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EIGENANALYSIS-BASED TASK MAPPING ON PARALLEL

COMPUTERS WITH CELLULAR NETWORKS

PENG ZHANG, YUXIANG GAO, JANET FIERSON, AND YUEFAN DENG

Abstract. Through eigenanalysis of communication matrices, we develop a

new objective function formulation for mapping tasks to parallel computers
with cellular networks. This new formulation significantly speeds up the solu-
tion process through consideration of the symmetries in the supply matrix of
a network and a transformation of the demand matrix of any application. The
extent of the speedup is not easily obtainable through analytical means for
most production networks. However, numerical experiments of mapping wave
equations on 2D mesh onto 3D torus networks by simulated annealing demon-
strate a far superior convergence rate and quicker escape from local minima
with our new formulation than with the standard graph theory-based one.

1. Introduction

Task mapping is critical for achieving high performance of parallel computers
with complex networks such as cellular networks [1]–[10]. All proposed mapping
models to date represent parallel computers and applications as graphs. The net-
working capability of a parallel computer is abstracted as a supply matrix whose
entries represent inter-node communication costs while the communication require-
ments of the tasks of an application are abstracted as a demand matrix whose
entries represent inter-task communication loads [10]. The goal of the model is to
minimize the objective function, defined as the hop-bytes metric [1,4,5,8–11]. How-
ever, this hop-bytes metric is always written as a sum of the element-by-element
products of the network supply and application demand matrices. This native and
somewhat naive approach completely fails to exploit the symmetries in most cellu-
lar networks and thus results in a large number of unnecessary optimization steps
for finding a good mapping.

After reformulating the objective function for this task mapping representation,
we have discovered many opportunities for speeding up the optimization process
and escaping more efficiently from local minima without sacrificing the established
convenience in graph theory formulation.

The rest of the paper is organized as follows: In Section 2, we review the graph
theory-based mapping formulation and extend it to a new matrix formulation. In
Section 3, we introduce and prove the key theorems that lead to an eigenbased
quadratic form of the hop-bytes metric. In Section 4, we present the eigenspectra
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of popular networks. In Section 5, we validate and assess the value of our new for-
mulation through analytical and numerical approaches by exploring the symmetries
of networks. Conclusions are given in Section 6.

2. Graph theory-based mapping formulation

The problem of mapping n tasks of a parallel application onto p nodes of a
networked system is well studied [2–6,14,16,17]. It is equivalent to the fundamental
quadratic assignment problem (QAP) [10] when n = p.

The basic task mapping graph formulation can be reformulated to express the
hop-bytes metric in terms of the network supply matrix and the application demand
matrix.

A network topology graph is a directed graph G (P ,L), where P and L are
the sets of nodes and links. An element pi ∈ P represents a node and p = |P | is the
total number of nodes. An element lij ∈ L represents the connectedness between
the node pair pi and pj , where lij = 1 if there exists a link from pi to pj and lij = 0
otherwise. |L| / |P | is the average node degree. The adjacency matrix of such a
graph, a binary matrix L = [lij ] ∈ Rp×p, characterizes the connection topology of
the network.

Definition 1. A supply matrix of a network refers to the distance matrix of
G (P ,L), i.e., a matrix S = [sij ] ∈ Rp×p whose element sij is defined as

(1) sij =

{
0 for i = j,

min
{
n|Ln

ij �= 0
}

otherwise.

Here Ln = L× · · · × L︸ ︷︷ ︸
n

and Ln
ij is the i-th row and j-th column element of Ln.

Thus, sij represents the shortest node-to-node distance from pi to pj , measured in
hops.

An application graph is a weighted graph G (T ,H), where T and H are the
sets of tasks and communication loads. An element ti ∈ T represents a task and
n = |T | is the total number of tasks. A nonnegative element hij ∈ H represents
the total size of all messages in bytes communicated from ti to tj .

Definition 2. A demand matrix of an application refers to the weighted
connection matrix of G (T ,H), i.e., a matrix D = [dij ] ∈ Rn×n whose element
dij = hij .

A mapping refers to the allocation of n tasks onto p nodes and is defined as
an embedding G (P ,L) to G (T ,H), an injection from T to P such that every
hij ∈ H corresponds to a path in S and such a mapping relates to an injection
map

(2.1) σ =

(
1 2 · · · n
i1 i2 · · · in

)
or σ (k) = ik,

where ik ∈ {1, 2, · · · , p} and k ∈ {1, 2, · · · , n}. In this notation, σ (k) = ik implies
that task k is assigned to node ik. When n = p, this injection map becomes a
permutation σ. The inverse of a mapping σ−1 is written as

(2.2) σ−1 =

(
i1 i2 · · · in
1 2 · · · n

)
or σ−1 (ik) = k.
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Definition 3. A mapping matrix is a binary matrix M = [mij ] ∈ Rp×n whose
column vector mk is

(3) mk =

⎡
⎢⎣ m1k

...
mpk

⎤
⎥⎦ = eik ∈ Rp,

where mij = 1 implies task j is assigned to node i, and mij = 0 otherwise. eik is the
ik-th column of an identity matrix I ∈ Rp×p. Thus, M = [ei1 , ei2 , · · · , ein ] ∈ Rp×n.
When n = p, the mapping permutation σ defines a bi-injective map between an
identity matrix I ∈ Rn×n and M ∈ Rn×n:

(4) σ : I =
[
e1, e2, · · · , en

]
↔ M =

[
ei1 , ei2 , · · · , ein

]
.

Definition 4. The hop-bytes metric measures the quality of a mapping [2,3,17].
Its expression in the graph representation is

fS,D(σ) =
n∑

i=1

n∑
j=1

dij · sσ(i)σ(j) or, equivalently,(5)

fS,D(σ) =
n∑

i=1

n∑
j=1

dσ−1(i)σ−1(j) · sij

3. Eigenanalysis-based mapping theorems

Several eigenanalysis-based theorems governing the new task mapping formula-
tions are organized as follows:

(1) Theorem 1: Extension of the hop-bytes metric from the graph theory
formulation to the new matrix formulation;

(2) Theorem 2: A weighted quadratic form of the hop-bytes metric through
orthogonal diagonalization of a symmetric network supply matrix;

(3) Theorem 3: Extension of Theorem 1 by transforming the demand matrix
of any applications;

(4) Theorem 4: The quadratic form of the hop-bytes metric or the objective
function.

Theorem 1. Given a network supply matrix S ∈ Rp×p, an application demand
matrix D ∈ Rn×n and an injective mapping matrix M ∈ Rp×n, the hop-bytes
metric in Definition 4 is

(6) fS,D (M) = tr
(
STMDMT

)
.

Remark. In Theorem 1,
(
MDMT

)
ij

is the total size of all messages sent from node

i to node j for a given mapping M . The term
(
STMDMT

)
ii

is the sum of the
hop-bytes of all messages traveling to node i from all other nodes. Thus, the trace
is the total hop-bytes from all nodes to all nodes as defined in Definition 4.

Corollary 1.1. Given the same conditions as in Theorem 1, the hop-bytes in
Definition 4 can also be expressed as

(7) fS,D (M) = tr
(
MTSTMD

)
.

This is obvious because trace is invariant under cyclic permutation.
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Table 1. Symbols and definitions

Symbols Definitions

αij or Aij or (A)ij Element of matrix A = [aij ] in i-th row and j-th column
A = [aij ] Entry in i-th row and j-th column of A is aij
a [i] i-th element of a vector a
G (P ,L) A network graph with P the set of nodes and L the set of links
S = [sij ] ∈ Rp×p A network supply matrix with entry sij as the shortest hop

distance from node i to j
G (T ,H) An application graph with T the set of tasks and H the set of

communication loads

D = [dij ] ∈ Rn×n An application demand matrix with entry dij as the message
size sent from task i to j

σ A mapping in which task k is assigned to node σ (k), k ∈
{1, 2, · · · , n}

σ−1 An inverse mapping in which node i is assigned with task
σ−1 (i), i ∈ {1, 2, · · · , p}

M = [mij ] ∈ Rp×n A binary mapping matrix with entry mij = 1 implying task j
is assigned to node i

fS,D (σ) The hop-bytes metric given S, D, and σ in the graph theory-
based representation

fS,D (M) The hop-bytes metric provided S, D, and M in the new matrix
representation

tr (A) Trace of a matrix A = [aij ] ∈ Rn×n, tr (A) =
n∑

i=1
aii

Λ = diag (λ1, · · ·λn) Diagonal matrix Λ ∈ Rn×n with diagonal elements Λii = λi,
i ∈ {1, 2, · · · , n}

AT Transpose of a matrix A
α1, · · · , αn Eigenvalues of a network supply matrix S ∈ Rn×n

α = [α1, · · · , αn]
T A vector whose entries are eigenvalues of S

Λs = diag (α1, · · · , αn) A diagonal matrix whose diagonal elements are eigenvalues of S
q1, · · · , qn Orthonormal eigenvectors of a network supply matrix S ∈ Rn×n

Q = [q1, · · · , qn] A matrix whose column vectors are orthonormal eigenvectors of
S

B A matrix B =
(
D +DT

)
/2 ∈ Rn×n in which D ∈ Rn×n is an

application demand matrix
β1, · · · , βn Eigenvalues of B ∈ Rn×n

β = [β1, · · · , βn]
T A vector whose entries are eigenvalues of B

Λb = diag (β1, · · · , βn) A diagonal matrix whose diagonal elements are eigenvalues of
B

p1, · · · , pn Orthonormal eigenvectors of B
P = [p1, · · · , pn] A matrix whose column vectors are orthonormal eigenvectors of

B
[v]S Coordinate vector of v relative to the basis S = {u1, u2, · · · , un}

so [v]S = ST v

||v||Λ Weighted vector norm: ||v||Λ =

√
n∑

i=1
σiv2i where v =

[v1, · · · , vn]T , Λ = diag (σ1, · · · , σn)
|v| Dimension of a vector v
1N An N-dimensional vector containing all 1’s
1n×n A square matrix containing all 1’s
In×n An identity matrix and In×n ∈ Rn×n
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Remark. In Corollary 1.1,
(
MTSTM

)
ij

is the hop distance from task i to task j for

a given mapping M . The term
(
MTSTMD

)
ij

is the sum of the hop-bytes to task i

from all other tasks. Thus, similar to the approach from the node perspective, the
trace is the total hop-bytes from all tasks to all tasks as defined in Definition 4.

Symmetric assumption: For all networks we consider, links are always bidi-
rectional and the distance between a node pair is equal regardless of transmission
direction. Such a network is symmetric and so is its supply matrix. We also as-
sume n = p, converting the other case of n < p when necessary by padding with
noncommunicating “dummy” tasks. Without loss of generality, we assume:

(1) The network supply matrix is symmetric: S = ST ;
(2) The number of tasks is equal to the number of nodes: n = p, and thus the

mapping matrix M is a permutation matrix.

With such assumptions, we have,

Lemma 1.1. In Theorem 1, the hop-bytes metric is

(8) fS,D (M) = tr
(
SMDMT

)
.

Lemma 1.2. The mapping matrix is an orthonormal matrix, i.e.,

(9) M−1M = MTM = In×n.

Lemma 1.3. Given a supply matrix S ∈ Rn×n, a demand matrix D ∈ Rn×n and
a mapping matrix M ∈ Rn×n, there exists a matrix A ∈ Rn×n orthonormal such
that

(10) fS,D (A) = tr
(
ΛsADAT

)
,

where Λs = diag (α1, · · · , αn) and αi, i ∈ {1, · · · , n}, are the eigenvalues of S.

Proof. According to the finite-dimensional spectral theorem for a real symmet-
ric matrix S, there exists a real orthonormal matrix Q = [q1, · · · , qn] such that
Q−1SQ = QTSQ = Λs = diag (α1, · · · , αn) where αi and qi are eigenpairs (eigen-
values and associated orthonormal eigenvectors) of S. Substituting S = QΛsQ

T

into equation (8) yields

(11) fS,D (M) = tr
(
QΛsQ

TMDMT
)

= tr
(
ΛsQ

TMDMTQ
)
.

Let A = QTM . A is an orthonormal matrix since Q and M are both orthonormal
matrices. This produces equation (10). �

Theorem 2. Given the same conditions as in Lemma 1.3, the hop-bytes metric is
represented in a weighted quadratic form:

(12) fS,D (M) =

n∑
i=1

αi · qi∗TDq∗i =

n∑
i=1

αi · [qi]TM D[qi]M ,

where q∗i = MT qi = [qi]M , and αi and qi are eigenpairs of S.

Proof. By Lemma 1.3, the hop-bytes metric is fS,D (A) = tr
(
ΛsADAT

)
where Λs =

diag (α1, · · · , αn), A = QTM , and the column vectors of Q form the eigenspaces of
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S. Let the column vectors of AT be ai ∈ Rn. Thus, we have

(13) A = QTM =

⎡
⎢⎢⎢⎣

qT1
qT2
...
qTn

⎤
⎥⎥⎥⎦M =

⎡
⎢⎢⎢⎣

qT1 M
qT2 M

...
qTnM

⎤
⎥⎥⎥⎦ =⇒ aTi = qTi M.

On the other hand, we have

fS,D (A) = tr

⎛
⎜⎜⎜⎝Λ

⎡
⎢⎢⎢⎣

aT1
aT2
...
aTn

⎤
⎥⎥⎥⎦D [a1, a2, · · · , an]

⎞
⎟⎟⎟⎠(14)

= tr

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

α1 0 · · · 0

0 α2
. . .

...
...

. . .
. . . 0

0 · · · 0 αn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

aT1 Da1 ∗ · · · ∗

∗ aT2 Da2
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ aTnDan

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= α1a
T
1 Da1 + · · · + αna

T
nDan.

Combining equations (13) and (14) produces fS,D (M) = α1q
T
1 MDMT q1 + · · ·+

αnq
T
nMDMT qn. Letting q∗iT = MT qi = [qi]M completes the proof. �

Remark. In Theorem 2, MT qi = [qi]M is the coordinate vector of qi relative to
the basis M = {ei1 , ei2 , · · · , ein}. It is also a permutation of elements of a supply
matrix’s eigenvector qi and

(15) q∗i = MT qi =

⎡
⎢⎢⎢⎣

qi [i1]
qi [i2]

...
qi [in]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

qi [σ (1)]
qi [σ (2)]

...
qi [σ (n)]

⎤
⎥⎥⎥⎦ ,

where qi [σ (k)] is the σ (k)-th element of the vector qi. Then we have

(16) fS,D (M) =
n∑

i=1

αiq
∗
i
TDq∗i ,

where q∗i
TDq∗i =

∑
l<m

(dlm + dml) q
∗
i [l] q∗i [m] =

∑
l<m

(dlm + dml) qi [σ (l)] qi [σ (m)]

and thus we obtain the following:

Corollary 2.1. Given the same conditions as in Theorem 2, we have

fS,D (σ) =

n∑
i=1

∑
l<m

αi (dlm + dml) qi [σ (l)] qi [σ (m)] or, equivalently,(17)

fS,D (σ) =
n∑

i=1

∑
l<m

αi

(
dσ−1(l)σ−1(m) + dσ−1(m)σ−1(l)

)
qi (l) qi (m) .

The network is assumed to be symmetric so we can obtain an equivalent form of
the hop-bytes metric by symmetrizing the demand matrix in Theorem 3 [10].
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Theorem 3. Given a network supply matrix S ∈ Rn×n, an application demand
matrix D ∈ Rn×n and a mapping matrix M ∈ Rn×n, the hop-bytes metric is

(18) fS,D (M) = tr
(
SMBMT

)
,

where B =
(
D + DT

)
/2 ∈ Rn×n is a symmetric matrix.

Proof. Since the distance between any two nodes in a symmetric network is the
same regardless of data transmission direction, B and D impact the hop-bytes
metric identically. �

The bound estimation for the quadratic part of the QAP [8,10] defines a property
of the hop-bytes metric on the mapping problem stated in Theorem 3 as:

Property 3.1. Given the same conditions as in Theorem 3 with α1 ≥ α2 ≥ · · · ≥
αn the eigenvalues of S and β1 ≥ β2 ≥ · · · ≥ βn the eigenvalues of B, we have

(19)

n∑
i=1

αiβn+i−1 ≤ fS,D (M) ≤
n∑

i=1

αiβi.

These new formulations and theorems for task mapping in the eigen representa-
tion can be summarized as

Theorem 4 (Eigen Representation Theorem). Given:

(1) A network supply matrix S ∈ Rn×n with eigenpairs αi and qi;
(2) An application demand matrix D ∈ Rn×n;
(3) A matrix B =

(
D + DT

)
/2 with eigenpairs βi and pi.

The hop-bytes metric as in Definition 4 in the eigen representation is:

(20) fS,D (M) = αTCβ.

where C = [cij ] ∈ Rn×n, cij =
(
qTi Mpj

)2
= ([qi]M · pj)2, α = [α1, · · · , αn]T ,

β = [β1, · · · , βn]
T
, and M is a mapping matrix.

Proof. The symmetric matrix B is orthonormally similar to a diagonal matrix Λb

such that P−1BP = PTBP = Λb = diag (β1, · · · , βn), where βi, i ∈ {1, · · · , n},
and the column vectors of P = [p1, · · · , pn] are the eigenvalues and eigenvectors of
B. Similarly, the symmetric matrix S is orthonormally similar to a diagonal matrix
Λs such that Q−1SQ = QTSQ = Λs = diag (α1, · · · , αn), where αi, i ∈ {1, · · · , n},
and the column vectors of Q = [q1, · · · , qn] are the eigenvalues and eigenvectors of
S. Thus, we have fS,D (M) = tr

(
SMBMT

)
= tr

(
ΛsHΛbH

T
)
, where H = [hij ] =

QTMP and hij = qTi Mpj . Thus,

fS,D (M) = tr
(
ΛsHΛbH

T
)

= tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

n∑
k=1

βkh
2
1k ∗ · · · ∗

∗ α2

n∑
k=1

βkh
2
2k

. . .
...

...
. . .

. . . ∗
∗ · · · ∗ αn

n∑
k=1

βkh
2
nk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
n∑

l=1

n∑
k=1

αlβkh
2
lk.

(21)
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Let cij = h2
ij =

(
qTi Mpj

)2
. Then we conclude that

fS,D (M) = [α1, α2, · · · , αn]

⎡
⎢⎢⎢⎢⎣
c11 c12 · · · c1n

c21 c22
. . .

...
...

. . .
. . . cn−1,n

cn1 · · · cn,n−1 cnn

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
β1

β2

...
βn

⎤
⎥⎥⎥⎦.

This produces the quadratic form of the hop-bytes metric through the eigenspaces
of S and B. �

Remark. We call this theorem the Eigen Representation Theorem (ER Theorem).

4. Eigenspectra of networks

The following eigenspectra properties of the supply matrix are essential for sim-
plifying the hop-bytes metric in the ER Theorem:

Property 1. (General networks): Let α1, · · · , αn, with |α1| ≥ |α2| ≥ · · · ≥ |αn|,
be the n eigenvalues of a supply matrix S. Then we have:

(1) A single positive dominant eigenvalue α1: α1 > |αi| ∀i ∈ {2, 3, · · · , n};
(2) A dominant eigenvector q1 with all positive entries: q1 [i] > 0 ∀i ∈

{1, 2, · · · , n};
(3) The eigenvalue α1 bounded by

(22) min
i

∑
j

sij ≤ α1 ≤ max
i

∑
j

sij .

Proof. S is a nonnegative and irreducible matrix so the Perron-Frobenius Theorem
[15] guarantees Property 1. �

To understand the eigenspectra of popular cellular networks more intuitively, we
illustrate the discrete eigenvalues of torus, hypercube, fully-connected, and mesh
networks in Figures 1 and 2. In each plot, the horizontal axis displays the total
number of nodes, i.e., the network size N , and the vertical axis displays the eigenval-
ues E. Figure 1 shows the eigenvalues of supply matrices of the n-ary k-cube where
k ∈ [1, 4], as well as of two other special networks: hypercube and fully-connected.
Figure 2 shows the results for the 2D/3D/4D mesh networks.

In Figures 3 and 4, in addition to the eigenvalues themselves, we also show
their multiplicities, for 2D and 3D networks, respectively. Each plot shows the
distributions of the nonpositive eigenvalues of torus and mesh networks of the same
size. The vertical axes display the eigenvalues. A horizontal bar on the left or right
hand side indicates an eigenvalue level of a torus or mesh network, respectively.
The eigenvalue of greatest absolute value for a mesh network is always larger than
that of a torus of the same size. The digit nearest to a horizontal bar or a set of
tightly bunched horizontal bars indicates the multiplicity of a negative eigenvalue
or some eigenvalues that are very close to one another.
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Figure 1. Eigenvalues of supply matrices for torus networks

We obtain the following elegant Properties 2 to 5 based on Figures 1 to 4:

Property 2. (Torus networks): Let the eigenvalues of Torus
(
nd
)
, for n ≥ 4 even,

be α1, · · · , αn, with |α1| ≥ · · · ≥ |αN |. Let N = nd, ρ be the diameter of the
network, and μ the average distance between nodes. Let αi and qi be eigenpairs of
the supply matrix S of Torus

(
nd
)
. Then we have:

(1) Single dominant eigenvalue α1 = dnd+1/4 = N ·μ = N ·ρ/2 and associated
eigenvector q1 = N−1/2 · 1N ;

(2) μ = 1
N2

n∑
i,j,k

aiqi [j] qi [k];

(3) α2 = · · · = α2d+1 < 0 and |α2| ∈
(
0, 1

8n
d+1
]
, more precisely, |α2| = 1

8n
d+1

if and only if n = 4;
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Figure 2. Eigenvalues of supply matrices for mesh networks

Figure 3. Nonpositive eigenvalue distribution of 2D torus and
mesh networks

(4) |α2d+1| > |α2d+2|;
(5) |αj | < |α2| · 10%, j ∈ [4d + 2, ρ + 1] and n ≥ 10;

(6) αi

⎧⎪⎨
⎪⎩
> 0 for i = 1,

< 0 for 2 ≤ i ≤ ρ + 1,

= 0 ∀ other i.

Proof. Applying Property 1 to torus networks, we achieve the following network-
specific properties: a single positive dominant eigenvalue α1 = dnd+1/4 and asso-
ciated eigenvector q1 = N−1/2 · 1N . Since the average node-to-node distance of a
torus is half its diameter; that is, μ = ρ/2 = dn/4, we have α1 = N · μ = N · ρ/2.
This proves Property 2(1).
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Figure 4. Nonpositive eigenvalue distribution of 3D torus and
mesh networks

The average node-to-node distance is μ = fS,1N×N
(IN×N ) /N2 where the nu-

merator is the total distance and the denominator is the total number of node pairs
N = nd. Thus, Theorem 2 yields

(23) fS,1N×N
(IN ) =

n∑
i=1

αiq
T
i 1N×Nqi =

n∑
i,j,k

aiqi [j] qi [k] .

This proves Property 2(2). �

Figure 1 shows the following elementary observations: (o.1) the second absolute-
largest eigenvalue of a torus network is always negative; (o.2) specifically, the
trumpet-like curves demonstrate that as the network size increases, such a sec-
ond absolute-largest eigenvalue of a torus network quickly distances itself from the
other absolute-smaller eigenvalues.

Additionally, Figures 3 and 4 show the following observation: (o.3) 2-D and 3-D
torus networks always have four and six second absolute-largest negative eigenval-
ues, respectively.

Thus, these observations (o.1), (o.2), and (o.3) imply Properties 2(3) and 2(4).
Through comparing the data in Figure 1 while realizing observation (o.2), we derive
Property 2(5). Property 2(6) is a straightforward summary based on Figure 1.

Remark. In Property 2(1), α1 = N · μ implies that the sum over all nodes of the
hop distances from a node to all other nodes is equal to the dominant eigenvalue
of the supply matrix of Torus

(
nd
)
.

Remark. According to Property 2(1), Theorem 2 for Torus
(
nd
)

is

(24) fS,D (M) =
dnd

4

⎛
⎝∑

i,j

dij

⎞
⎠+

n∑
i=2

αi · [qi]TM D[qi]M .

Property 3. (Hypercube networks): Let the eigenvalues of Hypercube
(
2d
)

be

α1, · · · , αn, with |α1| ≥ · · · ≥ |αN |. Let N = 2d, ρ be the diameter, and μ be the
average distance. Then we have:
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(1) Dominant eigenvalue α1 = d2d−1 = N · μ = 1
2N · ρ with associated eigen-

vector q1 = 1√
N

· 1N and |α1| > |α2|;
(2) α2 = · · · = αd+1 = −2d−1 < 0;
(3) αj = 0, j ∈ [d + 2, N ].

Proof. Property 3(1) is a special case of Property 2(1).
Property 3(2) can be proved by induction. When d = 1, the supply matrix of

Hypercube
(
21
)

is [ 0 1
1 0 ] so −1 is an eigenvalue of multiplicity 1 with associated

eigenvector [1,−1]T . Assume when d = m, the supply matrix A of Hypercube (2m)
has an eigenvalue −2m−1 of multiplicity m with associated eigenvectors �v1, · · · , �vm.
Then for d = m + 1, the supply matrix of Hypercube

(
2m+1

)
is

(25) B =

[
A A + 12m×2m

A + 12m×2m A

]
.

Using the induction hypothesis, we know A�vl = −2m−1 · �vl ∀ l ∈ {1, · · · ,m}.
Thus, we have

(26) B

[
�vl
�vl

]
=

[
A A + 12m×2m

A + 12m×2m A

] [
�vl
�vl

]
= −2m ·

[
�vl
�vl

]
.

In addition, we have

B

[
12m

−12m

]
=

[
A A + 12m×2m

A + 12m×2m A

] [
12m

−12m

]

= −2m ·
[

12m

−12m

]
.

(27)

Therefore, B has eigenvalue −2m of multiplicity m+1 with associated eigenvec-

tors
[
�vTl , �v

T
l

]T
(l ∈ {1, · · · ,m}) and

[
1T2m ,−1T2m

]T
.

Property 3(3) can also be proven by induction. When d = 1, similarly, the supply
matrix of Hypercube

(
21
)

is [ 0 1
1 0 ] so the rank of the supply matrix of Hypercube(

21
)

is 2. Assume when d = m, the supply matrix A of Hypercube (2m) has

rank (A) = m+1. Then, for d = m+1, the supply matrix B of Hypercube
(
2m+1

)
has rank (B) = rank (A) + 1. Using the induction hypothesis, we get rank (B) =
m+ 2. Therefore, the nullity of the supply matrix of Hypercube

(
2d
)

is 2d − d− 1.

Thus, 0 is an eigenvalue with multiplicity 2d − d− 1. �

Remark. Property 3 is shown in Figure 1.

Property 4. (Mesh networks): Let the eigenvalues of Mesh
(
nd
)
, for n ≥ 4 even,

be α1, · · · , αn, with|α1| ≥ · · · ≥ |αN |. Let N = 2d and ρ be the diameter. Then we
observe the following:

(1) α1 > 0 and |α1| > |α2|;
(2) α2 = · · · = αd+1 < 0;
(3) |αd+1| > |αd+2|;
(4) |αj | < |α2| · 10%, j ∈ [3d + 2, ρ + 1] and n ≥ 6;

(5) αi

⎧⎪⎨
⎪⎩
> 0 for i = 1,

< 0 for 2 ≤ i ≤ ρ + 1,

= 0 ∀ other i.

Proof. Property 4(1) is guaranteed by Property 1(1). �
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Similarly to Figure 1, Figure 2 also shows the following: (o.4) a mesh network
has a single positive dominant eigenvalue, thus implying Property 4(1); (o.5) the
trumpet-like curves demonstrate that the second-absolute-largest energy levels are
always negative and become larger and larger in comparison to absolute-smaller
energy levels, thus implying Properties 4(2) and 4(3). Figures 3 and 4 also con-
firm Property 4(2) by showing that 2D and 3D mesh networks have two and three
second-absolute-largest eigenvalues. Through comparing the data in Figure 2 while
realizing observation (o.5), we derive Property 4(4). Property 4(5) is a straightfor-
ward summary based on Figure 2.

Property 5. (Fully-connected networks): Let the eigenvalues of a fully-connected
network (N) be α1, · · · , αn, with |α1| ≥ · · · ≥ |αN |. Then we have:

(1) α1 = N − 1 with associated eigenvector q1 = 1√
N

· 1N ;

(2) αj = −1, j ∈ [2, N ].

Proof. Let S be a supply matrix of a fully-connected network. Then S + IN×N =
1N×N . Clearly, 1N×N has two eigenvalues, N and 0, with multiplicities 1 and N−1,
respectively. Second, if αk is an eigenvalue of 1N×N , αk − 1 is an eigenvalue of S.
This proves Property 5. �
Remark. The same statement is in [7]. Property 5 is shown in Figure 1.

5. Analyses and the numerical experiments

The value of our new formulation is demonstrated analytically and validated
numerically through mapping applications on torus networks.

5.1. Analytical solution of a sample case. On a small mapping problem, we
apply the ER Theorem to find the analytic solution by exploring symmetries of the
network’s and the application’s eigenpairs. The problem involves mapping a 4-task
looped communication pattern depicted in Figure 5 to a 2D Torus (2 × 2). In this
application, each task exchanges data of equal size with its two nearest neighbors
in the ring. Figures 6 and 7 are the supply and demand matrices for the network
and the application.

Figure 5. A communication pattern of 4-node ring

Figure 6. Supply ma-
trix of 2D torus(2 × 2)

Figure 7. Demand ma-
trix of a 4-task ring
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We notice that

α ≡

⎡
⎢⎢⎣

α1

α2

α3

α4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
−2
−2
0

⎤
⎥⎥⎦ , β ≡

⎡
⎢⎢⎣

β1

β2

β3

β4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
−4
0
0

⎤
⎥⎥⎦ ,

q1 = p1 =
1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦⇒ qT1 M = qT1 and Mp1 = p1∀M ∈ Rn×n.

(28)

Thus, the hop-bytes metric in the ER Theorem is

fS,D (M) = αTCβ = [4,−2,−2]

⎡
⎢⎣
(
qT1 p1

)2 (
qT1 p2

)2(
qT2 p1

)2 (
qT2 Mp2

)2(
qT3 p1

)2 (
qT3 Mp2

)2
⎤
⎥⎦[ 4

−4

]

= [4,−2,−2]

⎡
⎢⎣ 1 0

0
(
qT2 Mp2

)2
0
(
qT3 Mp2

)2
⎤
⎥⎦[ 4

−4

]
, where

q2 =

√
2

2

⎡
⎢⎢⎣

1
0
0
−1

⎤
⎥⎥⎦ , q3 =

√
2

2

⎡
⎢⎢⎣

0
1
−1
0

⎤
⎥⎥⎦ , p2 =

1

2

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦ .

(29)

Substituting q′2 =
√

2q2, q
′
3 =

√
2q3, p

′
2 = 2p2 into this equation yields

(30)

fS,D (M) = 8
[(
qT2 Mp2

)2
+
(
qT3 Mp2

)2]
+ 16

⇒ fS,D (M) =
(
(q′2)

T
Mp′2

)2
+
(
(q′3)

T
Mp′2

)2
+ 16

⇒ fS,D (M) = 1
2

⎧⎪⎪⎨
⎪⎪⎩(Mp′2)

T

⎡
⎢⎢⎣

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎤
⎥⎥⎦ (Mp′2)

⎫⎪⎪⎬
⎪⎪⎭+ 16

⇒ fS,D (M) = 18 − 1
2

⎧⎪⎪⎨
⎪⎪⎩(Mp′2)

T

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ (Mp′2)

⎫⎪⎪⎬
⎪⎪⎭

⇒ fS,D (M) = 18 − (v1v4 + v2v3),

where v ≡ [v1, v2, v3, v4]
T

= Mp′2.

Therefore, this mapping problem can be restated as: Find a mapping matrix M
to

(31) maximize {(v1v4 + v2v3)} ,
where [v1, v2, v3, v4]

T = M [1,−1, 1,−1]T .

Clearly, the optimal mapping condition is v1 = v4 = 1 and v2 = v3 = −1, i.e.,

(32) M = [e1, e2, e4, e3] =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .



EIGENANALYSIS-BASED TASK MAPPING FOR PARALLEL COMPUTING 1741

Figure 8. Rank-order mapping Figure 9. Optimal mapping

The optimal permutation and its optimal hop-bytes metric becomes:

(33) σoptimal =

(
1 2 3 4
1 2 4 3

)
and fS,D (σoptimal) = 16.

This mapping solution is depicted in Figure 9 and is compared with a more
natural rank-order mapping as shown in Figure 8.

The symmetries of the demand matrices in equation (31) reflected by the eigen-
vector p′2 guarantee the invariance of fS,D (M) when swapping the mapping for the
task pair t1 and t3 and for the task pair t2 and t4. The ER Theorem also eliminates
the need to consider mapping options that would help find the optimal mapping.
These mapping options, enormous in number, are a result of the symmetries of the
network and tasks. In our example of mapping 4 tasks to 4 nodes, the number
of mapping options is P 4

4 = 4! = 24. With our new formulation, we only need to
consider 6 mapping options.

5.2. Objective function truncation. Task mapping is one of the classic NP-
complete problems whose solutions require heuristic techniques such as simulated
annealing (SA) to obtain [1, 9, 12]. We have conducted various experiments to
examine the extent of solution time reduction and quality through SA that we
adopted from SA Tool version 1.03 for Matlab in [12]. In our experiments, we use
an exponential annealing schedule: Ti = T0 · ηi where η ≈ 1 [9, 12]. We perform
sixteen steps to “melt” the system from an initial “frozen” rank-order mapping. We
launch two random walkers in this SA tool and consider 100 pair exchanges in each
temperature stage per walker. The SA process is terminated once a predetermined
number of steps have been taken or the energies have no significant change over
2,000 steps:

(34) |Et − Ec| / |Ec| < 10−3,

where Ec is the latest energy and Et is any of the accepted energies over the past
2,000 steps.

Generating a trial state and evaluating the energy difference δf = Enew − Eold

is the most time-consuming portion of the SA process, and also the most memory-
intensive because of the need to store the supply and demand matrices. In a
standard SA experiment, the hop-bytes objective function f in Definition 4 is used
as the energy function to minimize. Our ER Theorem (f = αTCβ) plays an
essential role in truncating, yet preserving the principle of, the energy function; it
is not possible to do this with the graph theory-based energy function.
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Considering the eigenspectral properties of the cellular networks in Section 4,
we truncate this energy function f = αTCβ to a new form by selecting a subset of
eigenvalues from α and β:

(35) f̂ = α̂T Ĉβ̂,

where α̂ = [αi1, · · · , αil]
T ∈ Rl, β̂ = [βj1, · · · , βjk]

T ∈ Rk, and

Ĉ =

⎡
⎢⎢⎣
(
qTi1Mpj1

)2 · · ·
(
qTi1Mpjk

)2
...

. . .
...(

qTilMpj1
)2 · · ·

(
qTilMpjk

)2
⎤
⎥⎥⎦ ∈ Rl×k.

Thus, |α̂| = l < n, |β̂| = k < n and Ĉ is a submatrix of C.

This new truncated energy function f̂ helps eliminate unnecessary calculations.
For example, the supply matrices for torus and mesh networks contain many zero
eigenvalues; terms involving these values can be ignored in forming α̂. It also helps
approximate the principle changes of the energy function f .

For example, in mapping a 2D 8 × 8 computing mesh for a wave equation onto
a 3D Torus

(
43
)

network, we order the eigenvalues of S and B respectively: |α1| ≥
|α2| ≥ · · · ≥ |α64| and β1 ≥ · · · ≥ β64. Then the new energy function f̂ can be
written as

(36) f̂ = α̂T Ĉβ̂ = −32 · 1T
6 ·

⎡
⎢⎢⎣
(
qT2 Mp2

)2 · · ·
(
qT2 Mp5

)2
...

. . .
...(

qT6 Mp2
)2 · · ·

(
qT6 Mp5

)2
⎤
⎥⎥⎦
6×4

·

⎡
⎢⎢⎣

5.41
5.41
4.83
4.83

⎤
⎥⎥⎦ .

Thus, |α̂| = 6 and |β̂| = 4 .
In this case, the dominant eigenvalues in both S and B (i.e., α1 = 192 and

β1 = 6) have the same eigenvectors q1 = p1 = 1
8 · 1T64. Thus, these two eigenvalues’

contribution to the energy function is a constant c regardless of mapping:

(37) c = α1

(
qT1 PΛbP

T q1
)

+ β1

(
pT1 QΛsQ

T p1
)
− α1β1

(
qT1 p1

)2 ≈ 1152.

The relation between the energy function f and its truncated form f̂ is f =

f̂ + c + s = f̂ + 1152 + s where s serves as a relaxation.

Replacing the energy function f with this new truncated form f̂ produces a new
task mapping solver: eigenbased SA (SA-E). We refer to the implementation with
the original energy function f as regular SA (SA-B).

5.3. Analysis of heuristic solution effectiveness and efficiency.

5.3.1. SA-B vs. SA-E for general cases. Before presenting numerical solutions, we
analyze the efficiency of the SA applied to the two formulations in terms of CPU
time, measured in number of floating-point operations for SA steps, and memory
space.

In finding a new mapping, we swap a task pair {i, j} and SA-B uses

(38) Enew = Eold − 2(si − sj)
T

(bi − bj) + 4 (sij × bij) ,

where si and bi are the ith column vectors of S and B, and the same for j. This
requires N +3 multiplications and 3N +1 additions, totaling 4 (N + 1) operations.
Thus, its time complexity is O (4N). This process requires use of the entire supply
and demand matrices in the memory so its space complexity is O

(
N2
)
.
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However, SA-E requires the following two steps:
Step 1: Calculate Ĉnew = [dnewlm ]|α̂|×|β̂| through Ĉold =

[
doldlm

]
|α̂|×|β̂| as:

dnewlm = doldlm − (ql (i) − ql (j)) (pm (i) − pm (j))

where

l ∈ {1, · · · , |α̂|} ,m ∈
{

1, · · · , |β̂|
}
.

Step 2: Calculate a new truncated energy:

(39) Enew =

|β̂|∑
m=1

⎡
⎣βm

⎛
⎝ |α̂|∑

l=1

αl(d
new
lm )

2

⎞
⎠
⎤
⎦ ,

where α̂ =
[
α1, · · · , α|α̂|

]T ∈ R|α̂|, β̂ =
[
β1, · · · , β|β̂|

]T
∈ R|β̂|.

This requires |β̂| (3 |α̂| + 1) multiplications and 4 |α̂| |β̂| − 1 additions, totaling

|β̂| (7 |α̂| + 1)−1 operations. Thus, its time complexity is O
(
7 |α̂| |β̂|

)
. This process

requires the use of a matrix Ĉold ∈ R|α̂|×|β̂| and eigenvectors {ql}|α̂|l=1 ∈ RN and

{pm}|β̂|m=1 ∈ RN so its space complexity is O
(
|α̂| |β̂| +

(
|α̂| + |β̂|

)
N
)
.

5.3.2. SA-B vs. SA-E for tori. In the torus networks, Property 2 in Section 4 im-
plies:

(1) We can ignore α1 in forming α̂ since q1 = N−1/2 · 1N causes α1’s contribu-
tion to the energy function to be a constant under any map, by Property
2(1);

(2) α2 = · · · = α2d+1 < 0 are the 2d smallest eigenvalues, by Property 2(3);
(3) |α2| becomes more significant than other negative eigenvalues as N grows

larger, by Property 2(5).

Therefore, in mapping applications onto Torus
(
nd
)
, if we only select the 2d

smallest eigenvalues for forming α̂, i.e., α̂ = [α2, · · · , α2d+1]
T ∈ R2d, then the

truncated energy in Step 2 becomes:

(40) Enew = α2 ·
|β̂|∑
m=1

⎡
⎣βm

⎛
⎝ |α̂|∑

l=1

(dnewlm )
2

⎞
⎠
⎤
⎦ .

Thus, SA-E for torus requires
∣∣∣β̂∣∣∣ (2 |α̂| + 1) multiplications and 4 |α̂|

∣∣∣β̂∣∣∣− 1 ad-

ditions, totaling
∣∣∣β̂∣∣∣ (6 |α̂| + 1)− 1 operations. Its time complexity is O

(
12d ·

∣∣∣β̂∣∣∣).
For example, we consider mapping applications on 3D Torus

(
n3
)

networks.
Table 2 compares the complexities between the SA-B and SA-E approaches. In
SA-E, we use two selection methods for α̂: all of the negative eigenvalues to get
α̂ = [α2, · · · , α1.5×n+1] ∈ R1.5×n (SA-E-1) and only the 2d (six in this case) smallest
eigenvalues to get α̂ = [α2, · · · , α7] ∈ R6 (SA-E-2).

5.3.3. SA-B vs. SA-E for hypercubes. In the hypercube networks, Property 3 in
Section 4 implies:

(1) We can ignore α1 in forming α̂ since q1 = N−1/2 · 1N causes α1’s contribu-
tion to the energy function to be a constant under any map, by Property
3(1); (This is the same as for tori.)
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Table 2. Complexity comparisons between the SA-B and SA-E
approaches for torus networks

Methods Time Complexity Space Complexity Note
SA-B 4N N2

SA-E-1 10.5
∣∣∣β̂∣∣∣ ·N1/3

(
6 +
∣∣∣β̂∣∣∣)N |α̂| = 1.5 × n

SA-E-2 36
∣∣∣β̂∣∣∣ (

6 +
∣∣∣β̂∣∣∣)N |α̂| = 6

(2) α2 = · · · = αd+1 = −2d−1 < 0 are the d second-absolute-largest eigenval-
ues, by Property 3(2);

(3) We can ignore αj for j ∈ [d + 2, N ] in forming α̂ since |αj | ≡ 0 for j ∈
[d + 2, N ], by Property 3(3).

Therefore, in mapping applications onto Hypercube
(
2d
)
, we need only select

the d negative eigenvalues for forming α̂, i.e., α̂ = [α2, · · · , αd+1]
T ∈ Rd. Then the

truncated energy in Step 2 becomes:

(41) Enew = −2d−1 ·
|β̂|∑
m=1

⎡
⎣βm

⎛
⎝ |α̂|∑

l=1

(dnewlm )2

⎞
⎠
⎤
⎦ .

Similarly to the torus case, its time complexity is O
(
6d ·
∣∣∣β̂∣∣∣).

For example, we consider mapping applications on d-D Hypercube
(
2d
)

networks.
Table 3 compares the complexities between the SA-B and SA-E approaches. We can
see that the time and space complexities of the SA-E approaches for 6-D hypercube
networks are the same for 3-D torus networks.

Table 3. Complexity comparisons between the SA-B and SA-E
approaches for hypercube networks

Methods Time Complexity Space Complexity Note
SA-B 4N N2

SA-E 6d ·
∣∣∣β̂∣∣∣ (

d +
∣∣∣β̂∣∣∣)N |α̂| = d

5.3.4. Error estimates. Sections 5.3.2 and 5.3.3 present the truncated objective
functions and analyze and compare their time and space efficiencies. Before show-
ing numerical results, we analyze the estimates of the error between the original
objective function as in equation (20) and our truncated models in equations (40)
and (41).

In a step of a simulated annealing experiment for the task mapping problem, we
randomly select a task pair (t1, t2) and exchange them in the current mapping M1

to generate a new mapping M2. As stated in Section 5.3.1, the acceptance criteria
for this “move” require evaluation of the difference δE ≡ E (M1) − E (M2) of the
objective functions E (M1) and E (M2) under two mappings M1 and M2.
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ER Theorem proved that the objective function Eo in SA-B is:

(42) Eo (M) ≡
n∑

i=1

n∑
j=1

αiβj

(
qTi Mpj

)2
.

Thus, we have δE in SA-B as δEo = Eo (M1) − Eo (M2).
Similarly, equation (35) presents the truncated objective function Et in SA-E as

(43) Et (M) =
∑

∀i∈|α̂|

∑
∀j∈|β̂|

αiβj

(
qTi Mpj

)2
.

Thus, we have δE in SA-B as δEt = Et (M1) − Et (M2).

In the hypercube H
(
2d
)

case, we have: α̂ = [α2, · · · , αd+1] and β̂ = [β1, · · · , βk]

so |α̂| ≡ d and
∣∣∣β̂∣∣∣ = k. According to Property 3, under any mapping M , we have:

Eo (M) = c0 + Et (M) − 2d−1
d+1∑
i=2

N∑
j=k+1

βj

(
qTi Mpj

)2

in which c0 =
d

2

N∑
j=1

βj

∣∣1TN · pj
∣∣2.

(44)

Here, c0 is the contribution from α0 invariant under any mapping and N = 2d.
Then, we have:

δEo − δEt = (Eo (M1) − Et (M1)) − (Eo (M2) − Et (M2))

= −2d−1
d+1∑
i=2

N∑
j=k+1

βj

(
qTi (M1 + M2) pj

) (
qTi (M1 −M2) pj

)
.

(45)

On the other hand, since ||qi|| = ||pj || = 1, we have:

(46)
∣∣qTi (M1 −M2) pj

∣∣ = |(pi [t1] − pi [t2]) (qj [t1] − qj [t2])| ≤ 1,

(47)
∣∣qTi (M1 + M2) pj

∣∣ ≤ ∣∣qTi M1pj
∣∣+ ∣∣qTi M2pj

∣∣ ≤ 2.

From equations (45), (46) and (47), we obtain:

(48) |δEo − δEt| ≤ d2d
N∑

j=k+1

|βj |

Therefore, in the hypercube case, we prove that the difference |δEo − δEt| be-
tween δEo obtained by considering the original objective function as in equation
(20) and δEt obtained by considering only a subset of eigenvalues for an application
demand matrix and all eigenvalues of a given hypercube

(
2d
)

as in equation (40) is
bounded by the set of eigenvalues that are not considered in the truncated objective
function and the network size.
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In a torus T
(
nd
)

case, we have: α̂ =
[
α2, · · · , α|α̂|+1

]
and β̂ = [β1, · · · , βk] so

|β̂| = k. According to Property 2, under any mapping M , we have:

Eo (M) = c0 + Et (M) +

|α̂|+1∑
i=2

N∑
j=k+1

αiβj

(
qTi Mpj

)2

in which c0 =
nd

4

N∑
j=1

βj

∣∣1T
N · pj

∣∣2.
(49)

Here, similarly to equation (44), c0 is the contribution from α0, invariant under
any mapping, and N = nd. Then similarly to equation (45), we have:

δEo − δEt = (Eo (M1) − Et (M1)) − (Eo (M2) − Et (M2))

=

|α̂|∑
i=2

N∑
j=k+1

αiβj

(
qTi (M1 + M2) pj

) (
qTi (M1 −M2) pj

)
.

(50)

According to equations (46) and (47), we know:

(51)
∣∣(qTi (M1 + M2) pj

) (
qTi (M1 −M2) pj

)∣∣ ≤ 2.

Then, according to Property 2, we have:

(52) |δEo − δEt| ≤ 2 |α̂| |α2|
N∑

j=k+1

|βj | ≤
nd+1

4
|α̂|

N∑
j=k+1

|βj | ≤
3

8
nd+2

N∑
j=k+1

|βj |.

Therefore, in the torus case, we also prove that |δEo − δEt| is bounded by the
set of eigenvalues that are not considered in the truncated objective function and
the network size.

Equations (48) and (52) imply that the larger βj contribute more heavily to the
objective function, and its move changes, in the simulated annealing algorithm.
In other words, contributions from small βj may be ignored; we can approximate
a near-optimal task mapping on supercomputers with reasonable cost in terms of
time and space complexities rather than demanding a perfectly optimal solution
regardless of expenses.

5.3.5. Numerical results. Figure 10 shows the complexity of space and time of map-
ping applications onto 3D Torus

(
n3
)

networks. It is obvious that proper choice of

β̂ in SA-E greatly reduces the time and memory demands.
In Figures 11 to 19 and Table 2, we test mapping the tasks of a 2D wave equa-

tion onto a 3D Torus network with the regular (SA-B) and the new eigen method
(SA-E). In Figures 20 to 23 and Table 3, we compare results for mapping a 2D
wave equation onto a 6D Hypercube network with the regular (SA-B) and the new
eigen method (SA-E). The inter-task communication pattern of solving the wave
equation on a mesh 16 × 4 is shown in Figure 24.

In Figures 11 to 17, the two digits in parentheses following SA-E indicate the

dimensions of α̂ and β̂. For example, SA-E (6, 4) in Figure 11 means |α̂| = 6 and

|β̂| = 4. Since all of the tested B’s have a largest eigenvalue β1 with corresponding
eigenvector p1 = N−1/2 · 1N (N is the problem size), we always ignore this first

eigenvalue in selecting the eigenvalues in forming β̂. For example, in Figure 11,

SA-E (6, 4) implies that β̂ = [β2, · · · , β5]
T ∈ R4 and |β̂| = 4. Second, we do not

select any eigenvalue with multiplicity ≥ 4 in some cases and we identify them as

SA-E (|α̂|, selected |β̂|). For example, in Figure 12, SA-E (6, selected 11) implies
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that β̂ contains the first eleven eigenvalues with multiplicities less than 4 but in the

same figure, SA-E (6, 14) implies that β̂ = [β2, · · · , β15]
T without considering the

multiplicity.
In Figures 11 to 14 and 16, we select all of the negative eigenvalues in forming

α̂. Thus, |α̂| = 6 for 3D Torus
(
33
)

and Torus
(
43
)
, and |α̂| = 9 for 3D Torus(

63
)
. In Figures 15 and 17, we select only the smallest six negative eigenvalues and

thus |α̂| = 6 for 3D Torus
(
63
)
. In Figures 20 and 21, we always select six negative

eigenvalues for a 6-D Hypercube network, thus |α̂| = 6.
These numerical solutions show the following:

(1) SA-E converges faster as the problem size increases. In Figures 18 and
19, most cases require fewer operations to reach lower best-so-far (BSF)
energies than SA-B. The same is in Figures 22 and 23.

(2) SA-E is superior in escaping from local minima. In Figures 11 to 13 and
20 to 21, SA-E reached the global minimum; SA-B failed in Figures 12, 13,
20, and 21. In a large problem shown in Figures 14 and 16, SA-E reached
BSF energies 22% and 30% lower than those reached by SA-B.

(3) Properly decreasing the eigenvalue count in α̂ while increasing the eigen-

value count in β̂ reduces time complexity but does not decrease accuracy
greatly. For example, in mapping 2D wave equation (18 × 12) onto 3D
Torus

(
63
)

in Table 4, the case of SA-E (9, 14) requires 32% more oper-
ations than that of SA-E (6, 16) per energy update. However, both cases
reach the same BSF energies.

(4) Properly increasing the eigenvalue count in β̂ increases the probability of
reaching lower BSF energies.

(5) All SA-E cases require much less memory than their SA-B counterparts, as
shown in Tables 2 and 3.
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Figure 10. Algorithmic complexity of mapping applications on
3D torus

(
N = n3

)
of equal size (SA-E (x, y) indicates x = |α̂| and

y = |β̂|)
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Figure 11. Map 2D wave equation (9 × 3) onto 3D torus
(
33
)(

|α̂| = 6, |β̂| ∈ {4, 6}
)

Figure 12. Map 2D wave equation (8 × 8) onto 3D torus
(
43
)(

|α̂| = 6, |β̂| ∈ {4, 11, 14, 19}
)
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Figure 13. Map 2D wave equation (16 × 4) onto 3D torus
(
43
)(

|α̂| = 6, |β̂| ∈ {4, 6, 8}
)

Figure 14. Map 2D wave equation (18 × 12) onto 3D torus
(
63
)(

|α̂| = 9, |β̂| ∈ {4, 8, 14}
)
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Figure 15. Map 2D wave equation (18 × 12) onto 3D torus
(
63
)(

|α̂| = 6, |β̂| ∈ {4, 8, 16}
)

Figure 16. Map 2D wave equation (36 × 6) onto 3D torus
(
63
)(

|α̂| = 9, |β̂| ∈ {4, 10, 21}
)
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Figure 17. Map 2D wave equation (36 × 6) onto 3D torus
(
63
)(

|α̂| = 6, |β̂| ∈ {4, 10, 21}
)

Figure 18. Algorithmic efficiency vs. accuracy for mapping 2D
wave equation (18 × 12) onto 3D torus

(
63
)

(A red diamond means

SA-E with |α̂| = 6 near which a red number indicates |β̂|. A
blue square means SA-E with |α̂| = 9 near which a blue number

indicates |β̂|.)
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Figure 19. Algorithmic efficiency vs. accuracy for mapping 2D
wave equation (36 × 6) onto 3D torus

(
63
)

(A red diamond means

SA-E with |α̂| = 6 near which a red number indicates |β̂|. A
blue square means SA-E with |α̂| = 9 near which a blue number

indicates |β̂|.)

Figure 20. Map 2D wave equation (8 × 8) onto 6D hypercube(
26
) (

|α̂| = 6, |β̂| ∈ {4, 11, 14, 19}
)
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Figure 21. Map 2D wave equation (16 × 4) onto 6D hypercube(
26
) (

|α̂| = 6, |β̂| ∈ {4, 6, 8}
)

Figure 22. Algorithmic efficiency vs. accuracy for mapping 2D
wave equation (8 × 8) onto 6D hypercube

(
26
)

(A red diamond

means SA-E with |α̂| = 6 near which a red number indicates |β̂|.)
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Figure 23. Algorithmic efficiency vs. accuracy for mapping 2D
wave equation (16 × 4) onto 3D hypercube

(
26
)

(A red diamond

means SA-E with |α̂| = 6 near which a red number indicates |β̂|.)

Model Mapping 2D Wave equations(16x4)        3D Torus (4x4x4)
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Figure 24. Mapping result of 2D wave equation (16 × 4) onto 3D
torus (43)
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Table 4. Simulated annealing experiments on the mapping problems

6. Conclusions

A new eigenanalysis-based formulation of the well-studied task mapping problem
is presented. Theoretical analysis on common sample cases and numerical experi-
ments on more elaborate cases for task mapping demonstrate the key value of our
new formulation. The new objective function can be truncated methodically to
significantly reduce the required computing resources for achieving mapping solu-
tions of no lesser quality. Additionally, the new formulation allows the optimization
process to escape from local minima more effectively.

References

[1] Michael Affenzeller and Rene Mayrhofer, Generic heuristics for combinatorial optimization
problems, Proc. of the 9th International Conference on Operational Research 2002, 2002,
pp. 83–92.

[2] T. Agarwal, Amit Sharma, A. Laxmikant, and Laxmikant V. Kala, Topology-aware task map-
ping for reducing communication contention on large parallel machines, 20th International
Parallel and Distributed Processing Symposium (IPDPS 2006), Proceedings, 25-29 April 2006,
Rhodes Island, Greece, IEEE, 2006.



1756 PENG ZHANG, YUXIANG GAO, JANET FIERSON, AND YUEFAN DENG

[3] George Almasi, Siddhartha Chatterjee, Alan Gara, John A. Gunnels, Manish Gupta, Amy
Henning, Josa E. Moreira, and Robert Walkup, Unlocking the performance of the bluegene/l
supercomputer, Proceedings of the ACM/IEEE SC2004 Conference on High Performance
Networking and Computing, 6-12 November 2004, Pittsburgh, PA, USA, CD-Rom, IEEE
Computer Society, 2004, p. 57.

[4] Gyan Bhanot, Alan Gara, Philip Heidelberger, Eoin Lawless, James C. Sexton, and Robert
Walkup, Optimizing task layout on the blue gene/l supercomputer, IBM Journal of Research

and Development 49 (2005), no. 2-3, 489–500.
[5] Shahid H. Bokhari, On the mapping problem, IEEE Trans. Comput. 30 (1981), no. 3, 207–214,

DOI 10.1109/TC.1981.1675756. MR608522 (82b:68055)
[6] Yongzhi Chen and Yuefan Deng, Task mapping on supercomputers with cellular networks,

Computer Physics Communications 179 (2008), no. 7, 479–485.
[7] M.A.M. de Aguiar and Y. Bar-Yam, Spectral analysis and the dynamic response of complex

networks, Physical Review E 71(1) (2005), 016106.
[8] Gerd Finke, Rainer E. Burkard, and Franz Rendl, Quadratic assignment problems, Sur-

veys in combinatorial optimization (Rio de Janeiro, 1985), North-Holland Math. Stud.,
vol. 132, North-Holland, Amsterdam, 1987, pp. 61–82, DOI 10.1016/S0304-0208(08)73232-
8. MR878775 (88e:90057)

[9] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated anneal-
ing, Science 220 (1983), no. 4598, 671–680, DOI 10.1126/science.220.4598.671. MR702485
(85f:90091)

[10] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz, The quadratic assignment problem: a
survey and recent developments, Quadratic assignment and related problems (New Brunswick,
NJ, 1993), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 16, Amer. Math. Soc.,
Providence, RI, 1994, pp. 1–42. MR1290345 (95f:90040)

[11] P. Sadayappan and Fikret Eraal, Nearest-neighbor mapping of finite element graphs onto
processor meshes, IEEE Transactions on Computers 36 (1987), no. 12, 1408–1424.

[12] Peter Salamon, Paolo Sibani, and Richard Frost, Facts, conjectures, and improvements for
simulated annealing, SIAM Monographs on Mathematical Modeling and Computation, So-
ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR1945007

(2004k:90006)
[13] Oliver Sinnen, Task scheduling for parallel systems (Wiley series on parallel and distributed

computing), Wiley-Interscience, 2007.
[14] Brian E. Smith and Brett Bode, Performance effects of node mappings on the IBM bluegene/l

machine, Euro-Par 2005, Parallel Processing, 11th International Euro-Par Conference, Lis-
bon, Portugal, August 30 - September 2, 2005, Proceedings (Josa C. Cunha and Pedro D.
Medeiros, eds.), Lecture Notes in Computer Science, vol. 3648, Springer, 2005, pp. 1005–1013.

[15] M. R. F. Smyth, A spectral theoretic proof of Perron-Frobenius, Math. Proc. R. Ir. Acad.
102A (2002), no. 1, 29–35, DOI 10.3318/PRIA.2002.102.1.29. MR1930810 (2003g:15023)

[16] Lee Soo-Young and J.K. Aggarwal, A mapping strategy for parallel processing, IEEE Trans-
actions on Computers 36 (1987), 433–442.

[17] Hao Yu, I-Hsin Chung, and Josa E. Moreira, Blue gene system software - topology mapping
for blue gene/l supercomputer, Proceedings of the ACM/IEEE SC2006 Conference on High
Performance Networking and Computing, November 11-17, 2006, Tampa, FL, USA, ACM
Press, 2006, p. 116.

Department of Applied Mathematics and Statistics, Stony Brook University, Stony

Brook, New York 11794

E-mail address: Peng.Zhang@stonybrook.edu

Department of Applied Mathematics and Statistics, Stony Brook University, Stony

Brook, New York 11794

E-mail address: Yuxiang.Gao@stonybrook.edu

Department of Mathematics and Computer Science, La Salle University, Philadel-

phia, Pennsylvania 19141

E-mail address: fierson@lasalle.edu

Department of Applied Mathematics and Statistics, Stony Brook University, Stony

Brook, New York 11794

E-mail address: Yuefan.Deng@stonybrook.edu

http://www.ams.org/mathscinet-getitem?mr=608522
http://www.ams.org/mathscinet-getitem?mr=608522
http://www.ams.org/mathscinet-getitem?mr=878775
http://www.ams.org/mathscinet-getitem?mr=878775
http://www.ams.org/mathscinet-getitem?mr=702485
http://www.ams.org/mathscinet-getitem?mr=702485
http://www.ams.org/mathscinet-getitem?mr=1290345
http://www.ams.org/mathscinet-getitem?mr=1290345
http://www.ams.org/mathscinet-getitem?mr=1945007
http://www.ams.org/mathscinet-getitem?mr=1945007
http://www.ams.org/mathscinet-getitem?mr=1930810
http://www.ams.org/mathscinet-getitem?mr=1930810

	1. Introduction
	2. Graph theory-based mapping formulation
	3. Eigenanalysis-based mapping theorems
	4. Eigenspectra of networks
	5. Analyses and the numerical experiments
	5.1. Analytical solution of a sample case
	5.2. Objective function truncation
	5.3. Analysis of heuristic solution effectiveness and efficiency

	6. Conclusions
	References

