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ALGORITHM FOR CONSTRUCTING SYMMETRIC DUAL

FRAMELET FILTER BANKS

BIN HAN

Abstract. Dual wavelet frames and their associated dual framelet filter banks
are often constructed using the oblique extension principle. In comparison
with the construction of tight wavelet frames and tight framelet filter banks,
it is indeed quite easy to obtain some particular examples of dual framelet
filter banks with or without symmetry from any given pair of low-pass filters.
However, such constructed dual framelet filter banks are often too particular to
have some desirable properties such as balanced filter supports between primal
and dual filters. From the point of view of both theory and application, it is
important and interesting to have an algorithm which is capable of finding
all possible dual framelet filter banks with symmetry and with the shortest
possible filter supports from any given pair of low-pass filters with symmetry.
However, to our best knowledge, this issue has not been resolved yet in the
literature and one often has to solve systems of nonlinear equations to obtain
nontrivial dual framelet filter banks. Given the fact that the construction
of dual framelet filter banks is widely believed to be very flexible, the lack
of a systematic algorithm for constructing all dual framelet filter banks in
the literature is a little bit surprising to us. In this paper, by solving only
small systems of linear equations, we shall completely settle this problem by
introducing a step-by-step efficient algorithm to construct all possible dual
framelet filter banks with or without symmetry and with the shortest possible

filter supports. As a byproduct, our algorithm leads to a simple algorithm
for constructing all symmetric tight framelet filter banks with two high-pass
filters from a given low-pass filter with symmetry. Examples will be provided to
illustrate our algorithm. To explain and to understand better our algorithm
and dual framelet filter banks, we shall also discuss some properties of our
algorithms and dual framelet filter banks in this paper.

1. Introduction and motivations

Wavelets and framelets with associated filter banks have many applications in
areas such as image processing and scientific computing ([1, 3, 6]). On the one
hand, dual framelet filter banks generalize biorthogonal wavelet filter banks by
using more than one pair of high-pass filters. On the other hand, dual framelet
filter banks include tight framelet filter banks as special cases by allowing the use
of different sets of filters for analysis and synthesis. Therefore, dual framelet filter
banks include both biorthogonal wavelet filter banks and tight framelet filter banks
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as special cases. The design of a dual framelet filter bank is quite different in
nature to the construction of a biorthogonal wavelet filter bank. With the added
redundancy and flexibility in a dual framelet filter bank, it is well known in the
literature ([2, 4, 5, 10, 15]) that it is often much more flexible and less restrictive to
construct dual framelet filter banks than biorthogonal wavelet filter banks or tight
framelet filter banks.

In this paper we discuss how to systematically design all possible dual framelet
filter banks with some desirable properties such as vanishing moments, symmetry,
and short filter supports. To do so, let us recall some basic definitions and notation.
By l0(Z) we denote the linear space of all sequences u = {u(k)}k∈Z : Z → C such
that {k ∈ Z : u(k) �= 0} is a finite set. For u = {u(k)}k∈Z ∈ l0(Z), the z-transform
of u is a Laurent polynomial defined to be u(z) :=

∑
k∈Z

u(k)zk. We define another

associated sequence u� by u�(k) = u(−k), k ∈ Z. For a matrix P(z) =
∑

k∈Z
Pkz

k

of Laurent polynomials, we define P�(z) :=
∑

k∈Z
P �
k z

−k, where P �
k := Pk

T
denotes

the complex conjugate of the transpose of the matrix Pk.
Since all wavelet or framelet filter banks are often obtained via the oblique ex-

tension principle (see [2, 4, 5]), we first revisit here the oblique extension princi-

ple (OEP). For ã, b̃1, . . . , b̃s, a, b1, . . . , bs,Θ ∈ l0(Z), we say that ({ã; b̃1, . . . , b̃s},
{a; b1, . . . , bs})Θ is a dual framelet filter bank if the following perfect reconstruction
condition holds:

(1.1)

[
b̃1(z) · · · b̃s(z)

b̃1(−z) · · · b̃s(−z)

] [
b1(z) · · · bs(z)
b1(−z) · · · bs(−z)

]�
= Ma,ã,Θ(z),

where

(1.2) Ma,ã,Θ(z) :=

[
Θ(z)−Θ(z2)ã(z)a�(z) −Θ(z2)ã(z)a�(−z)
−Θ(z2)ã(−z)a�(z) Θ(−z)−Θ(z2)ã(−z)a�(−z)

]
.

It is trivial to observe that ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ is a dual framelet filter

bank if and only if ({a; b1, . . . , bs}, {ã; b̃1, . . . , b̃s})Θ� is a dual framelet filter bank.
{a; b1, . . . , bs}Θ is called a tight framelet filter bank if ({a; b1, . . . , bs}, {a; b1, . . . , bs})Θ
is a dual framelet filter bank.

The low-pass filters a and ã are often given in advance. As we shall see in
Section 2, one often designs a moment correcting filter Θ with some desirable prop-
erties first. Then the matrix Ma,ã,Θ is given and the construction of high-pass

filters b1, . . . , bs, b̃1, . . . , b̃s now becomes how to factorize a given matrix Ma,ã,Θ of
Laurent polynomials in (1.2) so that (1.1) holds.

Under the natural assumption a(1) = ã(1) = 1, we can define functions ϕ, ϕ̃, η̃,

ψ[�], ψ̃[�], � = 1, . . . , s on the real line R by

(1.3) ϕ(ξ) :=
∞∏
j=1

a(e−i2−jξ), ϕ̃(ξ) :=
∞∏
j=1

ã(e−i2−jξ), η̃(ξ) := Θ(e−iξ)ϕ̃(ξ), ξ ∈ R

and

(1.4) ψ[�](2ξ) := b�(e
−iξ)ϕ(ξ), ψ̃[�](2ξ) := b̃�(e

−iξ)ϕ̃(ξ), � = 1, . . . , s, ξ ∈ R.

Then all the above functions are well defined ([1,3]). Under the assumption a(1) =
ã(1) = Θ(1) = 1, it has been shown in [11, Theorem 2] and [12, Theorem 17]

that ({ã; b̃1, . . . , b̃s},{a; b1, . . . , bs})Θ is a dual framelet filter bank if and only if
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({η̃; ψ̃[1], . . . , ψ̃[s]}, {ϕ;ψ[1], . . . ,ψ[s]}) forms a frequency-based dual framelet, that
is, ∑

k∈Z

〈f , η̃1;0,k〉〈ϕ1;0,k,g〉+
∞∑
j=0

s∑
�=1

∑
k∈Z

〈f , ψ̃[�]
2−j ;0,k〉〈ψ

[�]
2−j ;0,k,g〉 = 2π〈f ,g〉

for all compactly supported functions f ,g ∈ C∞(R), where the infinite series con-
verges in an appropriate sense as described in [11] and

ψλ;n,k(x) := |λ|1/2e−ikλxf(λx− n) for λ, k, n, x ∈ R.

Due to this natural link between a dual framelet filter bank and a frequency-
based dual framelet, in this paper we only deal with filter banks without discussing
wavelets and framelets on the real line.

For a dual framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ, it is often desir-
able for the high-pass filters to possess certain numbers of vanishing moments:

(1.5) b�(z) = (1− z−1)nb b̊�(z), b̃�(z) = (1− z−1)nb̃
˚̃
b�(z), � = 1, . . . , s,

where nb and nb̃ are nonnegative integers. Moreover, nb and nb̃ are called the
orders of vanishing moments of the primal high-pass filters b1, . . . , bs and the dual

high-pass filters b̃1, . . . , b̃s, respectively, if all b̊� and
˚̃
b� are Laurent polynomials

such that both
∑s

�=1 |̊b�(1)| and
∑s

�=1 |̊b̃�(1)| are nonzero.
Now the perfect reconstruction condition for a dual framelet filter bank

({ã; b̃1,. . ., b̃s}, {a; b1, . . . , bs})Θ in (1.1) can be equivalently expressed as

(1.6)

[
˚̃
b1(z) · · · ˚̃

bs(z)
˚̃b1(−z) · · · ˚̃bs(−z)

] [
b̊1(z) · · · b̊s(z)

b̊1(−z) · · · b̊s(−z)

]�
= Ma,ã,Θ|nb,nb̃

(z),

where

(1.7) Ma,ã,Θ|nb,nb̃
(z) :=

[
A(z) B(z)
B(−z) A(−z)

]
with

(1.8) A(z) :=
Θ(z)−Θ(z2)ã(z)a�(z)

(1− z)nb(1− z−1)nb̃
, B(z) := −Θ(z2)

ã(z)

(1 + z)nb

a�(−z)

(1− z−1)nb̃
.

Now the construction of a dual framelet filter bank with preassigned orders of
vanishing moments is simply to factorize the matrix Ma,ã,Θ|nb,n˜b

in (1.7) so that

(1.6) is satisfied.
To reduce computational complexity in the implementation of a dual framelet

filter bank, we prefer a small number s of high-pass filters. As shown in Theorem 7,
it is often necessary that s > 1. Hence, in this paper we shall consider the case
s = 2 for a dual framelet filter bank. For the case s = 2, (1.6) takes the following
equivalent form:

(1.9)

[
b̊1(z) b̊2(z)

b̊1(−z) b̊2(−z)

][ ˚̃b1(z)
˚̃b2(z)

˚̃b1(−z) ˚̃b2(−z)

]�

=

[
A�(z) B�(−z)
B�(z) A�(−z)

]
.

It is easy to find particular solutions to (1.9) by choosing b̊1 and b̊2 in such a way
that the determinant of the first 2× 2 matrix on the left side of (1.9) is a nonzero
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monomial. We present here two particular constructions known in the literature,
for example, see [4, 5]. The first construction is

(1.10) b̊1(z) = 1, b̊2(z) = z.

Then it follows from (1.9) that we must have

(1.11) ˚̃b1(z) = [A(z) + B(z)]/2, ˚̃b2(z) = z[A(z)− B(z)]/2.

The second construction is

(1.12) b̊1(z) = (1 + z)/2, b̊2(z) = (1− z)/2.

Then the perfect reconstruction condition in (1.9) will force

(1.13) ˚̃b1(z) = [(1+z)A(z)+(1−z)B(z)]/2, ˚̃b2(z) = [(1−z)A(z)+(1+z)B(z)]/2.

We now discuss filter support and symmetry property of a dual framelet filter
bank. For a filter u = {u(k)}k∈Z ∈ l0(Z), if u(m)u(n) �= 0 and u(k) = 0 for all
k ∈ Z\[m,n], then we define

(1.14) fsupp(u) := [m,n], len(u) := | fsupp(u)| := n−m.

The filter support fsupp(u) is simply the shortest interval containing all the posi-
tions of the nonzero coefficients of u. We say that u has symmetry if

(1.15) u(c− k) = εu(k), ∀ k ∈ Z

for some c ∈ Z and ε ∈ {−1, 1}. A filter u is symmetric about the point c
2 if (1.15)

holds with ε = 1, and antisymmetric about the point c
2 if (1.15) holds with ε = −1.

We call c
2 the symmetry center of the filter u, which is simply the center of its filter

support fsupp(u). It is often convenient to use a symmetry operator S to record
the symmetry type of a filter having symmetry. For this purpose, we define

(1.16) Su(z) :=
u(z)

u(z−1)
, z ∈ C\{0}.

Now it is straightforward to see that (1.15) holds if and only if Su(z) = εzc.
Note that the perfect reconstruction condition in (1.1) with s = 2 implies

(1.17) b̃1(z)b
�
1(−z) + b̃2(z)b

�
2(−z) = −Θ(z2)ã(z)a�(−z).

If all the filters ã, b̃1, b̃2, a, b1, b2,Θ are required to have symmetry, as we shall see
from Lemma 8, it is natural to have S(b̃1(z)b

�
1(−z)) = S(b̃2(z)b

�
2(−z)), and from

(1.17) we must have the following relation on the lengths of filter supports:

max(len(b1) + len(b̃1), len(b2) + len(b̃2))

= len(a) + len(ã) + 2 len(Θ) + 2εlen, εlen ∈ N ∪ {0}.
(1.18)

Therefore, from any given filters a, ã,Θ with symmetry, it is natural and important
to construct all dual framelet filter banks ({ã; b̃1, b̃2}, {a; b1, b2})Θ having symmetry
and the shortest possible filter supports:

(1.19) max(len(b1) + len(b̃1), len(b2) + len(b̃2)) = len(a) + len(ã) + 2 len(Θ).



ALGORITHM FOR CONSTRUCTING DUAL FRAMELET FILTER BANKS 771

We now examine the filter length and symmetry property of the two particular
constructions in (1.10)–(1.13). Assume that all the filters a, ã,Θ have the following
symmetry:

(1.20) SΘ(z) = εΘz
cΘ , Sa(z) = εzc, Sã(z) = ε̃zc̃

and both A and B in (1.8) are Laurent polynomials. In order for the Laurent
polynomial A to have symmetry, by Lemma 8, it is natural to require that

(1.21) c̃ = c− cΘ and ε̃ = ε.

Then A and B have the following symmetry:

(1.22) SA(z) = (−1)nb̃+nbεΘz
cΘ+nb̃−nb , SB(z) = (−1)c+nb̃εΘz

cΘ+nb̃−nb .

We consider two cases according to either SA(z) = SB(z) or SA(z) = −SB(z).
Case 1: If c + nb is an even integer, then SA(z) = SB(z). The first particular

construction of a dual framelet filter bank ({ã; b̃1, b̃2}, {a; b1, b2})Θ in (1.10) and
(1.11) indeed has symmetry and the shortest possible filter support satisfying (1.19)
with

len(b1) = len(b2) = nb, max(len(b̃1), len(b̃2)) = len(a) + len(ã) + 2 len(Θ)− nb.

Since S((1 + z)A(z)) = −S((1 − z)B(z)), the dual filters b̃1 and b̃2 in (1.13) usu-
ally do not possess any symmetry, even though all other filters b1, b2, a, ã,Θ have
symmetry. Hence, the second particular construction of a dual framelet filter bank
({ã; b̃1, b̃2}, {a; b1, b2})Θ in (1.12) and (1.13) lacks symmetry.

Case 2: If c + nb is an odd integer, then SA(z) = −SB(z). The dual filters

b̃1 and b̃2 in (1.11) usually do not possess any symmetry, even though all other
filters b1, b2, a, ã,Θ have symmetry. Therefore, the first particular construction
in (1.10) and (1.11) lacks symmetry. But the second particular construction of

a dual framelet filter bank ({ã; b̃1, b̃2}, {a; b1, b2})Θ in (1.12) and (1.13) indeed has
symmetry and the shortest possible filter support satisfying (1.19), since by SA(z) =
−SB(z), we deduce from (1.13) that

len(b1) = len(b2) = nb+1, max(len(b̃1), len(b̃2)) = len(a)+len(ã)+2 len(Θ)−nb−1.

Though the two particular constructions in (1.10)–(1.13) are explicit and very
simple, a shortcoming of the two particular constructions is that their filter supports
are quite unbalanced: the filter supports of b1 and b2 are very short while the filter
supports of b̃1 and b̃2 are usually very long. For the purpose of implementation
and performance of a discrete framelet transform employing a dual framelet filter
bank, it is often desirable for all high-pass filters to have more or less balanced
filter supports. For certain applications such as signal and image denoising, it is of
interest to have a dual framelet filter bank ({ã; b̃1, b̃2}, {a; b1, b2})Θ which is close

to a tight framelet filter bank, that is, ã ≈ a, b̃1 ≈ b1, and b̃2 ≈ b2. Furthermore, if
ã = a and if the necessary and sufficient condition in [13, 14] is satisfied, then it is
very much desired that such an algorithm is able to obtain all the tight framelet filter
banks with symmetry and with two high-pass filters as special cases. Undoubtedly,
the particular constructions in (1.10)–(1.13) cannot achieve this goal. In fact, to our
best knowledge, so far there is no systematic algorithm available in the literature
to achieve such a purpose. This difficulty is probably caused by the fact that
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the overwhelming flexibility and freedom in using four high-pass filters in a dual
framelet filter bank make the task of finding all dual framelet filter banks much
harder.

The above discussions motivate us to develop a systematic algorithm to construct
all possible dual framelet filter banks with symmetry and with short filter supports.
Though many particular constructions of various dual framelet filter banks with
or without symmetry appeared in the literature (see [2, 4, 5, 7, 8, 10, 16, 17, 21, 22]
and references therein), to our best knowledge, so far there is no systematic algo-
rithm available in the literature to construct all possible dual framelet filter banks
({ã; b̃1, b̃2}, {a; b1, b2})Θ with symmetry and with the shortest possible filter sup-
ports derived from any given filters a, ã,Θ with symmetry. The only method that
we know so far is [17, Appendix] where a system of nonlinear equations has to be
solved in order to obtain some nontrivial examples of dual framelet filter banks
other than the two particular constructions in (1.10)–(1.13). Given the fact that
the construction of dual framelet filter banks is widely believed to be very flexible,
the lack of a systematic algorithm for constructing dual framelet filter banks in
the literature is a little bit surprising to us. The main goal of this paper is to fill
this gap by developing a systematic and satisfactory algorithm to construct all dual
framelet filter banks ({ã; b̃1, b̃2}, {a; b1, b2})Θ with symmetry and with the shortest
possible filter supports derived from any given filters a, ã,Θ with symmetry.

The structure of the paper is as follows. In Section 2 we shall present a step-
by-step algorithm for constructing all dual framelet filter banks having symme-
try and the shortest possible filter supports satisfying (1.18) with εlen ∈ {0, 1}.
Therefore, our algorithm not only finds all symmetric dual framelet filter banks
({ã; b̃1, b̃2}, {a; b1, b2})Θ with the shortest possible filter supports satisfying (1.19)
but also all those having slightly longer filter supports satisfying (1.18) with εlen = 1.
Our algorithm only involves solving small systems of linear equations and is able
to efficiently find all possible dual framelet filter banks having symmetry and the
shortest possible filter support from any given filters a, ã,Θ with symmetry. More-
over, if ã = a and if the necessary and sufficient condition in [13, 14] is satisfied,
then our algorithm is able to obtain all the tight framelet filter banks with sym-
metry and with two high-pass filters. Our algorithm for constructing dual framelet
filter banks naturally leads to a simple algorithm, stated in detail in Section 3, for
constructing all tight framelet filter banks with symmetry and two high-pass filters.
In fact, our algorithm in Section 3 for constructing all symmetric tight framelet fil-
ter banks ({ã; b̃1, b̃2}, {a; b1, b2})Θ is not only slightly more general but also much
simpler than those algorithms developed in [13,14,19]. In Section 4 we shall present
several examples to illustrate our algorithm. To better understand our algorithms
and dual framelet filter banks, since the presentation of our algorithm appears to
be somewhat complicated at the first glance, we shall discuss in Section 5 some
basic properties of dual framelet filter banks and provide some explanations for our
algorithm.

2. Algorithm for constructing symmetric dual framelet filter banks

Comparing with the design of tight framelet filter banks with symmetry, since
a dual framelet filter bank employs four high-pass filters, the construction of dual
framelet filter banks with symmetry has much more flexibility and freedom. How-
ever, such overwhelming flexibility and freedom also make it much more difficult in
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finding all possible dual framelet filter banks. In fact, to our best knowledge, there
is no systematic algorithm available so far in the literature for constructing all sym-
metric dual framelet filter banks ({ã; b̃1, b̃2}, {a; b1, b2})Θ with the shortest possible
filter supports satisfying (1.19). In this section, we completely settle this problem
by presenting a step-by-step systematic algorithm to construct all dual framelet
filter banks ({ã; b̃1, b̃2}, {a; b1, b2})Θ having symmetry and the shortest possible fil-
ter supports satisfying (1.18) with εlen ∈ {0, 1} from any given filters a, ã,Θ with
symmetry.

In this paper we deal with both real-valued and complex-valued dual framelet
filter banks. For complex-valued filters, there is another closely related notion of
symmetry similar to (1.15). We say that a filter u = {u(k)}k∈Z : Z → C has
complex symmetry if

(2.1) u(c− k) = εu(k), ∀ k ∈ Z

for some c ∈ Z and ε ∈ {−1, 1}. That is, u�(k) = εu(c + k) for all k ∈ Z, where

u�(k) := u(−k), k ∈ Z. Define a complex symmetry operator S by

(2.2) Su(z) :=
u(z)

u�(z)
, z ∈ C\{0}.

Then a filter u has complex symmetry in (2.1) if and only if Su(z) = εzc. If u is
identically zero, then Su and Su can be assigned any types of [complex] symmetry.
It is trivial to see that a filter u has real-valued coefficients if and only if u�(z) =
u(z−1). Therefore, for a real-valued filter u, there is no difference between symmetry
and complex symmetry since Su = Su. If a filter u has symmetry and λ ∈ C\{0},
then λu also has symmetry. However, if u has complex symmetry, it is not necessary
that λu has complex symmetry and for a nontrivial filter u, in fact, λu also has
complex symmetry if and only if λ ∈ R or iλ ∈ R.

For a filter u and a nonnegative integerm, we define the order of sum rules of u to
be sr(u) := m, where m is the largest integer such that u(z) = O(|1+z|m), z → −1.
Similarly, we define the order of vanishing moments of the filter u to be vm(u) := n,
where n is the largest integer such that u(z) = O(|1 − z|n), z → 1. To guarantee
that both A and B in (1.8) are Laurent polynomials, under the natural assumption
a(1)ã(1)Θ(1) �= 0, it is necessary and sufficient to require that

0 � nb � sr(ã), 0 � nb̃ � sr(a),

Θ(z)−Θ(z2)ã(z)a�(z) = O(|1− z|nb+nb̃), z → 1.
(2.3)

For an integer j, we define odd(j) := 1 if j is odd, and odd(j) := 0 if j is even, that

is, odd(j) := 1−(−1)j

2 . By coeff(p, z, j) we denote the coefficient of zj in a Laurent
polynomial p.

We now present an algorithm to construct all dual framelet filter banks having
symmetry or complex symmetry and having real coefficients or complex coefficients
with filter supports satisfying (1.18) with εlen ∈ {0, 1}. The presentation and
statement of the following algorithm appear to be somewhat complicated at first
glance. To understand better our algorithm and dual framelet filter banks, we shall
provide some explanations for the following algorithm in Section 5. Here we only
present the algorithm and its proof without explaining its various relations and
assumptions appearing in the algorithm.
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Algorithm 1. Let a, ã,Θ ∈ l0(Z) be given filters having [complex] symmetry (and
real coefficients) satisfying (1.20), (1.21), and (2.3) for some c, c̃, cΘ ∈ Z, ε, ε̃, εΘ ∈
{−1, 1}, and nb, nb̃ ∈ N ∪ {0}. Assume that len(a) + len(ã) + len(Θ) > 0, that
is, a, ã,Θ cannot be simultaneously monomials. For the case of complex symmetry,
replace the symmetry operator S by the complex symmetry operator S throughout.

(S1) Define Laurent polynomials A and B as in (1.8), and

(2.4) p(z2) := gcd(A(z),A(−z),B(z),B(−z)), Å(z) :=
A(z)

p(z2)
, B̊(z) :=

B(z)

p(z2)
.

Then p,A,B, Å, B̊ have [complex] symmetry (and real coefficients). Define
ε0, c0, n0 by

(2.5) ε0z
c0 := SÅ(z) and [c0 − n0, n0] := fsupp(Å).

(S2) Select d, c1, ε1, n1, n2, εlen as follows:
(1) Select a Laurent polynomial d with [complex] symmetry (and real co-

efficients) such that

(2.6) d(z) | D(z) with D(z2) := [̊A(z)Å(−z)− B̊(z)B̊(−z)]�.

Define εd, cd, nd by εdz
cd := Sd(z) and [cd − nd, nd] := fsupp(d). We

often restrict cd ∈ {0, 1};
(2) Select c1 ∈ {odd(c+ nb), odd(c+ nb) + 2}. Define c2 := 2cd + 2− c1.
(3) Select ε1 = 1 if (−1)c1εd = −1, otherwise, select ε1 ∈ {−1, 1}. Define

ε2 := (−1)c1εdε1.
(4) Select εlen = 0 for the shortest filter support satisfying (1.19), other-

wise, select εlen = 1.
(5) Select n1 ∈ Z satisfying c1

2 � n1 � c1−c0
2 + n0 + εlen.

(6) Select n2 ∈ Z satisfying max( c22 , 2nd+1−n1) � n2 � c2−c0
2 +n0+εlen.

(S3) Parameterize a filter b̊1 such that S̊b1(z) = ε1z
c1 and fsupp(̊b1) = [c1 −

n1, n1]. Find the unknown coefficients of b̊1 by solving a system X1 of
linear equations induced by R1(z) = 0 and

(2.7) coeff(̊b̃�2, z, j) = 0, j = n0 − n2 − c0 + 1 + εlen, . . . , n0 + n1 − c0 − 2nd − 1,

where R1 and
˚̃
b�2 are Laurent polynomials uniquely determined, through long

division using the divisor d(z2), by fsupp(R1) ⊆ [2(cd − nd), 2nd − 1] and

(2.8) B̊�(z)̊b1(z)− Å�(z)̊b1(−z) = d(z2)z̊b̃�2(z) +R1(z).

If X1 has no nontrivial solution, restart the algorithm from (S2) by selecting
other choices of d, c1, ε1, n1, n2, εlen.

(S4) Parameterize a filter b̊2 such that S̊b2(z) = ε2z
c2 and fsupp(̊b2) = [c2 −

n2, n2]. Find the unknown coefficients of the filter b̊2 by solving a system
X2 of linear equations induced by R2(z) = 0 and

(2.9) coeff(̊b̃�1, z, j) = 0, j = n0 − n1 − c0 + 1 + εlen, . . . , n0 + n2 − c0 − 2nd − 1,

where R2 and ˚̃b�1 are Laurent polynomials uniquely determined, through long
division using the divisor d(z2), by fsupp(R2) ⊆ [2(cd − nd), 2nd − 1] and

(2.10) B̊�(z)̊b2(z)− Å�(z)̊b2(−z) = −d(z2)z̊b̃�1(z) +R2(z).
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If X2 has no nontrivial solution, restart the algorithm from (S2) by selecting
other choices of d, c1, ε1, n1, n2, εlen.

(S5) There must exist a complex number λ ∈ C such that

(2.11) λd(z2) = z−1 [̊b1(z)̊b2(−z)− b̊1(−z)̊b2(z)].

If λ = 0, then restart the algorithm from (S2) by selecting other choices of d,

c1, ε1, n1, n2, εlen. Otherwise, replace ˚̃b1,
˚̃b2 by λ̄−1̊b̃1, λ̄

−1̊b̃2, respectively.
Moreover,

(2.12) S̊b̃1(z) = ε0ε1z
c0+c1 , S̊b̃2(z) = ε0ε2z

c0+c2 .

(S6) Find Laurent polynomials q and q̃ having [complex] symmetry (and real
coefficients) such that p(z) = q̃(z)q�(z). Define

(2.13) b1(z) := (1− z−1)nb b̊1(z)q(z
2), b2(z) := (1− z−1)nb b̊2(z)q(z

2)

and

(2.14) b̃1(z) := (1− z−1)nb̃
˚̃b1(z)q̃(z

2), b̃2(z) := (1− z−1)nb̃
˚̃b2(z)q̃(z

2).

Then ({ã; b̃1, b̃2}, {a; b1, b2})Θ is a dual framelet filter bank having [complex] sym-

metry (and real coefficients) such that vm(b1) � nb, vm(b2) � nb, vm(b̃1) � nb̃,

vm(b̃2) � nb̃, and

(2.15) max(len(b1)+ len(b̃1), len(b2)+ len(b̃2)) � len(a)+ len(ã)+2 len(Θ)+2εlen.

Proof. We first look at the symmetry property and filter supports of Å and B̊. By
our assumption in (1.21), we have

(2.16) S(Θ(z2)ã(z)a�(z)) = εΘεε̃z
2cΘ+c̃−c = εΘz

cΘ = SΘ(z).

Hence, both A and B have symmetry. Since len(a)+len(ã)+len(Θ) > 0, it is trivial
to see that

len(Θ) < len(a) + len(ã) + 2 len(Θ) = len(Θ(z2)ã(z)a�(z)).

From the definition of A and B in (1.8), it follows from the above relation and (2.16)
that fsupp(A) = fsupp(B). Since both A and B have symmetry, p has symmetry
too. Define εpz

cp := Sp(z) to be the symmetry type of the Laurent polynomial p.

By the definition of Å and B̊ in (2.4), we conclude that

(2.17) fsupp(Å) = fsupp(B̊) = [c0 − n0, n0], SÅ(z) = ε0z
c0 , SB̊(z) = εB̊z

c0

with

(2.18) ε0 = (−1)nb̃+nbεΘεp, εB̊ = ε0(−1)c+nb , c0 = cΘ + nb̃ − nb − 2cp.

By (2.18) and S̊b1(z) = ε1z
c1 , we have

S(B̊�(z)̊b1(z)) = εB̊ε1z
−c0zc1 = (−1)c+nbε0ε1z

c1−c0

and
S(Å�(z)̊b1(−z)) = ε0ε1z

−c0(−z)c1 = (−1)c1ε0ε1z
c1−c0 .

By item (2) of (S2), we have (−1)c1 = (−1)c+nb . Therefore,

S(B̊�(z)̊b1(z)) = (−1)c+nbε0ε1z
c1−c0 = (−1)c1ε0ε1z

c1−c0 = S(Å�(z)̊b1(−z)).

Consequently, it follows from (2.8) and R1 = 0 that

S(d(z2)z̊b̃�2(z)) = S(Å�(z)̊b1(−z)) = (−1)c1ε0ε1z
c1−c0 ,
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from which we conclude that
˚̃
b2 has symmetry such that

S
˚̃
b2(z) =

S(d(z2)z)

S(Å�(z)̊b1(−z))
=

εdz
2cd+2

(−1)c1ε0ε1zc1−c0

= (−1)c1εdε1ε0z
2cd+2−c1+c0 = ε0ε2z

c0+c2 ,

where we used the definition of c2 and ε2 in (S2). Hence, the second identity in
(2.12) holds.

On the other hand, by (2.17) and (2.18), since fsupp(Å) = fsupp(B̊), we obtain

fsupp(B̊�(z)̊b1(z)) = fsupp(̊b1)− fsupp(B̊) = fsupp(̊b1)− fsupp(Å)

= fsupp(Å�(z)̊b1(−z)).

Hence, by fsupp(d) = [cd − nd, nd] and fsupp(b1) = [c1 − n1, n1], we deduce from
(2.8) and R1 = 0 that

(2.19) fsupp(̊b̃�2) ⊆ [c1 − n0 − n1 + 2nd − 2cd − 1, n0 + n1 − c0 − 2nd − 1].

By the proved symmetry property S
˚̃
b2(z) = ε0ε2z

c0+c2 and (2.7), using the defini-
tion c2 = 2cd + 2− c1, we obtain

(2.20) fsupp(
˚̃
b2) ⊆ [c0 − n0 + n2 − εlen, c2 + n0 − n2 + εlen].

By a similar argument and using (S4) instead of (S3), we can check that the first
identity in (2.12) holds and

(2.21) fsupp(̊b̃1) ⊆ [c0 − n0 + n1 − εlen, c1 + n0 − n1 + εlen].

Since R1 = R2 = 0, (2.8) and (2.10) together imply

(2.22) d(z2)

[
z
˚̃
b�1(z)

z̊b̃�2(z)

]
=

[
b̊2(−z) −b̊2(z)

−b̊1(−z) b̊1(z)

] [
Å�(z)

B̊�(z)

]
.

Therefore, multiplying

[
b̊1(z) b̊2(z)

b̊1(−z) b̊2(−z)

]
from the left on both sides of (2.22), we

have

d(z2)

[
b̊1(z) b̊2(z)

b̊1(−z) b̊2(−z)

] [̊
b̃�1(z)
˚̃
b�2(z)

]
= Db̊(z

2)

[
Å�(z)

B̊�(z)

]
,

where Db̊(z
2) := z−1 [̊b1(z)̊b2(−z) − b̊1(−z)̊b2(z)]. From the above identity we

further deduce that

(2.23)

[
b̊1(z) b̊2(z)

b̊1(−z) b̊2(−z)

] [ ˚̃
b1(z)

˚̃
b2(z)

˚̃b1(−z) ˚̃b2(−z)

]�

=
Db̊(z

2)

d(z2)

[
Å�(z) B̊�(−z)

B̊�(z) Å�(−z)

]
.

Since gcd(Å(z), Å(−z), B̊(z), B̊(−z)) = 1 by (S1), we obtain gcd(Å�(z), Å�(−z),

B̊�(z), B̊�(−z)) = 1. Therefore, we must have d(z2) | Db̊(z
2). Thus, the above

relation in (2.23) particularly implies

(2.24) b̊1(z)̊b̃
�
1(z) + b̊2(z)̊b̃

�
2(z) =

Db̊(z
2)

d(z2)
Å�(z).
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Since fsupp(̊b1) ⊆ [c1 − n1, n1] and fsupp(̊b2) ⊆ [c2 − n2, n2], by (2.20) and (2.21),
we must have

fsupp(̊b1(z)̊b̃
�
1(z)) ⊆ [−n0 − εlen, n0 − c0 + εlen],

fsupp(̊b2(z)̊b̃
�
2(z)) ⊆ [−n0 − εlen, n0 − c0 + εlen].

(2.25)

Consequently, it follows from (2.24) and fsupp(Å�) = [−n0, n0 − c0] that

fsupp(Db̊(z
2)/d(z2)) ⊆ [−εlen, εlen].

Since εlen∈{0, 1}, this forces fsupp(Db̊(z
2)/d(z2))⊆{0}. That is, λ := Db̊(z

2)/d(z2)
must be a constant. In other words, Db̊(z) = λd(z). By our assumption λ �= 0,

after replacing ˚̃b1,
˚̃b2 by λ̄−1̊b̃1, λ̄

−1̊b̃2, respectively, we must have

(2.26)

[
˚̃
b1(z)

˚̃
b2(z)

˚̃b1(−z) ˚̃b2(−z)

] [
b̊1(z) b̊2(z)

b̊1(−z) b̊2(−z)

]�
=

[
Å(z) B̊(z)

B̊(−z) Å(−z)

]
.

For the case of complex symmetry, since λ = Db̊(z
2)/d(z2) and since both Db̊ and d

have complex symmetry, the constant λ must have complex symmetry. This is only
possible for λ ∈ R or iλ ∈ R. Hence, complex symmetry will be preserved after

replacing ˚̃b1,
˚̃b2 by λ̄−1̊b̃1, λ̄

−1̊b̃2, respectively. If all filters have real coefficients,
then λ must be a real number and therefore, all the constructed high-pass filters
must have real coefficients too.

Now it is straightforward to check that ({ã; b̃1, b̃2}, {a; b1, b2})Θ is a dual framelet
filter bank with [complex] symmetry (and real coefficients).

By (2.17) and(2.18), we have

len(Å) = len(B̊) = 2n0 − c0 = 2n0 + nb − nb̃ + 2cp − cΘ.

We now check the inequality in (2.15). It follows from (2.13), (2.14), and (2.25)
that

len(b1) + len(b̃1) = nb + nb̃ + 2 len(p) + len(̊b1) + len(̊b̃1)

� nb + nb̃ + 2 len(p) + 2n0 − c0 + 2εlen.

By the definition of B in (1.8), we have

2 len(p)+2n0−c0 = 2 len(p)+len(B̊) = len(B) = len(a)+len(ã)+2 len(Θ)−nb−nb̃.

We deduce from the above inequalities that

len(b1) + len(b̃1) � len(a) + len(ã) + 2 len(Θ) + 2εlen.

Similarly, we can verify

len(b2) + len(b̃2) � len(a) + len(ã) + 2 len(Θ) + 2εlen.

Hence, (2.15) holds. This completes the proof. �

We now make some remarks on Algorithm 1. Since a Laurent polynomial d is

selected in advance in (S2), the unique Laurent polynomials ˚̃b2 and R1 in (2.8)

and ˚̃b1 and R2 in (2.10) can be easily obtained by long division. Moreover, since Å

and B̊ are given, all the coefficients in ˚̃b2 are linear combinations of the unknown

coefficients in b̊1. Therefore, the system X1 consists of linear equations involving

only the unknown coefficients from b̊1. Similarly, the system X2 consists of linear
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equations involving only the unknown coefficients from b̊2. Therefore, we only
have to solve two small systems X1 and X2 of linear equations in Algorithm 1.
Hence, whether there exists a nontrivial solution to X1 or X2 can be completely
determined. For the case Θ = 1, it is easy to check that we must have p(z) = 1 in
(2.4). Since we often take nb to be the largest possible integer, without any loss of

generality, we can always take ε1 = 1 in (S2) since |̊b1(1)|+ |̊b2(1)| �= 0. It is pretty
trivial to see that the first particular construction in (1.10) and (1.11) is covered
by Algorithm 1 by selecting d = 1, c1 = 0, ε1 = 1, n1 = 0, n2 = 1, εlen = 0 and
q = q̃ = 1, while the second particular construction in (1.12) and (1.13) is covered
by Algorithm 1 by selecting d = 1, c1 = 1, ε1 = 1, n1 = 1, n2 = 1, εlen = 0 and
q = q̃ = 1.

Note that if two Laurent polynomials d in (2.6) differ only by a multiplication
of a monomial while other choices of ε1, c1, n1, n2, εlen are the same, then the cor-
responding constructed dual framelet filter banks are essentially the same. Since
all the possible choices of d, c1, ε1, n1, n2, εlen in (S2) are finite, there are essentially
only finitely many cases involved in Algorithm 1. We shall explain the seemingly
complicated relations and constraints on parameters in (S2) in Section 5. We shall
see then that Algorithm 1 is capable of finding all possible dual framelet filter banks
({ã; b̃1, b̃2}, {a; b1, b2})Θ having [complex] symmetry (and real coefficients) and hav-
ing the shortest possible filter support satisfying (1.18) with εlen ∈ {0, 1} from any
given filters a, ã,Θ with [complex] symmetry.

In the rest of this section, we address the issue on the construction of a desirable
moment correcting filter Θ from a given pair of low-pass filters. The following
result (also cf. [4, 5]) guarantees the existence of a desired moment correcting filter
Θ having [complex] symmetry and the shortest possible filter support.

Lemma 1. Let u be a filter having symmetry Su(z) = zc (or complex symmetry
Su(z) = zc) and u(1) = 1. For any nonnegative integer n, there exists a filter
Θ ∈ l0(Z) such that

(2.27) Θ(1) = 1 and Θ(z)−Θ(z2)u(z) = O(|1− z|n), z → 1,

SΘ(z) = z−c (or SΘ(z) = z−c), and fsupp(Θ) ⊆ [−c −m,m] with m := �n−c−1
2 �.

Moreover, if u has real coefficients, then Θ has real coefficients.

Proof. By [9, Lemma 2.2], there always exists a unique filter Θ with fsupp(Θ) ⊆
[m − n + 1,m] such that (2.27) holds. For the case of symmetry, we replace Θ
by [Θ(z) + z−cΘ(z−1)]/2; for the case of complex symmetry, we replace Θ by
[Θ(z) + z−cΘ�(z)]/2. Noting that −c−m � m− n+ 1, we see that Θ is a desired
moment correcting filter satisfying all the requirements. �

Since (2.27) induces a system of linear equations, a desired moment correcting
filter Θ in Lemma 1 can be easily obtained by solving a linear system which is
guaranteed to have a solution.

When a moment correcting filter Θ is given in advance, we can also design a
filter ã derived from a given low-pass filter a such that (2.27) holds. Since a general
moment correcting filter does not introduce any additional difficulty, here we only
discuss the commonly used case Θ = 1. By [9, Lemma 2.2], the following result can
be proved in the same way as in Lemma 1.

Proposition 2. Let M,N be positive integers and a∈ l0(Z) be a filter with a(1)=1.
For any subset Λ of Z such that the cardinality of Λ is N , there exists a unique
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solution {tk}k∈Λ to the system of linear equations induced by

(2.28) ã(z)a�(z) = 1+O(|z− 1|N ), z → 1, with ã(z) := (1+ z)M
∑
k∈Λ

tkz
k.

If the filter a is real-valued, then so is the filter ã. If in addition a has sym-
metry Sa(z) = zc (or complex symmetry Sa(z) = zc) for some c ∈ Z, take
Λ = {� c−M+1−N

2 �, . . . ,  c−M−1+N
2 �} provided that c + N + M is an odd integer

(this requirement can be dropped if N is even and either a is real-valued or a has
symmetry), then Sã(z) = zc (or Sã(z) = zc).

Using Lemma 1 or Proposition 2, we shall present several examples of dual
framelet filter banks in Section 4 to illustrate Algorithm 1.

If ã = a and if the necessary and sufficient condition in [13, 14] is satisfied, then
Algorithm 1 is able to obtain all the tight framelet filter banks with symmetry
and with two high-pass filters as special cases. We shall discuss this issue in detail
in Section 3. Algorithm 1 can be also straightforwardly modified to handle dual
framelet filter banks without symmetry but with the shortest possible filter support.
For the convenience of the reader, a detailed algorithm is provided as follows.

Algorithm 2. Let a, ã,Θ ∈ l0(Z) and nb, nb̃ ∈ N ∪ {0} satisfying (2.3).

(S1) Define A and B as in (1.8) and p, Å, B̊ as in (2.4). Define [m0, n0] :=

fsupp(B̊�) and assume that fsupp(Å) = fsupp(B̊).
(S2) Select εlen, s1, s2 ∈ {0, 1} and �1, �2 ∈ N ∪ {0} such that max(�1, �2) �

n0 − m0 + 2εlen. Select a polynomial d satisfying (2.6) and � s1+s2−1
2 � �

md � nd �  s1+s2+�1+�2−1
2 �, where [md, nd] := fsupp(d).

(S3) Parameterize a filter b̊1 by b̊1(z) := zs1
∑�1

j=0 tjz
j. Find the unknown coef-

ficients {t0, . . . , t�1} by solving a system X1 of linear equations induced by
R1(z) = 0 and

coeff(̊b̃�2, z, j) = 0, j = m0 + s1 − 2md − 1, . . . ,m0 − s2 − εlen − 1 and

j = n0 − s2 − �2 + εlen + 1, . . . , n0 + s1 + �1 − 2nd − 1,

where R1 and
˚̃b�2 are Laurent polynomials uniquely determined by fsupp(R1)

⊆ [2md, 2nd − 1] and (2.8).

(S4) Parameterize a filter b̊2 by b̊2(z) := zs2
∑�2

j=0 t̃jz
j. Find the unknown coef-

ficients {t̃0, . . . , t̃�2} by solving a system X2 of linear equations induced by
R2(z) = 0 and

coeff(̊b̃�1, z, j) = 0, j = m0 + s2 − 2md − 1, . . . ,m0 − s1 − εlen − 1 and

j = n0 − s1 − �1 + εlen + 1, . . . , n0 + s2 + �2 − 2nd − 1,

where R2 and
˚̃b�1 are Laurent polynomials uniquely determined by fsupp(R2)

⊆ [2md, 2nd − 1] and (2.10). If both X1 and X2 have only trivial solution,
restart the algorithm from (S2) by selecting other choices of d, εlen, s1, s2,
�1, �2.

(S5) There must exist λ ∈ C such that (2.11) holds. If λ = 0, then restart
the algorithm from (S2) by selecting other choices of d, εlen, s1, s2, �1, �2.

Otherwise, replace ˚̃b1,
˚̃b2 by λ̄−1̊b̃1, λ̄

−1̊b̃2, respectively.
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(S6) Find Laurent polynomials q and q̃ such that p(z) = q̃(z)q�(z). Define b1, b2
as in (2.13) and b̃1, b̃2 as in (2.14).

Then ({ã; b̃1, b̃2}, {a; b1, b2})Θ is a dual framelet filter bank satisfying (2.15).

Proof. Note that fsupp(̊b1) ⊆ [s1, s1 + �1] and fsupp(̊b2) ⊆ [s2, s2 + �2]. (2.10)

implies that fsupp(̊b̃�1) ⊆ [m0+s2−2md−1, n0+s2+�2−2nd−1] and (2.8) implies

that fsupp(
˚̃
b�2) ⊆ [m0 + s1 − 2md − 1, n0 + s1 + �1 − 2nd − 1]. The constraint on

the coefficients of ˚̃b�1 in (S4) implies fsupp(̊b̃�1) ⊆ [m0− s1− εlen, n0− s1− �1+ εlen],

and the constraint on the coefficients of ˚̃b�2 in (S3) implies fsupp(̊b̃�2) ⊆ [m0 −
s2 − εlen, n0 − s2 − �2 + εlen]. Therefore, fsupp(̊b1(z)

˚̃
b�1(z)) ⊆ [m0 − εlen, n0 + εlen]

and fsupp(̊b2(z)̊b̃
�
2(z)) ⊆ [m0 − εlen, n0 + εlen]. By the same proof of Algorithm 1,

({ã; b̃1, b̃2}, {a; b1, b2})Θ is a dual framelet filter bank satisfying (2.15). �

3. Algorithm for constructing symmetric tight

framelet filter banks

Since a tight framelet filter bank is a special case of dual framelet filter banks by
using the same set of filters for both analysis and synthesis, Algorithm 1 developed
in Section 2 allows us to obtain all symmetric tight framelet filter banks as special
cases. To reduce the complexity of Algorithm 1 for constructing symmetric tight
framelet filter banks, in this section, we derive from Algorithm 1 a simple algorithm
for constructing all tight framelet filter banks having [complex] symmetry (and real
coefficients) from any given filters a and Θ with [complex] symmetry.

For x ∈ R, its sign function is defined to be sgn(x) := 1 if x > 0, sgn(0) = 0, and
sgn(x) = −1 if x < 0. Recall that {a; b1, b2}Θ is a tight framelet filter bank if

(3.1) Θ(z2)a(z)a�(z) + b1(z)b
�
1(z) + b2(z)b

�
2(z) = Θ(z)

and

(3.2) Θ(z2)a(z)a�(−z) + b1(z)b
�
1(−z) + b2(z)b

�
2(−z) = 0.

We first show that the symmetry types of the high-pass filters b1 and b2 in a tight
framelet filter bank {a; b1, b2}Θ with [complex] symmetry are uniquely determined
by the filters a and Θ.

Theorem 3. Let {a; b1, b2}Θ be a tight framelet filter bank such that all the filters
a, b1, b2,Θ ∈ l0(Z) are not identically zero and have symmetry:

(3.3) SΘ(z) = 1, Sa(z) = εzc, Sb1(z) = ε1z
c1 , Sb2(z) = ε2z

c2

[or (3.3) holds with S being replaced by the complex symmetry operator S]. If

(3.4) len(b2) � len(b1) � len(a) + len(Θ) �= 0,

then up to a trivial switch of b1 and b2 for the case len(b1) = len(b2), the symmetry
centers c1 and c2 are essentially uniquely determined by

(3.5) c1
2 − ( c2 − nΘ) ∈ 2Z, c2

2 = nM + 1− c1
2 ,

and for the case of symmetry (or real coefficients), ε1 and ε2 are uniquely determined
by

(3.6) ε1 = −εsgn(Θ(nΘ)), ε2 = (−1)cε1sgn(λ),
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where Θ(nΘ) is the leading coefficient of Θ (that is, Θ(nΘ) �= 0 and Θ(k) = 0 for
all k > nΘ), λz

2nM is the leading term of the Laurent polynomial det(Ma,a,Θ(z)).
Moreover, if c+ nM is an even integer, then len(b2) < len(b1) = len(a) + len(Θ).

Proof. To verify the claims in (3.5) and (3.6), we simply compare the leading coeffi-
cients in the two equations in (3.1) and (3.2). Since Θ(nΘ) is the leading coefficients
of Θ and SΘ(z) = 1, we have fsupp(Θ) = [−nΘ, nΘ]. Define n, n1, n2 ∈ Z by

[c− n, n] := fsupp(a), [c1 − n1, n1] := fsupp(b1), [c2 − n2, n2] := fsupp(b2).

For the case of complex symmetry, we define

λ0 := εΘ(nΘ)(a(n))
2, λ1 := ε1(b1(n1))

2, λ2 := ε2(b2(n2))
2.

For the case of symmetry or real coefficients, we define

(3.7) λ0 := εΘ(nΘ)|a(n)|2, λ1 := ε1|b1(n1)|2, λ2 := ε2|b2(n2)|2.
The leading terms of each addent in (3.1) are

(3.8) λ0z
2nΘ+2n−c, λ1z

2n1−c1 , λ2z
2n2−c2 , Θ(nΘ)z

nΘ ,

and the leading terms of each addent in (3.2) are

(3.9) (−1)n−cλ0z
2nΘ+2n−c, (−1)n1−c1λ1z

2n1−c1 , (−1)n2−c2λ2z
2n2−c2 ,

respectively. Note that all λ0, λ1, λ2 are nonzero. Our assumption in (3.4) becomes
2n2 − c2 � 2n1 − c1 � 2n − c + 2nΘ �= 0, from the last relation we must have
nΘ < 2n−c+2nΘ (otherwise, len(a) = len(Θ) = 0). Since the perfect reconstruction
condition in (3.1) and (3.2) must hold, the above inequalities imply that we have
two cases to consider. By a simple argument (see [13, 14]) on symmetry types of
addents in (3.2), we can easily deduce from (3.2) that

(3.10) c1 − c ∈ 2Z and c2 − c ∈ 2Z.

Case 1: 2n2 − c2 = 2n1 − c1 = 2n − c + 2nΘ. By (3.10), the following two
equations must hold:

(3.11) λ0 + λ1 + λ2 = 0, λ0 + (−1)n1−nλ1 + (−1)n2−nλ2 = 0,

from which we deduce that (−1)n1−n = (−1)n2−n = 1; otherwise, the above two
equations will force at least one of λ0, λ1, λ2 to be zero. Hence, n1 − n ∈ 2Z and
n2 − n ∈ 2Z. Now we deduce from 2n1 − c1 = 2n− c+ 2nΘ that

c1 = c+ 2n1 − 2n− 2nΘ = c− 2nΘ + 4k

with k := (n1 − n)/2 ∈ Z. Hence, c1 − (c − 2nΘ) ∈ 4Z. Similarly, we also have
c2 − (c− 2nΘ) ∈ 4Z. Since {a; b1, b2}Θ is a tight framelet filter bank, we must have
Θ(z) � 0 for all z ∈ T := {ζ ∈ C : |ζ| = 1}. Consequently, SΘ(z) = 1. If all
filters have real coefficients or have symmetry, by SΘ(z) = SΘ(z) = 1, the moment
correcting filter Θ must have real coefficients. Therefore, by (3.7), all λ0, λ1, λ2 are
real numbers. Now it follows from the first identity of (3.11) that at least one of
the signs of λ1 and λ2 must be different to that of λ0. Without loss of generality,
we assume λ0λ1 < 0. That is, we must have ε1 = −sgn(λ0) = −εsgn(Θ(nΘ)).

Case 2: 2n2 − c2 < 2n1 − c1 = 2n − c + 2nΘ. By (3.10), the following two
equations must hold:

(3.12) λ0 + λ1 = 0, λ0 + (−1)n1−nλ1 = 0,
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from which we must have (−1)n1−n = 1, that is, n1 − n ∈ 2Z. We deduce from
2n1 − c1 = 2n− c+ 2nΘ that

c1 = c+ 2n1 − 2n− 2nΘ = c− 2nΘ + 4k,

where k := (n1 − n)/2 ∈ Z. Hence, we also have c1 − (c − 2nΘ) ∈ 4Z. If all the
filters have symmetry or real coefficients, then it follows from the first equation of
(3.12) that λ1 = −λ0, that is, we must have ε1 = −εsgn(Θ(nΘ)).

We now investigate the property of c2 and ε2. By the perfect reconstruction
condition in (1.1) with s = 2, we have D(z2)D�(z2) = det(Ma,a,Θ(z)), where
D(z2) := z−1[b1(z)b2(−z) − b1(−z)b2(z)]. By (3.10), we have S(b1(z)b2(−z)) =
S(b1(−z)b2(z)). Hence, it follows from the definition of D that SD(z) = ε1ε2(−1)c

z
c1+c2

2 −1, where we used (3.10). From the relation D(z2)D�(z2) = det(Ma,a,Θ(z))
and comparing their leading coefficients, we must have c1 + c2 − 2 = 2nM and
ε1ε2(−1)c=sgn(λ). Hence, the second relation in (3.5) holds and ε2=(−1)cε1sgn(λ).

If c + nM is an even integer, by (3.10), we conclude that c2
2 − ( c2 − nΘ) �∈ 2Z.

Therefore, Case 1 cannot happen. As a consequence, we must have Case 2, that is,
len(b2) < len(b1) = len(a) + len(Θ). �

If {a; b1, b2}Θ is a tight framelet filter bank and λ1, λ2 ∈ T, then it is trivial to
check that {a;λ1b1(·−k1), λ2b2(·−k2)}Θ is also a tight framelet filter bank provided
that k1 and k2 are even integers. However, if all filters are not identically zero in a
tight framelet filter bank {a; b1, b2}Θ, then {a;λ1b1(·−k1), λ2b2(·−k2)}Θ cannot be
a tight framelet filter bank if at least one of k1 and k2 is an odd integer. Therefore,
Theorem 3 tells us that up to even integer shifts the symmetry types of the high-pass
filters b1 and b2 in a tight framelet filter bank {a; b1, b2}Θ with [complex] symmetry
and the shortest possible filter supports are uniquely determined by the filters a
and Θ, that is, c1 = c − 2nΘ and c2 = 2nM + 2 − c1. For the case of complex
symmetry, since S(ib1) = −Sb1, we can always assume ε1 = ε2 = 1. That is, for the
case of complex symmetry, there is no essential difference for a filter being complex
symmetric or complex antisymmetric.

We now derive from Algorithm 1 a simple algorithm for constructing all sym-
metric tight framelet filter banks with the shortest possible filter supports.

Algorithm 3. Let a,Θ ∈ l0(Z) be filters having [complex] symmetry (and real
coefficients) such that Sa(z) = εzc with ε ∈ {−1, 1} and c ∈ Z, SΘ(z) = 1, Θ(z) � 0
for all z ∈ T, and

(3.13) 0 � nb � sr(a), Θ(z)−Θ(z2)a(z)a�(z) = O(|1− z|2nb), z → 1.

Assume that len(a) + len(Θ) > 0. For the case of complex symmetry, replace S by
S throughout.

(S1) Define Laurent polynomials A and B as in (1.8) and p, Å, B̊ as in (2.4) with
ã = a and nb̃ = nb such that p(z) � 0 for all z ∈ T.

(S2) Select a Laurent polynomial d with [complex] symmetry (and real coeffi-
cients) such that d(z)d�(z) = D(z), where D is defined in (2.6). Define
εdz

cd := Sd(z), [cd − nd, nd] := fsupp(d), and

c1 := c− nb − 2nΘ, ε1 := ε(−1)nb+1sgn(Θ(nΘ)),

[−n0, n0] := fsupp(Å), n1 := n0+c1
2 ,

(3.14)
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where nΘ is defined in Theorem 3. If Θ(nΘ) is not a real number, define
ε1 := 1.

(S3) Parameterize a filter b̊1 such that S̊b1(z) = ε1z
c1 and fsupp(̊b1) = [c1 −

n1, n1]. Find the unknown coefficients of b̊1 by solving a system X of linear
equations induced by R(z) = 0 and

(3.15) coeff(̊b�2, z, j) = 0, j = n1 − cd, . . . , n0 + n1 − 2nd − 1,

where R and b̊�2 are uniquely determined by fsupp(R) ⊆ [2(cd−nd), 2nd−1]
and

(3.16) B̊�(z)̊b1(z)− Å�(z)̊b1(−z) = d(z2)z̊b�2(z) +R(z).

(S4) For any nontrivial solution to the homogeneous system X in (S3), there

must exist λ > 0 such that (2.11) holds. Replace b̊1, b̊2 by λ−1/2̊b1, λ
−1/2̊b2,

respectively.
(S5) Find two Laurent polynomials q1, q2 with [complex] symmetry (and real

coefficients) such that

(3.17) q1(z)q
�
1(z) + q2(z)q

�
2(z) = p(z) and

Sq1(z)

Sq2(z)
= (−1)c1εdz

cd−c1+1.

Define

b1(z) := (1− z−1)nb [̊b1(z)q1(z
2) + b̊2(z)q2(z

2)],

b2(z) := (1− z−1)nb [̊b2(z)q
�
1(z

2)− b̊1(z)q
�
2(z

2)].
(3.18)

Then {a; b1, b2}Θ is a tight framelet filter bank having [complex] symmetry (and
real coefficients) such that vm(b1) � nb, vm(b2) � nb, and max(len(b1), len(b2)) �
len(a) + len(Θ).

Proof. By the definition of Å, we see that n1 := n0+c1
2 must be an integer. By the

same proof of (2.19) in Algorithm 1 with c0 = 0, we have

fsupp(̊b�2) ⊆ [c1 − n0 − n1 + 2nd − 2cd − 1, n0 + n1 − 2nd − 1]

and S̊b2(z) = ε2z
c2 with c2 := 2cd + 2 − c1 and ε2 := (−1)c1εdε1. It follows from

(3.14) and (3.15) that

fsupp(̊b�2) ⊆ [−c2 − n1 + cd + 1, n1 − cd − 1] = [c1 − n1 − cd − 1, n1 − cd − 1].

Hence, len(̊b2) � 2n1 − c1 = n0. By the definition of n1, we also have len(̊b1) �
2n1 − c1 = n0.

SinceR=0, we deduce from (3.16) that b̊2(z)d
�(z2)z−1= B̊(z)̊b�1(z)−Å(z)̊b�1(−z),

from which we see that

[̊B�(z)̊b2(z)− Å�(z)̊b2(−z)]d�(z2)z−1

= B̊�(z)[̊b2(z)d
�(z2)z−1] + Å�(z)[̊b2(−z)d�(z2)(−z)−1]

= [̊B�(z)B̊(z)− Å�(z)Å(−z)]̊b�1(z) + [̊A�(z)B̊(−z)− B̊�(z)Å(z)]̊b�1(−z).

Since Θ(z) � 0 and D(z) � 0 for all z ∈ T, we shall see in Lemma 6 that
Ma,a,Θ(z) � 0 for all z ∈ T. Therefore,

(3.19)

[
Å(z) B̊(z)

B̊(−z) Å(−z)

]
� 0, ∀ z ∈ T.



784 BIN HAN

Since Å�(z) = Å(z) and B̊�(z) = B̊(−z), by d(z2)d�(z2) = D�(z2) = Å(z)Å(−z) −
B̊(z)B̊(−z), we deduce from the above identities that

[̊B�(z)̊b2(z)− Å�(z)̊b2(−z)]d�(z2)z−1 = −d(z2)d�(z2)̊b�1(z).

Since d is not identically zero, the above identity implies

(3.20) B̊�(z)̊b2(z)− Å�(z)̊b2(−z) = −d(z2)z̊b�1(z).

Now the same proof to (2.23) in Algorithm 1 shows that (2.23) is satisfied with
˚̃b1 = b̊1 and ˚̃b2 = b̊2 and λ := Db̊(z

2)/d(z2) is a complex number. By (3.19),
it follows from (2.23) that λ must be a nonnegative real number. If λ = 0, then

(2.23) implies b̊1(z)̊b
�
1(z) + b̊2(z)̊b

�
2(z) = 0, which is only possible when b̊1 = b̊2 =

0, a contradiction to our assumption. Hence, λ > 0. After replacing b̊1, b̊2 by

λ−1/2̊b1, λ
−1/2̊b2, respectively, we see that (2.26) is satisfied with ˚̃b1 = b̊1 and

˚̃b2 = b̊2. Note that[
b1(z) b2(z)
b1(−z) b2(−z)

]
=

[
(1− z−1)nb

(1 + z−1)nb

] [
b̊1(z) b̊2(z)

b̊1(−z) b̊2(−z)

] [
q1(z

2) −q�2(z
2)

q2(z
2) q�1(z

2)

]
.

Using (3.17), we can directly check that {a; b1, b2}Θ is a tight framelet filter bank
having [complex] symmetry (and real coefficients). �

We make some remarks here about Algorithm 3. From [13, Theorem 4.2] (also
see [14, 19]), there exists a tight framelet filter bank {a; b1, b2}Θ with [complex]
symmetry (and real coefficients) if and only if

(i) Θ(z) � 0 for all z ∈ T;
(ii) there exists a Laurent polynomial d with [complex] symmetry (and real

coefficients) such that d(z)d�(z) = D(z);
(iii) there exist Laurent polynomials q1, q2 with [complex] symmetry (and real

coefficients) such that (3.17) is satisfied.

For the case of complex symmetry (and real coefficients), a Laurent polynomial d
in (S2) satisfying (ii) is essentially unique and can be easily derived from D (see [13,
Theorem 2.8] and [14]). For the case of symmetry, there are essentially finitely many
such choices of d satisfying (ii) (see [13, Theorem 2.9]). Laurent polynomials q1, q2
with [complex] symmetry satisfying (iii) can be found by [13, Theorems 2.6 and 2.7].
Under the conditions in (i)–(iii), an algorithm, based on matrix factorization with
symmetry, has been developed in [13, 14, 19] to construct a tight framelet filter
bank {a; b1, b2}Θ with [complex] symmetry (and real coefficients) derived from any
given filters a and Θ with symmetry. If the conditions in (i)–(iii) are satisfied, it
is guaranteed by [13] that the overdetermined system X in (S3) of Algorithm 3
must have a solution. Comparing with the algorithms proposed in [13, 14, 19], our
algorithm in Algorithm 3 is much simpler and more efficient.

Without the symmetry constraint, from any given filters a and Θ, Algorithm 3
can be easily modified to construct all possible tight framelet filter banks {a; b1, b2}Θ
having the shortest filter support. By a similar argument as in Algorithms 1 and 3,
for the convenience of the reader, we provide an algorithm here.
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Algorithm 4. Let a,Θ ∈ l0(Z) satisfying Θ(z) � 0 and Θ(z)−Θ(z2)a(z)a�(z) � 0
for all z ∈ T. Let nb ∈ N∪ {0} satisfying (3.13). Assume that len(a) + len(Θ) > 0.

(S1) Define A and B as in (1.8) and p, Å, B̊ as in (2.4) with ã = a and nb̃ = nb

such that p(z) � 0 for all z ∈ T. Define [−n0, n0] := fsupp(Å).
(S2) Select εlen, s1, s2 ∈ {0, 1} and a polynomial d such that d(z)d�(z) = D(z)

and � s1+s2−1
2 � � md � nd �  s1+s2−1

2 � + n0 + εlen, where D is defined in
(2.6) and [md, nd] := fsupp(d).

(S3) Parameterize a filter b̊1 by b̊1(z) = zs1
∑n0+εlen

j=0 tjz
j. Find the unknown

coefficients {t0, . . . , tn0+εlen} by solving a system X of linear equations in-
duced by R(z) = 0 and

coeff(̊b�2, z, j) = 0, j = s1 − n0 − 2md − 1, . . . , s2 − 1 and

j = s2 + n0 + εlen + 1, . . . , s1 + 2n0 − 2nd + εlen − 1,

where R and b̊�2 are uniquely determined by fsupp(R) ⊆ [2md, 2nd − 1] and
(3.16).

(S4) For any nontrivial solution to the homogeneous system X in (S3), there

must exist λ > 0 such that (2.11) holds. Replace b̊1, b̊2 by λ−1/2̊b1, λ
−1/2̊b2,

respectively.
(S5) Find Laurent polynomials q1, q2 such that q1(z)q

�
1(z) + q2(z)q

�
2(z) = p(z).

Define b1 and b2 as in (3.18). Then {a; b1, b2}Θ is a tight framelet filter bank
satisfying max(len(b1), len(b2)) � len(a) + len(Θ) + εlen.

4. Examples of symmetric dual framelet filter banks

In this section, we present a few examples to illustrate Algorithm 1. Though
many different dual framelet filter banks with short filter supports can be de-
rived by Algorithm 1 from given filters a, ã and Θ, for simplicity of presenta-
tion, we only provide examples of real-valued symmetric dual framelet filter banks
({ã; b̃1, b̃2}, {a; b1, b2})Θ such that all the four high-pass filters have more or less the
same length of filter supports. We always take εlen = 0 in this section so that the
constructed symmetric dual framelet filter banks have the shortest possible filter
supports satisfying (1.19). Since Algorithm 3 is a special case of Algorithm 1, we
do not apply Algorithm 3 explicitly for constructing symmetric tight framelet filter
banks.

Before we present several examples, let us recall some basic definitions. Let
u ∈ l0(Z) such that fsupp(u) = [m,n]. It is handy to list the filter u as u =
{u(m), . . . ,u(0), . . . , u(n)}[m,n], where we underlined and boldfaced the number

u(0) to indicate its position at the origin. For a filter a ∈ l0(Z) with a(1) = 1,
we define ϕ as in (1.3). If ϕ ∈ L2(R), then we can define a function φa(x) :=

limn→∞
1
2π

∫ n

−n
ϕ(ξ)eiξxdξ in L2(R). More generally, φ̂a = ϕ in the sense of tem-

pered distributions. For b ∈ l0(Z), we define ψ
a,b := 2

∑
k∈Z

b(k)φa(2·−k) or, equiv-

alently, ψ̂a,b(2ξ) = b(e−iξ)ϕ(ξ). Write a(z) = (1 + z)sr(a)v(z) for some v ∈ l0(Z)

and define
∑K

k=−K w(k)zk := v(z)v�(z). The smoothness exponent sm(a) of a filter
a ([9]) is defined to be

(4.1) sm(a) := −1/2− log2
√
ρ(a),
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where ρ(a) denotes the spectral radius, the largest modulus of all the eigenvalues,
of the square matrix (w(2j − k))−K�j,k�K . The smoothness exponent sm(a) is
closely related to the smoothness of the refinable function φa and the stability of
affine wavelet systems; see [3, 9, 11, 15] and references therein.

Example 1. Let a = { 1
8 ,

3
8 ,

3
8 ,

1
8}[−1,2], ã = {1

2 ,
1
2}[0,1]. If Θ = δ (that is, Θ =

{1}[0,0]) and nb = nb̃ = 1, then p(z) = 1 and D(z) = 1
8 . Taking d = 1, c1 = 0, ε1 =

1, n1 = 0, n2 = 2, we have

ã = 1
2{1, 1}[0,1], b̃1 = 1

4{2t̄−1,−2t̄−1,2t̄+ 1,−2t̄+1}[−2,1], b̃2 = 1
2{−1, 1}[0,1]

and

a = { 1
8 ,

3
8 ,

3
8 ,

1
8}[−1,2], b1 = 1

4{−1,1}[−1,0], b2 = 1
4{−t, t− 2, 2− t, t}[−1,2],

When t = 1/2, this is simply the first particular construction given in (1.10) and

(1.11). When t = 0, multiplying b̃1 by 1/2 and b1 by 2, the above dual framelet
filter bank becomes

ã = 1
2{1,1}[0,1], b̃1 = 1

8{−1,−1,1, 1}[−2,1], b̃2 = 1
2{−1, 1}[0,1]

and

(4.2) a = 1
8{1,3, 3, 1}[−1,2], b1 = 1

2{−1,1}[−1,0], b2 = 1
2{−1, 1}[0,1],

which is essentially the first particular construction in (1.10) and (1.11) by switching
a with ã.

Example 2. Let a = ã = { 1
8 ,

3
8 ,

3
8 ,

1
8}[−1,2]. If Θ = δ and nb = nb̃ = 1, then

p(z) = 1 and D(z) = 3
16 . Taking d = 1, c1 = 0, ε1 = 1, n1 = 1, n2 = 2, we have

ã = 1
8{1,3, 3, 1}[−1,2], b̃1 = 3

8{−1,1}[−1,0], b̃2 = 1
8{−1,−3, 3, 1}[−1,2]

and

(4.3) a = 1
8{1,3, 3, 1}[−1,2], b1 = 1

2{−1,1}[−1,0], b2 = 1
8{−1,−3, 3, 1}[−1,2],

which is essentially a tight framelet filter bank and can be also easily obtained by
Algorithm 3.

Taking d = 1, c1 = 0, ε1 = 1, n1 = 0, n2 = 1, we have {a; b1, b2} as in (4.2) and

ã = 1
8{1,3, 3, 1}[−1,2], b̃1 = 1

32{−1,−3,−10,10, 3, 1}[−3,2],

b̃2 = 1
8{−1,−3, 3, 1}[−1,2].

This example shows that for a given {a; b1, b2}, there are many choices of {ã; b̃1, b̃2}
so that ({ã; b̃1, b̃2}, {a; b1, b2})Θ forms a dual framelet filter bank.

By Lemma 1 we can take Θ = { 13
240 ,−

7
15 ,

73
40 ,−

7
15 ,

13
240}[−2,2] with nb = nb̃ = 3.

Then p(z) = 1 and D(x) = 2719
92160 + 247

184320 (z + z−1). Taking d(z) = 1, c1 = 0, ε1 =
1, n1 = 2, n2 = 3, we have

b̃1 = 1
720{−26,−78, 29, 485,−485,−29, 78, 26}[−5,2],

b̃2 = 1
144{−13,−153, 524,−524, 153, 13}[−3,2]

and

b1 = 1
128{−3,−9, 7, 45,−45−7, 9, 3}[−5,2], b2 = 1

128{−1,−3, 14,−14, 3, 1}[−3,2]
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with vm(b1) = vm(b2) = vm(b̃1) = vm(b̃2) = 3. Since D has two real roots, using

d(z) = z− 4
√
458247−2719

247 , we can also easily obtain a dual framelet filter bank which
involves radicals.

−1 0 1 2 3 4
−0.05

0

0.05

0.1

0.15

0. 2

0.25

0.3

0.35

0.4

(a) Filter a

−6 −5 −4 −3 −2 −1 0 1 2 3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) Filter b1

−4 −3 −2 −1 0 1 2 3

−0.15

−0.1

−0.05

0

0.05

0.1

(c) Filter b2

−1 −0. 5 0 0. 5 1 1. 5 2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) φa

−3 −2.5 −2 −1.5 −1 −0.5 0 0. 5 1 1. 5 2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0. 1

0. 2

0. 3

0. 4

0. 5

(e) ψa,b1

−2 −1.5 −1 −0.5 0 0. 5 1 1. 5 2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(f) ψa,b2

−1 0 1 2 3 4
−0.05

0

0.05

0.1

0.15

0. 2

0.25

0.3

0.35

0.4

(g) Filter ã
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Figure 4.1. Filters a, b1, b2, ã, b̃1, b̃2 and functions φa, ψa,b1 , ψa,b2 ,

φã, ψã,b̃1 , ψã,b̃2 of the dual framelet filter bank ({ã; b̃1, b̃2},
{a; b1, b2})Θ given in Example 2 with Θ = { 13

240 , − 7
15 ,

73
40 ,

− 7
15 ,

13
240}[−2,2].
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−3 −2 −1 0 1 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(h) Filter b̃1

−3 −2 −1 0 1 2 3 4

−0. 4

−0. 3

−0. 2

−0. 1

0

0. 1

0. 2

0. 3

0. 4

(i) Filter b̃2

−2 −1.5 −1 −0.5 0 0. 5 1 1. 5 2 2. 5 3

−0.2

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

(j) φã
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Figure 4.2. Filters a, b1, b2, ã, b̃1, b̃2 and functions φa, ψa,b1 ,

ψa,b2 , φã, ψã,b̃1 , ψã,b̃2 of the dual framelet filter bank ({ã; b̃1, b̃2},
{a; b1, b2})Θ given in Example 3.
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Figure 4.3. Functions φa, ψa,b1 , ψa,b2 , φã, ψã,b̃1 , ψã,b̃2 of the dual
framelet filter bank ({ã; b̃1, b̃2}, {a; b1, b2})Θ given in Example 4.
(a)–(f) are for Θ = δ. (g)-(l) are for Θ = {− 311

15120 ,
22
105 , −

1657
1680 ,

2452
945 ,− 1657

1680 ,
22
105 ,−

311
15120}[−3,3].
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Figure 4.4. Functions φa, ψa,b1 , ψa,b2 , φã, ψã,b̃1 , ψã,b̃2 of the dual
framelet filter bank ({ã; b̃1, b̃2}, {a; b1, b2})Θ given in Exam-
ple 5. (a)–(f) are for Θ = δ. (g)–(l) are for Θ =
{− 11

5040 ,
4

105 ,−
223
1680 ,

376
315 ,−

223
1680 ,

4
105 ,−

11
5040}[−3,3]. (m)–(r) are for

Θ = δ and ã in (4.4).
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Example 3. Let a = { 1
8 ,

3
8 ,

3
8 ,

1
8}[−1,2] and Θ = δ. Setting M = 3 and N = 4 in

Proposition 2, we have

ã = {− 3
32 ,

1
32 ,

9
16 ,

9
16 ,

1
32 ,−

3
32}[−2,3]

with sm(ã) ≈ 1.0981905 and sr(ã) = 3. If nb = 1 and nb̃ = 3, then p(z) = 1,

D(z) = − 3
128z

−1 and nb = 1, nb̃ = 3. Taking d = 1, c1 = 0, ε1 = 1, n1 = 0, n2 = 2,
we have

b̃1 = 3
32{1,−3,3,−1}[−2,1], b̃2 = 1

32{3,−1,−12, 12, 1,−3}[−2,3]

and {a; b1, b2} is given in (4.3). Then vm(b1)=vm(b2)=1 and vm(b̃1)=vm(b̃2) = 3.

Example 4. Let a = ã = { 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16}[−2,2]. If Θ = δ and nb = nb̃ = 1, then

p(z) = 1 and D(z) = 15
64 + 1

128 (z + z−1). Taking d(z) = 1, c1 = 1, ε1 = 1, n1 =
2, n2 = 2, we have

b̃1 = 1
12{−1,−6,0, 6, 1}[−2,2], b̃2 = 1

48{−1,−12,26,−12,−1}[−2,2]

and

b1 = 1
16{−1,−4,0, 4,−1}[−2,2], b2 = 1

16{−1,−4,10,−4,−1}[−2,2]

with vm(b1)=vm(b̃1)=1 and vm(b2)=vm(b̃2)=2. Moreover, b̃1(−1) = b(−1)=0.

Though we can also take d(z) = z + 15 ± 4
√
14, no solutions can be found by

Algorithm 1.
By Lemma 1 we can also take

Θ = {− 311
15120 ,

22
105 ,−

1657
1680 ,

2452
945 ,− 1657

1680 ,
22
105 ,−

311
15120}[−3,3]

with nb = nb̃ = 4. Taking d(z) = 1, c1 = 0, ε1 = 1, n1 = 3, n2 = 4, we have

b̃1 = 1
86400{933,−308, 20504,−94172, 146086,−94172,20504,−308, 933}[−6,2],

b̃2 = 1
151200{1244, 4976, 701,−16420,−51345, 121688,−51345,−16420,

701, 4976, 1244}[−6,4],

and

b1 = 1
128{1, 4,−4,−36, 70,−36,−4, 4, 1}[−6,2],

b2 = 1
512{5, 20, 1,−96,−70, 280,−70,−96, 1, 20, 5}[−6,4]

with vm(b1) = vm(b2) = vm(b̃1) = vm(b̃2) = 4.
Let Θ = δ. Setting M = 2 and N = 4 in Proposition 2, we obtain

ã = {− 3
16 ,

1
4 ,

7
8 ,

1
4 ,−

3
16}[−2,2]

with sm(ã) ≈ 0.098191 and sr(ã) = 2. Let nb = 1 and nb̃ = 4. Then p = 1 and

D = − 3
128z

−1. Taking d = 1, c1 = 1, ε1 = 1, n1 = n2 = 2, we have

b̃1 = 1
8{1,−2,0, 2,−1}[−2,2], b̃2 = 1

16{1,−4,6,−4, 1}[−2,2]

and

b1 = 1
8{−1,−4,0, 4, 1}[−2,2], b2 = 1

16{−1,−4,10,−4,−1}[−2,2]

with vm(b1) = 1, vm(b2) = 2 and vm(b̃1) = 3, vm(b̃2) = 4. Moreover, b̃1(−1) =
b1(−1) = 0.
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If nb = nb̃ = 2, then p = 1 and D = 3
128 . Taking d = 1, c1 = 0, ε1 = 1,

n1 = 1, n2 = 2, we have

b̃1 = 1
2{−1, 2,−1}[−2,0], b̃2 = 1

16{−3, 4,−2, 4,−3}[−2,2]

and

b1 = 1
4{−1, 2,−1}[−2,0], b2 = 1

16{−1,−4,10,−4,−1}[−2,2]

with vm(b̃1) = vm(b̃2) = vm(b1) = vm(b2) = 2.

Example 5. Let a = ã={− 1
32 , 0,

9
32 ,

1
2 ,

9
32 , 0,−

1
32}[−3,3]. If Θ=δ and nb = nb̃=2,

then p(z) = 1 and D(z) = 7
256 − 1

512 (z + z−1). Taking d=1, c1 =0, ε1 =1, n1 =2,
n2 = 3, we have

b̃1 = 1
8{−1,−2, 6,−2,−1}[−3,1], b̃2 = 1

32{1, 0,−9,16,−9, 0, 1}[−3,3]

and

b1 = 1
8{−1, 0, 2,0,−1}[−3,1], b2 = 1

32{−1, 0,−7,16,−7, 0,−1}[−3,3]

with vm(b1) = vm(b2) = vm(b̃1) = 2 and vm(b̃2) = 4.
By Lemma 1 we can take Θ = {− 11

5040 ,
4

105 ,−
223
1680 ,

376
315 ,−

223
1680 ,

4
105 ,−

11
5040}[−3,3]

with nb = nb̃ = 4. Then p = 1. Take d = 1, c1 = 0, ε1 = 1, n1 = 4, n2 = 5, we have

b̃1 = 1
13440{−55,−64, 1489,−112,−10554, 18592,−10554,

−112, 1489,−64,−55}[−7,3],

b̃2 = 1
40320{−44, 0, 933, 896,−4668,−2736, 11238,−2736,

− 4668, 896, 933, 0,−44}[−7,5],

and

b1 = 1
512{−1, 0, 3, 16,−66, 96,−66,16, 3, 0,−1}[−7,3],

b2 = 1
512{−1, 0, 18, 16,−63,−144, 348,−144,−63, 16, 18, 0,−1}[−7,5]

with vm(b1) = vm(b2) = vm(b̃1) = vm(b̃2) = 4.
If Θ = δ and nb = nb̃ = 2, setting M = 2 and N = 4 in Proposition 2, we obtain

(4.4) ã = {− 1
16 ,

1
4 ,

5
8 ,

1
4 ,−

1
16}[−2,2]

with sm(ã) ≈ 0.885296 and sr(ã) = 2. Then p = 1 and D = 1
64 . Taking d = 1, c1 =

0, ε1 = 1, n1 = 2, n2 = 3, we have

b̃1 = 1
4{−1, 2,−1}[−2,0], b̃2 = 1

16{1,−4,6,−4, 1}[−2,2],

and

b1 = 1
4{−1, 0, 2,0,−1}[−3,1], b2 = 1

32{−1, 0,−7,16,−7, 0,−1}[−3,3]

with vm(b1) = vm(b2) = vm(b̃1) = 2 and vm(b̃2) = 4.
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5. Properties of dual framelet filter banks

and explanations for algorithm 1

To understand better our algorithms and dual framelet filter banks, in this sec-
tion we investigate several basic properties of dual framelet filter banks. Then we
shall provide some explanations and discussions on Algorithm 1.

Let us first recall the multilevel discrete framelet transform associated with a
dual framelet filter bank from [5]. Recall that l(Z) denotes the set of all sequences
on Z. For a filter u = {u(k)}k∈Z ∈ l0(Z), the subdivision operator Su : l(Z) → l(Z)
and the transition operator Tu : l(Z) → l(Z) are defined to be

[Suv](n) := 2
∑
k∈Z

v(k)u(n− 2k), n ∈ Z,(5.1)

[Tuv](n) := 2
∑
k∈Z

v(k)u(k − 2n), n ∈ Z(5.2)

for v ∈ l(Z). In terms of the z-transform, we have

(5.3) [Suv](z) = 2u(z)v(z2), [Tuv](z2) = u�(z)v(z) + u�(−z)v(−z),

where u�(k) := u(−k), k ∈ Z and u�(z) =
∑

k∈Z
u�(k)zk =

∑
k∈Z

u(k)z−k.

Let ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ be a dual framelet filter bank. For J ∈ N, a
J-level discrete framelet decomposition is given by

(5.4) vj+1 :=
√
2
2 Tãvj , wj+1;� :=

√
2
2 Tb̃�vj , � = 1, . . . , s, j = 0, . . . , J − 1,

where v0 : Z → C is an input signal. After a J-level discrete framelet decomposition,
the original input signal v0 is decomposed into one sequence vJ of low-pass framelet
coefficients and sJ sequences wj;� of high-pass framelet coefficients for � = 1, . . . , s
and j = 1, . . . , J . Such framelet coefficients are often processed by thresholding or
quantization. A J-level discrete framelet reconstruction ([5]) is

v̆J := Θ� ∗ v̊J ,(5.5)

v̆j :=

√
2

2
Sav̆j+1 +

√
2

2

s∑
�=1

Sb�ẘj+1;�, j = J − 1, . . . , 0,(5.6)

recover v̊0 from v̆0 via the relation v̊0 = Θ� ∗ v̆0.(5.7)

When nothing is performed on the framelet coefficients, that is, v̊J = vJ and
ẘj;� = wj,� for all � = 1, . . . , s and j = 1, . . . , J , we say that the above J-level
discrete framelet transform has the perfect reconstruction property if v̊0 = v0.

The following result shows that the condition (1.1) in the definition of a dual

framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ corresponds to the perfect re-
construction property of its associated discrete framelet transform.

Theorem 4. Let ã, b̃1, . . . , b̃s, a, b1, . . . , bs,Θ ∈ l0(Z). The following statements are
equivalent:

(i) The perfect reconstruction property holds: for all v ∈ l(Z),

(5.8)
1

2
Sa(Θ

� ∗ Tãv) +
1

2

s∑
�=1

Sb�Tb̃�v = Θ� ∗ v.

(ii) The identity in (5.8) holds for all v ∈ l0(Z).
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(iii) The identity in (5.8) holds for the particular sequences v = δ and δ(· − 1),
where δ is the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all k �= 0.

(iv) ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})Θ is a dual framelet filter bank.

Proof. (i)=⇒(ii)=⇒(iii) is trivial, since {δ, δ(· − 1)} ⊆ l0(Z) ⊆ l(Z). By (5.3), (5.8)
can be equivalently rewritten using the z-transform as follows:

v(z)

[
Θ�(z2)ã�(z)a(z) +

s∑
�=1

b̃�� (z)b�(z)

]

+ v(−z)

[
Θ�(z2)ã�(−z)a(z) +

s∑
�=1

b̃�� (−z)b�(z)

]
= v(z)Θ�(z).

(5.9)

To prove (iii)=⇒(iv), plugging v = δ into (5.9) and noting v(z) = 1, we see that

Θ�(z) =

[
Θ�(z2)ã�(z)a(z) +

s∑
�=1

b̃�� (z)b�(z)

]

+

[
Θ�(z2)ã�(−z)a(z) +

s∑
�=1

b̃�� (−z)b�(z)

]
.

Plugging v = δ(· − 1) into (5.9) and noting v(z) = z, we deduce from (5.9) that

Θ�(z) =

[
Θ�(z2)ã�(z)a(z) +

s∑
�=1

b̃�� (z)b�(z)

]

−
[
Θ�(z2)ã�(−z)a(z) +

s∑
�=1

b̃�� (−z)b�(z)

]
.

From these two identities, it is straightforward to see that (1.1) must hold. There-
fore, (iii)=⇒(iv).

If (1.1) is satisfied, then it is straightforward to see that (5.9) holds for all
v ∈ l0(Z). That is, we proved (iv)=⇒(ii). The claim (ii)=⇒(i) follows from the
locality of the subdivision operator and transition operator. �

For a tight framelet filter bank, we have the following result.

Proposition 5. Let θ, a, b1, . . . , bs ∈ l0(Z) be finitely supported sequences on Z.
Then

(5.10) ‖θ∗Tav‖2l2(Z)+‖Tb1v‖2l2(Z)+· · ·+‖Tbsv‖2l2(Z) = 2‖θ∗v‖2l2(Z), ∀ v ∈ l2(Z),

if and only if {a; b1, . . . , bs}Θ is a tight framelet filter bank with Θ := θ ∗ θ�.

Proof. Note that Θ� = Θ and ‖θ ∗ v‖2l2(Z) = 〈Θ� ∗ v, v〉. By the duality between Sa

and Ta, we have

‖θ ∗ Tav‖2l2(Z) = 〈θ ∗ Tav, θ ∗ Tav〉 = 〈Θ� ∗ Tav, Tav〉 = 〈Sa(Θ
� ∗ Tav), v〉.

Now all the claims follow from Theorem 4 by using the polarization identity. �

We now show that the moment correcting filter Θ in every tight framelet filter
bank must take the special form in Proposition 5.
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Lemma 6. Let Ma,a,Θ be defined in (1.2) with ã = a. Then

(5.11) Ma,a,Θ(z) � 0 ∀ z ∈ T := {ζ ∈ C : |ζ| = 1},
if and only if

(5.12) Θ(z) � 0, ∀ z ∈ T

and

det(Ma,a,Θ(z))

= Θ(z)Θ(−z)−Θ(z2)
[
Θ(−z)a(z)a�(z) +Θ(z)a(−z)a�(−z)

]
� 0

(5.13)

for all z ∈ T. Consequently, if {a; b1, . . . , bs}Θ is a tight framelet filter bank, then
there exists θ ∈ l0(Z) such that Θ = θ ∗ θ�.

Proof. Suppose that (5.11) holds. Then it is trivial that (5.13) holds, M�
a,a,Θ(z) =

Ma,a,Θ(z), and the (1, 1)-entry of Ma,a,Θ must be nonnegative, that is,

(5.14) Θ(z)−Θ(z2)a(z)a�(z) � 0 ∀ z ∈ T.

Since M�
a,a,Θ(z) = Ma,a,Θ(z), we have [Ma,a,Θ(z)]

�
1,2 = [Ma,a,Θ(z)]2,1, from which

we conclude that Θ� = Θ if a is not identically zeros. If a is identically zero, then
[Ma,a,Θ(z)]

�
1,1 = [Ma,a,Θ(z)]1,1 implies that Θ� = Θ. Therefore, Θ(z) ∈ R for all

z ∈ T.
We use proof by contradiction to show that (5.12) must hold. Suppose that

Θ(e−iξ0) < 0 for some ξ0 ∈ R. Since Θ is continuous on T, there exists a nonempty
open interval (c, d) such that Θ(e−iξ) < 0 for all ξ ∈ (c, d). However, if Θ(e−iξ) < 0,
then (5.14) will force Θ(e−i2ξ) < 0. Consequently, Θ(e−iξ) < 0 for all ξ ∈ (2nc, 2nd)
and n ∈ N. Since T is compact and c < d, we must have Θ(e−iξ) < 0 for all ξ ∈ R.
Hence, Θ(z2)Θ(z) > 0 for all z ∈ T and by (5.13) we have[

Θ(z)−Θ(z2)a(z)a�(z)
]
Θ(−z)

� Θ(z)Θ(−z)−Θ(z2)
[
Θ(−z)a(z)a�(z) +Θ(z)a(−z)a�(−z)

]
� 0

(5.15)

for all z ∈ T. Since Θ(z) < 0 for all z ∈ T, the above inequality and (5.14) imply

(5.16) Θ(z)−Θ(z2)a(z)a�(z) = 0 ∀ z ∈ T.

From (5.15) and (5.16), we see that Θ(z2)Θ(z)a(−z)a�(−z) = 0 which forces a to
be identically zero. By (5.16) again, we conclude that Θ is identically zero, which
is a contradiction to Θ(z) < 0 for all z ∈ T. Therefore, Θ(z) � 0 for all z ∈ T must
hold.

Conversely, suppose that (5.12) and (5.13) hold. Then (5.15) holds. Now by
(5.12), we see that (5.14) holds. That is, the (1, 1)-entry of Ma,a,Θ must be non-
negative. Since (5.13) holds, by results from linear algebra, we conclude that (5.11)
must hold.

By (1.1) with ã = a, b̃1 = b1, . . . , b̃s = bs, we must have Ma,a,Θ(z) � 0 for all
z ∈ T. Therefore, Θ(z) � 0 for all z ∈ T. By Fejér-Riesz lemma, we see that
Θ = θ ∗ θ� for some θ ∈ l0(Z). �

We now explain the choice s = 2 in Algorithm 1. The number of high-pass
filters is preferred to be as small as possible in applications. As demonstrated by
the following result, if the number of high-pass filters in a dual framelet filter bank
is s = 1, then it is essentially a biorthogonal wavelet filter bank.
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Theorem 7. Let ({ã; b̃}, {a; b})Θ be a dual framelet filter bank such that Θ is not
identically zero. Then there exists a nonzero number λ ∈ C such that

(5.17) Θ(z2) = λΘ(z)Θ(−z), ∀ z ∈ T

and ({̊a; b̊}, {a; b}) is a biorthogonal wavelet filter bank, that is,

(5.18)

[
å(z) b̊(z)

å(−z) b̊(−z)

] [
a(z) b(z)
a(−z) b(−z)

]�
=

[
1 0
0 1

]
,

where all the above filters are finitely supported and are given by

(5.19) å(z) := ã(z)λΘ(−z) and b̊(z) := b̃(z)/Θ(z).

Moreover, (5.18) implies

b̊(ξ) = c−1z2n−1a�(−z),

b(z) = cz2n−1å�(−z), for some c ∈ C\{0}, n ∈ Z.
(5.20)

If, in addition, ã = a and b̃ = b, that is, {a; b}Θ is a tight framelet filter bank, then

Θ = θ ∗ θ� for some θ ∈ l0(Z) and {ă; b̆} is an orthogonal wavelet filter bank, where

ă, b̆ ∈ l0(Z) are given by

(5.21) ă(z) := a(z)
√
λθ(−z), b̆(z) := b(z)/θ(z).

Proof. Since s = 1, (1.1) can be rewritten as the following equivalent matrix form:

(5.22)

[
ã(z) b̃(z)

ã(−z) b̃(−z)

] [
Θ(z2) 0

0 1

] [
a(z) b(z)
a(−z) b(−z)

]�
=

[
Θ(z) 0
0 Θ(−z)

]
.

Taking determinant on both sides of (5.22), we have

(5.23) Θ(z2)η̃(z)η�(z) = Θ(z)Θ(−z),

where

(5.24) η̃(z) := z
(
ã(z)b̃(−z)− ã(−z)b̃(z)

)
and η(z) := z

(
a(z)b(−z)− a(−z)b(z)

)
.

Note that the filter support of Θ(z2) is the same as the filter support of Θ(z)Θ(−z).
Since (5.23) implies that Θ(z2) is a factor of Θ(z)Θ(−z) and Θ is not identically
zero, we see that (5.17) must hold for some λ ∈ C\{0}. Consequently, we have
λη̃(z)η�(z) = 1. By the definition of η and η̃, we must have η(z) = −cz2n for
some nonzero c ∈ C and n ∈ Z. By a direct calculation, it follows from (5.17) and

(5.22) that (5.18) holds with å and b̊ being defined in (5.19). By (5.18), we deduce
that

(5.25)

[
å(z) b̊(z)

å(−z) b̊(−z)

]
=

[
a�(z) a�(−z)

b�(z) b�(−z)

]−1

=
1

zη�(z)

[
b�(−z) −a�(−z)
−b�(z) a�(z)

]
.

Plugging η(z) = −cz2n into the above identity and comparing the entries of the

matrices on both sides, we conclude that (5.20) holds. Consequently, b̊ must be a
finitely supported sequence.

When ã = a and b̃ = b, by (5.19), ă and b̆ are finitely supported filters. Since
Θ(z) � 0 for all z ∈ T by Lemma 6, we see that λ > 0. Using (5.17) and (5.22), we

can directly check that {ă; b̆} is an orthogonal wavelet filter bank. �
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We make a remark here on discrete framelet transform. There is a de-convolution
in (5.7) to recover v̊0 from v̆0 if Θ is not a nonzero monomial. We can easily avoid

this troubling deconvolution by the following argument. Let ({ãm; b̃m,1, . . . , b̃m,sm},
{am; bm,1, . . . , bm,sm})Θm

, m = 1, . . . , n be a family of dual framelet filter banks.
For any input signal v, let v̆0,m be the reconstructed signal before deconvolution us-

ing the dual framelet filter bank ({ãm; b̃m,1, . . . , b̃m,sm}, {am; bm,1, . . . , bm,sm})Θm
.

Suppose that there exist Θ̃1, . . . , Θ̃n ∈ l0(Z) such that

(5.26) Θ̃1(z)Θ
�
1(z) + · · ·+ Θ̃n(z)Θ

�
n(z) = 1.

Avoiding deconvolution in (5.7), we can recover v̊0 via v̊0 = Θ̃1∗v̆0,1+· · ·+Θ̃n∗v̆0,n.
In the rest of this section, we provide some explanations and discussions on

Algorithm 1. Let us first discuss symmetry property for a linear combination of
filters with symmetry. Let u and v be filters having [complex] symmetry. If both
u and v have the same symmetry types, then it is trivial to see that u± v also has
[complex] symmetry. However, if the symmetry types of u and v are different, then
u ± v usually does not have any symmetry. More precisely, we have the following
result.

Lemma 8. Let u, v ∈ l0(Z) be nontrivial filters having symmetry Su(z) = εuz
cu

and Sv(z) = εvz
cv (or complex symmetry Su(z) = εuz

cu and Sv(z) = εvz
cv) for

some εu, εv ∈ {−1, 1} and cu, cv ∈ Z. If u+ v also has symmetry S(u+ v) = εzc (or
complex symmetry S(u+ v) = εzc), then one of the following two cases must hold:

(i) εu = εv and cu = cv, that is, u and v have the same [complex] symmetry
type.

(ii) εεuz
c−cu �= 1 and εεvz

c−cv �= 1, that is, Su �= S(u + v) �= Sv (or Su �=
S(u + v) �= Sv for complex symmetry). Moreover, u and v must take the
particular form: u(z) = w(z)̊u(z), v(z) = w(z)̊v(z) with w := gcd(u, v) and

ů(z) :=
1− εεvz

c−cv

q(z)
, v̊(z) :=

εεuz
c−cu − 1

q(z)

where q is a Laurent polynomial with [complex] symmetry such that

q(z) | gcd(1− εεuz
c−cu , 1− εεvz

c−cv ).

Proof. We only prove the case of symmetry while the case of complex symmetry can
be proved in the same way. Since u(z−1) = εuz

−cuu(z) and v(z−1) = εvz
−cvv(z), it

follows from S(u+ v) = εzc that

u(z) + v(z) = εzc(u(z−1) + v(z−1)) = εεuz
c−cuu(z) + εεvz

c−cvv(z)

from which we deduce that

(5.27) u(z)(εεuz
c−cu − 1) = v(z)(1− εεvz

c−cv ).

If either εεuz
c−cu −1 = 0 or 1− εεvz

c−cv = 0, since both u and v are not identically
zero, we conclude from (5.27) that both εεuz

c−cu −1 = 0 and 1−εεvz
c−cv = 0 must

hold. That is, Case (i) must hold.
Otherwise, both εεuz

c−cu − 1 �= 0 and 1 − εεvz
c−cv �= 0. That is, we must have

Case (ii) with εεuz
c−cu �= 1 and εεvz

c−cv �= 1. For this case, we now show that
u and v must take the special form. Since w := gcd(u, v) and both u and v have
[complex] symmetry, w must have [complex] symmetry (see [13]). Therefore, (5.27)
implies

(5.28) ů(z)(εεuz
c−cu − 1) = v̊(z)(1− εεvz

c−cv ).
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Note that gcd(̊u, v̊) = 1. From (5.28), we must have ů(z) | (1− εεvz
c−cv ). Define a

Laurent polynomial q(z) := (1− εεvz
c−cv )/̊u(z). Then q has [complex] symmetry.

Now it follows from (5.28) again that

ů(z)q(z) = 1− εεvz
c−cv and v̊(z)q(z) = εεuz

c−cu − 1.

Hence, u and v must take the special form in Case (ii). �
By Lemma 8, if u+v = w and all u, v,w have [complex] symmetry, then it is very

natural to assume that Su = Sv = Sw (or Su = Sv = Sw for the case of complex
symmetry).

Since we discuss Algorithm 1 in this section, without further mention, we always
assume that ({ã; b̃1, b̃2}, {a; b1, b2})Θ is a dual framelet filter bank such that

(1) min(vm(b1), vm(b2))�nb and min(vm(b̃1), vm(b̃2))�nb̃ so that b̊1, b̊2,
˚̃b1,

˚̃b2
in (1.5) are well defined;

(2) all filters have symmetry such that (1.20) holds and

(5.29) S̊b1(z) = ε1z
c1 , S̊b2(z) = ε2z

c2 , S̊b̃1(z) = ε̃1z
c̃1 , S̊b̃2(z) = ε̃2z

c̃2 .

For the case of complex symmetry, replace S by the complex symmetry
operator S throughout;

(3) all filters b1, b2, b̃1, b̃2, a, ã,Θ are not identically zero.

Note that the perfect reconstruction condition (1.1) with s = 2 in the definition
of a dual framelet filter bank can be rewritten as (1.17) plus

(5.30) b̃1(z)b
�
1(z) + b̃2(z)b

�
2(z) = Θ(z)−Θ(z2)ã(z)a�(z).

According to Lemma 8, since all filters have symmetry, by (1.17) it is natural to
assume that

(5.31) S(b̃1(z)b
�
1(−z)) = S(b̃2(z)b

�
2(−z)) = S(Θ(z2)ã(z)a�(−z)).

Note that Su(−z) = Su(z) or Su(−z) = −Su(z) for any filter u having symmetry.
By (5.31), we have two cases to consider.

Case 1: S(b̃1(z)b
�
1(z)) = S(b̃2(z)b

�
2(z)). By (5.30) and Lemma 8, it is very

natural to assume that

(5.32) S(b̃1(z)b
�
1(z)) = S(b̃2(z)b

�
2(z)) = SΘ(z) = S(Θ(z2)ã(z)a�(z)).

Case 2: S(b̃1(z)b
�
1(z)) = −S(b̃2(z)b

�
2(z)). By (5.31) and S(Θ(z2)ã(z)a�(−z)) =

±S(Θ(z2)ã(z)a�(z)), we have either

S(Θ(z2)ã(z)a�(z)) = S(b̃1(z)b
�
1(z)) or S(Θ(z2)ã(z)a�(z)) = S(b̃2(z)b

�
2(z)).

Therefore, by (5.30) and Lemma 8, it is natural to have S(b̃1(z)b
�
1(z)) = SΘ(z) =

S(b̃2(z)b
�
2(z)), which contradicts our assumption S(b̃1(z)b

�
1(z)) = −S(b̃2(z)b

�
2(z)).

Hence, this case can rarely happen.
It follows from the last identity in (5.32) that (1.21) must be satisfied. Conse-

quently, both A and Å have symmetry. For simplicity, in the following discussion

we assume p = 1 and therefore, Å = A and B̊ = B. The general case is similar.

Note that SB̊(z) = (−1)c+nbSÅ(z). Since len(a) + len(ã) + len(Θ) �= 0, we already
proved that (2.17) and (2.18) hold.

By (1.5) with s = 2, using (1.9), we can equivalently express the conditions in
(5.31) and (5.32) as

(5.33) (−1)c1 = (−1)c2 = (−1)c+nb , ε1ε̃1 = ε2ε̃2 = ε0, c̃1 − c1 = c̃2 − c2 = c0.
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Our choice of c1 in (2) of (S2) is fully justified by the first relation in (5.33).
We now show that the following well-defined Laurent polynomial d has symmetry,

where

d(z2) := z−1 [̊b1(z)̊b2(−z)− b̊1(−z)̊b2(z)],

d̃(z2) := z−1 [̊b̃1(z)̊b̃2(−z)−˚̃b1(−z)̊b̃2(z)].
(5.34)

By (−1)c1 = (−1)c2 in (5.33), we can easily deduce that c1 + c2 is an even integer
and

S(̊b1(z)̊b2(−z)) = (−1)c2ε1ε2z
c1+c2 = (−1)c1ε1ε2z

c1+c2 = S(̊b1(−z)̊b2(z)).

Hence, d has symmetry εdz
cd := Sd(z) = (−1)c1ε1ε2z

c1+c2
2 −1, that is,

(5.35) εd = (−1)c1ε1ε2 and cd =
c1+c2

2 − 1.

Equation (5.35) directly leads to the relations c2 = 2cd+2−c1 and ε2 = (−1)c1εdε1.
If (−1)c1εd = −1, then ε1ε2 = (−1)c1εd = −1 and hence either ε1 or ε2 must be
one. Without loss of any generality, we can assume ε1 = 1, otherwise, we simply

switch b̊1 with b̊2. This justifies items (2) and (3) of (S2).

Note that ({ã; b̃1(·−2k), b̃2}, {a; b1(·−2k), b2})Θ is a dual framelet filter bank for
every k ∈ Z and its corresponding new d in (5.34) gains a factor zk. This explains
our restriction cd ∈ {0, 1} in item (1) of (S2), since up to an integer shift there are

only two symmetry centers. It follows directly from (1.9) that d(z)d̃�(z) = D(z).
Hence, d is a factor of D and has symmetry. That is, all cases of possible d are

covered by item (1) of (S2). Note that fsupp(Å) = [c0 − n0, n0] and

(5.36) 2n0 − c0 = len(Å) = len(B̊) = len(a) + len(ã) + 2 len(Θ)− nb − nb̃.

Since fsupp(̊b1) = [c1 − n1, n1] with symmetry center c1
2 , we must have c1

2 � n1.
Since we assumed p = 1, by our assumption on filter supports in (2.15), we must
impose the following constraint:

2n1 − c1 = len(̊b1) � len(a) + len(ã) + 2 len(Θ)− nb − nb̃ +2εlen = 2n0 − c0 +2εlen.

Hence, c1
2 � n1 � c1−c0

2 + n0 + εlen. This justifies our choice of n1 in (5) of (S2).

By the same argument, we have c2
2 � n2 � c2−c0

2 + n0 + εlen. Also, by

the definition of d in (5.34), we must have 2 len(d) � len(̊b1) + len(̊b2), that is,
2(2nd − cd) � 2n1 − c1 + 2n2 − c2. Using this inequality and the justified relation
c1 + c2 = 2cd + 2 in item (2) of (S2), we conclude that 2nd + 1 − n1 � n2. Hence,
our choice of n2 in (6) of (S2) is justified.

From (1.9) and (5.34), (2.22) holds, that is, (2.8) and (2.10) must be satisfied
with R1 = R2 = 0. The conditions in (2.9) and (2.7) follow trivially from the
requirement for the filter support in (2.15).

Though it is more complicated, the general case of p can be checked similarly.
When p is not a constant, Algorithm 1 indeed may miss some very special rare
solutions, solely due to our simple splitting of p in (S6). However, this can be easily
avoided by constructing Laurent polynomials q1, . . . , q4, q̃1, . . . , q̃4 with symmetry
such that

(5.37)

[
q1(z) q3(z)
q2(z) q4(z)

] [
q̃1(z) q̃3(z)
q̃2(z) q̃4(z)

]�
= p(z)I2,
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(5.38)
Sq1(z)

Sq2(z)
=

Sq3(z)

Sq4(z)
=

Sq̃1(z)

Sq̃2(z)
=

Sq̃3(z)

Sq̃4(z)
= ε1ε2z

c2−c1
2 .

Note that c2 − c1 is an even integer by (5.33). Then one can directly check that

({ã; b̃1, b̃2}, {a; b1, b2})Θ is a dual framelet filter bank having [complex] symmetry,
where

b1(z) := (1− z−1)nb [̊b1(z)q1(z
2) + b̊2(z)q2(z

2)],

b2(z) := (1− z−1)nb [̊b1(z)q3(z
2) + b̊2(z)q4(z

2)],

b̃1(z) := (1− z−1)nb̃ [
˚̃
b1(z)q̃1(z

2) +
˚̃
b2(z)q̃2(z

2)],

b̃2(z) := (1− z−1)nb̃ [
˚̃
b1(z)q̃3(z

2) +
˚̃
b2(z)q̃4(z

2)].

For simplicity of presentation, here we do not address the issue about how to
construct q1, . . . , q4, q̃1, . . . , q̃4 satisfying (5.37) and (5.38). Interested readers are
referred to [13, 14] for solving (5.37) and (5.38) for the particular case of tight
framelet filter banks as discussed in Section 3.
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