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THE MINIMAL CONFORMING Hk FINITE ELEMENT SPACES

ON Rn RECTANGULAR GRIDS

JUN HU AND SHANGYOU ZHANG

Abstract. A family of Ck−1-Qk finite elements on Rn rectangular grids is
constructed. The finite element space is shown to be the full Ck−1-Qk space
and possess the optimal order of approximation property. The polynomial
degree is minimal in order to form such a Hk finite element space. Numerical
tests are provided for using the 2D C1-Q2 and C2-Q3 finite elements.

1. Introduction

Recently, Wang and Xu proposed a family of nonconforming finite elements for
2k-th order (any k) elliptic partial differential equations in Rn, on triangular grids
[21]. The polynomial degree of finite element is k for 2k-th order PDEs in Rn for
any n ≥ k. This is extremely simple when compared to the standard conforming
elements. For example, for m = 2, 3, 4 and n = 3, the polynomial degrees of the
3D C1, C2 and C3 spaces are 9, 17 and 25, respectively (cf. [2, 4, 24]), while those
of the Wang-Xu elements are 2, 3 and 4 only, respectively. What is the minimal
polynomial degree on rectangular grids, for conforming and nonconforming finite
elements? We will answer the first question in this paper.

The polynomial degree of the minimal Hk-conforming element, i.e, the Ck−1-Qm

finite element, in any dimensional space Rn is simply m = k. Here Qk is the space
of polynomials of separated degree k or less. We note that Ck−1 is the minimal
smoothing space for 2k-th-order PDE, i.e., Ck−1 ⊂ Hk, so-called Hk-conforming.
We construct the Ck−1-Qk space through the tensor products of 1D splines [18],
as shown in Figure 1. The spaces constructed are macro-element spaces, as in [17].
We show that the tensor product space is the full Ck−1-Qk space on rectangular
grids, i.e., all Ck−1-Qk functions must belong to the tensor product space. On the
other side, any (k − 1)-st derivatives of a degree k polynomial is a linear function in
n-dimensional space, which is of the minimal degree to have a global continuity. If
we decrease the polynomial degree further, then we get a global polynomial space,
i.e., the Ck−1-Qk−1 space is the global Qk−1 space. Thus we say the Ck−1-Qk

space is the minimal Qm space to be Ck−1, i.e, the minimal Hk-conforming finite
element. This work extends the C1-Q2 result in [10]. When compared to the
Wang-Xu element, ours is slightly bigger, Qk versus Pk, though both are said to
be degree-k polynomials. But the new Ck−1-Qk conforming space exists for any
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Figure 1. Tensor products of 1D C1-Q1, C
2-Q3 and C3-Q4 in 2D.

spacial dimension n, while the Wang-Xu nonconforming spaces limit n ≥ k; cf. [21].
We note that the standard Ck−1-Qm finite element requires the polynomial degree
m ≥ 2k − 1, i.e., C1-Q3, C

2-Q5 and so on; cf. [25]. Here the new elements are
C1-Q2, C

2-Q3 and so on. Numerical tests on these elements for biharmonic and
triharmonic equations are provided.

The second question about the minimal nonconformingHk elements on rectangu-
lar grids remains open for k > 1. For k = 1, the minimalH1-nonconforming element
is the C−1-P1 element (where the P1 functions are continuous at the mid-point of
the (n − 1)-rectangular face) on rectangular grids [11, 16]. An H2-nonconforming
element on rectangular grids, is constructed by Wang, Shi and Xu [22], in Rn. But
it is not clear if the Wang-Shi-Xu element is the minimal one. Such a question is
difficult to answer for nonconforming finite elements as there are too many possible
variations. For example, it is not even known what the minimal H1-nonconforming
P2 element is on rectangular grids. In [15] Lee and Sheen constructed such a non-
conforming element where P2 space is enriched by two bubbles {x2y, xy2}. Note
that a direct corollary of [9, Section 5.1] is that there does not exist a conforming
P2 element on rectangular grids (even macro-element), otherwise the term of (5.12)
therein will have convergence of order 3, which contracts with the lower bound of
(5.12) therein.

In 1D, our Ck−1-Qk nodal basis generates exactly the k-th B-spline space, if the
macro-element grid points are uniformly distributed. The B-spline space has only
one basis function, defined recursively by integration, which is shifted by the grid
size to form a smooth spline space; cf. (2.6) below. Using the tensor product of
B-splines, the method of spline finite element method is applied to solving partial
differential equations in [20]. Different from the spline finite element method, we
construct nodal basis functions which are more adaptive to boundary conditions
and to the traditional finite element computation. The other difference is that the
Ck−1-Qk nodal basis can be constructed on nonuniform local grids, and applied to
nonuniform global grids. One numerical test on nonuniform grids is provided.

2. Tensor product space

We define a family of 1D spline functions. Using the 1D splines, we define a
Ck−1-Qk space in any space dimension, by tensor product.
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Let [0, 1] be uniformly partitioned into k intervals by (k+1) points {xi = i/k, i =
0, 1, . . . , k}:

(2.1) T (1)
h = {[xi−1, xi] | i = 1, . . . , k}.

Here, the internal grid points {xi} are not necessarily uniformly distributed; cf.
Corollary 2.1. Let

Pk(T (1)
h ) = {f ∈ L2([0, 1]) | f |(xi−1,xi) ∈ Pk}

be the space of piecewise polynomials of degree-k. Let I0 be an interpolation
operator (cf. Figure 1),

I0 : Ck−1[0, 1] → V0 := Pk(T (1)
h ) ∩ Ck−1[0, 1],(2.2)

I0f
(i)(x0) = f (i)(x0), I0f

(i)(xk) = f (i)(xk), i = 0, 1, . . . , k − 1.

Here h = 1/k is called a grid size.

Theorem 2.1. I0 in (2.2) is well defined.

Proof. Let us count the dof (degrees of freedom) and the constraints. The dof of
one Pk polynomial is (k + 1). The total dof on k intervals is (k2 + k). To be
Ck−1 at the two end points x0 and xk, we have (2k) data. But at each of the
(k− 1) middle points, to be Ck−1, we have k constraints. The total constraints are
(2k)+(k−1)k = k2+k, matching the total dof. By these counts, we have a square
linear system of size (k2 + k). Therefore, the uniqueness implies existence. We are
now left to show the uniqueness of solution.

Let f ∈ V0 in (2.2). First, as f(x0) = 0, f ′(x0) = 0, . . . , f (k−1)(x0) = 0, by
Taylor expansion at x = x0, we have, on [x0, x1),

f(x) = c1(x− x0)
k on [x0, x1).

We expand the function at x = x1 to get

(x− x0)
k = (x− x1 + h)k

= hk + khk−1(x− x1) + · · ·+ kh(x− x1)
k−1 + (x− x1)

k.

By the continuity conditions on f (j)(x1), we can expand the function, also a poly-
nomial, on the second interval, (x1, x2),

f(x) = c1(h
k + khk−1(x− x1) + · · ·+ kh(x− x1)

k−1) + c′2(x− x1)
k

= c1(x− x0)
k + c2(x− x1)

k.

Sequentially, we derive the function on the last interval (xk−1, xk):

f(x) = c1(x− x0)
k + · · ·+ ck(x− xk−1)

k.

As f (j)(xk) = 0, xk − xi = (k − i)h,

k(k − 1) · · · (k − j + 1)(c1k
k−j + · · ·+ ck1

k−j)hk−j = 0.

So, {cj} are determined by the homogeneous system:⎛
⎜⎜⎜⎝

kk · · · 2k 1k

kk−1 · · · 2k−1 1k−1

...
k · · · 2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
c1
c2
...
ck

⎞
⎟⎟⎟⎠ = 0.
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The matrix is a Vandermonde matrix, and its determinant is nonzero,

det = (k!) · · · (2!) · (1!).

Thus, I0 is uniquely defined. �

Corollary 2.1. I0 in (2.2) is well defined for any nonuniform grid in (2.1):

0 = x0 < x1 < · · · < xk = 1.

Proof. The proof repeats that of Theorem 2.1 except replacing the uniform grid
size h, there, by

hi = xi − xi−1.

Then the linear system determining f(x) is

⎛
⎜⎜⎜⎜⎝

(
∑k

i=1 hi)
k · · · (

∑k
i=k−1 hi)

k hk
k

(
∑k

i=1 hi)
k−1 · · · (

∑k
i=k−1 hi)

k−1 hk−1
k

...∑k
i=1 hi · · ·

∑k
i=k−1 hi hk

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1
...

ck−1

ck

⎞
⎟⎟⎟⎠ = 0.

The coefficient matrix is again a Vandermonde matrix, and its determinant is
nonzero. �

Given k sets of linearly independent nodal values f (i)(0), f (i)(1), i = 0, 1, . . . , k−
1, the interpolation operator I0 defines a set of basis functions. That is, a basis
{φi0,j0} is defined such that

(2.3)
di1

dxi1
φi0,j0(j1) = δi1,i0δj1,j0 , 0 ≤ i1, i0 ≤ (k − 1), j1, j0 = 0, 1.

For example, the 6 nodal basis functions for the C2-P3 space V0 on [0, 1] are

φ0,0 =

⎧⎪⎨
⎪⎩
1− 9

2x
3, 0 ≤ x < 1

3 ,
1
2 + 9

2x− 27
2 x2 + 9x3, 1

3 ≤ x < 2
3 ,

− 9
2 (x− 1)3, 2

3 ≤ x ≤ 1, φ0,0(0) = 1,

(2.4)

φ1,0 =

⎧⎪⎨
⎪⎩
−x(−1 + 3x2), 0 ≤ x < 1

3 ,

− 5
18 + 7

2x− 15
2 x2 + 9

2x
3, 1

3 ≤ x < 2
3 ,

− 3
2 (x− 1)3, 2

3 ≤ x ≤ 1, φ′
1,0(0) = 1,

φ2,0 =

⎧⎪⎨
⎪⎩
− 1

12x
2(−6 + 11x), 0 ≤ x < 1

3 ,

− 1
18 + 1

2x− x2 + 7
12x

3, 1
3 ≤ x < 2

3 ,

− 1
6 (x− 1)3, 2

3 ≤ x ≤ 1, φ′′
2,0(0) = 1,
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φ0,1 =

⎧⎪⎨
⎪⎩

9
2x

3, 0 ≤ x < 1
3 ,

1
2 − 9

2x+ 27
2 x2 − 9x3, 1

3 ≤ x < 2
3 ,

1 + 9
2 (x− 1)3, 2

3 ≤ x ≤ 1, φ0,1(1) = 1,

φ1,1 =

⎧⎪⎨
⎪⎩
− 3

2x
3, 0 ≤ x < 1

3 ,

− 2
9 + 2x− 6x2 + 9

2x
3, 1

3 ≤ x < 2
3 ,

−(x− 1)(2− 6x+ 3x2), 2
3 ≤ x ≤ 1, φ′

1,1(1) = 1,

φ21 =

⎧⎪⎨
⎪⎩

1
6x

3, 0 ≤ x < 1
3 ,

1
36 − 1

4x+ 3
4x

2 − 7
12x

3, 1
3 ≤ x < 2

3 ,
1
12 (x− 1)2(11x− 5), 2

3 ≤ x ≤ 1, φ′′
2,1(1) = 1.

The global basis functions in 1D combines above two local basis functions on the
left and on the right intervals of a node:

(2.5) ϕi(x) =

{
φi,1(x+ 1) −1 ≤ x ≤ 0,

φi,0(x− 0) 0 < x ≤ 1,
i = 0, 1, . . . , k − 1.

We note that, for uniform grids, the 1D Ck−1-Pk finite element space is exactly
the k-th B-spline space, [18, 20]. So we give another proof of the existence of B-
splines in Theorem 2.1. We give the P3 B-spline basis below to show that our C2-P3

basis functions above are truly linear combinations of this (shifted-scaled) B-spline
basis. Let

B0(x) =

⎧⎪⎨
⎪⎩
0 x < −1/2,

1 −1/2 ≤ x < 1/2,

0 1/2 ≤ x.

The k-th B-spline is defined by

Bk(x) =
1

k
(
k + 1

2
+ x)Bk−1(x+

1

2
) +

1

k
(
k + 1

2
− x)Bk−1(x− 1

2
).

Sequentially, we get that

B1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 x < −1,

1 + x −1 ≤ x < 0,

1− x 0 ≤ x < 1,

0 1 ≤ x,

B2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x < −3/2,
1
2 (

3
2 + x)2 −3/2 ≤ x < −1/2,

1
2 (

3
2 + x)( 12 − x) + 1

2 (
3
2 − x)( 12 + x) −1/2 ≤ x < 1/2,

1
2 (

3
2 − x)2 1/2 ≤ x < 3/2,

0 3/2 ≤ x,
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(2.6) B3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < −2,
1
6 (2 + x)3 −2 ≤ x < −1,
2
3 − x2 − 1

2x
3 −1 ≤ x < 0,

2
3 − x2 + 1

2x
3 0 ≤ x < 1,

1
6 (2− x)3 1 ≤ x < 2,

0 2 ≤ x.

We can then combine some B3 functions to get the 6 basis functions above. For
example, the basis function in (2.4) is also

φ0,0(x) = B3(3x− 1) +B3(3x) +B3(3x+ 1), x ∈ (0, 1/3).

One may use nonnodal basis functions like (2.6) directly in solving partial differen-
tial equations. Such a method is called the method of spline finite element [20].

Let a square (or a rectangular) domain Ω ⊂ Rn be partitioned into (kN)n n-
rectangles:

Th = {[x(1)
i1,j1−1, x

(1)
i1,j1

]× · · · × [x
(n)
in,jn−1, x

(n)
in,jn

] | 1 ≤ il ≤ N,(2.7)

1 ≤ jl ≤ k, 1 ≤ l ≤ n}.
Here, for simplicity, we assume a uniform grid of macro-elements:

x
(nl)
il+1,0 − x

(nl)
il,0

= h =
1

N
, x

(nl)
il,jl+1 − x

(nl)
il,jl

=
1

kN
.

But we can allow variable grid points inside a macro-element (consisting of kn

n-dimensional rectangles), or variable macro-element sizes, such as one in our nu-
merical test, shown in Figure 6. We define a piecewise Qk finite element space
by

(2.8) Vh = {
N∑

i1,...in=0

k−1∑
j1,...,jn=0

ci1,...,inj1,··· ,jnϕ
i1,...,in
j1,··· ,jn(x1, . . . , xn)}.

Here ϕi1,...,in
j1,··· ,jn is the shifted, scaled tensor product basis function:

(2.9) ϕi1,...,in
j1,··· ,jn(x1, . . . , xn) = hj1ϕj1(

x1 − x
(1)
i1

h
) · · ·hjnϕjn(

xn − x
(n)
in

h
).

Here x
(1)
i1

= x
(1)
i1,0

is an end point of macro-element
Outside the domain Ω, we naturally drop the part of definition of ϕj1,··· ,jn .

3. The full Ck−1
-Qk space

We will show that the finite element space Vh defined in (2.8) is truly a Ck−1

space. We define an interpolation operator from Ck−1 to Vh. By this operator, we
will show the space (2.8) is the whole Ck−1-Qk on the grid.

Given the n-dimensional rectangular grid Th in (2.7), the mathematical (ab-
stract) definition of Ck−1-Qk is

(3.1) Ṽh = {v ∈ Ck−1(Ω) | v|K ∈ Qn
k ∀K ∈ Th},

where Qn
k is the n-dimensional Qk space. Is Ṽh = Vh (defined in (2.8))? If we show

Vh ⊂ Ck−1(Ω), then Ṽh ⊃ Vh, as the latter is the full space. On the other side, if

the interpolation of a Ṽh function in Vh is itself, then Ṽh ⊂ Vh.
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We define the nodal interpolation operator

Ih : Ck−1(Ω) → Vh, v 
→ Ihv,(3.2)

Ihv =

N∑
i1,...in=0

k−1∑
j1,...,jn=0

ci1,...,inj1,··· ,jnϕ
i1,...,in
j1,··· ,jn(x1, . . . , xn),(3.3)

where the coefficients are nodal values:

ci1,...,inj1,··· ,jn =
∂j1

∂xj1
1

· · · ∂jn

∂xjn
n

v(x
(1)
i1

, . . . , x
(n)
in

).

Theorem 3.1. The space Vh defined in (2.8) is a Ck−1 space.

Proof. Usually, Ck−1 means the continuity of all derivatives up to the total order
(k − 1), or to the separated order (k − 1), i.e.,

∂j1

∂xj1
1

· · · ∂jn

∂xjn
n

v for 0 ≤ j1 + · · ·+ jn ≤ k − 1, or 0 ≤ j1, . . . , jn ≤ k − 1.

Here we take the latter definition which is stronger. For any v ∈ Vh, it is a linear
combination of the basis functions. We only need to check if all basis functions are
Ck−1. All the 1D basis φi,j in (2.3) and the ϕi in (2.5) have all their derivatives up

to order k− 1 matching on the two sides of each grid point, i.e. ϕ
(j)
i is continuous.

So, the shifted scaled product is also continuous by (2.9),

∂j1

∂xj1
1

· · · ∂jn

∂xjn
n

ϕ
i′1,...,i

′
n

j′1,··· ,j′n

=
hj1

hj′1

∂j1

∂xj1
1

ϕj′1
(
x1 − x

(1)
i′1

h
) · · · h

jn

hj′n

∂jn

∂xjn
n

ϕj′n(
xn − x

(n)
i′n

h
),

as it is a product of continuous functions (each remains constant in the other n− 1

directions). Thus ϕi1,...,in
j1,··· ,jn ∈ Ck−1. So v ∈ Ck−1. �

Theorem 3.2. The space Vh defined in (2.8) is the full Ck−1-Qk space, i.e., Vh =

Ṽh, defined in (3.1).

Proof. By Theorem 3.1, Vh ⊂ Ṽh. To prove the reverse, we show that Ihv = v ∈ Vh

for every v ∈ Ṽh.
To illustrate the method, we first consider the case n = 2, k = 3 and N = 1,

shown in Figure 2. By the data of v, Ihv is well defined. As v ∈ C2([0, 1]2), its
restriction on line BD (see Figure 2) is a 1D C2-P3 function. By Theorem 2.1,
v ≡ Ihv on line BD. Next, when ∂(v−Ihv)/∂y restricted on line BD, calling it wy,
it is still a C2-P3 function in x. As ∂jwy(0) = ∂jwy(1) = 0, j = 0, 1, 2, by Theorem
2.1, wy ≡ 0. Once again, wyy = ∂2(v − Ihv)/∂y

2|BD ≡ 0. Thus, all 9 interpolation
data of v − Ihv are 0 at an internal point C of BD. In the same fashion, v − Ihv
has all 9 interpolation data 0 at point A; cf. Figure 2. Repeating the argument on
AC, we find v− Ihv has all 9 interpolation data 0 at point F . We conclude v ≡ Ihv
on square CDEF , as all their 36 interpolation values at four corners are identical
(while they have 4× 4 dof). Hence v = Ihv.

We now formally show, for all v ∈ Ṽh,

(3.4) Ihv = v,
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Figure 2. Interpolating a C2-Q3 function v on one macro-
element, in 2D.

by a space-dimension reduction method. We examine the difference u = Ihv− v on

any macro-element K = [x
(1)
i1,0

, x
(1)
i1,k

]× · · · × [x
(n)
in,0

, x
(n)
in,k

] which consists of kn small
squares. When restricted on one boundary edge of K,

[x
(1)
i1,0

, x
(1)
i1,k

]× {x(2)
i2,j2

} × · · · × {x(n)
in,jn

}
where j2, · · · , jn = 0 or k, Ihv depends only on the data of v at the two end points
of the edge, as all other basis functions vanish at the edge. Ihv and v are both
1D Ck−1-Pk functions on the k intervals of the edge of K. By Theorem 2.1, Ihv
is the unique interpolation I0v of v, defined in (2.2), i.e., Ihv − v = 0 on the edge.
Repeating the above argument for any partial derivatives (normal to the edge) of
order smaller than k, when restricted on the edge, we get

∂j2

∂xj2
1

· · · ∂jn

∂xjn
n

(Ihv − v)(x1, x
(2)
i2,0

, . . . , x
(n)
in,0

) ≡ 0, x1 ∈ [x
(1)
i1,0

, x
(1)
i1,k

]

for all 0 ≤ j2, · · · , jn ≤ k − 1. Now, restricted on a face-internal edge,

{x(1)
i1,l1

} × [x
(2)
i2,0

, x
(2)
i2,k

]× {x(3)
i3,j3

} × · · · × {x(n)
in,jn

}, 0 < l1 < k,

on a face square of K,

[x
(1)
i1,0

, x
(1)
i1,k

]× [x
(2)
i2,0

, x
(2)
i2,k

]× {x(3)
i3,j3

} × · · · × {x(n)
in,jn

}
where j3, · · · , jn = 0 or k, we have the two end points on the boundary edges
considered above. So Ihv matches v with all end point data, proved above, and
Ihv = v on such an internal edges. Repeating this argument for the two functions
and their derivatives, we see that Ihv, v and all their derivatives match at all (k+1)n

edges. Now, on each square of K we get

[x
(1)
i1,0

, x
(1)
i1,k

]× [x
(2)
i2,0

, x
(2)
i2,k

]× {x(3)
i3,j3

} · · · × {x(n)
in,jn

}

where j3, · · · , jn = 0 or k, u ∈ Q2
k but with its value all up to k − 1 (normal,

tangential, or mixed) order derivatives of 0. So u ≡ 0 on the square. Then we work
on 3D face-cubes of K, and so on, until its n-dimensional face, which is itself. Thus
u = 0 on K and on Ω. Therefore v = Ihv ∈ Vh, i.e., Ṽh ⊂ Vh. �

4. The full order of approximation

By the interpolation operator Ih, we will show the Ck−1-Qk space has the full
order of approximation property. Finally, we use the element for solving 2k-th order
Laplace equations and show its optimal order of convergence.
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In (3.2), interpolation Ih uses the cross derivative of order (k − 1)n:

∂k−1

∂xk−1
1

· · · ∂k−1

∂xk−1
n

f(x
(1)
i1

, . . . , x
(n)
in

).

By the Sobolev inequality [5], the function has to be in C(k−1)n(Ω) or

(4.1) f ∈ H(k−1)n+n/2+ε(Ω).

For example, for the 3D C3-Q4 space, the function f to be interpolated must
be in H13.5+ε. Since the smoothness is too high, we cannot develop the needed
approximation for weak solutions of 2k-th order PDE. That is, for the 3D C3-
Q4 space, the function u to be interpolated is assumed only in H4. Therefore, a
generalization of Ih, i.e, averaging Ih is needed (still denoted as Ih). It was first
done by Scott and Zhang [19], for Lagrange finite elements, and it was generalized to
Hermite elements by Girault and Scott [8]. We extended the Girault-Scott operator
to high-order derivative (more than 2) interpolation. That is, the (k − 1)n nodal
derivatives are defined by averaging the boundary data on a Rn−1 face square of
Hk weak functions.

For each set of cross-derivatives D(α2,··· ,αn) = {∂αf | 0 ≤ α1 ≤ k−1}, we need a

set of dual basis of Ck−1-Qk polynomials. First we consider the nodal interpolation
of the function at face vertexes on K1, which is the first face of macro-element K

indexed by the corner vertex (x
(1)
i1,0

, . . . , x
(n)
in,0

):

∂l1

∂xl1
1

∂α2

∂xα2
2

· · · ∂
αn

∂xαn
n

f(x
(1)
i1,0

, x
(2)
in,l2

. . . , x
(n)
in,ln

),

0 ≤ l1 ≤ k − 1, l2, ..., ln = 0, or k.

The linear functional of taking nodal value at (x
(1)
i1,0

, . . . , x
(n)
in,0

), when restricted to

the Hilbert space Vh with a weighted L2 inner product on K1, is represented by a

Riesz vector ψ
(0,α2,...,αn)

(x
(2)
i2,l2

,...,x
(n)
in,ln

),K1

:

∫
K1

v(x)ψ
(0,α2,...,αn)

(x
(2)
i2,l2

,...,x
(n)
in,ln

),K1

(x)b(1)(x)dx = v(x
(1)
i1,0

, x
(2)
i1,l2

. . . , x
(n)
in,ln

),

for all v ∈ Vh, where the weight is a bubble function defined by

(4.2) b(1)(x) =

n∏
j=2

∏
l=0,k

(xj − x
(j)
ij ,l

)k−1.

The reason for introducing the bubble function as weight is to avoid boundary
integrals when doing integration by parts in (4.3) below. Otherwise, if boundary
integrals appear, one would require a higher regularity for the interpolated func-
tion f so that the traces of its higher order derivatives is L1-integrable. These
Riesz representation vectors form a dual basis whose action is to produce the L2-
projection, preserving Ck−1-Qk (or its derivative spaces) polynomial v on the Rn−1

face-square at the interpolation point; cf. [10, 23] for computing such a dual basis
function. By using a macro-element whose derivative is no longer in the original
piecewise polynomial space, we cannot use one set of dual basis as in Girault-Scott
[8], as all derivatives of a polynomial there are still a polynomial of a lower degree.
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Now, the Dα nodal derivative of a weak Hk function f is defined by

∂l1

∂xl1
1

∂α2

∂xα2
2

· · · ∂αn

∂xαn
n

Ihf(x
(1)
i1,0

, x
(2)
i2,l2

, . . . , x
(n)
in,l2

) = (−1)|α|−l1

∫
K

∂l1f

∂xl1
1

(x)(4.3)

· ∂α2

∂xα2
2

· · · ∂αn

∂xαn
n

[
ψ
(0,α2,...,αn)

(x
(2)
i2,l2

,...,x
(n)
in,ln

),K1

(x)b(1)(x)

]
dx.

Similarly, by rotating x
(1)
i1,0

and x
(1)
ij ,0

and by rotating α1 with another index αj , we

define all interpolation values on K. Globally, for each vertex x of Th, we choose
a boundary square face in K ∈ Th if x ∈ ∂Ω, otherwise a random Rn−1 square
face containing x. The interpolation Ihf is defined for the Hk function by the Ihf
nodal values as in (3.2). In particular, Ihf preserves the homogeneous boundary
conditions and preserves Vh functions,

Ihv = v ∀v ∈ Vh.

Theorem 4.1. Let u ∈ Hr for some r ≥ k, then

(4.4)

k∑
i=0

hi−k|u− Ihu|Hi(Ω) ≤ Chmin{1,r−k}|u|Hr(Ω),

where Ih is defined in (3.2) with nodal values evaluated by (4.3), interpolating u to
the space Vh, defined in (2.8).

Proof. First, by (4.3), following the scaling argument of Scott-Zhang [19] or Girault-
Scott [8] on the dual basis functions, one can show the stability of Ih:

|Ihu|Hr(Ω) ≤ C|u|Hr(Ω).

Next, by (3.4), Ih preserve Ck−1-Qk polynomials locally, i.e., Ihu = u if u ∈ Qk(SK)
where SK is the union of all macro-elements touching K. Thus, by existence of
local optimal-approximation polynomials, it is standard to show (4.4); cf. [19] for
details. �

We apply the Ck−1-Qk element to solve the following k-harmonic equations:

(−1)kΔku = g, in Ω ⊂ Rn,(4.5)

u = · · · = ∂k−1

∂nk−1
u = 0, on ∂Ω.(4.6)

The finite element problem in the weak variational form for (4.5) is: find uh ∈ Vh

such that

(4.7)

∫
Ω

∇kuh∇kvh =

∫
Ω

gvh ∀vh ∈ Vh.

Theorem 4.2. Let u solve (4.5) and uh ∈ Vh solve (4.7). Assume that u ∈ Hr for
some r > k, then

(4.8) |u− uh|Hk(Ω) ≤ Chmin{1,r−k}|u|Hr(Ω).

In addition, assume the solution of the dual problem has the regularity Hr. Then,

(4.9) |u− uh|Hm(Ω) ≤ Chmin{2,2(r−k)}|u|Hr(Ω), m = 0, . . . , k − 1.
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Remark 4.1. An Hr (r > k) regularity is assumed for (4.9). For smooth domains,
the regularity Hk+s can be proved for g ∈ Hs−k(Ω) and for any s > 0, in any
dimension; see for instance, [7] and the references therein. A regularity of Hk+s

with s ∈ (0, 1/2) is obtained for n-dimensional k-harmonic equations on Lipschitz
domains in [3, Theorem 1]. In a highly-referenced work [13], is shown an Hk+1/2

regularity for the n-dimensional Laplace operator on Lipschitz domains. For bihar-
monic equations, an Hk+1/2 regularity is also obtained on n-D Lipschitz domains
in [1]. Some special regularity results on 3D polyhedral domains can also be found
in [6, 7].

Proof of Theorem 4.2. As Vh ⊂ Hk by Theorem 3.1, uh is the Galerkin projection
of u in the subspace. By Céa lemma, and (4.4),

|u− uh|Hk = inf
vh∈Vh

|u− vh|Hk ≤ Chmin{1,r−k}|u|Hr(Ω).

For one lower order normal estimate, we use the standard duality argument to
obtain

|u− uh|2Hk−1 ≤ Chmin{1,r−k}|w|Hr |u− uh|Hk(4.10)

≤ C|u− uh|Hk−1hmin{2,2(r−k)}|u|Hr(Ω),

where w is the solution of (4.7) with g = u−uh. For the error bound (4.9) in further

lower order norms, we use Poincaré inequality so that, for u, uh ∈ Hk(Ω)∩Hk−1
0 (Ω),

|u− uh|Hm ≤ C|u− uh|Hk−1 , 0 ≤ m ≤ k − 1.

We note that the error bound (4.9) for m < k − 1 is no longer of optimal order,
i.e., is of a higher order than that of the interpolated error, |u − Ihu|Hm . But the
estimate is sharp, confirmed by the numerical test, in the next section. This can be
shown following a trick of [12]. That is, (4.9) can be shown as a lower bound. �

5. Numerical tests

We compute four examples.

5.1. Example 1. In the first example, we solve (4.5) with k = 2, n = 2, and the
exact solution

(5.1) u = 214x3(1− x)2y4(1− y)2.

So we use the C1-Q2 finite element. The initial grid is one square which is refined
into 4 subsquares as the macro-element. Then we use the nested refinement to get
higher level grids. The errors on various level grids and the orders of convergence are
listed in Table 1. The finite element equation is solved by the conjugate gradient
method, and the number of iterations are listed also in Table 1. The orders of
convergence in H1 and H2 norm are truly optimal, as proved by Theorem 4.2.

5.2. Example 2. In the second example, we solve the triharmonic equation (4.5)
where n = 2 and k = 3, i.e.,

−Δ3u = g.

The exact solution is

(5.2) u(x, y) = eπy sin(πx),

which provides nonhomogeneous boundary conditions in (4.6). The exact solution
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Table 1. The errors eh = Ihu − uh and orders O(hr) of conver-
gence by the 2D C1-Q2 element for (5.1), Example 1.

grid ‖eh‖L2 hr |eh|H1 hr |eh|H2 hr #CG
2 0.69506 0.0 3.90929 0.0 33.7811 0.0 7
3 0.42990 0.7 3.03623 0.4 42.9961 0.0 40
4 0.12061 1.8 0.89970 1.8 24.9250 0.8 139
5 0.03088 2.0 0.23386 1.9 12.9061 0.9 430
6 0.00776 2.0 0.05902 2.0 6.5088 1.0 1514
7 0.00194 2.0 0.01479 2.0 3.2614 1.0 5869

Figure 3. u and (u− uh) for (5.2) at level 3.

is plotted in Figure 3. We apply the 2D C2-Q3 finite element to solve the problem.
The errors in various norms and the orders of convergence are listed in Table 2. The
method does converge with the optimal order h in H3 norm, as shown in Theorem
4.2, and also h2 in H2 norm.

5.3. Example 3. In this example, we solve the triharmonic equation

−Δ3u = 0

on the L-shaped domain shown in Figure 4, with Dirichlet boundary conditions
(4.6) given by the exact solution

(5.3) u(x, y) = r2.5 sin 2.5θ,
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Table 2. The errors eh = Ihu − uh and orders O(hr) of conver-
gence by the 2D C2-Q3 element for (5.2), Example 2.

grid ‖eh‖L2 hr |eh|H1 hr |eh|H2 hr |eh|H3 hr

2 0.01131 0.0 0.0802 0.0 0.8029 0.0 10.679 0.0
3 0.00382 1.6 0.0241 1.7 0.2894 1.5 6.585 0.7
4 0.00099 1.9 0.0058 2.0 0.0796 1.9 3.509 0.9
5 0.00025 2.0 0.0014 2.0 0.0206 1.9 1.821 0.9
6 0.00006 2.0 0.0003 2.0 0.0052 2.0 0.931 1.0

Figure 4. The level 3 grid for the L-shape domain in Example 3,
for (5.3).

Table 3. The errors eh = Ihu − uh and orders O(hr) of conver-
gence by the 2D C2-Q3 element for singular solution (5.3), Exam-
ple 3.

grid ‖eh‖L2 hr |eh|H1 hr |eh|H2 hr |eh|H3 hr

2 0.0036 0.0 0.02377 0.0 0.2048 0.0 2.523 0.0
3 0.0018 1.0 0.01057 1.2 0.0983 1.1 1.896 0.4
4 0.0009 0.9 0.00510 1.1 0.0459 1.1 1.374 0.5
5 0.0004 1.0 0.00247 1.0 0.0214 1.1 0.983 0.5
6 0.0002 1.0 0.00119 1.1 0.0100 1.1 0.698 0.5

where (r, θ) are polar coordinates. We apply the 2D C2-Q3 finite element to solve
the problem. Due to a singularity at the origin, we can see a large error near it,
in Figure 5. But the error pollutes further away in the triharmonic equation, com-
paring to that of harmonic and biharmonic equations. The errors in various norms
and the orders of convergence are listed in Table 3. The method does converge
with the optimal order h1/2 in H3 norm, under the singularity. As the regularity
index in (4.10) is k+ 1/2 instead of k+ 1, the order of convergence in lower norms
is 2(1/2) = 1 instead of 2, verified by the numerical data in Table 3.
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( 1, 1, 0.00080)

(-1,-1,-0.00235)

Figure 5. The error for the singular solution (5.3) on the level-4
grid in Example 3.

5.4. Example 4. In this example, we solve the triharmonic equation

−Δ3u = 0

on the L-shaped domain with Dirichlet boundary conditions (4.6) given by the exact
solution

(5.4) u(x, y) = x6 − y6.

We apply the 2D C2-Q3 finite element on uniform grids on graded grids; see Figure
6. This is because a large error occurs at the boundary. The solution, the error on
a uniform grid, and the error on a graded grid are plotted in Figure 7. The errors
in various norms and the orders of convergence are listed in Table 4, on both family
of grids.

Figure 6. The level 3, level 4 and level 5 graded grids for problem
(5.4) in Example 4.



RECTANGULAR FINITE ELEMENT 577

Figure 7. The solution (top) for (5.4), the error on the 4-th level
uniform grid, and the error on the 4-th level graded grid (see Figure
6), in Example 4. The error on the graded grid is about 1/2 of that
on the uniform grid.
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Table 4. The errors eh = Ihu − uh and orders O(hr) of conver-
gence by the 2D C2-Q3 element for solution (5.4), Example 4.

grid ‖eh‖L2 hr |eh|H1 hr |eh|H2 hr |eh|H3 hr

On uniform grids, cf. Figure 4.
2 0.008674 0.0 0.0496 0.0 0.4058 0.0 4.762 0.0
3 0.002472 1.8 0.0137 1.9 0.1377 1.6 2.834 0.7
4 0.000634 2.0 0.0034 2.0 0.0384 1.8 1.553 0.9
5 0.000116 2.5 0.0006 2.4 0.0092 2.1 0.808 0.9

On graded grids, cf. Figure 6.
2 0.008185 0.0 0.0475 0.0 0.3971 0.0 4.750 0.0
3 0.001974 2.1 0.0110 2.1 0.1194 1.7 2.731 0.8
4 0.000381 2.4 0.0020 2.4 0.0271 2.1 1.382 1.0
5 0.000093 2.0 0.0005 2.0 0.0061 2.1 0.639 1.1
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