 4.2 and Table 3], computing gu, gu
2

and gu
3

take 79% of the time of the
final exponentiation, and the final exponentiation takes 42% of the time of the
whole pairing computation. Hence, with our new exponentiation algorithm, we
would expect a 17% speed-up for the final exponentiation, and a 7% speed-up for
the pairing computation.

Recently, Aranha et al. proposed and implemented a variant of the squaring
algorithm in Theorem 3.2 for the pairing computation over a BN curve parametrized
by u = −(262+255+1) [1]. They reported overall 5%−7% speed-ups (gained from
using this new squaring algorithm) for the pairing computation.

5. Other formulae for squaring

In this section, we describe a general method for finding efficient squaring for-
mulae in cyclotomic subgroups GΦ6(q). While rediscovering some of the previously-
known squaring formulae such as LUC-squaring, XTR-squaring and GS-squaring,
our method yields new squaring formulae which might be good alternatives to the
one in Section 3.

We use the same notation as in Section 3. In particular, let

g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ
2 ∈ GΦ6(q)

and

h = g2 = (h0 + h1w) + (h2 + h3w)σ + (h4 + h5w)σ
2.

Let I ⊆ {0, 1, . . . , 5}. In order to obtain squaring formulae similar to the one
in Theorem 3.2 we first need a (compression) function C such that C(g) can be
determined as a function of VI(g) = {gi : i ∈ I}. Second, we need a family

SQUARING IN CYCLOTOMIC SUBGROUPS 565

SI = {Si : i ∈ I} of formulae to compute each hi ∈ VI(h) as a function of VI(g),
say hi = Si(VI(g)) for each i ∈ I. Consequently, we might represent a squaring
formula F : C(g) �→ C(g2) = C(h) by a tuple

F = {I, C,SI}.
For example, in Theorem 3.2 we had

I = {2, 3, 4, 5}, C(g) = [g2, g3, g4, g5], SI = {S2, S3, S4, S5},
h2 = S2(VI(g)) = 2(g2 + 3g4g5c),

h3 = S3(VI(g)) = 3(g24 + g25c)− 2g3,

h4 = S4(VI(g)) = 3(g22 + g23c)− 2g4,

h5 = S5(VI(g)) = 2(g5 + 3g2g3).

Remark 5.1. In the representation of F , it seems necessary to require that the
inverse of C can be efficiently computed in order to get efficient multi-exponentiation
algorithms based on F . However, we will relax this condition for now.

We already know from the proof of Theorem 3.2 that if h = g2, then

h0 = g20 + (g21 + 2g3g4 + 2g2g5)c,

h1 = 2(g0g1 + g2g4 + g3g5c),

h2 = 2(g0g2 + (g4g5 + g1g3)c),

h3 = 2(g0g3 + g1g2) + g24 + g25c,

h4 = g22 + 2g0g4 + (g23 + 2g1g5)c,

h5 = 2(g0g5 + g2g3 + g1g4).

In fact, the squaring formula in Theorem 3.2, or, in other words,

SI = {S2, S3, S4, S5},
was found by computing representatives of hi(X)’s for i ∈ {2, 3, 4, 5} in the quo-
tient ring R/I, where R = Q[x0, . . . , x5, y] with respect to the lexicographical
ordering of monomials with x0 > x1 > x5 > x4 > x3 > x2 > y, and where
I = 〈P1(X), . . . , P9(X)〉.

In order to capture a wider class of squaring formulae F = {I, C,SI}, we will
compute representatives of hi(X) for i ∈ {0, . . . , 5} in the quotient ring R/I by
varying over all the 7! = 5040 orderings of the variables {x0, . . . , x5, y}. To do
so, we let o be some fixed ordering in the set O of all orderings of the variables
{x0, . . . , x5, y} and denote by Ro the ring Q[x0, . . . , x5, y] with respect to the lexi-
cographical ordering of monomials with ordering o.

We define

Hi = {h̄i,o : h̄i,o = hi ∈ Ro/I, o ∈ O}.
Since each h̄i,o defines a unique Si (on some subset VI(g)), we may replace,

without loss of generality, h̄i,o’s by Si,j ’s in Hi. We list Hi for i = 0, 1, . . . , 5 in
Appendix A.

Note that for any I ⊆ {0, 1, 2 . . . , 5}, there is a squaring formula F = {I, C,SI}
only if for each i ∈ I there is some Si,j ∈ Hi that is defined on VI(g). From
Appendix A, we deduce that S0,j ∈ H0 is well defined on a domain VI(g) only if
VI(g) contains one of the subsets in the minimal domain set D0 of H0, where

566 KORAY KARABINA

D0 = {{g0, g1}, {g0, g2, g5}, {g0, g3, g4}, {g1, g2, g5}, {g0, g1, g2, g3},
{g0, g1, g3, g4}, {g0, g1, g4, g5}, {g0, g2, g3, g4, g5}}.

Similarly, we have

D1 = {{g0, g1}, {g1, g2, g5}, {g1, g2, g3, g4}, {g1, g2, g3, g5},
{g1, g2, g4, g5}, {g1, g3, g4, g5}, {g0, g1, g2, g3, g5},
{g0, g1, g2, g4, g5}, {g1, g2, g3, g4, g5}},

D2 = {{g2, g4, g5}, {g0, g1, g2, g3}, {g1, g2, g3, g5}, {g1, g2, g3, g4, g5}},
D3 = {{g0, g3, g4}, {g0, g3, g5}, {g1, g2, g5}, {g3, g4, g5},

{g0, g1, g2, g3}, {g1, g2, g3, g4}, {g1, g2, g3, g5}},
D4 = {{g0, g2, g4}, {g0, g3, g4}, {g1, g2, g5}, {g2, g3, g4},

{g0, g1, g4, g5}, {g1, g2, g4, g5}, {g1, g3, g4, g5}},
D5 = {{g2, g3, g5}, {g0, g1, g4, g5}, {g1, g2, g4, g5}, {g1, g2, g3, g4, g5}}.

Now, from the minimal domain sets Di’s and Hi’s in Appendix A we can write
other squaring formulae F = {I, C,SI} as follows.

5.1. SQR01: F = {I, C,SI} with |I| = 2.

I = {0, 1}, C(g) = [g0, g1], SI = {S0,3, S1,1},
h0 = S0,3 = 3g20 − 2g0 + 3g21c,

h1 = S1,1 = 6g0g1 + 2g1.

This formula is the only one with |I| = 2. Its cost is dominated by 2 multiplications
in Fq as one can write

h0 = 3((g0 + g1)(g0 + g1c)− (c+ 1)g0g1)− 2g0.

In fact, this formula is a rediscovery of the XTR-squaring because

TrFq6/Fq2
(g) = 3(g0 + g1w)

can be uniquely determined using VI(g) = {g0, g1}. Note that the compression

function C in this case cannot have an inverse as C(g) = C(gq2) = C(gq4).

5.2. SQR034: F = {I, C,SI} with |I| = 3.

I = {0, 3, 4}, C(g) = [g0, g3, g4], SI = {S0,1, S3,2, S4,1},
h0 = S0,1 = 2g20 + 4g3g4c− 1,

h3 = S3,2 = 4g0g3 + 2g24 ,

h4 = S4,1 = 4g0g4 + 2g23c.

This formula is the only one with |I| = 3, and is a rediscovery of the LUC-squaring
because

TrFq6/Fq3
(g) = 2(g0 + g3wσ + g4σ

2)

can be uniquely determined using VI(g) = {g0, g3, g4}. In fact, using

Trq6,q3(g
2) = Trq6,q3(g)

2 − 2

SQUARING IN CYCLOTOMIC SUBGROUPS 567

and the 3-way squaring formula in [6] one can show that

h0 = 2(T0 + T1c)− 1,

h3 = (T1 + T2)− 2(T0 + T4),

h4 = 2(T4c− T3) + (T1 − T2),

where

T0 = g20 ,

T1 = (g0 + g3 + g4)
2,

T2 = (g0 + g3 − g4)
2,

T3 = 2g3g4,

T4 = g23 .

Hence, the total cost is dominated by 1 squaring in Fq3 , or by 4 squarings and 1
multiplication in Fq. Note that the compression function C in this case cannot have

an inverse as C(g) = C(gq3).

5.3. SQR2345: F = {I, C,SI} with |I| = 4.

I = {2, 3, 4, 5}, C(g) = [g2, g3, g4, g5], SI = {S2,1, S3,4, S4,5, S5,1},
h2 = S2,1 = 2g2 + 6g4g5c,

h3 = S3,4 = 3g24 + 3g25c− 2g3,

h4 = S4,5 = 3g22 + 3g23c− 2g4,

h5 = S5,1 = 2g5 + 6g2g3.

The above formula is a rediscovery of the squaring formula in Theorem 3.2, where
we show that C(g2) can be computed at a cost dominated by 4 multiplications in
Fq. Next, we observe that C(g2) can also be computed at a cost dominated by 2
squarings in Fq2 . This follows because, inspired by GS-squaring [12], we can write

h2 + h3w = S2,1 + S3,4w = 3w(g4 + g5w)
2 + 2(g2 − g3w),

h4 + h5w = S4,5 + S5,2w = 3(g2 + g3w)
2 − 2(g4 − g5w),

which requires 2 squarings in Fq2 .

5.4. SQR0134: F = {I, C,SI} with |I| = 4.

I = {0, 1, 3, 4}, C(g) = [g0, g1, g3, g4], SI = {S0,1, S1,1, S3,2, S4,1},
h0 = S0,1 = 2g20 + 4g3g4c− 1,

h1 = S1,1 = 6g0g1 + 2g1,

h3 = S3,2 = 4g0g3 + 2g24 ,

h4 = S4,1 = 4g0g4 + 2g23c.

In this formula, one can compute {h0, h3, h4} at a cost dominated by 4 squarings
and 1 multiplication in Fq (see Section 5.2). Hence, {h0, h1, h3, h4} can be computed
at a cost dominated by 4 squarings and 2 multiplications in Fq. Similarly, as in the
proof of Theorem 3.1, we can show that an inverse to the compression function C
can be given as follows.

D([g̃0, g̃1, g̃3, g̃4]) = (g̃0 + g̃1w) + (g̃2 + g̃3w)σ + (g̃4 + g̃5w)σ
2,

568 KORAY KARABINA

where

g̃2 =
g̃3(g̃0 − 1) + 2g̃24

3g̃1
,

g̃5 =
g̃4(g̃0 − 1) + 2g̃22c

3g̃1c
.

If g ∈ GΦ6(q) \ {1}, then g1 can never equal zero because

TrFq6/Fq2
(g2) = g0 + g1w ∈ Fq2 \ Fq.

Hence, the decompression function D is well defined and D(C(g)) = g for all
g ∈ GΦ6(q) \ {1}. The decompression can be performed at a cost dominated by
4 multiplications, 2 squarings and 1 inversion in Fq.

5.5. Other formulae F = {I, C,SI} with |I| = 4. There are 4 more classes of
squaring formulae with |I| = 4 and we list one from each class that seems to be the
most efficient one in its class.

I = {0, 1, 2, 3}, C(g) = [g0, g1, g2, g3], SI = {S0,3, S1,1, S2,2, S3,3},
h0 = S0,3 = 3g20 − 2g0 + 3g21c,

h1 = S1,1 = 6g0g1 + 2g1,

h2 = S2,2 = 3g0g2 + 3g1g3c− g2,

h3 = S3,3 = 3g0g3 + 3g1g2 + g3.

I = {0, 1, 4, 5}, C(g) = [g0, g1, g4, g5], SI = {S0,3, S1,1, S4,3, S5,2},
h0 = S0,3 = 3g20 + 3g21c− 2g0,

h1 = S1,1 = 6g0g1 + 2g1,

h4 = S4,3 = 3g0g4 + 3g1g5c+ g4,

h5 = S5,2 = 3g0g5 + 3g1g4 − g5.

I = {1, 2, 3, 5}, C(g) = [g1, g2, g3, g5], SI = {S1,5, S2,1, S3,1, S5,1},
h1 = S1,5 = 12g35c

2 + (12g31 + 12g1g2g5 − 36g2g
2
3 − 24g3g5)c+ 8g1,

h2 = S2,1 = 2g2 + 6g4g5c,

h3 = S3,1 = 4g1g2 + 2g25c,

h5 = S5,1 = 6g2g3 + 2g5.

I = {1, 2, 4, 5}, C(g) = [g1, g2, g4, g5], SI = {S1,3, S2,1, S4,2, S5,3},
h1 = S1,3 = (12g1g2g5 + 12g31 − 36g24g5)c− 24g2g4 + 8g1 + 12g32 ,

h2 = S2,1 = 2g2 + 6g4g5c,

h4 = S4,2 = 4g1g5c+ 2g22 ,

h5 = S5,3 = −12g1g
2
2 + 9g2g

2
4 + 3g2g

2
5c+ 2g5.

For each of the above 4 formulae, one can write a decompression function D
such that D is well defined and D(C(g)) = g for all g ∈ GΦ6(q). Our analysis
shows that in the first two squaring formulae, the decompression functions require
1 inversion in Fq, and computing C(g2) requires more than 4 multiplications in Fq.
Therefore, they do not seem to yield better algorithms than the squaring formula

SQUARING IN CYCLOTOMIC SUBGROUPS 569

in Theorem 3.2. In the latter two squaring formulae, the decompression functions
do not require an inversion, and they can be given as follows:

D([g1, g2, g3, g5]) = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ
2,

where

g4 = 1/2(g22 + 3g23c)− 2g1g5c,

g0 = (2g21 + g2g5 − 3g3g4)c+ 1,

and

D([g1, g2, g4, g5]) = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ
2,

where

g3 = 1/2(g25c+ 3g24)− 2g1g2,

g0 = (2g21 + g2g5 − 3g3g4)c+ 1,

respectively. The above formulae yield factor-3/2 compression for elements g ∈
GΦ6(q) with the property that decompression can be performed at a cost dominated

by 3 multiplications and 3 squarings in Fq. However, computing C(g2) requires more
than 6 multiplications in Fq. Therefore, they do not seem to yield better algorithms
than GS-squaring.

5.6. Squaring formulae F = {I, C,SI} with |I| = 5. There are 6 classes of
squaring formulae with |I| = 5. Our analysis shows in all of these formulae, com-
puting C(g2) requires more than 4 multiplications in Fq. Therefore, there is no
hope that they would yield better exponentiation algorithms than the formula in
Theorem 3.2 unless decompression can be achieved without doing an inversion in
Fq (recall that the decompression function of the squaring formula in Theorem 3.2
requires an inversion in Fq). We found one such formula, where C(g2) can be com-
puted at a cost dominated by 5 multiplications in Fq, and the decompression can
be performed at a cost dominated by 2 multiplications and 1 squaring in Fq.

The formula can be seen as an extension of the squaring formula in Theorem 3.2
and it is given as follows:

I = {1, 2, 3, 4, 5}, C(g) = [g0, g2, g3, g4, g5],

SI = {S1,2, S2,1, S3,4, S4,5, S5,1},
h1 = −g1 + 3(C2,3,4,5 −B4,5 −B2,3c),

h2 = 2(g2 + 3cB4,5),

h3 = 3(A4,5 − (c+ 1)B4,5)− 2g3,

h4 = 3(A2,3 − (c+ 1)B2,3)− 2g4,

h5 = 2(g5 + 3B2,3),

where

Ai,j = (gi + gj)(gi + cgj),

Bi,j = gigj ,

C2,3,4,5 = (g2 + g5)(g3c+ g4).

570 KORAY KARABINA

It is clear from Theorem 3.1 that an inverse to the compression function C can
be given as follows:

g̃0 = (2g̃21 + g̃2g̃5 − 3g̃3g̃4)c+ 1.

There is one class of squaring formulae with |I| = 6 and we list below two
formulae that are the most efficient ones according to our analysis; the first can be
seen as an extension of the squaring formula in Theorem 3.2, and the second one
can be seen as an extension of the squaring formula in Section 5.4.

5.7. A squaring formula F = {I, C,SI} with |I| = 6.

I = {0, 1, 2, 3, 4, 5}, C(g) = [g0, g1, g2, g3, g4, g5],

SI = {S0,3, S1,1, S2,1, S3,4, S4,5, S5,1},
h0 = S0,3 = 3g20 − 2g0 + 3g21 = 3(A0,1 − (c+ 1)B0,1)− 2g0,

h1 = S1,1 = 6g0g1 + 2g1 = 2(g1 + 3B0,1),

h2 = S2,1 = 2g2 + 6g4g5 = 2(g2 + 3cB4,5),

h3 = S3,4 = 3g24 + 3g25c− 2g3 = 3(A4,5 − (c+ 1)B4,5)− 2g3,

h4 = S4,5 = 3g22 + 3g23c− 2g4 = 3(A2,3 − (c+ 1)B2,3)− 2g4,

h5 = S5,1 = 2g5 + 6g2g3 = 2(g5 + 3B2,3),

where

Ai,j = (gi + gj)(gi + cgj),

Bi,j = gigj .

Note that C(g2) can be computed at a cost dominated by 6 multiplications in
Fq, and there is no need of a decompression function. In fact, a closer look at the
formulae [12] shows that the above formula is a rediscovery of GS-squaring.

5.8. SQR012345 : F = {I, C,SI} with |I| = 6.

I = {0, 1, 2, 3, 4, 5}, C(g) = [g0, g1, g2, g3, g4, g5],

SI = {S0,1, S1,1, S2,1, S3,2, S4,1, S5,1},
h0 = S0,1 = 2g20 + 4g3g4c− 1 = 2(T0 + T1c)− 1,

h1 = S1,1 = 6g0g1 + 2g1 = 2(g1 + 3B0,1),

h2 = S2,1 = 2g2 + 6g4g5c = 2(g2 + 3cB4,5),

h3 = S3,2 = 4g0g3 + 2g24 = (T1 + T2)− 2(T0 + T4),

h4 = S4,1 = 4g0g4 + 2g23c = 2(T4c− T3) + (T1 − T2),

h5 = S5,1 = 2g5 + 6g2g3 = 2(g5 + 3B2,3),

where

T0 = g20 ,

T1 = (g0 + g3 + g4)
2,

T2 = (g0 + g3 − g4)
2,

T3 = 2g3g4,

T4 = g23 ,

Bi,j = gigj .

SQUARING IN CYCLOTOMIC SUBGROUPS 571

Using the above formula, C(g2) can be computed at a cost dominated by 4
multiplications and 4 squarings in Fq, and and there is no need for a decompression
function.

6. Comparisons

In Tables 2, 3 and 4, we compare the most efficient squaring formulae in this pa-
per with the squaring formula in [12] which is the fastest previously-known squaring
formula that can be easily adapted for multi-exponentiation algorithms. We denote
our squaring formula in Theorem 3.2 by SQR2345 (also see Section 5.3) as it can be
written as a function of g2, g3, g4, g5. Similarly, we denote the squaring formulae in
Sections 5.4, 5.6 and 5.8 by SQR0134, SQR12345 and SQR012345, respectively.

As before, we let Mi and Si denote multiplication and squaring costs in Fpi , and
assume a) M2i = 3Mi, M3i = 6Mi; and b) S1 = M1, S2i = 2Mi, S3i = Mi + 4Si.

Table 2. A comparison of squaring algorithms in GΦ6(q) ⊂ F∗
q6 ,

where q = pi ≡ 1 (mod 6) and i = 2a3b with a > 0.

Algorithm Squaring cost Decompression cost

SQR2345 (6b · 3a · 4)M1 1Ii + (6b · 3a · 5)M1

SQR0134 (6b · 3a · 14/3)M1 1Ii + (6b · 3a · 16/3)M1

SQR12345 (6b · 3a · 5)M1 (6b · 3a · 8/3)M1

SQR012345 (6b · 3a · 20/3)M1 0

GS-squaring [12] (6b · 3a · 6)M1 0

According to Table 2, SQR2345 is the fastest squaring algorithm. In particular,
SQR2345 is 33% faster than GS-squaring. When evaluating the costs of squaring
algorithms in Table 2, we assumed thatM2a3b = (6b·3a)M1 and S2a3b = 2M2a−13b =
(6b ·3a ·2/3)M1. In particular, the costs of SQR2345 and GS-squaring are computed
as 2S2a+13b = 4M2a3b = (6b · 3a · 4)M1 and 3S2a+13b = 6M2a3b = (6b · 3a · 6)M1,
respectively.

It is possible to obtain better (asymptotic) running time estimates for the algo-
rithms listed in Table 2 because using S3i = Mi + 4Si repetitively, we can show
that

S2a3b = 6b · 3a · 1/2 · (1 + (2b/3b+1))M1 for a, b > 0.

Note that (M2a3b/S2a3b) → 2 as b → ∞. Then, for example, the costs of SQR2345

and GS-squaring can be estimated as 2S2a+13b = (6b · 3a · 3)M1 and 3S2a+13b =
(6b · 3a · 9/2)M1, respectively. We present an asymptotic comparison of the squar-
ing algorithms in Table 3. According to Table 3, SQR2345 is the fastest squaring
algorithm, and is 33% faster than GS-squaring.

As we noted in Section 4, the decompression costs must be considered when
adapting our squaring formulae in exponentiation algorithms. However, this does
not seem to be a big issue when the exponent has low Hamming weight. For exam-
ple, in Section 4.1 we discuss how SQR2345 can be used to improve the efficiency of
exponentiation in GΦ12(p) ⊂ F∗

p12 and the BN pairing computations. Similarly, from
Table 4 we see that SQR2345 can be used to improve the efficiency of exponentiation
in GΦk(p) ⊂ F∗

pk and pairing computations that use elliptic curves with embedding

degree k, for k = 18, 24.2

2Families of elliptic curves with embedding degree 18 and 24 are given in [7].

572 KORAY KARABINA

Table 3. An asymptotic comparison of squaring algorithms in
GΦ6(q) ⊂ F∗

q6 , where q = pi ≡ 1 (mod 6) and i = 2a3b with a > 0
and b → ∞.

Algorithm Squaring cost Decompression cost

SQR2345 (6b · 3a · 3)M1 1Ii + (6b · 3a · 9/2)M1

SQR0134 (6b · 3a · 4)M1 1Ii + (6b · 3a · 5)M1

SQR12345 (6b · 3a · 5)M1 (6b · 3a · 5/2)M1

SQR012345 (6b · 3a · 6)M1 0

GS-squaring [12] (6b · 3a · 9/2)M1 0

Table 4. A comparison of squaring algorithms in GΦ6(q) ⊂ F∗
q6 ,

q ≡ 1 (mod 6).

q = pi Squaring cost Decompression cost Squaring cost Decompression cost

SQR2345 SQR0134

i min(4Mi, 2S2i) 1Ii + 3Mi + 3Si 2Mi + 4Si 1Ii + 4Mi + 2Si

i = 1 4M1 1I1 + 6M1 6M1 1I1 + 6M1

i = 2 12M1 1I2 + 15M1 14M1 1I2 + 16M1

i = 3 22M1 1I3 + 33M1 32M1 1I3 + 34M1

i = 4 36M1 1I4 + 45M1 42M1 1I4 + 48M1

SQR12345 SQR012345

i 5Mi 2Mi + 1Si 4Mi + 4Si 0

i = 1 5M1 3M1 8M1 0

i = 2 15M1 8M1 20M1 0

i = 3 30M1 17M1 44M1 0

i = 4 45M1 24M1 60M1 0
GS-squaring [12]

i min(6Mi, 3S2i) 0
i = 1 6M1 0
i = 2 18M1 0
i = 3 33M1 0
i = 4 54M1 0

When the exponent is chosen at random in an exponentiation algorithm, it seems
more advantageous to use either SQR12345 or GS-squaring because decompression is
a relatively inexpensive operation. Let e be an exponent with �-bits. The width-w
NAF representation of e contains on average �/(w+ 1) nonzero digits which deter-
mines the number of multiplications and the number of decompression operations
in the exponentiation algorithm. Then, the cost of computing ge ∈ GΦ6(pi) ⊂ F∗

p6i

using SQR12345 and GS-squaring would be dominated by

EXP12345(i, w, �) = (5�)Mi +
�

w + 1
(M6i) +

�

w + 1
(2Mi + 1Si),

EXPGS(i, w, �) = (3�)(S2i) +
�

w + 1
M6i,

respectively. Table 5 compares the exponentiation costs per bit of � for particular
cases of i and w.

SQUARING IN CYCLOTOMIC SUBGROUPS 573

Table 5. A comparison of exponentiation costs in GΦ6(q) ⊂ F∗
q6 .

exp12345 and expGS are the exponentiation costs per bit of expo-
nent, where the exponentiation is performed based on SQR12345

and GS-squaring, respectively. The exponent is represented in
width-w NAF and q = pi ≡ 1 (mod 6).

(i, w) (2, 2) (3, 2) (4, 2) (2, 3) (3, 3) (4, 3)

exp12345 35.6 71.6 107 30.5 60.75 91.5

expGS 36 69 108 31.5 60 94.5

7. Concluding remarks

We proposed new squaring formulae for cyclotomic subgroups GΦ6(p) ⊂ F∗
q6 ,

where q ≡ 1 (mod 6), and demonstrated that the formulae can be used to speed
up cryptographic protocols. Our operation counts ignored the cost of addition,
subtraction and the cost of multiplying a finite field element by a small integer.
Therefore, it would be desirable to implement the algorithms to verify their relative
efficiency.

Acknowledgment

The author would like to thank Diego F. Aranha and Alfred Menezes for fruitful
discussion and for their useful comments on the paper. The author would also like
to thank the two anonymous referees for their valuable suggestions.

Appendix A

A.1. H0 = {S0,j : j = 1, 2, . . . , 13}.
S0,1 = 2g20 + 4g3g4c− 1,

S0,2 = −6g20 + 4g0 + 12g2g5c+ 3,

S0,3 = 3g20 − 2g0 + 3g21c,

S0,4 = 1 + (2g21 + 4g2g5)c,

S0,5 = (3g2g5 + 3g3g4)c+ g0,

S0,6 = (−6g21 + 12g3g4)c− 3 + 4g0,

S0,7 = 27g21g
3
3c

3 + ((−27g1g2g
2
3 − 72g41)g0 + 81g21g

2
2g3 − 48g41

+27g1g2g
2
3 + 18g33)c

2 + ((−9g1g
3
2 − 42g21)g0 − 36g21

+6g22g3 + 21g1g
3
2)c− 3 + 4g0,

S0,8 = −3/2g1g
3
5c

3 + (−9/2g0g4g
2
5 − 12g41 + 21/2g4g

2
5 + 63/2g1g

2
4g5)c

2

+((12g21 − 27/2g34)g0 + 27/2g34 − 9g21)c− 3 + 4g0,

S0,9 = (63/2g1g2g
2
3 − 12g41 + 27/2g33 − 27/2g0g

3
3)c

2

+((−9/2g22g3 + 12g21)g0 − 3/2g1g
3
2 + 21/2g22g3 − 9g21)c

−3 + 4g0,

S0,10 = −729/4g21g
6
3c

5 + (324g41g
3
3 + 243/4g1g2g

5
3 − 243/2g21g

2
2g

4
3

+486g0g
4
1g

3
3 + 243/16g63 − 162g51g2g

2
3)c

4

+(81g0g
2
1g

3
3 + 144g61 + 54g41g

2
2g3 − 513g31g2g

2
3

574 KORAY KARABINA

+(−81/4g42g
2
3 − 297/2g33)g

2
1 + 81/2g1g

3
2g

3
3 + 81/8g22g

4
3)c

3

+((−144g41 + 27/8g33)g0 + 132g41 + 18g31g
3
2 − 225/2g21g

2
2g3

+(27/4g52g3 + 207/8g2g
2
3)g1 + 27/16g42g

2
3 + 117/8g33)c

2

+(6g22g3 − 96g0g
2
1 + 12g1g

3
2 + 18g21)c− 3 + 4g0,

S0,11 = (27/4g1g4g
5
5 − 81/4g21g

2
4g

4
5)c

5

+(−162g51g
2
4g5 + 54g41g4g

2
5 − 243/2g21g

4
4g

2
5

+27/16g24g
4
5 + 81/2g1g

3
4g

3
5 + 18g31g

3
5)c

4

+(486g0g
4
1g

3
4 + 144g61 + 324g41g

3
4 − 513g31g

2
4g5

+(−225/2g4g
2
5 − 729/4g64)g

2
1 + (243/4g54g5 + 12g35)g1

+81/8g44g
2
5)c

3 + ((−144g41 + 81g21g
3
4)g0 + 207/8g1g

2
4g5

+243/16g64 − 297/2g21g
3
4 + 6g4g

2
5 + 132g41)c

2

+((−96g21 + 27/8g34)g0 + 117/8g34 + 18g21)c− 3 + 4g0,

S0,12 = (−729/2g31g2g
5
3 + 972g61g

3
3)c

5

+(1620g51g2g
2
3 − 243g31g

3
2g

3
3 + 2592g61g

2
2g3 − 2592g0g

8
1

+243/8g1g2g
5
3 + 243/2g21g

2
2g

4
3 + 486g41g

3
3 − 1728g81)c

4

+((−1080g61 − 324g51g
3
2)g0 − 1080g61 + 864g51g

3
2 − 540g41g

2
2g3

+(−81/2g52g3 − 243g2g
2
3)g

3
1

+(−621/4g33 + 81g42g
2
3)g

2
1 + 81/4g1g

3
2g

3
3)c

3

+((−54g31g
3
2 + 522g41)g0 + 168g41 − 135g31g

3
2

+(27/2g62 − 54g22g3)g
2
1 + (27g2g

2
3 + 27/8g52g3)g1 + 18g33)c

2

+((−165/2g21 − 9/4g1g
3
2)g0 + 57/4g1g

3
2 + 6g22g3 + 9/2g21)c

−3 + 4g0,

S0,13 = (−81/2g31g4g
5
5 + 27/2g21g

6
5)c

6 + (81g21g
2
4g

4
5 + 27/8g1g4g

5
5

−324g0g
5
1g

3
5 − 243g31g

3
4g

3
5 + 2592g61g4g

2
5 + 864g51g

3
5)c

5

+((−54g31g
3
5 − 2592g81)g0 − 1728g81 + 972g61g

3
4 + 1620g51g

2
4g5

−540g41g4g
2
5 + (−135g35 − 729/2g54g5)g

3
1 + 243/2g21g

4
4g

2
5

+81/4g1g
3
4g

3
5)c

4 + ((−9/4g1g
3
5 − 1080g61)g0 − 1080g61 + 486g41g

3
4

−243g31g
2
4g5 − 54g21g4g

2
5 + (243/8g54g5 + 57/4g35)g1)c

3

+(27g1g
2
4g5 + 6g4g

2
5 + 168g41 + 522g0g

4
1 − 621/4g21g

3
4)c

2

+(−165/2g0g
2
1 + 18g34 + 9/2g21)c− 3 + 4g0.

A.2. H1 = {S1,j : j = 1, 2, . . . , 14}.

S1,1 = 6g0g1 + 2g1,

S1,2 = −g1 + 3g2g4 + 3g3g5c,

S1,3 = (12g1g2g5 + 12g31 − 36g24g5)c− 24g2g4 + 8g1 + 12g32 ,

S1,4 = (−36g1g3g4 + 12g31 + 36g24g5)c+ 24g2g4 + 8g1 − 12g32 ,

S1,5 = 12g35c
2 + (12g31 + 12g1g2g5 − 36g2g

2
3 − 24g3g5)c+ 8g1,

S1,6 = 3/2g35c
2 + (−6g1g2g5 + 9/2g24g5)c− g1 + 3g2g4,

S1,7 = 4/3g35c
2 + (4/3g31 − 4g1g2g5)c+ 4/3g32 ,

SQUARING IN CYCLOTOMIC SUBGROUPS 575

S1,8 = (−6g1g2g5 + 9/2g2g
2
3 + 3g3g5)c− g1 + 3/2g32 ,

S1,9 = (12g31 + 9/2g2g
2
3 − 18g1g3g4)c− 3g2g4 + 8g1 + 3/2g32 ,

S1,10 = 12g35c
2 + (−18g0g3g5 + 9/2g2g

2
3 − 3g3g5)c− g1 + 3/2g32 ,

S1,11 = 3/2g35c
2 + (12g31 − 18g1g3g4 − 3g3g5 + 9/2g24g5)c+ 8g1,

S1,12 = −18g0g2g4 − g1 + 12g32 − 3g2g4 + 9/2g24g5c+ 3/2g35c
2,

S1,13 = (−9/2g1g4g
2
5 + 3/4g35)c

2

+(−27/2g1g
3
4 + 6g31 + 18g21g2g4 + 9/4g24g5)c

+7/2g1 + 3/2g2g4,

S1,14 = (18g21g3g5 − 27/2g1g
3
3)c

2

+(−9/2g1g
2
2g3 + 3/2g3g5 + 6g31 + 9/4g2g

2
3)c

+7/2g1 + 3/4g32 .

A.3. H2 = {S2,j : j = 1, 2, . . . , 7}.
S2,1 = 2g2 + 6g4g5c,

S2,2 = 3g0g2 + 3g1g3c− g2,

S2,3 = (−12g1g
2
5 + 9g23g5)c

2 + 3g22g5c+ 2g2,

S2,4 = (3g1g3 + 3g22g5 − 9g2g3g4 + 6g21g2)c+ 2g2,

S2,5 = (18g1g2g3g5 − 27/2g2g
3
3)c

2

+(6g21g2 − 9/2g32g3 + 3g22g5 + 3g1g3)c+ 2g2,

S2,6 = (81/2g1g
4
3 − 54g21g

2
3g5)c

3

+(−18g31g3 − 27/4g2g
3
3 + 9/2g23g5 + 27/2g1g

2
2g

2
3)c

2

+(−9/4g32g3 + 3g22g5 + 6g21g2 − 21/2g1g3)c+ 2g2,

S2,7 = 2187/8g83g5c
6

+(243g22g
6
3g5 − 2187/2g21g2g

6
3 − 8019/8g1g

7
3 + 486g51g

4
3)c

5

+(−4293/4g1g
2
2g

5
3 − 81g41g2g

3
3 + 1215/8g2g

6
3 − 243/2g21g

3
2g

4
3

+567/8g42g
4
3g5 + 108g51g

2
2g

2
3 + 1539/2g31g

4
3 − 891/4g53g5)c

4

+(−216g51g3 − 18g41g
3
2g3 + 198g31g

2
2g

2
3

+(27g52g
2
3 + 1377/4g2g

3
3)g

2
1 + (2997/4g43 − 1593/8g42g

3
3)g1

+27/4g62g
2
3g5 − 603/4g22g

3
3g5 + 54g32g

4
3)c

3

+((6g42 − 342g3)g
3
1 − 189/2g21g

3
2g3

+(6g52g5 + 2241/4g22g
2
3 − 9/4g62g3)g1

−57/2g42g3g5 + 45g23g5 − 54g2g
3
3 + 27/8g52g

2
3)c

2

+(6g21g2 + (−132g3 + 9/2g42)g1 + 18g32g3 − 3/4g72 + 3g22g5)c+ 2g2.

A.4. H3 = {S3,j : j = 1, 2, . . . , 10}.
S3,1 = 4g1g2 + 2g25c,

S3,2 = 4g0g3 + 2g24 ,

S3,3 = 3g0g3 + 3g1g2 + g3,

S3,4 = −2g3 + 3g24 + 3g25c,

S3,5 = 12g0g3 + 4g3 − 6g25c,

576 KORAY KARABINA

S3,6 = 12g1g2 + 4g3 − 6g24 ,

S3,7 = (−27/2g43 + 18g1g
2
3g5)c

2 + (6g21g3 − 9/2g22g
2
3 + 3g2g3g5)c

+3g1g2 + 4g3,

S3,8 = (6g21g3 + 9/2g22g
2
3 − 18g1g2g3g4 − 9g23g4 + 12g31g2)c

+3/2g42 − 6g22g4 + 12g1g2 + 4g3,

S3,9 = (54g21g
2
3g4 − 27/2g1g2g

3
3 + 27/4g43 − 36g41g3)c

2

+(−9/2g1g
3
2g3 + 12g31g2 − 21g21g3 + 27/4g22g

2
3 − 27/2g23g4)c

+3/2g42 − 6g22g4 + 12g1g2 + 4g3,

S3,10 = (729/4g21g
7
3 − 2187/8g83g4)c

5

+(−243g22g
6
3g4 + 81g41g

4
3 − 243/8g73 + 1053/2g21g

2
2g

5
3

+243/2g1g2g
6
3 − 162g51g2g

3
3)c

4

+(−36g51g
3
2g3 + 72g41g

2
2g

2
3 − 567/2g31g2g

3
3

+(351/4g42g
3
3 − 81/4g43)g

2
1 + 999/4g1g

3
2g

4
3

−567/8g42g
4
3g4 − 513/4g22g

5
3 + 891/4g53g4)c

3

+((12g42 − 36g3)g
4
1 − 81g31g

3
2g3 + (−9/2g62g3 + 27g22g

2
3)g

2
1

+(−27g2g
3
3 + 225/4g52g

2
3)g1 − 459/8g42g

3
3

+603/4g22g
3
3g4 − 27/4g62g

2
3g4 + 27/2g43)c

2

+(12g31g2 + (−21g3 + 9g42)g
2
1 + (−45g32g3 + 3/2g72 − 6g52g4)g1

+27g22g
2
3 − 54g23g4 + 57/2g42g3g4 − 15/2g62g3)c

+3/2g42 − 6g22g4 + 12g1g2 + 4g3.

A.5. H4 = {S4,j : j = 1, 2, . . . , 10}.

S4,1 = 4g0g4 + 2g23c,

S4,2 = 4g1g5c+ 2g22 ,

S4,3 = 3g0g4 + 3g1g5c+ g4,

S4,4 = 12g0g4 − 6g22 + 4g4,

S4,5 = 3g22 + 3g23c− 2g4,

S4,6 = (12g1g5 − 6g23)c+ 4g4,

S4,7 = −9/2g24g
2
5c

2 + (6g21g4 + (3g5 + 18g2g
2
4)g1

+3g2g4g5 − 27/2g44)c+ 4g4,

S4,8 = 3/2g45c
3 + (−18g1g3g4g5 + 12g31g5 − 6g3g

2
5 + 9/2g24g

2
5)c

2

+(−9g3g
2
4 + 6g21g4 + 12g1g5)c+ 4g4,

S4,9 = (−9/2g1g4g
3
5 + 3/2g45)c

3

+(−36g41g4 − 27/2g1g
3
4g5 + 12g31g5

+54g21g3g
2
4 − 6g3g

2
5 + 27/4g24g

2
5)c

2

+(27/4g44 + 12g1g5 − 21g21g4 − 27/2g3g
2
4)c+ 4g4,

S4,10 = (−9/2g21g4g
6
5 − 27/4g3g

2
4g

6
5 + 3/2g1g

7
5)c

6

+(−36g51g4g
3
5 + 12g41g

4
5 + 351/4g21g

3
4g

4
5

+(−6g3g
5
5 + 225/4g24g

5
5)g1 − 567/8g3g

4
4g

4
5 − 15/2g4g

6
5)c

5

SQUARING IN CYCLOTOMIC SUBGROUPS 577

+(−162g51g
3
4g5 + 72g41g

2
4g

2
5 − 81g31g4g

3
5

+(9g45 + 1053/2g54g
2
5)g

2
1 + 999/4g1g

4
4g

3
5

+(57/2g4g
4
5 − 243g64g

2
5)g3 − 459/8g34g

4
5)c

4

+(81g41g
4
4 − 567/2g31g

3
4g5 + (729/4g74 + 27g24g

2
5)g

2
1

+(−45g4g
3
5 + 243/2g64g5)g1 + (−2187/8g84 + 603/4g34g

2
5)g3

+3/2g45 − 513/4g54g
2
5)c

3 + (−36g41g4 + 12g31g5

−81/4g21g
4
4 − 27g1g

3
4g5 + (−6g25 + 891/4g54)g3

+27g24g
2
5 − 243/8g74)c

2 + (12g1g5 + 27/2g44 − 21g21g4 − 54g3g
2
4)c

+4g4.

A.6. H5 = {S5,j : j = 1, 2, . . . , 7}.

S5,1 = 6g2g3 + 2g5,

S5,2 = 3g0g5 + 3g1g4 − g5,

S5,3 = −12g1g
2
2 + 9g2g

2
4 + 3g2g

2
5c+ 2g5,

S5,4 = (3g2g
2
5 − 9g3g4g5 + 6g21g5)c+ 2g5 + 3g1g4,

S5,5 = −9/2g4g
3
5c

2 + (6g21g5 + 18g1g2g4g5 + 3g2g
2
5 − 27/2g34g5)c

+2g5 + 3g1g4,

S5,6 = (27/2g1g
2
4g

2
5 − 9/4g4g

3
5)c

2

+(−18g31g4 + (−54g2g
2
4 + 6g5)g

2
1 + 81/2g1g

4
4 + 3g2g

2
5 − 27/4g34g5)c

−21/2g1g4 + 9/2g2g
2
4 + 2g5,

S5,7 = (27/4g2g
2
4g

6
5 + 27g21g

2
4g

5
5 − 3/4g75 − 9/4g1g4g

6
5)c

5

+(108g51g
2
4g

2
5 − 18g41g4g

3
5 + 6g31g

4
5 − 243/2g21g

4
4g

3
5

+(−1593/8g34g
4
5 + 6g2g

5
5)g1 + 27/8g24g

5
5 + 567/8g2g

4
4g

4
5)c

4

+(486g51g
4
4 − 81g41g

3
4g5 + 198g31g

2
4g

2
5

+(−2187/2g64g5 − 189/2g4g
3
5)g

2
1 + (9/2g45 − 4293/4g54g

2
5)g1

+(−57/2g4g
4
5 + 243g64g

2
5)g2 + 54g44g

3
5)c

3

+(−216g51g4 + 1539/2g31g
4
4 + 1377/4g21g

3
4g5

+(2241/4g24g
2
5 − 8019/8g74)g1 + (−603/4g34g

2
5 + 2187/8g84)g2

+18g4g
3
5 + 1215/8g64g5)c

2 + (−342g31g4 + 6g21g5 + 2997/4g1g
4
4

+(3g25 − 891/4g54)g2 − 54g34g5)c+ 2g5 − 132g1g4 + 45g2g
2
4 .

References

1. D. Aranha, K. Karabina, P. Longa, C. Gebotys, and J. López, Faster explicit formulas for
computing pairings over ordinary curves, Advances in Cryptology - Eurocrypt 2011, Lecture
Notes in Computer Science 6632 (2011), 48–68.

2. P. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, Selected Areas
in Cryptography – SAC 2005, Lecture Notes in Computer Science 3897 (2006), 319–331.
MR2241646 (2007d:94026)

3. N. Benger and M. Scott, Constructing tower extensions of finite fields for implementation
of pairing-based cryptography, Arithmetic of Finite Fields – WAIFI 2010, Lecture Notes in
Computer Science 6087 (2010), 180–195. MR2674223

http://www.ams.org/mathscinet-getitem?mr=2241646
http://www.ams.org/mathscinet-getitem?mr=2241646
http://www.ams.org/mathscinet-getitem?mr=2674223

578 KORAY KARABINA

4. J. Beuchat, J. Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-Henŕıquez, and T. Teruya,
High-speed software implementation of the optimal Ate pairing over Barreto-Naehrig curves,
Pairing-Based Cryptography – Pairing 2010, Lecture Notes in Computer Science 6487 (2010),
21–39.

5. A. Brouwer, R. Pellikaan, and E. Verheul, Doing more with fewer bits, Advances in Cryptology
– ASIACRYPT ’99, Lecture Notes in Computer Science 1716 (1999), 321–332.

6. J. Chung and M. Hasan, Asymmetric squaring formulae, 18th IEEE Symposium on Computer

Arithmetic – ARITH 2007 (2007), 113–122.
7. D. Freeman, M. Scott, and E. Teske, A taxonomy of pairing-friendly elliptic curves, Journal

of Cryptology 23 (2010), 224–280. MR2578668 (2011a:11112)
8. K. Giuliani and G. Gong, Analogues to the Gong-Harn and XTR cryptosystems, Technical

Report CORR 2003-34, University of Waterloo (2003), Available at http://www.cacr.math.
uwaterloo.ca/techreports/2003/corr2003-34.ps.

9. G. Gong and L. Harn, Public-key cryptosystems based on cubic finite field extensions, IEEE
Transactions on Information Theory 45 (1999), 2601–2605. MR1725159

10. R. Granger, D. Page, and N. Smart, High security pairing-based cryptography revisited, Curves
over Finite Fields and Applications – Algorithmic Number Theory, Lecture Notes in Computer
Science 4076 (2006), 480–494. MR2282944 (2008a:94118)

11. R. Granger, D. Page, and M. Stam, A comparison of CEILIDH and XTR, Algorithmic Num-
ber Theory symposium – ANTS VI, Lecture Notes in Computer Science 3076 (2004), 235–249.
MR2137357 (2006a:94035)

12. R. Granger and M. Scott, Faster squaring in the cyclotomic subgroup of sixth degree ex-
tensions, Public Key Cryptography – PKC 2010, Lecture Notes in Computer Science 6056
(2010), 209–223. MR2660744

13. D. Harris, Simultaneous field divisions: an extension of Montgomery’s trick,(2008), Available
at http://eprint.iacr.org/2008/199.

14. K. Karabina, Double-exponentiation in factor-4 groups and its applications, Twelfth IMA
International Conference on Cryptography and Coding, Lecture Notes in Computer Science
5921 (2009), 336–350. MR2775632

15. , Factor-4 and 6 compression of cyclotomic subgroups of F∗
24m

and F∗
36m

, Journal of

Mathematical Cryptology 4 (2010), 1–42. MR2660332 (2011i:94076)
16. , Torus-based compression by factor 4 and 6, Accepted for publication in IEEE Trans-

actions on Information theory, DOI 10.1109/TIT.2012.2184846; Earlier version available at
http://eprint.iacr.org/2010/525.

17. N. Koblitz and A. Menezes, Pairing-based cryptography at high security levels, Tenth IMA
International Conference on Cryptography and Coding, Lecture Notes in Computer Science
3796 (2005), 13–36. MR2235246 (2007b:94235)

18. A. Lenstra and E. Verheul, The XTR public key system, Advances in Cryptology – CRYPTO
2000, Lecture Notes in Computer Science 1880 (2000), 1–19. MR1850033 (2002k:94026)

19. C. Lim and H. Hwang, Fast implementation of elliptic curve arithmetic in GF (pn), Public
Key Cryptography – PKC 2000, Lecture Notes in Computer Science 1751 (2000), 405–421.
MR1864790

20. P. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics
of Computation 48 (1987), 243–264. MR866113 (88e:11130)

21. Y. Nogami, M. Akane, Yumi Sakemi, H. Kato, and Y. Morikawa, Integer variable χ-based

ate pairing, Pairing-Based Cryptography – Pairing 2008, Lecture Notes in Computer Science
5209 (2008), 178–191. MR2733913

22. K. Rubin and A. Silverberg, Torus-based cryptography, Advances in Cryptology – CRYPTO
2003, Lecture Notes in Computer Science 2729 (2003), 349–365. MR2093203 (2005e:94202)

23. , Compression in finite fields and torus-based cryptography, SIAM Journal on Com-
puting 37 (2008), 1401–1428. MR2386274 (2009d:94101)

24. M. Scott, Implementing cryptographic pairings, Pairing-Based Cryptography – Pairing 2007,
Lecture Notes in Computer Science 4575 (2007), 177–196. MR2423639 (2009e:94081)

25. M. Shirase, D. Han, Y. Hibin, H. Kim, and T. Takagi, A more compact representation of
XTR cryptosystem, IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E91-A (2008), 2843–2850.

http://www.ams.org/mathscinet-getitem?mr=2578668
http://www.ams.org/mathscinet-getitem?mr=2578668
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-34.ps
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-34.ps
http://www.ams.org/mathscinet-getitem?mr=1725159
http://www.ams.org/mathscinet-getitem?mr=2282944
http://www.ams.org/mathscinet-getitem?mr=2282944
http://www.ams.org/mathscinet-getitem?mr=2137357
http://www.ams.org/mathscinet-getitem?mr=2137357
http://www.ams.org/mathscinet-getitem?mr=2660744
http://eprint.iacr.org/2008/199
http://www.ams.org/mathscinet-getitem?mr=2775632
http://www.ams.org/mathscinet-getitem?mr=2660332
http://www.ams.org/mathscinet-getitem?mr=2660332
http://eprint.iacr.org/2010/525
http://www.ams.org/mathscinet-getitem?mr=2235246
http://www.ams.org/mathscinet-getitem?mr=2235246
http://www.ams.org/mathscinet-getitem?mr=1850033
http://www.ams.org/mathscinet-getitem?mr=1850033
http://www.ams.org/mathscinet-getitem?mr=1864790
http://www.ams.org/mathscinet-getitem?mr=866113
http://www.ams.org/mathscinet-getitem?mr=866113
http://www.ams.org/mathscinet-getitem?mr=2733913
http://www.ams.org/mathscinet-getitem?mr=2093203
http://www.ams.org/mathscinet-getitem?mr=2093203
http://www.ams.org/mathscinet-getitem?mr=2386274
http://www.ams.org/mathscinet-getitem?mr=2386274
http://www.ams.org/mathscinet-getitem?mr=2423639
http://www.ams.org/mathscinet-getitem?mr=2423639

SQUARING IN CYCLOTOMIC SUBGROUPS 579

26. P. Smith and C. Skinner, A public-key cryptosystem and a digital signature system based on
the Lucas function analogue to discrete logarithms, Advances in Cryptology – ASIACRYPT
’94, Lecture Notes In Computer Science 917 (1994), 357–364.

27. M. Stam and A. Lenstra, Speeding up XTR, Advances in Cryptology – ASIACRYPT 2001,
Lecture Notes in Computer Science 2248 (2001), 125–143. MR1934519 (2003h:94049)

28. , Efficient subgroup exponentiation in quadratic and sixth degree extensions, Crypto-
graphic Hardware and Embedded Systems – CHES 2002 2523 (2003), 159–174.

29. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam, and D. Woodruff,
Practical cryptography in high dimensional tori, Advances in Cryptology – EUROCRYPT
2005, Lecture Notes in Computer Science 3494 (2005), 234–250. MR2352191 (2008h:94053)

30. M. van Dijk and D. Woodruff, Asymptotically optimal communication for torus-based cryp-
tography, Advances in Cryptology – CRYPTO 2004, Lecture Notes in Computer Science 3152
(2004), 151–178. MR2147501 (2007b:94224)

Department of Combinatorics and Optimization, University of Waterloo, Waterloo,

Ontario, Canada N2L 3G1

E-mail address: kkarabin@uwaterloo.ca

http://www.ams.org/mathscinet-getitem?mr=1934519
http://www.ams.org/mathscinet-getitem?mr=1934519
http://www.ams.org/mathscinet-getitem?mr=2352191
http://www.ams.org/mathscinet-getitem?mr=2352191
http://www.ams.org/mathscinet-getitem?mr=2147501
http://www.ams.org/mathscinet-getitem?mr=2147501

	1. Introduction
	2. A review of squaring and exponentiation algorithms in cyclotomic subgroups of 𝔽_{𝕢⁶}*
	2.1. Compressed representations
	LUC-squaring:
	XTR-squaring:
	TB2-squaring:
	2.2. Full representations
	General squaring:
	SL-squaring:
	GPS-squaring:
	GS-squaring:

	3. A new squaring formula in cyclotomic subgroups
	4. Applications
	4.1. Exponentiation in 𝐺_{Φ₆(𝑞)}
	4.2. Speeding up pairing computations

	5. Other formulae for squaring
	5.1. SQR₀₁: ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=2
	5.2. SQR₀₃₄: ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=3
	5.3. SQR₂₃₄₅: ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=4
	5.4. SQR₀₁₃₄: ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=4
	5.5. Other formulae ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=4
	5.6. Squaring formulae ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=5
	5.7. A squaring formula ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=6
	5.8. SQR₀₁₂₃₄₅: ℱ={ℐ,𝒞,𝒮_{ℐ}} with |ℐ|=6

	6. Comparisons
	7. Concluding remarks
	Acknowledgment
	Appendix A.
	A.1. ℋ₀={𝒮_{0,𝒿}:𝒿=1,2,…,13}
	A.2. ℋ₁={𝒮_{1,𝒿}:𝒿=1,2,…,14}
	A.3. ℋ₂={𝒮_{2,𝒿}:𝒿=1,2,…,7}
	A.4. ℋ₃={𝒮_{3,𝒿}:𝒿=1,2,…,10}
	A.5. ℋ₄={𝒮_{4,𝒿}:𝒿=1,2,…,10}
	A.6. ℋ₅={𝒮_{5,𝒿}:𝒿=1,2,…,7}

	References

