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SOME FUNCTIONAL RELATIONS DERIVED

FROM THE LINDELÖF-WIRTINGER EXPANSION

OF THE LERCH TRANSCENDENT FUNCTION

LUIS M. NAVAS, FRANCISCO J. RUIZ, AND JUAN L. VARONA

Abstract. The Lindelöf-Wirtinger expansion of the Lerch transcendent func-
tion implies, as a limiting case, Hurwitz’s formula for the eponymous zeta func-
tion. A generalized form of Möbius inversion applies to the Lindelöf-Wirtinger
expansion and also implies an inversion formula for the Hurwitz zeta function
as a limiting case. The inverted formulas involve the dynamical system of
rotations of the circle and yield an arithmetical functional equation.

1. Introduction

The Lerch transcendent function is given by the series

(1.1) Φ(λ, s, z) =
∞∑
k=0

λk

(k + z)s
;

see [8, §1.11, p. 27] or [2, §25.14], for example. Logarithms and complex powers are
always assumed to be principal. If |λ| < 1, then for any s ∈ C, the series converges
uniformly in z over C \ (−∞, 0], thus defining a holomorphic function of z in this
region. If |λ| = 1, then the series converges in this same region provided Re s > 1.
The value λ = 0 is considered trivial since it yields Φ(0, s, z) = z−s, and thus is
usually excluded. There are multiple ways of defining analytic continuations of Φ
in each parameter.

This function, defined by Mathias Lerch in 1887 in his paper [11], includes as
special cases of the parameters the Hurwitz and Riemann zeta functions and the
polylogarithms, among others, and has applications ranging from number theory to
physics. It is often used to obtain functional identities; see, for instance, [3,7,9,15].

One often extends the domain to z ∈ C\{0,−1,−2, . . . } by including the branch
discontinuity of the principal argument. In addition, in this paper we shall only
be considering s ∈ C with Re s < 0, in which case the summand (k + z)−s (with
k ∈ N) in (1.1) continuously extends to z = −k by defining 0−s = 0. Thus for
Re s < 0 we can define Φ(λ, s, z) for all z ∈ C. For the parameter s, we shall often
denote σ = Re s. Also, we shall use the notation C∗ = C \ {0}.

In light of the remarks made above, one concludes that given |λ| < 1 and Re s <
0, the function Φ(λ, s, x) extends continuously as a function of x ∈ [0, 1], with
Φ(λ, s, 0) = Φ(λ, s, 1). In particular, it may be expanded in a Fourier series on this
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interval. The resulting formula is classical and is the point of departure for what
follows.

Theorem 1 (Lindelöf-Wirtinger expansion). Let λ and s be complex parameters
with 0 < |λ| < 1 and Re s < 0. Then

(1.2) Φ(λ, s, x) = λ−x Γ(1− s)
∑
n∈Z

(2πin− log λ)s−1e2πinx, x ∈ [0, 1].

The convergence is uniform in x.

Proof. Wirtinger’s paper [16] is one of the original sources. The result has been
reproved often by various means. See for example [8], for the traditional approach
using complex analytic techniques, or [14], for a short proof using basic Fourier
Analysis. �

Remark 1. Note that changing the branch of the logarithm in (1.2) shifts the
summation index n, and hence does not affect the validity of the expansion, as long
as the same branch is used for both log λ and λ−x.

The special values s = 1−k (with k ∈ N) give the Apostol-Bernoulli polynomials
Bk(x;λ) first defined in [1]:

(1.3) Φ(λ, 1− k, x) = −Bk(x;λ)

k
.

Bk(x;λ) is a polynomial in x of degree k − 1 over whose coefficients are rational
functions in λ having a unique pole at λ = 1. By (1.2) we obtain their Fourier
series

(1.4) Bk(x;λ) = −λ−x k!
∑
n∈Z

e2nπix

(2nπi− log λ)k
, x ∈ [0, 1],

which is initially valid for |λ| < 1, but is extended by analytic continuation to all
λ �= 0, 1. In [13], (1.4) is proved directly using the algebraic properties of this
polynomial family.

The structure of the paper is as follows. In Section 3, we look at the Lindelöf-
Wirtinger expansion in a manner analogous to Hurwitz’s formula for the Hurwitz
zeta function. The expansion (1.2) is separated into two parts involving a three-
parameter function which specializes to the periodic zeta function. Next, we observe
that one may apply to this new function an inversion formula for a certain general-
ized form of convolution, which contains the Möbius inversion formula of analytic
number theory as a special case (this general framework, discussed previously in [5],
is described in Section 2). This yields an inverted form of the Lindelöf-Wirtinger
expansion. In Section 4, by studying the logarithmic singularity of Φ at λ = 1, we
show how to deduce Hurwitz’s formula from the Lindelöf-Wirtinger expansion and
in Section 5, using the same technique, we obtain the corresponding inverted form
of Hurwitz’s formula from the inverted form of the Lindelöf-Wirtinger expansion.
As special cases we obtain relations for the Apostol-Bernoulli polynomials. Finally,
in Section 6, for rational x, it is shown that the inverted form of Hurwitz’s formula
generalizes the functional equation of the Riemann zeta function.
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2. Generalized Möbius inversion

In [5] and [6], an abstract framework for Möbius inversion is established along
with numerous examples. We will show that the Lindelöf-Wirtinger formula (The-
orem 1) provides another application of this mechanism. In order to formulate the
result, first we need to summarize its main features. Although the results in [5] are
valid in a rather general setting, here we will only need the following special case.

Consider a dynamical system consisting of the natural numbers N acting on a
space X, in other words, a function ϕ : N × X → X such that ϕ(1, x) = x and
ϕ(m,ϕ(n, x)) = ϕ(mn, x). The action of N induces an action of the ring of complex-
valued arithmetical functions on suitable spaces of functions f : X → C, where an
arithmetical function α : N → C acts on a function f via

(2.1) (α� f)(x) =
∑
n∈N

α(n)f(ϕ(n, x)), x ∈ X.

In other words, one has
α� (β � f) = (α ∗ β)� f

where ∗ denotes Dirichlet convolution of arithmetical functions, given by

(α ∗ β)(n) =
∑
kl=n

α(k)β(l).

Here, “suitable” means that the series (2.1) should converge fast enough. See [5]
for the technical details.

If α is invertible under convolution then, again under suitable convergence hy-
potheses, we have

g = α� f =⇒ f = α−1 � g

where α−1 denotes the convolution inverse of α. In particular, if α is completely
multiplicative, its Dirichlet inverse is α−1 = μα, where μ is the Möbius function.
Thus we may expect in this case that

(2.2) g = α� f =⇒ f = (μα)� g

if the appropriate convergence conditions are satisfied.

3. Möbius inversion of the Lindelöf-Wirtinger formula

We will apply the method of generalized Möbius inversion outlined in Section 2
to the Lindelöf-Wirtinger formula. This cannot be done directly with (1.2) as it
stands, but rather after some manipulation of the series. Actually, we can separate
the sum over all integers in (1.2) into a sum over positive and negative integers and
invert each separately. For this purpose, consider the function defined by

(3.1) L(λ, s, x) =
∞∑

n=1

(2πin− log λ)−se2πinx.

This series is normally convergent for x ∈ R and on compact subsets of the domains
defined by λ �= 0, Re s > 1. The principal branch of the logarithm is assumed
throughout. Since L is 1-periodic in x we may restrict to x ∈ [0, 1].

Proposition 2. With L(λ, s, x) defined by (3.1) and 0 < |λ| < 1, Re s > 1 and
x ∈ [0, 1], we have

(3.2)
λx

Γ(s)
Φ(λ, 1− s, x)− (− logλ)−s = L(λ, s, x) + eπisL(λ−1, s, 1− x).
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Proof. Starting from the Lindelöf-Wirtinger expansion (1.2), with s changed to
1− s, and separating the term in the sum corresponding to n = 0, gives

λx

Γ(s)
Φ(λ, 1− s, x)− (− logλ)−s =

∑
n∈Z\{0}

(2πin− log λ)−se2πinx.

The sum over positive n corresponds to L(λ, s, x), while the sum over negative
integers is

−1∑
n=−∞

(2πin− log λ)−se2πinx =
∞∑

n=1

(−2πin− log λ)−se−2πinx

= eπis
∞∑

n=1

(2πin+ log λ)−se2πin(1−x) = eπisL(λ−1, s, 1− x),

since log λ−1 = − log λ for λ /∈ (−∞, 0], so that we obtain (3.2). �

Next, we apply Möbius inversion to (3.1).

Proposition 3. For λ �= 0, Re s > 1 and x ∈ [0, 1] we have

(3.3) (2πi− log λ)−se2πix =
∞∑

n=1

μ(n)

ns
L(λ1/n, s, {nx})

where L(λ, s, x) is defined in (3.1), {x} denotes the fractional part of a real number,
and μ(n) is the Möbius function, given by

μ(n) =

{
0 if n is not squarefree,

(−1)k if n is the product of k distinct primes.

Proof. Consider the action of N on the space C∗ × [0, 1) given by

(3.4) ϕ(n, (λ, x)) =
(
λ1/n, {nx}

)
.

It is straightforward to verify that (λa)b = λab holds for the principal power if
a, b ∈ (0, 1], so that (n, λ) 	→ λ1/n is an action on C∗, and that (n, x) 	→ {nx} is an
action on [0, 1]. The action (3.4) is the direct product of these two.

Consider α(n) = n−s : N → C, which is a completely multiplicative arithmetical
function, and fs : C∗ × [0, 1] → C given by fs(λ, x) = (2πi − log λ)−se2πix. Now,
observe that, if s is considered fixed, L is α� fs as defined in (2.1).

Thus (3.3) is a consequence of (2.2), assuming that the convergence is fast
enough. This is so because α and fs satisfy the hypotheses of Theorems 3 and 4
of [5], which justify the inversion formula. Briefly, since α(n) is a power, all that
is needed is the estimate d(n) = o(nε) for any ε > 0, where d(n) is the number of
divisors of n. �

Using (3.2), we obtain an inversion formula involving the Lerch function.

Theorem 4. For 0 < |λ| < 1, Re s > 1 and x ∈ [0, 1], we have

(3.5)

(2πi− log λ)−se2πix + eπis(2πi+ log λ)−se−2πix

=

∞∑
n=1

μ(n)n−s

(
λ{nx}/n

Γ(s)
Φ(λ1/n, 1− s, {nx})− ns(− log λ)−s

)
.
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Proof. Changing λ to λ−1 and x to 1− x in (3.3), noting that {−x} = 1− {x} for
x /∈ Z, since L is 1-periodic in x, we have

(2πi+ log λ)−se−2πix =
∞∑

n=1

μ(n)

ns
L(λ−1/n, s, 1− {nx)}).

Adding this to (3.3) and using (3.2) we obtain (3.5). �

Corollary 5. For k ∈ N, k ≥ 2, λ �= 0, 1 and x ∈ [0, 1], we have

(2πi− log λ)−ke2πix + eπik(2πi+ log λ)−ke−2πix

= −
∞∑

n=1

μ(n)n−k

(
λ{nx}/n

k!
Bk({nx};λ1/n) +

nk

(− logλ)k

)

where Bk(x;λ) denotes the kth Apostol-Bernoulli polynomial.

Proof. In the case 0 < |λ| < 1, set s = k for k ∈ N in (3.5) and use (1.3). Then, since
the Apostol-Bernoulli polynomials are defined for λ �= 0 and have a unique pole at
λ = 1, the result extends immediately to λ �= 0, 1 by analytic continuation. �

Remark 2. Corollary 5 is Theorem 2 of [4]. There is also a corresponding for-
mula for the Apostol-Euler polynomials En(x;λ) via the simple relation En(x;λ) =
− 2

n+1Bn+1(x;−λ), that was first proved in Lemma 2 of [13]. It should be noted
that, although Apostol-Bernoulli and Apostol-Euler polynomials are often dealt
with as separate parametrized families, probably due to their specializations to the
classical Bernoulli and Euler polynomials, they are essentially one and the same.

4. Hurwitz’s Formula as a limit formula

of the Lindelöf-Wirtinger expansion

Setting λ = 1 in the series (1.1) defining the Lerch transcendent Φ one obtains
the definition of the Hurwitz zeta function,

ζ(s, z) = Φ(1, s, z) =

∞∑
n=0

1

(n+ z)s
,

where the series converges absolutely for Re s > 1 and z ∈ C, z �= 0,−1,−2, . . . .
One often adopts the convention that summands with n+ z = 0 are omitted. This
makes ζ(s, 0) equal by definition to the Riemann zeta function ζ(s). For Re s < 0,
which is the case we consider, one also has ζ(s, 0) = ζ(s) by analytic continuation.

The Hurwitz zeta function ζ(s, z) has a well-known analytic continuation to all
s �= 1 given by

(4.1) ζ(s, x) =
Γ(1− s)e−πis

2πi
I(s, x), I(s, x) =

∫
Lρ

zs−1e−xz

1− e−z
dz

where 0 < ρ < 2π and Lρ is the path along the positive real axis from ∞ to ρ, with
argument 0, the counterclockwise circle of radius ρ around the origin, and the path
from ρ back to ∞, with argument 2π.

A key relation satisfied by ζ(s, z) is Hurwitz’s formula, which is

(4.2) ζ(1− s, x) =
Γ(s)

(2π)s

(
e−πis/2H(s, x) + eπis/2H(s, 1− x)

)
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where Re s > 1, x ∈ [0, 1] and

H(s, x) =

∞∑
n=1

e2πinx

ns

is known as the periodic zeta function.
The importance of Hurwitz’s formula rests on the fact that at x = 1 it specializes

to the functional equation of the Riemann zeta function. Many proofs of (4.2)
using different techniques are found in the literature. We will show how Hurwitz’s
formula can be derived as a limit formula from the Lindelöf-Wirtinger expansion for
the Lerch transcendent and, likewise, Möbius inversion of Hurwitz’s formula from
the corresponding inversion of the Lindelöf-Wirtinger formula given in Theorem 4.

Clearly H(s, x) = (2πi)sL(1, s, x), where L is defined in (3.1), and (4.2) bears
an obvious resemblance to (3.2). However, one cannot directly substitute λ = 1 in
formulas such as the Lindelöf-Wirtinger expansion and obtain a valid result, since
λ = 1 is a logarithmic singularity of Φ(λ, s, x). Rather, the correct approach is to
cancel the singularity by subtracting the term corresponding to n = 0 in (1.2). This
is done via an important auxiliary result, namely, the expansion of Φ in powers of
log λ. Erdélyi showed (see formula (8) on p. 29 of [8] or formula (3) in [10]) that

(4.3) Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)
s−1

= λ−x
∞∑
k=0

ζ(s− k, x)
(log λ)k

k!

for | logλ| < 2π, 0 < x ≤ 1 and s �= 1, 2, 3, . . . ; for Re s < 0 we may also include
x = 0.

We shall need to justify exchanging the limit as λ → 1 with the various infinite
sums which appear. This means finding suitable uniform bounds.

Lemma 1. Given 0 < ρ < 2π and a compact subset S of the left half-plane Re s < 0,
there is a constant C depending only on S, ρ, such that the contour integral in (4.1)
satisfies

(4.4) |I(s− k, x)| ≤ Cρσ−k

for all x ∈ [0, 1], s ∈ S and k ≥ 0 (recall that σ = Re s).

Proof. For σ = Re s < 0 and t = Im s, we have the estimate |zs−1| ≤ |z|σ−1e2π|t|,
while along the positive real axis we have |e−xz| = e−xRe z ≤ 1 and 1−e−z ≥ 1−e−ρ.
Thus, on either branch along the real axis,∣∣∣∣

∫ ∞

ρ

zs−1e−xz

1− e−z
dz

∣∣∣∣ ≤ e2π|t|

1− e−ρ

∫ ∞

ρ

uσ−1 du =
e2π|t|

1− e−ρ
· ρσ

−σ

and for |z| = ρ we have |1− e−z| ≥ 1− eρ−2π and |e−xz| ≤ eρ, hence∣∣∣∣∣
∫
|z|=ρ

zs−1e−xz

1− e−z
dz

∣∣∣∣∣ ≤ 2πeρe2π|t|

1− eρ−2π
· ρσ.

For any k ≥ 0, shifting s to s − k with k ≥ 0, since k − σ ≥ −σ > 0, we have
ρσ−k/(k − σ) ≤ ρσ−k/(−σ) and hence we obtain the bound

|I(s− k, x)| ≤ 2e2π|t|

1− e−ρ
· ρ

σ−k

−σ
+

2πeρe2π|t|

1− eρ−2π
· ρσ−k.

These bounds clearly imply (4.4) over a compact subset of {Re s < 0}. �
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Proposition 6. Given 0 < ρ < 2π and a compact subset S of the left half-plane
Re s < 0, there is a constant C depending only on S, ρ, such that

|ζ(s− k, x)| ≤ Ck! (2ρ−1)k

for all x ∈ [0, 1] and k = 0, 1, 2, . . . .

Proof. We use the integral representation (4.1), shifted by k:

ζ(s− k, x) =
(−1)kΓ(1− s+ k)e−πis

2πi
I(s− k, x).

By Lemma 1, we have |I(s− k, x)| ≤ Cρσ−k where C depends only on S, ρ. On the
other hand, since Γ(1− s+ k) = (k− s)(k− s− 1) · · · (−s+ 1)Γ(1− s), if m ∈ Z is
such that |s| ≤ m < |s|+ 1, we have

|Γ(1− s+ k)|
k!

≤ 1

k!
(k +m)(k − 1 +m) · · · (1 +m)|Γ(1− s)|

=

(
m+ k

k

)
|Γ(1− s)| ≤ 2m+k|Γ(1− s)| ≤ 2k+1+|s||Γ(1− s)|.

Thus, for any x ∈ [0, 1] and s ∈ S, with σ = Re s, t = Im s, we have

1

k!
|ζ(s− k, x)| = |Γ(1− s+ k)| · eπt

2πk!
· |I(s− k, x)|

≤ π−12k+|s| · |Γ(1− s)| · eπ|t| · Cρσ−k ≤ C ′(2ρ−1)k

where C ′ is another constant depending only on S, ρ. �

Proposition 7. The tails of the series (4.3) satisfy a bound of the form

(4.5)
∞∑

k=m

∣∣∣∣∣ζ(s− k, x)
logk λ

k!

∣∣∣∣∣ ≤ C| logλ|m

for x ∈ [0, 1] and λ, s in respective compact subsets Λ, S of the domains | log λ| < π
and Re s < 0, where C > 0 is a constant depending only on Λ, S. Thus (4.3)
is normally convergent for x ∈ [0, 1] and on compact subsets of Re s < 0 and
| log λ| < π.

Proof. By Proposition 6, given 0 < ρ < 2π and a compact subset S of the left
half-plane Re s < 0, there is a constant C(S, ρ) depending only on ρ and S, such
that 1

k! |ζ(s− k, x)| ≤ C(S, ρ)(2ρ−1)k for all s ∈ S, x ∈ [0, 1], and k ≥ 0.
For λ in a compact subset Λ of the domain | log λ| < π, there is a uniform bound

| log λ| ≤ � < π. Since 0 < ρ < 2π is arbitrary, choosing 2� < ρ < 2π with ρ close
enough to 2π makes 2ρ−1� < 1 and 2ρ−1 < 1, hence for (λ, s, x) ∈ Λ × S × [0, 1],
the series (4.5) is dominated by a convergent geometric series, yielding the bound

∞∑
k=m

1

k!
|ζ(s− k, x)| | logλ|k ≤ C(S, ρ)

1− 2ρ−1�
|2ρ−1 log λ|m ≤ C(S,Λ)| logλ|m

for all m ≥ 0, where C(S,Λ) > 0 is a constant depending only on S,Λ. �

Corollary 8. For x ∈ [0, 1] and λ, s lying in respective compact subsets Λ, S of
the domains | log λ| < π, 0 < |λ| < 1, and Re s < 0, there is a constant C > 0
depending only on Λ, S such that

(4.6)
∣∣Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)

s−1 − λ−xζ(s, x)
∣∣ ≤ C| log λ|
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for (λ, s, x) ∈ Λ × S × [0, 1]. In particular, Hardy’s relation (formula (4) in [10])
holds uniformly:

(4.7) lim
λ→1

(
Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)

s−1
)
= ζ(s, x)

for (s, x) ∈ S × [0, 1].

Proof. Assume s lies in a compact subset S of {Re s < 0} and λ in a compact
subset Λ of | log λ| < π. Separating the summand corresponding to k = 0 in
Erdélyi’s expansion (4.3), the bound (4.5) of Proposition 7 shows that∣∣Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)

s−1 − λ−xζ(s, x)
∣∣ ≤ C|λ|−x| log λ|

where C > 0 is a constant depending only on S,Λ. Now, min(1, |λ|) ≤ |λx| ≤
max(1, |λ|) for x ∈ [0, 1], and the mean value inequality for the exponential gives

|ez − 1| ≤ |z|eRe+ z where Re+ = max(0,Re). Thus we have

|λx − 1| ≤ |x log λ|exRe+ log λ ≤ | log λ| ·max(1, |λ|)

for x ∈ [0, 1] and hence, since ζ(s, x) is bounded on S × [0, 1],

∣∣Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)
s−1 − ζ(s, x)

∣∣
≤ C|λ|−x| log λ|+ |λ−x − 1||ζ(s, x)|
≤ C|λ|−x| log λ|+ |λ|−x|λx − 1| · ‖ζ‖S×[0,1]

≤
C +max(1, |λ|) · ‖ζ‖S×[0,1]

min(1, |λ|) | log λ| ≤ C ′| log λ|

for another constant C ′ depending only on S,Λ. Finally, note that | log λ| =
O(|λ− 1|) as λ → 1. �

Corollary 9. The Lindelöf-Wirtinger expansion (1.2) implies Hurwitz’s formula
(4.2).

Proof. By Hardy’s relation (4.7), changing s to 1− s and hence assuming Re s > 1,
we have

lim
λ→1

(
Φ(λ, s, x)− λ−xΓ(s)(logλ−1)

−s
)
= ζ(1− s, x).

Now take the limit as λ → 1 in the modified form (3.2) of the Lindelöf-Wirtinger
relation, noting that log λ−1 = − log λ for 0 < |λ| < 1:

Φ(λ, 1− s, x)− λ−xΓ(s)(log λ−1)
−s

= λ−xΓ(s)
(
L(λ, s, x) + eπisL(λ−1, s, 1− x)

)
to obtain, since L(λ, s, x) is holomorphic for λ /∈ (−∞, 0],

ζ(1− s, x) = Γ(s)
(
L(1, s, x) + eπisL(1, s, 1− x)

)
= Γ(s)(2πi)−s

(
H(s, x) + eπisH(s, 1− x)

)
=

Γ(s)

(2π)s

(
e−πis/2H(s, x) + eπis/2H(s, 1− x)

)
,

which is Hurwitz’s formula. �
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5. Möbius inversion of Hurwitz’s formula

One can apply the method of Möbius inversion outlined in Section 2 to Hurwitz’s
formula (4.2) in the same manner as it was used to invert the Lindelöf-Wirtinger
expansion in Section 3. Rather than repeating the process, we may derive the result
as a limit formula of (3.5) when λ → 1, by subtracting the logarithmic singularity
using the technique outlined in the previous section.

Proposition 10. The series (3.5) resulting from Möbius inversion of the Lindelöf-
Wirtinger expansion in the form (3.2), is normally convergent for x ∈ [0, 1], s in a
compact subset of the half-plane Re s > 1, and λ in a compact subset of the domain
| log λ| < π, 0 < |λ| < 1. The following limit formula holds:

(5.1) e−πis/2e2πix + eπis/2e−2πix =
(2π)s

Γ(s)

∞∑
n=1

μ(n)

ns
ζ(1− s, {nx})

where {x} denotes the fractional part of x.

Proof. Changing s to 1− s in the bound (4.6) which implies Hardy’s relation (4.7),
we have ∣∣Φ(λ, 1− s, x)− λ−xΓ(s)(logλ−1)

−s − ζ(1− s, x)
∣∣ ≤ C| log λ|

for x ∈ [0, 1] and λ, s in respective compact subsets Λ, S of | log λ| < π and Re s > 1,
where C > 0 depends only on Λ, S. Given n = 1, 2, 3, . . . , changing λ to λ1/n (the
principal branch) and x to the fractional part {nx}, we obtain, assuming also that
λ /∈ (−∞, 0],∣∣Φ(λ1/n, 1− s, {nx})− λ−{nx}/nΓ(s)ns(log λ−1)

−s − ζ(1− s, {nx})
∣∣

≤ Cn−1| log λ| ≤ C| logλ|,
so that the limit as λ → 1 is uniform in s, x. Now, rewrite (3.5) as

(2πi− log λ)−se2πix + eπis(2πi+ log λ)−se−2πix

=
1

Γ(s)

∞∑
n=1

μ(n)

ns
λ{nx}/n

(
Φ(λ1/n, 1− s, {nx})− λ−{nx}/nΓ(s)ns(− log λ)−s

)

and note that |λ{nx}/n| ≤ max(1, |λ|), so that the series

1

Γ(s)

∞∑
n=1

μ(n)

ns
λ{nx}/n,

1

Γ(s)

∞∑
n=1

μ(n)

ns
λ{nx}/nζ(1− s, {nx})

are both normally convergent for (λ, s, x) ∈ Λ × S × [0, 1], and hence taking the
limit as λ → 1 in (3.5) yields

(2πi)−s
(
e2πix + eπise−2πix

)
=

1

Γ(s)

∞∑
n=1

μ(n)

ns
ζ(1− s, {nx})

which is equivalent to (5.1). �

Remark 3. Note that (5.1) has the equivalent form

(5.2) 2(2π)−sΓ(s) cos
(
π

(s

2
− 2x

))
=

∞∑
n=1

μ(n)

ns
ζ(1− s, {nx}).
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Corollary 11. For k = 2, 3, 4, . . . and x ∈ [0, 1], we have

cos

(
πk

2
− 2πx

)
= − (2π)k

2(k!)

∞∑
n=1

μ(n)

nk
Bk({nx}),

where Bk(x) is the kth Bernoulli polynomial. Equivalently, separating according to
the parity of k, we obtain the pair of formulas ((2.4) and (2.5) of [12])

cos(2πx) = (−1)k−1 (2π)
2k

2(2k)!

∞∑
n=1

μ(n)

n2k
B2k({nx}),

sin(2πx) = (−1)k−1 (2π)2k+1

2(2k + 1)!

∞∑
n=1

μ(n)

n2k+1
B2k+1({nx}).

Proof. Let s = k with k ∈ N, k > 1, in (5.1). The Hurwitz zeta function then
evaluates to

ζ(1− k, x) = −Bk(x)

k
for 0 ≤ x ≤ 1. �

6. A functional equation

Since
∑∞

n=1
μ(n)
ns = ζ(s)−1, for x = 1 and Re s > 1, the expansion (5.1) and its

equivalent (5.2) reduce to the functional equation of the Riemann zeta function, in
the form

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s)

(using the reflection formula for the gamma function yields a similar relation but
with the sine function).

In general, (5.1) may be regarded as a combination of the functional equation
with the discrete dynamical system of fractional parts of multiples of a real number,
which is conjugate to the rotations of the circle. Recall that {nx} is equidistributed
in [0, 1] when x is irrational, while it is a periodic sequence when x is rational.

For example, consider the Dirichlet series

ζ∗(m, r, s) =
∑

n≡r mod m

μ(n)

ns
, Re s > 1,

for r,m ∈ N with 1 ≤ r ≤ m. If x ∈ Q has denominator equal to m, then {nx} is
m-periodic and for Re s > 1 we can group terms in (5.2) according to their residue
modulo m. We obtain

2(2π)−sΓ(s) cos
(
π

(s

2
− 2x

))
=

m∑
r=1

ζ∗(m, r, s)ζ(1− s, {rx}),

which again reduces to the functional equation for ζ(s) for r = m = 1.
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[8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions,
Volume I, McGraw-Hill, New York, 1953.
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