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AN EFFICIENT ALGORITHM FOR SECOND-ORDER CONE

LINEAR COMPLEMENTARITY PROBLEMS

LEI-HONG ZHANG AND WEI HONG YANG

Abstract. Recently, the globally uniquely solvable (GUS) property of the
linear transformation M ∈ R

n×n in the second-order cone linear complemen-

tarity problem (SOCLCP) receives much attention and has been studied sub-
stantially. Yang and Yuan contributed a new characterization of the GUS
property of the linear transformation, which is formulated by basic linear-
algebra-related properties. In this paper, we consider efficient numerical al-
gorithms to solve the SOCLCP where the linear transformation M has the
GUS property. By closely relying on the new characterization of the GUS
property, a globally convergent bisection method is developed in which each
iteration can be implemented using only 2n2 flops. Moreover, we also propose
an efficient Newton method to accelerate the bisection algorithm. An attrac-
tive feature of this Newton method is that each iteration only requires 5n2

flops and converges quadratically. These two approaches make good use of the
special structure contained in the SOCLCP and can be effectively combined
to yield a fast and efficient bisection-Newton method. Numerical testing is
carried out and very encouraging computational experiments are reported.

1. Introduction

For decades, there has been considerable discussion about the linear complemen-
tarity problem (LCP) which is to find a vector x ∈ R

n such that

LCP (M,q) : x ≥ 0, q+Mx ≥ 0, x�(q+Mx) = 0,(1.1)

where M ∈ R
n×n and q ∈ R

n are both given. Up to date, substantial theo-
retical results and various computational methods for the LCP (M,q) have been
established and we refer, e.g., to [2,4,7,18,19] and the references therein, for com-
prehensive discussions. Recently, considerable efforts have been made to extend the
LCP (M,q), which is essentially the LCP over the cone R

n
+, to symmetric cones,

especially to the positive semidefinite cone as well as the second-order cone (SOC);
see e.g. [1,5,6,8,10,12–14,20,21,26,31]. The second-order cone, also known as the
Lorentz cone, is defined by

Kn := {[x1,x
�
2 ]

� ∈ R× R
n−1 | ‖x2‖2 ≤ x1}.(1.2)
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Therefore, for a givenM ∈ R
n×n and a vector q ∈ R

n, the LCP over SOC (SOCLCP
for short) can be calculated to find that x ∈ R

n such that

x ∈ Kn, q+Mx ∈ Kn, x�(q+Mx) = 0.(1.3)

To simplify our presentation, we will denote (1.3) as LCP (M,Kn,q) for which the
set of all solutions will also be denoted by SOL(M,Kn,q). The SOCLCP arises
from many areas and we refer, e.g., to [1, 5, 6, 8, 14] for various applications.

A very important question in an LCP is how to characterize the property of
M such that the solution of LCP (M,Kn,q) is unique for all vectors q ∈ R

n, is
of great interest. If such a property exists, we will say that M has the globally
uniquely solvable (GUS) property. For LCP (M,q) (1.1), this question has been
completely answered by a set of basic linear-algebra-related properties [7]. For
LCP (M,Kn,q), on the other hand, Gowda et al. inspired this interesting work
and studied the P-property, the cross commutative property and the GUS property
intensively (see [11–13]). Their discussion is based on the Euclidean Jordan Algebra
and their characterization of the GUS property of M turns out to be difficult to
verify. Most recently, [30] has made a contribution along this line by providing
basic linear-algebra-related properties of M (see also Theorem 2.2 in Section 2).
A key for this new characterization is that whenever q �∈ −MKn ∪ Kn, finding
x ∈ SOL(M,Kn,q) is equivalent to solving the pair (x, s∗) ∈ bd(Kn) × R++ such
that

(M − s∗Jn)x = −q,(1.4)

where bd(Kn) stands for the boundary of Kn and Jn = diag{1,−1, · · · ,−1} =
diag{1,−In−1}. We point out that this equivalence is not only crucial in charac-
terizing the GUS property of M, but also very helpful in designing an efficient
algorithm for solving LCP (M,Kn,q).

Computationally, there have been a number of methods used for solving
LCP (M,Kn,q). They include, for example, the smoothing Newton method [5, 8,
17], the smoothing-regularization method [14], the merit-function-based approaches
[3, 6], the semismooth Newton method [25] and interior-point methods [20, 29]. It
should be noted that these approaches are proposed to solve the general second-
order cone complementarity problem (SOCCP) which aims at x ∈ R

n such that

(1.5) x ∈ K, G(x) ∈ K and x�G(x) = 0,

where G : Rn → R
n is a continuously differentiable mapping and K = Kn1 ×Kn2 ×

· · · × Knm with ni ≥ 1 and
∑m

i=1 ni = n. As these methods target a larger class
of SOCCP, fewer special properties can be exploited. On the other hand, if we
are particularly interested in the solution of the SOCLCP (1.3), it is hoped that a
very efficient algorithm can be designed if some specific properties can be effectively
exploited. In particular, if M has the GUS property, one can expect that the basic
linear-algebra-related properties of M in [30] might contain essential information
for numerically solving the SOCLCP (1.3). An efficient approach for the SOCLCP
(1.3) is not only of value in its own right, but also could be used to solve the general
problem (1.5) with G(x) = Mx+ q (see Section 6). This is our motivation for this
paper.

In this paper, we focus on the numerical solution of LCP (M,Kn,q) in which M
has the GUS property. We will investigate the SOCLCP from a totally different
perspective from various methods used for the SOCCP (1.5) in the literature. In
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particular, by closely relying on the basic linear-algebra-related properties for the
GUS property of M, we propose a bisection iteration for the SOCLCP which turns
out to be globally convergent. An attractive feature of this method is that each
iteration can be implemented via only 2n2 flops. Moreover, we will also show that
the bisection iteration can be accelerated by an efficient Newton method, which
can be implemented using only 5n2 flops per iteration and converges quadratically.
These two approaches effectively make use of the special structure contained in
the SOCLCP, and they can be perfectly combined further to yield an efficient
bisection-Newton method. Numerical testing is carried out and very encouraging
computational experiments are reported.

This paper is organized in the following way: In Section 2, we will first describe
our notations and introduce some preliminary results of the SOCLCP when M has
the GUS property. In Section 3, we will propose a bisection iteration and describe
how each iteration can be implemented in a very efficient way. A special case
needs to be addressed additionally for the bisection method, and we will propose
an efficient and direct algorithm to handle this special case. In Section 4, a Newton
method is introduced. We will provide an efficient implementation of this Newton
method so that each iteration only requires 5n2 flops. Moreover, we will show how
the bisection iteration and the Newton iteration can be effectively combined to yield
a fast and efficient algorithm. Numerical testing is carried out and very encouraging
computational experiments are reported in Section 5. Finally, concluding remarks
are drawn and some future research topics are briefly mentioned in Section 6.

2. Notation and preliminary results

In this section, we introduce some basic notations and present preliminary results
for the SOCLCP. Throughout the paper, all vectors are column vectors and are
typeset in bold. For a matrix A ∈ R

n×m, A� denotes its transpose, and R(A) :=
{x ∈ R

n|x = Ay for some y ∈ R
m} and Ker(A) := {y ∈ R

m|Ay = 0} stands for
the range and kernel of A, respectively. Thus R(A)⊥ = Ker(A�), where R(A)⊥

denotes the orthogonal complement of R(A). As usual, the identity matrix in R
n×n

will be denoted by In and the norm of A is defined by ‖A‖2 := max‖x‖2=1 ‖Ax‖2.
For a set C ⊂ R

n, we denote the boundary and the interior of C by bd(C) and
int(C), respectively. If x ∈ C, then the normal cone (see e.g. [16], Definition 5.2.3)
of C at x is defined by

NC(x) := {z|z�(y − x) ≤ 0, ∀y ∈ C},

and therefore, if y ∈ int(C), the relation

z�(y− x) < 0, for all nonzero z ∈ NC(x)(2.1)

is evident.
Related to the SOCLCP, for the matrix M ∈ R

n×n and a given s ≥ 0, we denote

Ms := M − sJn, where Jn = diag{1,−1, · · · ,−1} = diag{1,−In−1},

and define

Ks := MsKn = {Msx|x ∈ Kn}.

Obviously, Ks is a cone and K0 = MKn. Moreover, Lemma 2.1 lists two straight-
forward properties related to Kn which will be frequently used in this paper.
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Lemma 2.1. For the second-order cone Kn and any nonzero y, z ∈ R
n, we have

(i) if y ∈ Kn, then Jny ∈ Kn, and
(ii) y�z ≥ 0, ∀y, z ∈ Kn, and the inequality is strict if y ∈ int(Kn) or z ∈

int(Kn).

As we have pointed out, M has the GUS property [13] if for all q ∈ R
n,

LCP (M,Kn,q) has a unique solution. A set of simple linear-algebra-related con-
ditions [30] completely characterizes the GUS property. We restate these sufficient
and necessary conditions in Theorem 2.2, because they not only answer the global
and unique solvability of the SOCLCP but motive us to design efficient numerical
algorithms.

Theorem 2.2. For LCP (M,Kn,q), M has the GUS property if and only if it
satisfies the following assumptions:

(i) MJn has nonnegative eigenvalues and there exists a τ > 0 such that all non-
negative eigenvalues of MJn are equal to τ . Moreover, rank(MJn − τIn) =
n − 1. There exists a w ∈ int(Kn) such that w is the eigenvector of MJn
associated with τ ;

(ii) There exists a v ∈ int(Kn) such that v is the eigenvector of M�Jn associated
with τ ;

(iii)

a�Ma ≥ 0, ∀a ∈ bd(Kn);

(iv)

a�M−1a ≥ 0, ∀a ∈ bd(Kn).

It has been proved previously by Gowda et al. ([13], Theorem 17) that any
positive definite (not necessarily symmetric) matrix M has the GUS property and
therefore the sufficient and necessary conditions cover all positive definite matrices.
On the other hand, a concrete indefinite matrix M with the GUS property has
been given in [30]. This shows that the set of the LCP (M,Kn,q) where M has
the GUS property is strictly larger than the set of strongly monotone SOCLCPs.
In addition, when M is positive definite or symmetric, more can be said about the
eigenvalues of M�Jn and MJn as we will see in Theorem 2.3.

Theorem 2.3. Let θ+ iφ (i denotes the imaginary unit) be an arbitrary eigenvalue
of M�Jn (or MJn), then the following statements hold:

(i) if M is positive definite (not necessarily symmetric) and θ > 0, then θ = τ and
φ = 0. That is, τ is the unique eigenvalue of M�Jn and MJn with positive
real part;

(ii) if M has the GUS property and is symmetric, then φ = 0. That is, all eigen-
values of M�Jn are real and τ is the unique positive eigenvalue.

Proof. Let y+iz be the eigenvector of M�Jn corresponding to the eigenvalue θ+iφ
where y, z ∈ R

n, and y �= 0 or z �= 0. From

M�Jn(y + iz) = (θ + iφ)(y + iz),

it follows that

M�Jny = θy − φz,(2.2)

M�Jnz = θz+ φy.(2.3)



AN EFFICIENT ALGORITHM FOR THE SOCLCP 1705

Let w ∈ int(Kn) be the eigenvector of MJn associated with τ. Pre-multiplying
(2.2) and (2.3) by w�Jn leads respectively to

w�JnM
�Jny = τw�Jny = θw�Jny − φw�Jnz,(2.4)

w�JnM
�Jnz = τw�Jnz = φw�Jny + θw�Jnz.(2.5)

Note that (2.4) and (2.5) can be rewritten as

(τ − θ)w�Jny = −φw�Jnz,(2.6)

(τ − θ)w�Jnz = φw�Jny,(2.7)

and hence one has

(τ − θ)2(w�Jny)(w
�Jnz) = −φ2(w�Jnz)(w

�Jny).(2.8)

To prove (i), we first suppose φ �= 0. Pre-multiplying y�Jn on both sides of (2.2)
yields

y�JnM
�Jny = θy�Jny − φy�Jnz,(2.9)

and pre-multiplying z�Jn on both sides of (2.3) gives

z�JnM
�Jnz = θz�Jnz+ φz�Jny.(2.10)

Adding (2.9) and (2.10), and noting the positive definiteness of M, one has

0 < z�JnM
�Jnz+ y�JnM

�Jny = θ(y�Jny + z�Jnz).

Since θ > 0, we have y�Jny + z�Jnz > 0, which implies y ∈ int(Kn) or z ∈
int(Kn).1 If y ∈ int(Kn), then by Lemma 2.1, it follows that w�Jny > 0, and by
(2.8), we have

(τ − θ)2(w�Jnz) = −φ2(w�Jnz),

which implies w�Jnz = 0. Thus from (2.7) we have φw�Jny = 0 which contradicts
φ �= 0 and w�Jny > 0. Similarly, if z ∈ int(Kn), then we have φw�Jnz = 0 which
contradicts φ �= 0 and w�Jnz > 0. Therefore we conclude that if θ > 0, then φ = 0,
and since Theorem 2.2(i) implies that τ is the unique positive eigenvalue of M�Jn
and MJn, we know that θ = τ and thus completes the proof for (i).

To prove (ii), we suppose φ �= 0. Pre-multiplying z�Jn on both sides of (2.2)
yields

z�JnM
�Jny = θz�Jny − φz�Jnz,(2.11)

and pre-multiplying y�Jn on both sides of (2.3) gives

y�JnM
�Jnz = θy�Jnz+ φy�Jny.(2.12)

Therefore, from (2.11), (2.12) and the symmetry of M, it follows that

0 = y�JnM
�Jnz− z�JnM

�Jny = φ(y�Jny + z�Jnz),

which implies y�Jny + z�Jnz = 0. This relation implies that either y�Jny =
z�Jnz = 0 or (y�Jny)(z

�Jnz) < 0. The former leads to y ∈ bd(Kn) or z ∈ bd(Kn),2

whereas the latter implies y ∈ int(Kn) or z ∈ int(Kn).3 Therefore, the relation

1In the case of y ∈ −int(Kn) or z ∈ −int(Kn), we can simply set y = −y and z = −z in (2.2)
and (2.3) which then guarantees y ∈ int(Kn) or z ∈ int(Kn).

2In the case of y ∈ −bd(Kn) or z ∈ −bd(Kn), we can simply set y = −y and z = −z in (2.2)
and (2.3) which then guarantees y ∈ bd(Kn) or z ∈ bd(Kn).

3In the case of y ∈ −int(Kn) or z ∈ −int(Kn), we can simply set y = −y and z = −z in (2.2)
and (2.3) which then guarantees y ∈ int(Kn) or z ∈ int(Kn).
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y�Jny + z�Jnz = 0, with the aid of Lemma 2.1, implies that w�Jny > 0 or
w�Jnz > 0. If w�Jny > 0, from (2.8), we have

(τ − θ)2(w�Jnz) = −φ2(w�Jnz),

which implies w�Jnz = 0. Thus from (2.7) we have φw�Jny = 0 which contradicts
φ �= 0 and w�Jny > 0. Similarly, if w�Jnz > 0, then we have φw�Jnz = 0 which
contradicts φ �= 0 and w�Jnz > 0. Therefore we conclude φ = 0 and by Theorem
2.2(i), we complete the proof for (ii). �

Besides the conclusions of the eigenvalues of M�Jn and MJn for the types of
matrices described in Theorem 2.3, there is another interesting result concerning
the eigenvalue of M−�Jn and M−1Jn that is revealed by Theorem 2.2.

Theorem 2.4. Suppose that M has the GUS property. Let v ∈ int(Kn) and
w ∈ int(Kn) be the eigenvectors of M�Jn and MJn associated with the unique
positive eigenvalue of τ respectively. Then M−1 also has the GUS property and 1

τ

is the unique positive eigenvalue of M−�Jn and M−1Jn; moreover, Jnv and Jnw
are the eigenvectors of M−�Jn and M−1Jn associated with 1

τ respectively.

Proof. First, it is not difficult to see that x ∈ SOL(M,Kn,q) if and only ifMx+q ∈
SOL(M−1,Kn,−M−1q). This relation indicates that M has the GUS property if
and only if M−1 does as well. By Theorem 2.2, we know that M−�Jn and M−1Jn
both have the unique positive eigenvalue, namely t∗.On the other hand, by Theorem
2.2 again, we note that

0 = (M�Jn − τIn)v = τM�(
1

τ
Jn −M−�)v = τM�(

1

τ
In −M−�Jn)Jnv

or, equivalently,

(M−�Jn − 1

τ
In)Jnv = 0.

This implies that t∗ = 1
τ > 0 is the unique positive eigenvalue of M−�Jn and

Jnv is the associated eigenvector. Following a similar argument, we know that
t∗ = 1

τ > 0 is the unique positive eigenvalue of M−1Jn with Jnw as the associated
eigenvector. �

For a given M with the GUS property and a vector q ∈ R
n, our main interest in

this paper is to find the unique solution x ∈ SOL(M,Kn,q). There are two special
cases that can be handled very easily: q ∈ Kn and q ∈ −MKn. The former gives the
solution x = 0 whereas the latter leads to the solution x = −M−1q. Furthermore,
whenever q �∈ −MKn ∪ Kn, it is easy to see that finding x ∈ SOL(M,Kn,q) is
equivalent to solving the pair (x, s∗) ∈ bd(Kn)×R++ satisfying (1.4) [30]. For this
reason and for the simplicity of presentation, we will call (x, s∗) the solution pair
to the LCP (M,Kn,q). The GUS property of M implies that there is a one-to-one
relation between q and the pair (x, s∗). Interestingly, the following theorem proved
in [30] and its implications shed some light on this relationship which serves as the
theoretical fundamental of the bisection method that we will discuss in Section 3.

Theorem 2.5. For LCP (M,Kn,q), if M has the GUS property, then the following
statements hold:

(1) The range R(Mτ ) of Mτ is a hyperplane in R
n. Moreover, R(Mτ ) = (Jnv)

⊥,
where v ∈ int(Kn) is the eigenvector of M�Jn associated with the unique
positive eigenvalue τ.
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(2) For all 0 < t < s < τ , Kt\{0} ⊂ int(Ks) and Ks lie on one side of R(Mτ );
if s > t > τ, then −Kn\{0} ⊂ int(Ks), Ks\{0} ⊂ int(Kt) and Kt lies on the
other side of R(Mτ ).

Theorem 2.5, together with (1.4), says a lot about the solution pair (x, s∗) in
terms of the vector q, the eigenvector v ∈ int(Kn) and the subspace R(Mτ ). For
example, it implies that

(2.13) s∗ =

⎧⎨⎩
< τ, if (−q)�Jnv > 0,
> τ, if (−q)�Jnv < 0,
= τ, if (−q)�Jnv = 0 or equivalently, q ∈ R(Mτ ).

Moreover, if we currently have an estimate, say s(k), of s∗, Theorem 2.5 reveals a
geometry picture of the LCP (M,Kn,q) and serves as a guide to update the estimate
s(k). In particular, by defining x(k) := −(M − s(k)Jn)

−1q, we know that (i) in the
case of (−q)�Jnv > 0, s(k) should be decreased (resp. increased) if x(k) ∈ int(Kn)
(resp. x(k) �∈ Kn); while (ii) in the case of (−q)�Jnv < 0, s(k) should be increased
(resp. decreased) if x(k) ∈ int(Kn) (resp. x(k) �∈ Kn). These facts directly lead us
to a bisection iteration which we will discuss in the next section.

3. An efficient bisection method for the SOCLCP

3.1. Prototype of a bisection algorithm. Recall that if q �∈ −MKn ∪ Kn and
SOL(M,Kn,q) �= ∅, then there exists s∗ > 0 such that (M − s∗Jn)x = −q for
x ∈ SOL(M,Kn,q); moreover, if M has the GUS property and q �∈ R(Mτ ), it
follows that 0 < s∗ �= τ, where τ is the unique positive eigenvalue of MJn. Directly
based on Theorem 2.5 and its following implications, a simple bisection method can
be derived for which the pesudo-code is presented in Algorithm 1.

In Algorithm 1, the special case when s∗ = τ or, equivalently, q ∈ R(Mτ ), needs
extra care and is solved independently. In Subsection 3.3, we will show that the
solution in this case can be obtained by an efficient direct method (Algorithm 2).
For the general case, on the other hand, we first point out that the algorithm is
well defined. This follows from the fact that τ > 0 is the unique positive eigenvalue
of MJn (see Theorem 2.2(i)) and from our updating scheme for s(k) (see Steps 4
and 5 of Algorithm 1) which ensures that 0 < s(k) �= τ for each k = 1, 2, . . . . Thus,
if M − s(k)Jn is singular, then there must exist a vector z so that

0 = (M − s(k)Jn)z = (MJn − s(k)In)Jnz.

This implies that (s(k), Jnz) is an eigenpair of MJn, which is impossible according
to our updating procedure for s(k) and Theorem 2.2(i). In other words, we can
guarantee that the matrix M − s(k)Jn involved in the iteration is nonsingular for
k = 1, 2, . . . . Now, we note that the main computational cost lies in solving the
linear system

(M − s(k)Jn)x
(k) = −q

in each iteration, which in general requires O(n3) flops. Fortunately, by taking
advantage of the special structure, we will show in the next subsection that this
main computational cost in each iteration can be reduced to 2n2 flops.
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Algorithm 1. Prototype of a bisection method for the SOCLCP.

INPUT: A matrix M with the GUS property, a vector q and a tolerance ε > 0.
OUTPUT: The solution x ∈ SOL(M,Kn,q) and the corresponding s∗.

Step 1: if q ∈ Kn then
x = 0;
return;

end if
Step 2: if −M−1q ∈ Kn then

x = −M−1q;
return;

end if
Step 3: Find the largest real eigenvalue τ of M�Jn and its corresponding unit

eigenvector v with a nonnegative first component; set Index := − q�Jnv
‖q‖2‖v‖2

and find an upper bound βu of s∗;
Step 4: if Index = 0 then

s∗ = τ ; x = SOCLCPτ (M,q, τ ); {Algorithm 2}
return;

else
if Index > 0 then
α = 0;β = τ ;

else
α = τ ;β = βu;

end if
end if

Step 5: for k = 1, 2, · · · , �log2 β−α
ε 
 do

s(k) = β(k)−α(k)

2 ; x(k) = −(M − s(k)Jn)
−1q;

if Index > 0 then
if x(k) ∈ int(Kn) then

β(k) = s(k);
else

α(k) = s(k);
end if

else
if x(k) ∈ int(Kn) then

α(k) = s(k);
else

β(k) = s(k);
end if

end if
end for

Step 6: x = x(k); s∗ = s(k).

3.2. Efficient implementation of the bisection algorithm. To reduce the
computational cost in each iteration in Algorithm 1, we try to transform the linear
system (M − s(k)Jn)x

(k) = −q to a simpler form. Note that for different s(k), only
the diagonal elements ofM−s(k)Jn vary; moreover, the matrix Jn = diag{1,−In−1}
motives us to transform the matrix M to an upper Hessenberg matrix first. That
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is, we can find an orthogonal matrix Q = diag{1, Q̄} via, for example, a sequence
of Givens rotations or Householder reflections (with 10

3 n3 flops, [9])4 such that

QMQ� = H,(3.1)

where H ∈ R
n×n is upper Hessenberg. Furthermore, we note that

QJnQ
� = Jn(3.2)

and consequently, one has

(M − s(k)Jn)x
(k) = Q�(H − s(k)Jn)Qx(k) = −q

or, equivalently,

(H − s(k)Jn)Qx(k) = −q̄ := −Qq.(3.3)

The attractive feature of (3.3) is that when s(k) varies, the matrixH−s(k)Jn remains
to be upper Hessenberg and therefore if we define y(k) = Qx(k), the solution x(k)

can be obtained by

(H − s(k)Jn)y
(k) = −q̄, x(k) = Q�y(k),(3.4)

which requires 4n2 flops: n2 flops for transforming (H − s(k)Jn)y
(k) = −q̄ to an

upper triangular system, n2 flops for solving y(k) from the resulting upper triangular
system, and 2n2 flops for x(k) = Q�y(k). In fact, furthermore, since in each iteration
of Step 5, we only need to determine whether x(k) is in Kn or not, the fact that
x(k) ∈ Kn if and only if y(k) = Qx(k) ∈ Kn implies that we can save the 2n2 flops
required in computing x(k) = Q�y(k). Consequently, we only need 2n2 flops for each
iteration in Algorithm 1. In other words, if the matrix M is transformed to an upper
Hessenberg H at the beginning of Step 5, then each iteration in Algorithm 1 can
proceed with 2n2 flops. Therefore, in order to achieve the accuracy |s(k) − s∗| ≤ ε,
the overall flops used in Step 5 in Algorithm 1 now become

(3.5)

{
2n2�log2 τ

ε 
, if q�Jnv < 0,

2n2�log2 βu−τ
ε 
, if q�Jnv > 0.

As far as the storage is concerned, it is worth pointing out that we can overwrite
M and q by the upper Hessenberg matrix H, and the vector q̄ = Qq, respectively;
furthermore, if the orthogonal matrix Q is represented by products of Givens rota-
tions or Householder reflections, the “essential” parts of these Givens rotations or
Householder reflections can be recorded in the zeroed portion of the matrix M (see
Algorithm 7.4.2 in [9] for more details). Overall, therefore, the bisection iteration
does not require extra storage except for the vector y(k) and several scalars. This
is another advantage of the algorithm.

According to (3.5), we know that the computational cost of Algorithm 1 depends
on the parameters τ, ε and βu (if q�Jnv > 0). For the case q�Jnv > 0, a tight
upper bound βu for s∗ in general is not easy to give, computationally, nevertheless,
a very simple but effective strategy works well. This strategy is based on the fact
that whenever q�Jnv > 0, there must exist a positive integer l such that

2l−1τ ≤ s∗ < 2lτ.(3.6)

4As we will see, the only role of the orthogonal matrix Q is to transform the original variable
x to the new y := Qx, and it is never used during the iteration. It is therefore preferable to
represent Q by products of Givens rotations or Householder reflections [9, Section 5.1], which is
of advantage for large scale and sparse problems.
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Therefore, if we can find the integer l, then the bisection iteration in Algorithm 1
can proceed with the setting

α = 2l−1τ and β = βu = 2lτ.

Detecting the integer l turns out to be very easy because it is the smallest positive
integer satisfying

−(M − 2lτJn)
−1q �∈ Kn,

which is equivalent to finding the smallest positive integer l such that

−(H − 2lτJn)
−1q̄ �∈ Kn.

In all our numerical testings, this simple but effective strategy is adopted.
Interestingly, in the case of q�Jnv > 0, there is an alternative strategy to get

around the trouble in choosing an upper bound βu for s∗ > τ. Indeed, if q �∈
−MKn ∪Kn and q�Jnv > 0, then for the solution pair (x, s∗) of LCP (M,Kn,q),
we have

(M − s∗Jn)x = −q or Mx+ q = s∗Jnx.

Now, by defining

x̂ := Mx+ q and q̂ := −M−1q,

one has from Mx+ q = s∗Jnx that

x̂ = s∗Jn(M
−1x̂+ q̂) or equivalently (M−1 − 1

s∗
Jn)x̂ = −q̂,

which implies that (x̂, 1
s∗ ) is the solution pair to LCP (M−1,Kn, q̂). But Theorem

2.4 says that M−1 also has the GUS property and the unique positive eigenvalue of
M−1Jn is 1

τ and thus 0 < 1
s∗ < 1

τ . In other words, α = 0 and β = 1
τ are the lower

and the upper bounds for 1
s∗ , respectively. This argument then implies that for the

case q�Jnv > 0, instead of solving LCP (M,Kn,q), we can alternatively employ
the bisection iteration to solve x̂ ∈ SOL(M−1,Kn, q̂). According to this strategy,
consequently, we can avoid choosing a large upper bound βu for s∗, and in order to
attain an approximation s(k) of s∗ with |s(k) − s∗| < ε, the total flops used during
the bisection iterations can be

(3.7)

{
2n2�log2 τ

ε 
, if q�Jnv < 0,
2n2�− log2(τε)
, if q�Jnv > 0.

Finally, we point out that a practical and efficient implementation of Algorithm 1
should also concern how to efficiently compute the eigenpair (τ,v) of the matrix
M�Jn in Step 3. A naive way is to compute the full eigensystem of M�Jn, which
requires O(n3) flops and O(n2) storage. This is obviously not optimal as we only
need one specific eigenpair. According to Theorem 2.3, whenever M is positive def-
inite or symmetric, an alternative and very efficient way is the Implicitly Restarted
Arnoldi Method (IRAM), which is particularly appropriate for large scale problems
with special structure. IRAM aims at efficiently finding a few specific eigenpairs
(e.g., the largest or smallest magnitude eigenvalues on the largest or smallest real
part) of a given matrix, and has been successfully incorporated into the MATLAB
platform (eigs.m)5. See [9, 22, 23, 27] and the references therein for a detailed
discussion.

5In the MATLAB platform, the command: [v, τ ] = eigs(M�Jn, 1,′ lr′), returns the desired
eigenpair.
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3.3. Handling the special case: q ∈ R(Mτ ). We now assume q ∈ R(Mτ ) which
implies that there is a unique solution x ∈ SOL(M,Kn,q) such that

(M − τJn)x = −q, x ∈ bd(Kn).(3.8)

This system facilitates us to construct the solution x directly. In fact, we can
rewrite (3.8) as

(MJn − τIn)z = −q, where z = Jnx ∈ bd(Kn).(3.9)

Denote MJn−τIn by Lτ . Note that τ is also an eigenvalue of MJn and rank(Lτ ) =
n− 1 (see Theorem 2.2). Suppose w ∈ R

n is a unit eigenvector of MJn associated
with the eigenvalue τ. Then Lτw = 0 and therefore any row of Lτ is orthogonal to
w. Let E be a permutation matrix such that the QR factorization of L�

τ E is

L�
τ E = [p1,p2, . . . ,pn]

⎡⎢⎢⎢⎣
r11 · · · · · · r1n

. . .
...

...
rn−1,n−1 rn−1,n

rn,n

⎤⎥⎥⎥⎦ ,

with the diagonal elements |rii| in a decreasing order. The fact that rank(Lτ ) = n−1
implies that rn,n = 0 and ri,i �= 0 for all i = 1, 2, . . . , n−1; moreover, from Lτw = 0,
one has

0 =

⎡⎢⎢⎢⎣
r11 · · · · · · r1n

. . .
...

...
rn−1,n−1 rn−1,n

0

⎤⎥⎥⎥⎦
� ⎡⎢⎣p

�
1 w
...

p�
nw

⎤⎥⎦ ,

which together with ri,i �= 0 for i = 1, 2, . . . , n − 1 leads to w ⊥ pi for i =
1, 2, . . . , n− 1; since pi ⊥ pj for i �= j, consequently, we have pn = w or pn = −w.
Denote

W = [p1,p2, · · · ,pn−1], and(3.10)

[
R r
0 0

]
=

⎡⎢⎢⎢⎣
r11 · · · r1,n−1 r1n

. . .
...

...
rn−1,n−1 rn−1,n

0 0

⎤⎥⎥⎥⎦ ,

and we assume z = Jnx is expressed as

z = γpn +W f , where γ ∈ R, f ∈ R
n−1.(3.11)

Our goal is to find γ and f such that z ∈ bd(Kn) and Lτz = −q. From

−q = Lτz = LτW f ,

one has

−W�q = (W�LτW )f = (W�E

[
R� 0
r� 0

] [
W�

w�

]
W )f

= (W�E

[
R� 0
r� 0

] [
In−1

0

]
)f

= (W�E

[
R�

r�

]
)f ,
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which leads to

f = −(W�E

[
R�

r�

]
)−1W�q.(3.12)

Substituting (3.12) for (3.11) yields

z = γpn −W (W�E

[
R�

r�

]
)−1W�q := γpn + t, where t = W f .(3.13)

Now the scalar γ can be obtained from the condition z ∈ bd(Kn). In fact, if we
denote

pn := [ξ,b�]�, and t := [ϕ, c�]�, where ξ, ϕ ∈ R, and b, c ∈ R
n−1,

then z ∈ bd(Kn) leads to the simple equation,

ξγ + ϕ = ‖γb+ c‖2,(3.14)

from which the root γ can be expressed explicitly. Overall, these steps lead us
to a direct method for this special case and we summarize the pesudo-code6 in
Algorithm 2.

Algorithm 2. x = SOCLCPτ (M,q, τ )

(1) Form Lτ = MJn − τIn;
(2) Compute the QR decomposition of L�

τ with column permutation, i.e.,
[W,R,E] = qr(L�

τ );
(3) Set pn = W (:, n), W = W (:, 1 : n − 1), r = R(1 : n − 1, n), and R =

R(1 : n− 1, 1 : n− 1);
(4) Solve f from the linear system

(W�E

[
R�

r�

]
)f = −W�q, and set t := W f ;

(5) Solve (3.14) for γ with ξ = pn(1), ϕ = t(1), b = w(2 : n), and c = t(2 : n);
(6) Set x = Jn(γpn + t).

3.4. Perturbation analysis for the special case: q ∈ R(Mτ ). It is known that
if M has the GUS property, then for any given 0 �= q0 ∈ R(Mτ ), the scalar s∗

corresponding to the solution x0 ∈ SOL(M,Kn,q0) is s∗ = τ. This subsection is
devoted to the perturbation analysis for this special case. In particular, we will
provide an analysis on the sensitivity of the solution pair (x, s∗) in terms of the
perturbation of q in a neighborhood of q0 ∈ R(Mτ ). Our main result reveals that:
(i) the sensitivity of the scalar s∗ is uniquely dependent on the angle between x0

and v, and the length ‖x0‖2, whereas (ii) the sensitivity of the solution x is related
to the angle between x0 and w, where v ∈ int(Kn) and w ∈ int(Kn) are the unit
eigenvectors of M�Jn, and MJn is associated with the eigenvalue τ, respectively.

Theorem 3.1. Suppose M has the GUS property and q0 ∈ R(Mτ ), where τ > 0
is the positive eigenvalue of M�Jn with the unit eigenvector v ∈ int(Kn). Then

6This algorithm is expressed in a stylized version of MATLAB language.
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(i) the solution pair (x, s∗) ∈ R
n × R to the SOCLCP is locally a continuously

differentiable function of q in a neighborhood of q0. That is, there is a neigh-
borhood Nq0

of q0 such that (x, s∗) = (x(q), s∗(q)) is a continuously differ-
entiable function of q ∈ Nq0

,

(ii) the gradient of s∗(q) at q0 is ∇s∗(q0) =
Jnv

v�x(q0)
, and

(iii) rank(Dqx(q0)) = n− 1, and R(Dqx(q0)) = (Jnx0)
⊥, where Dqx(q0) stands

for the derivative of x(q) with respect to q at q0.

Proof. Define a continuously differentiable mapping F : Rn+1+n → R
n+1 by

F (x, s,q) =

[
(M − sJn)x+ q

− 1
2x

�Jnx

]
.(3.15)

Suppose x0 ∈ SOL(M,Kn,q0), then in a neighborhood of (x0, τ,q0), (x, s
∗) is a

solution pair to the SOCLCP if and only if F (x, s∗,q) = 0. Since F (x0, τ,q0) = 0
and the partial derivative of F (x, s,q) with respect to (x, s) is

D(x,s)F (x0, τ,q0) =

[
M − τJn −Jnx0

−(Jnx0)
� 0

]
,

it is sufficient to show thatD(x,s)F (x0, τ,q0) is nonsingular. To this end, we assume[
M − τJn −Jnx0

−(Jnx0)
� 0

] [
a
�

]
= 0,

which gives

(M − τJn)a− Jnx0� = 0,(3.16)

(Jnx0)
�a = 0.(3.17)

We first show that � = 0. If this is not true, then from (3.16), we have

0 �= (M − τJn)a = �Jnx0 ∈ −bd(Kn) ∪ bd(Kn).(3.18)

On the other hand, from Theorem 2.2, we know that rank(M − τJn) = n− 1 and
R(Mτ ) ⊥ Jnv where v ∈ int(Kn) (and hence by Lemma 2.1, Jnv ∈ int(Kn)) is the
eigenvector of M�Jn associated with the eigenvalue τ. This fact implies

R(Mτ ) ∩ (−bd(Kn) ∪ bd(Kn)) = {0},
which contradicts (3.18). This shows � = 0.

We next show a = 0. Since � = 0, from (3.16), we know that

0 = (M − τJn)a = (MJn − τIn)Jna,

which leads to two scenarios: a �= 0 and a = 0. If a �= 0, by rank(M − τJn) = n−1
(see Theorem 2.2(i)), we know that the nonzero vector Jna is parallel to w, the
eigenvector of MJn associated with the eigenvalue τ, which by the fact that w ∈
int(Kn) implies Jna ∈ −int(Kn)

⋃
int(Kn). On the other hand, by x0 ∈ bd(Kn),

we know that

(Jnx0)
�a = (Jna)

�x0 �= 0,

which contradicts (3.17). Consequently, we conclude that � = 0 and a = 0, and
therefore, D(x,s)F (x0, τ,q0) is nonsingular. By the implicit function theorem, we
know that there is a neighborhood Nq0

of q0 such that (x, s∗) = (x(q), s∗(q)) is a
continuously differentiable function of q ∈ Nq0

.
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For (ii), differentiating F (x(q), s∗(q),q) = 0 with respect to q at q0 gives

(M − τJn)Dqx(q0)− (Jnx0)Dqs
∗(q0) + In = 0,(3.19)

−(Jnx0)
�Dqx(q0) = 0.(3.20)

Since v is the unit eigenvector of M�Jn associated with τ (refer to Theorem 2.2),
pre-multiplying (Jnv)

� on the both sides of (3.19) yields

−(v�x0)Dqs
∗(q0) + v�Jn = 0 or Dqs

∗(q0) =
v�Jn
v�x0

,(3.21)

which proves (ii).
Finally, since rank((Jnx0)Dqs

∗(q0)) = 1 and rank((M − τJn)Dqx(q0)) ≤ n− 1,
(3.19) leads to rank(Dqx(q0)) ≥ n− 1. Therefore, (3.20) implies (iii) and the proof
is complete. �

Remark 3.2. Theorem 3.1 leads to the following observations:

(a) The gradient∇s∗(q0) =
Jnv
v�x0

coincides with the fact that for any Δq ∈ R(Mτ ),

s∗(q0 +Δq) ≡ τ.
(b) Since ∇s∗(q0) = Jnv

‖v‖2‖x0‖2 cos η = Jnv
‖x0‖2 cos η , where η is the angle between v

and x0, we know that s∗(q) becomes sensitive either if x0 is nearly orthogonal
to v, or if ‖x0‖2 is small.

(c) If Δq is sufficiently small, then we have

s∗(q0 +Δq) = τ +
v�JnΔq

v�x0
+O(‖Δq‖22),

and thus

s∗(q0 +Δq) ≈ τ +
v�JnΔq

v�x0

serves as the first-order estimate for s∗(q0 +Δq).
(d) As R(Dqx(q0)) = (Jnx0)

⊥, when q0 has a sufficiently small perturbation Δq,
then the perturbation Δx of x0 lies almost in (Jnx0)

⊥, i.e., Δx�Jnx0 ≈ 0.
Moreover,

x(q0 +Δq) = x0 +Dqx(q0)Δq+O(‖Δq‖22),

and thus

x(q0 +Δq) ≈ x0 +Dqx(q0)Δq(3.22)

serves as the first-order estimate for x(q0 +Δq).

To give a formulation of (3.22), we assume that the columns of B ∈ R
n×(n−1)

span R(Jnw)⊥ where w is the unit eigenvector of MJn associated with the eigen-
value τ. It is clear that computationally B could be B = JnW, where W ∈ R

n×(n−1)

is given in (3.10). Now we write

Dqx(q0)Δq = Bd+ ϑJnw, d ∈ R
n−1, ϑ ∈ R.

Then from (3.20), we have

ϑ = − (Bd)�Jnx0

w�x0
.
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By post-multiplying Δq on both sides of (3.19) and noting (M − τJn)Jnw = 0,
one has

(M − τJn)Bd− (Jnx0)Dqs
∗(q0)Δq+Δq = 0,

and consequently from (3.21), it follows that

d = [B�(M − τJn)B]−1B�(
v�JnΔq

v�x0
Jnx0 −Δq).

The formula of Dqx(q0)Δq then leads to another observation: the solution x ∈
SOL(M,Kn,q) is likely to be sensitive to the perturbation of q in a neighborhood
of q0 ∈ R(Mτ ) if x0 is nearly orthogonal to w or to v.

4. An efficient Newton method

As our Algorithm 1 follows the framework of the bisection procedure, it is only
of linear convergence. In this section, an efficient Newton iteration is developed
to remedy its slow convergence. We will propose an efficient procedure to imple-
ment each Newton iteration using only about 5n2 flops; moreover, we will show
that whenever M has the GUS property, the Newton iteration locally converges
quadratically for any q �∈ −MKn ∪ Kn.

Let q0 �∈ −MKn ∪ Kn be given and F (x, s,q0) be a function of (x, s) defined
by (3.15). Suppose (x0, s

∗) is the solution pair to the SOCLCP, then our first
conclusion claims that the Jacobian of F (x, s,q0) at (x0, s

∗) is nonsingular provided
that M has the GUS property. To establish this result, we need the following two
lemmas. Lemma 4.1 (see [30]) characterizes the normal cone NKs

of the cone
Ks := {(M − sJn)a|a ∈ Kn} at a boundary point, and Lemma 4.2 is the key to
guarantee the nonsingularity of Jacobian of F (x, s,q0) at (x0, s

∗).

Lemma 4.1. Suppose that A ∈ R
n×n is nonsingular. Let C = AKn and let a be a

nonzero vector in bd(Kn). Then the normal cone NC(Aa) of C at the point Aa is

NC(Aa) = {−tA−�Jna|t ≥ 0}.

Lemma 4.2. Suppose M has the GUS property and τ is the unique positive eigen-
value of MJn. Then for any 0 < s �= τ and for all nonzero a ∈ bd(Kn), we have

a�(M − sJn)
−1a

{
> 0, if 0 < s < τ,
< 0, if s > τ.

Proof. The part for 0 < s < τ has been proved in [30]. The argument for the
case s > τ follows the case 0 < s < τ. Indeed, if s > τ, by Theorem 2.2, Ms is
nonsingular, and thus for any nonzero a ∈ bd(Kn), Lemma 4.1 says that

NKs
(MsJna) = {−tM−�

s a|t ≥ 0}.

From Theorem 2.5, we know that for any t > s, MtJna ∈ int(Ks), which together
with −M−�

s a ∈ NKs
(MsJna) and (2.1), implies

(−M−�
s a)�(MtJna−MsJna) = −(s− t)a�M−1

s a < 0.

This shows a�(M − sJn)
−1a < 0 for any s > τ, and we complete the proof. �

Based on Lemma 4.2, we claim
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Theorem 4.3. Suppose M has the GUS property, then for any q0 �∈ −MKn ∪Kn,
the Jacobian of F (x, s,q0) at the solution pair (x0, s

∗),

D(x,s)F (x0, s
∗,q0) =

[
M − s∗Jn −Jnx0

−(Jnx0)
� 0

]
is nonsingular.

Proof. Suppose there exists a vector [a�, �]� ∈ R
n+1 satisfying[

M − s∗Jn −Jnx0

−(Jnx0)
� 0

] [
a
�

]
= 0.

In the case s∗ = τ, Theorem 3.1(i) indicates [a�, �]� = 0. If s∗ �= τ, then it follows
that M − s∗Jn is nonsingular and thus one has

a = −�(M − s∗Jn)
−1(Jnx0)

and

0 = −�(Jnx0)
�(M − s∗Jn)

−1(Jnx0).

This relation together with Lemma 4.2 implies � = 0 which leads to a = 0. There-
fore, our conclusion follows. �

Theorem 4.3 implies that whenever M has the GUS property and q0 �∈ −MKn∪
Kn, there is a neighborhood N(x0,s∗) of the solution pair (x0, s

∗) such that for any

initial point (x(0), s(0)) ∈ N(x0,s∗), the Newton iteration

(4.1)

{
x(k+1) = x(k) +Δx,

s(k+1) = s(k) +Δs,

where [
M − s(k)Jn −Jnx

(k)

−(Jnx
(k))� 0

] [
Δx
Δs

]
= −F (k) := −F (x(k), s(k),q0),(4.2)

converges quadratically to (x0, s
∗). On the other hand, as the bisection method is

of global convergence, it is able to provide a good initial point (x(0), s(0)) for the
Newton iteration. Moreover, by taking advantage of the special structure in (4.2),
we will see that a single Newton iteration only requires 5n2 flops.

To describe the detailed computational procedure, recall that there is an orthog-
onal matrix Q = diag{1, Q̄} such that QJnQ

� = Jn and QMQ� = H is an upper
Hessenberg matrix. Based on this fact, one has from (4.2) that[
Q

1

] [
M − s(k)Jn −Jnx

(k)

−(Jnx
(k))� 0

] [
Q�

1

] [
Q

1

] [
Δx
Δs

]
= −

[
Q

1

]
F (k) := −F̄ (k)

or, equivalently,[
H − s(k)Jn −QJnx

(k)

−(QJnx
(k))� 0

] [
QΔx
Δs

]
= −F̄ (k).

Furthermore, we note that

QJnx
(k) = QJnQ

�Qx(k) = JnQx(k),

and the update (4.1) could be rewritten as{
Qx(k+1) = Qx(k) +QΔx,
s(k+1) = s(k) +Δs.
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Therefore, if we define the new variable y = Qx (see also (3.4)), the Newton
iteration (4.1) for (x(k), s(k)) could be realized via (y(k), s(k)); that is, we can define
the Newton iteration for (y(k), s(k)) as

(4.3)

{
y(k+1) = y(k) +Δy,
s(k+1) = s(k) +Δs,

where [Δy�,Δs]� is the solution of the linear system[
H − s(k)Jn −Jny

(k)

−(Jny
(k))� 0

] [
Δy
Δs

]
= −F̄ (k).(4.4)

The attractive feature of the system (4.4) is that the solution [Δy�,Δs]� can
be obtained using only about 3n2 flops. To see this more clearly, we note that
the (1, 1) block of the coefficient matrix of (4.4) remains to be upper Hessenberg
as s(k) varies. Therefore, it takes about 2n2 flops to transform this system to an
upper triangular system for which n2 flops are needed for solving [Δy�,Δs]�. To
complete a single Newton step, we should also update the system (4.4). For this
step, the relation

F̄ (k) =

[
Q

1

]
F (k)

=

[
Q(M − s(k)Jn)x

(k) +Qq0

− 1
2 (x

(k))�Jnx
(k)

]
=

[
(H − s(k)Jn)Qx(k) +Qq0

− 1
2 (x

(k))�Q�JnQx(k)

]
=

[
(H − s(k)Jn)y

(k) +Qq0

− 1
2 (y

(k))�Jny
(k)

]

implies that updating F̄ (k) to F̄ (k+1) could be done using only 2n2 flops (the vector
q̄ = Qq0 is constant in each iteration and needs not to be updated). Consequently,
we conclude that a Newton step for updating (y(k), s(k)) to (y(k+1), s(k+1)) requires
totally about 5n2 flops.

Based on our discussion in 3.2, we know that the initial point (y(k), s(k)) for the
Newton iteration (4.3) could be efficiently generated by the bisection method (see
(3.4)), and the orthogonal matrix Q, the upper Hessenberg matrix H and the vector
q̄ = Qq0 which are also needed in (3.4) can still be used in the Newton iteration,
and therefore these methods can be perfectly combined. To conclude this section,
we combine our described techniques and present the complete bisection-Newton
algorithm for LCP (M,Kn,q) in Algorithm 3.

5. Numerical experiments

In this section, we will present our preliminary but very encouraging numerical
experiments of the bisection-Newton algorithm (Algorithm 3). It is known that
there exist various methods for solving the second-order cone complement problem
(1.5). In order to evaluate the numerical performance and demonstrate clearly the
efficiency of the bisection-Newton algorithm (BN for short) for solving the SOCLCP,
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Algorithm 3. A bisection-Newton method for the SOCLCP.

INPUT: A matrix M ∈ R
n×n with the GUS property, a vector q ∈ R

n and tolerances
εi, εb, εn > 0.
OUTPUT: The solution x ∈ SOL(M,Kn,q) and the corresponding s∗.

Step 1: if q ∈ Kn then
x = 0;
return;

end if
Step 2: if −M−1q ∈ Kn then

x = −M−1q;
return;

end if
Step 3: Find the eigenpair (τ,v) of M�Jn where τ > 0 and v ∈ int(Kn); set Index :=

− q�Jnv
‖q‖2‖v‖2 ;

Step 4: Find the orthogonal matrix Q such that QMQ� = H is upper Hessenberg; set
q̄ := Qq;

Step 5: if |Index| < εi then
s∗ = τ ; x = SOCLCPτ(M,q, τ); {Algorithm 2}
return;

else
if Index > εi then

α = 0;β = τ ;
else

Find the smallest integer l > 0 satisfying −(H − 2lτJn)
−1q̄ �∈ Kn;

set α = 2l−1τ and β = 2lτ ;
end if

end if
Step 6: for k = 1, 2, · · · , �log2 β−α

εb
� do

s(k) = β(k)−α(k)

2
; solve y(k) from (H − s(k)Jn)y

(k) = −q̄;
if Index > 0 then

if y(k) ∈ int(Kn) then

β(k) = s(k);
else

α(k) = s(k);
end if

else
if y(k) ∈ int(Kn) then

α(k) = s(k);
else

β(k) = s(k);
end if

end if
end for

Step 7: while (|(y(k))�Jny
(k)|/2 + ‖(H − s(k)Jn)y

(k) + q̄‖2) > εn do
solve [Δy�,Δs]� from[
H − s(k)Jn −Jny

(k)

−(Jny
(k))� 0

] [
Δy
Δs

]
= −

[
(H − s(k)Jn)y

(k) + q̄

− 1
2
(y(k))�Jny

(k)

]
;

update y(k+1) = y(k) +Δy; s(k+1) = s(k) +Δs; k = k + 1;
end while

Step 8: x = Q�y(k); s∗ = s(k).
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we will also present the numerical results from the smoothing Newton method [17]
(SNM for short), the smoothing-regularization method [14] (SRM7 for short) and a
descent method based on the Fischer-Burmeister merit function (FBMF) [3] (DM8

for short). On the other hand, since Algorithm 3 basically involves two different
procedures, we will separately present our numerical experiences in two parts: one
for the general case q �∈ R(Mτ ) and the other for the special case q ∈ R(Mτ ). All
of our tests are carried out in MATLAB 7.1 on a PC with Intel(R) Core(R)i3 CPU
550@3.20GHz, 3.20GHz.

5.1. Numerical testing for the bisection-Newton iteration. To evaluate the
efficiency of the bisection-Newton iteration of Algorithm 3, we vary the problem
size n from 100 to 1000 and generate randomly LCP (M,Kn,q). In particular, for
every given n, 100 symmetric and positive definite matrices M ∈ R

n×n together
with 100 corresponding random q �∈ −MKn ∪Kn are generated with each element
uniformly distributed in the interval [−1, 1]. Therefore, for each n, we totally have
100 test SOCLCPs. The average numerical performance of each tested method over
100 random testings is evaluated and compared.

For the parameters involved in the SNM [17], SRM [14], and DM [3], we use
the values and adopt the stopping criteria that have been suggested and tested
previously. For Algorithm 3, we set εi = 10−9 (Step 5 in Algorithm 3) and εn =
10−10 (Step 7 in Algorithm 3). Besides these parameters, we should also point out
that the termination criterion for the bisection procedure (Step 6 in Algorithm 3) is
another important factor that determines the performance of the bisection-Newton
iteration. Finding a proper parameter εb is related to the problem of detecting
the neighborhood (called the basin of attraction) in which the Newton iteration
converges quadratically. Such a problem is generally believed to be a hard problem
in the literature, and even for finding the zeros of the general real polynomial, there
are no known fail-safe rules for selecting initial values [28]. The bisection iteration
is usually employed to provide an initial guess for the Newton iteration, which
can refine the approximation from the bisection procedure [28]. There are some
sufficient conditions for the local quadratic convergence of the Newton iteration in
the literature, for example, the Newton-Kantorovich Theorem (see e.g., [24, 28]),
which states that the basin of attraction of the Newton iteration is dependent on
F (x, s,q) defined in (3.15) and the Jacobian D(x,s)F (x0, s

∗,q0) given in Theorem
4.3 as well. However, it is expensive to check these sufficient conditions in Newton-
Kantorovich Theorem, and in many problems, these sufficient conditions are not
fulfilled. According to these observations, we suggest and test a simple conservative
rule: εb = 10−ν . In our testing, to evaluate the bisection-Newton method and
compare it with others, we choose ν = 1, 2, 3 and set additionally the maximal
number of bisection steps as 50. It can be expected that as ν gets large, less
Newton steps are required to refine the approximation from the bisection iteration.
This is observed in our numerical experiments.

In Table 1, we summarize the average numbers of iterations (labeled as “Iter#”)
for every method. Since Algorithm 3 consists of two iterative schemes, for each

7The code of the SRM is available at: http://www-optima.amp.i.kyoto-u.ac.jp/∼hayashi
/index e.html

8The code of the DM is available at: http://math.ntnu.edu.tw/∼jschen/Publications.html
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criterion εb, we list the average number of bisection iterations used in Step 6 (labeled
as “Biter#”) and the average number of Newton iterations required in Step 7
(labeled as “Niter#”) separately. The corresponding CPU times of each method
are summarized in Table 2. To check the accuracy of the computed solution x =
[x1,x

�
2 ]

�, we define

fc := |x�g|+ |x1 − ‖x2‖2|+ |g1 − ‖g2‖2|,(5.1)

where g = [g1,g
�
2 ]

� := Mx+q with g1 ∈ R and g2 ∈ R
n−1. As we have pointed out

in (1.4), for our tested case q �∈ −MKn ∪ Kn, fc = 0 implies x ∈ SOL(M,Kn,q),
and hence fc measures the feasibility of x,g ∈ bd(Kn) and the complementarity
of the computed solution x. In Table 3, the average values of fc over 100 random
tests are listed.

From these tables, we can see that all the tested methods succeed in solving
these problems but their numerical performances are different. In particular, we
observe that

(i) the bisection procedure terminates within 50 iterations (20 ∼ 30 iterations
in most cases),

(ii) due to the quadratic convergence of the Newton iteration, less than 3 New-
ton steps (1 or 2 steps in most cases) are required to refine a moderately
accurate approximation obtained from the bisection iteration to our given
termination rule,

(iii) as ν gets larger, more bisection steps but less Newton steps are needed, and
(iv) the bisection-Newton algorithm converges fastest to a highly accurate so-

lution.

Table 1. Average number of iterations with various problem sizes.

SNM SRM DM BN(ν = 1) BN(ν = 2) BN(ν = 3)

n Iter# Iter# Iter# Biter# Niter# Biter# Niter# Biter# Niter#

100 9.42 6.23 2044.69 25.17 1.10 26.66 0.88 28.08 0.81

200 10.80 6.47 7614.48 24.96 1.20 26.66 1.00 28.21 0.91

300 11.74 7.00 15262.70 24.51 1.20 26.24 1.06 28.19 0.88

400 12.66 7.00 25182.70 25.41 1.19 27.12 1.03 28.70 0.85

500 13.36 7.00 28767.80 24.64 1.23 26.37 1.12 28.20 0.60

600 14.09 7.05 32302.20 28.40 0.93 29.65 0.82 31.20 0.62

700 14.88 7.43 48914.30 25.92 1.19 27.84 1.05 29.53 0.77

800 15.34 7.45 58566.20 28.55 0.91 30.04 0.83 31.28 0.61

900 16.40 7.08 86321.20 23.75 1.32 25.74 1.27 27.67 1.01

1000 16.44 7.07 97901.50 25.98 1.13 27.57 1.08 29.36 0.81
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Table 2. Average CPU time(s) with various problem sizes.

n SNM SRM DM BN(ν = 1) BN(ν = 2) BN(ν = 3)

100 0.0404 0.0489 1.0521 0.0162 0.0162 0.0162

200 0.2962 0.3638 5.5027 0.0469 0.0478 0.0479

300 1.0412 1.2385 14.8425 0.1365 0.1361 0.1421

400 2.8023 3.4515 37.6897 0.3117 0.3130 0.3164

500 5.5273 6.6480 57.6000 0.5813 0.5813 0.5879

600 8.9139 10.4772 132.9670 0.8472 0.8536 0.8621

700 14.8391 19.2171 311.8070 1.2603 1.2738 1.2853

800 29.5577 46.8406 708.1530 2.6413 2.6209 2.6334

900 46.0424 79.7097 1298.5300 3.6265 3.6561 3.6838

1000 59.2010 95.7390 1637.2500 4.6585 4.6287 4.6587

Table 3. Accuracy of the computed solution with various problem sizes.

n SNM fc SRM fc DM fc BN(ν = 1) fc BN(ν = 2) fc BN(ν = 3) fc

100 1.0272e-07 2.4143e-09 9.0935e-06 3.1427e-11 2.6201e-11 9.8735e-11

200 1.4924e-07 2.8807e-10 1.3903e-05 3.9967e-11 1.5882e-10 2.7511e-10

300 2.3428e-07 9.9837e-11 1.8749e-05 4.3617e-11 2.1658e-11 1.1533e-09

400 2.8157e-07 1.5812e-10 2.0837e-05 3.0345e-11 2.0588e-11 3.3914e-10

500 1.9250e-07 6.6678e-11 3.0552e-05 6.2700e-11 5.8400e-11 3.4225e-10

600 2.5014e-07 1.2745e-10 2.8555e-05 4.3533e-11 3.2509e-11 1.8751e-10

700 2.1447e-07 4.3511e-10 1.6376e-04 4.4745e-11 4.7116e-11 3.9005e-10

800 2.0841e-07 1.2327e-09 2.6978e-04 4.0576e-11 4.6273e-10 2.8714e-10

900 2.0235e-07 2.2823e-09 4.3328e-04 3.5671e-11 1.7896e-11 3.6038e-10

1000 3.3524e-07 4.2692e-09 7.8158e-04 4.0370e-11 2.6522e-11 1.3811e-10
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Table 4. Average number of iterations and CPU time with vari-
ous problem sizes.

Problem size SRM BN

n Iter# CPU(s) CPU(s)

100 6.00 0.0431 0.0130

200 6.01 0.3122 0.0445

300 6.00 1.0258 0.1299

400 6.05 2.5958 0.2976

500 6.06 4.9600 0.5718

600 6.23 8.7318 0.9793

700 6.36 14.6201 1.6444

800 6.40 22.1725 2.5364

900 6.59 34.7423 3.9893

1000 6.42 48.3565 5.5946

5.2. Numerical testing for the special case q ∈ R(Mτ ). This subsection is
devoted to testing the direct algorithm (Algorithm 2) for the special case q ∈
R(Mτ ). For this purpose, we first describe our four-step-procedure in generating
the test problems as follows:

(1) generate randomly a symmetric and positive definite matrix M ∈ R
n×n;

(2) find the largest eigenvalue τ of MJn;
(3) generate a random x ∈ bd(Kn);
(4) set q = −(M − τJn)x.

According to this procedure, we generate 100 testing problems for each n varying
from 100 to 1000. As we observed that there are some cases for which the SNM
and the DM fail to converge within the given stopping criteria, we only present
numerical results from the SRM and the BN. In Table 4, we list average numbers
of iterations and average CPU times for the SRM and BN methods. Furthermore,
in Figure 1, the relation between log10 fc and the problem size n is plotted for both
methods.

6. Conclusions and future work

In this paper, we have investigated the LCP over the second-order cone (1.3)
from a new perspective. Our new development on the SOCLCP benefits from the
basic linear-algebra-related properties which characterize the GUS property of M.
The mechanics behind the bisection iteration is from the geometry knowledge of
the LCP (M,Kn,q). As Theorems 2.2 and 2.5 serve as the theoretical fundamental
for the bisection procedure, the success of the bisection method in this paper can
also be viewed as a numerical verification of these theoretical results.

Finally, we point out that although our algorithm is currently designed specially
for the SOCLCP (1.3), the idea and the techniques might be used and be extended
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Figure 1. log10 fc of the SRM and the BN methods with respect
to the problem size n.

to solve the following general SOCLCP on the product of multiple second-order
cones:

Find x ∈ K such that Mx+ q ∈ K and x�(Mx+ q) = 0,(6.1)

where K = Kn1 × Kn2 × · · · × Knm with ni ≥ 1 and
∑m

i=1 ni = n. One natural
idea is to decouple (6.1) into a sequence of SOCLCPs (1.3), in which the following
equivalent relation [14] is helpful

x ∈ K, g ∈ K and x�g = 0(6.2)

⇐⇒ xi ∈ Kni , gi ∈ Kni and (xi)�gi = 0, i = 1, 2, . . . ,m,

where x = [(x1)�, . . . , (xm)�]� ∈ R
n with xi ∈ R

ni being subvectors of x. To apply
(6.2) for solving (6.1), we should note that each subvector gi ∈ R

ni of g := Mx+q
also involves the subvectors xj ∈ R

nj for j �= i. The matrix splitting method, which
is widely used in the classical LCP [7], is an effective approach to get around that
trouble, and has been employed in [15] to solve (6.1) with a symmetric and positive
definite M. In particular, the block successive over-relaxation (SOR) method [15]
first splits the matrix M as

M = B + C =

⎡⎢⎢⎢⎣
B11

B21 B22

...
...

. . .

Bm1 . . . . . . Bmm

⎤⎥⎥⎥⎦+ C, Bij ∈ R
ni×nj ,(6.3)
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and then solves problem (6.1) by the following iterative procedure ([15, Algorithm
2.1]):

Algorithm 4. The basic matrix-splitting method [15] for SOCLCP (6.1).

Step 1 : Choose x(0) ∈ K; set k = 0.
Step 2 : Find x(k+1) ∈ K such that

Bx(k+1) + q(k) ∈ K and (x(k+1))�(Bx(k+1) + q(k)) = 0,

where q(k) := q+ Cx(k).
Step 3 : Stop and return the approximate solution x(k+1) if the given stopping cri-

terion is met; otherwise, set k = k + 1 and goto Step 2.

The convergence is established in [15]; moreover, with the block structure of B
in (6.3), it is known [15] by (6.2) that the solution x ∈ K in Step 2 of Algorithm 4
can be equivalently obtained via solving sequentially the following subproblems for
i = 1, 2, . . . ,m :

xi ∈ Kni , Biix
i + r

(k)
i ∈ Kni , (xi)�(Biix

i + r
(k)
i ) = 0,(6.4)

where

r
(k)
i :=

{
q
(k)
1 , if i = 1,∑i−1
j=1Bij(x

(k+1))j + q
(k)
i , if i > 1,

and q(k) = q + Cx(k) = [(q
(k)
1 )�, . . . , (q

(k)
m )�]� with q

(k)
i ∈ R

ni . It is clear that

for each i in (6.4), xi is the solution of LCP (Bii,Kni , r
(k)
i ), for which our current

bisection-Newton algorithm is applicable. In [15], in order to solve each subproblem
(6.4) efficiently, the diagonal block matrices Bii are assumed to be of the special
form

Bii =

[
b1 0�

b2 B3

]
, b1 ∈ R, b2 ∈ R

ni−1, B3 ∈ R
(ni−1)×(ni−1),

which potentially restricts the application and the efficiency of the matrix-splitting
method. As our bisection-Newton method can efficiently solve each subproblem
(6.4), it seems that the matrix-splitting method, equipped with our bisection-
Newton algorithm, is an appealing approach for the SOCLCP (6.1), and the detailed
implementation, theoretical properties and numerical investigation will be part of
our future work.
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