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LATTICE APPROXIMATION FOR STOCHASTIC REACTION

DIFFUSION EQUATIONS WITH ONE-SIDED

LIPSCHITZ CONDITION

MARTIN SAUER AND WILHELM STANNAT

Abstract. We consider strong convergence of the finite differences approxi-
mation in space for stochastic reaction diffusion equations in one dimension
with multiplicative noise under a one-sided Lipschitz condition only. The equa-
tion may be additionally coupled with a noisy control variable with global Lip-
schitz condition but no diffusion. We derive convergence with an implicit rate
depending on the regularity of the exact solution. This can be made explicit
if the variational solution has more than its canonical spatial regularity. As
an application, spatially extended FitzHugh-Nagumo systems with noise are
considered.

1. Introduction

Stochastic partial differential equations arise as a model in many scientific fields
and the theory of numerical solutions to such equations is growing successfully.
However, in applications it is often the case that particular examples such as sto-
chastic reaction diffusion equations, even with very simple structure of the nonlinear
term, fail to fit in the assumptions of the majority of publications in this research
area. In this article, we study such an SPDE of reaction diffusion type

v̇(t, ξ) = ∂2
ξv(t, ξ) + φ1

(
ξ, v(t, ξ), w(t, ξ)

)
+ b1

(
ξ, v(t, ξ), w(t, ξ)

)
η1(t, ξ),

ẇ(t, ξ) = φ2

(
ξ, v(t, ξ), w(t, ξ)

)
+ b2

(
ξ, v(t, ξ), w(t, ξ)

)
η2(t, ξ),

(1.1)

for t ≥ 0, ξ ∈ (0, 1), where the nonlinear drift term for v satisfies a one-sided
Lipschitz condition only. Here, ηj(t, ξ) are some Gaussian noise processes to be
precisely defined later. This system consists of two variables v and w, where the
former satisfies some semi-linear stochastic evolution equation and the latter is a
kind of control variable coupled to v in an equation without diffusion but global
Lipschitz condition on the coefficients. The motivation for such a system comes from
the field of neurobiology. In particular, we consider the spatially extended stochastic
FitzHugh-Nagumo system, modeling the propagation of the action potential in the
axon of a neuron; see e.g. [3, 14] and Section 6 for details.

The purpose of this article is to prove strong convergence, i.e., convergence in
the pth mean, including explicit error estimates of a spatial approximation scheme,
both easy to implement and widely used in applied sciences. We consider the well-
known finite difference method, which has been studied by many authors, but to the
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best of our knowledge there is no global convergence result with explicit rates if the
nonlinear drift term is not Lipschitz continuous. Crucial references in the literature
studying similar equations to (1.1) (always with w = 0) are Gyöngy [6], where
strong convergence with rates and uniform convergence in probability without a
rate is proven, assuming a global Lipschitz condition on φ1 and b1 and no global
Lipschitz condition on φ1 but constant b1, respectively. Also see Pettersson and
Signahl [18] for a similar result with multiplicative noise. We also want to mention
Shardlow [20] for strong convergence with rates under global Lipschitz condition
on φ1 and additive space-time white noise, as well as Hausenblas [9] for similar
results in abstract Banach spaces. A further reference is a series of articles by
Gyöngy and Millet [7, 8], where the authors work in the variational approach and
incorporate various spatial approximation schemes for SPDEs driven by a finite
dimensional noise. However, equation (1.1) is beyond their results since it excludes
polynomially growing nonlinearities. On the other hand, it is worth mentioning
that using the mathematically more elegant spectral Galerkin approach there are
existing results which incorporate our one-sided Lipschitz assumption. We refer
to Lord and Rougement [15], Jentzen [13], and Liu [16] for strong and pathwise
convergence results with explicit rates. Generally speaking, there are only a few
references concerning the numerical approximation of nonlinear SPDEs without a
global Lipschitz condition and as further examples we include [2] for some local
convergence convergence results for 2D stochastic Navier-Stokes equations and [21]
for applications in the field of neurobiology studying similar equations.

The SPDE (1.1) is studied within the variational approach, see e.g., [19], and
we only use the a priori known regularity of the exact solution to prove strong
pth mean convergence with an implicitly given rate in Theorem 3.1. This rate is
given in terms of the regularity of the exact solution. If there is better a priori
information on the exact solution, this rate can be made explicit in terms of the
approximation parameter. The proof is essentially based on uniform exponential a
priori estimates for the approximating solutions obtained in Propositions 4.2 and
4.3 as well as Itô’s formula for the variational solution, in contrast to the popular
mild solution approach used in most of the references mentioned above.

Also, most of them concern fully discrete schemes, i.e., a discretization of the
space and time domain. We only consider the spatial approximation part, which
reduces the infinite dimensional problem to an SDE on a finite dimensional space,
and then has to be solved with existing theory and the errors accumulate. Never-
theless, let us make a brief comment on the time discretization. One of the most
popular approaches is the Euler-Maruyama scheme because of its simplicity and
low computational effort. However, on the one hand, the finite difference approx-
imation of (1.1) is always a problem of stiff character, thus suggesting the use of
time-implicit solvers. On the other hand, considering the nonlinear term for itself,
it is known that the Euler-Maruyama scheme converges to the exact solution of the
SDE for equations with globally Lipschitz continuous drift and diffusion coefficients.
Of course, also our approximated equation fails to satisfy such a condition. For such
equations with super-linearly growing drift and/or diffusion it was shown recently
by Hutzenthaler, Jentzen, and Kloeden [11] that the Euler-Maruyama approxima-
tions diverge in a strong and weak sense. An obvious remedy for this problem is to
use, e.g., the implicit Euler scheme already suggested for the linear term, which is
known to converge; however, it requires more computational effort than the explicit
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scheme. Again Hutzenthaler, Jentzen, and Kloeden [12] suggest a so-called tamed
Euler scheme that is explicit and computationally less expensive. It is also observed
that the runtime as a function of the dimension grows linearly and quadratic for
the tamed Euler and implicit Euler scheme, respectively. Of course, this favors the
tamed Euler scheme for our high dimensional approximating problem. Thus, we
propose solving (1.1) with a combination of finite differences and a semi-implicit
tamed Euler scheme.

The article is structured as follows. In the next section, we describe the precise
setting and assumptions on the coefficients of (1.1) and state the existence and
uniqueness result for its corresponding abstract stochastic evolution equation in
the sense of variational solutions. In Section 3 we introduce the approximation
scheme and state the main result in Theorem 3.1. Sections 4 and 5 contain the
proof of this theorem. As an application of our results we consider in Section 6 a
spatially extended FitzHugh-Nagumo system with noise studied by Tuckwell [23]
from a more applied point of view. In this article, the impact of noise on the
generation of action potentials and the reliability of faithful signal transmission
was studied. The obtained results depend on the chosen numerical scheme and
Theorem 3.1 now allows us to explicitly quantify the approximation error of the
finite difference approximation used therein. As an illustration for the use of our
result, we state an estimator for the probability of propagation failure based on
numerical observations as well as confidence intervals for this estimator. These
depend on the statistical Monte-Carlo and the numerical approximation error and
are explicitly constructed.

2. Mathematical setting and assumptions

Let (H, ‖·‖H) = L2(0, 1) with scalar product denoted by 〈·, ·〉H and consider the
Laplacian as a linear operator on H, A : D(A) ⊂ H → H, i.e.,(

Av
)
(ξ) := ∂2

ξv(ξ)

equipped with (homogeneous) Neumann boundary conditions in 0 and 1. Corre-
sponding to this, recall the definition of the fractional Sobolev spaces Hθ(0, 1) as

D
(
(−A)

θ
2

)
or for θ > 0 with the equivalent Sobolev-Slobodeckij norm (cf. [22]),

‖u‖Hθ :=

�θ�∑
s=0

‖∂s
ξu‖H +

(∫∫ 1

0

|∂�θ�
ξ u(ξ)− ∂

�θ�
ξ u(ζ)|2

|ξ − ζ|2(θ−�θ�)+1
dζ dξ

) 1
2

.

Define, in particular, the space (V, ‖·‖V ) as H1 with norm ‖u‖2V :=
∫ 1

0
|∂ξu(ξ)|2 dξ

and denote by V ∗ its topological dual, thus we have the Gelfand triplet V ↪→
H ↪→ V ∗ with continuous and dense embeddings. As auxiliary spaces we define
the product spaces V := V × H, H := H × H with V ↪→ H ↪→ V∗ continuously
and densely. In the following, we define the abstract drift and diffusion operators
mapping V to V∗.

It is well known that A can be uniquely extended to A : V → V ∗ via an integra-
tion by parts

V ∗〈Au, v〉V =

∫ 1

0

∂2
ξu(ξ)v(ξ) dξ = −

∫ 1

0

∂ξu(ξ)∂ξv(ξ) dξ ≤ ‖u‖V ‖v‖V .

The functions φ1, φ2 : [0, 1]× R× R → R are continuous and satisfy further condi-
tions specified below in detail. More or less, φ1 is one-sided Lipschitz in the variable
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v, the dependence on the control variable w as well as φ2 are assumed to be globally
Lipschitz. Moreover, some recurrent behavior is required.

Assumption A. There exist constants L, β, γ > 0 and 1 < m ≤ 3 such that

2

(
φ1(ξ1, v1, w2)− φ1(ξ2, v2, w2)
φ2(ξ1, v1, w1)− φ2(ξ2, v2, w2)

)(
v1 − v2
w1 − w2

)
≤ L

(
|v1 − v2|2 + |w1 − w2|2

)
,(A1)

2

(
φ1(ξ, v, w)
φ2(ξ, v, w)

)(
v
w

)
≤ −β|w|2 + L|v|2 − γ|v|m+1,(A2)

and, moreover,

|φ1

(
ξ1, v1, w1

)
− φ1

(
ξ2, v2, w2

)
| ≤ L|w1 − w2|

+ L
(
1 + |v1|m−1 + |v2|m−1

)(
|ξ1 − ξ2|+ |v1 − v2|

)
.

(A3)

|φ2

(
ξ1, v1, w1

)
− φ2

(
ξ2, v2, w2

)
| ≤ L

(
|ξ1 − ξ2|+ |v1 − v2|+ |w1 − w2|

)
,(A4)

for all ξ, ξ1, ξ2 ∈ [0, 1], v, v1, v2, w, w1, w2 ∈ R.

A typical form of φ1 is a polynomial in v of odd degree and negative leading
coefficient together with a linear perturbation in w, for example, φ1(v, w) = v −
v3 − w similarly as in the FitzHugh-Nagumo system described in Section 6. With
these assumptions we can define the Nemytskii operator Φ : V → V∗ by(

Φ(v, w)
)
(ξ) :=

(
φ1

(
ξ, v(ξ), w(ξ)

)
φ2

(
ξ, v(ξ), w(ξ)

))
and estimate for v1, v2 ∈ V , w1, w2 ∈ H with the embedding V ↪→ L∞(0, 1) as
follows:

V∗〈Φ(v1, w1), (v2, w2)〉V ≤ C
(
‖v1‖mV ‖v2‖V +

(
1+‖w1‖H+‖v1‖H

)(
‖v2‖H+‖w2‖H

))
.

Now that the assumptions on the drift of equation (1.1) are stated, let us focus on
the noise process η = (η1, η2), formally given as the derivative of some Qj-Wiener

processes
√
QjWj(t), where (Wj(t))t≥0, j = 1, 2 are two independent cylindrical

Wiener processes onH with respect to an underlying probability space (Ω,F ,Ft,P).
In order to obtain a solution to (1.1) we cannot treat the case of space-time white
noise in neither variable, i.e., Qj = I, but only the case of colored noise with nuclear
covariance operators. This is inevitable in the variational framework used herein
(instead of the also widely used mild formulation) and gives us Itô’s formula for the
square of the H-norm as a major tool. The assumptions on Qj and bj are combined
below.

Assumption B. Let θ1 > 1/2, θ2 ≥ 1 and Qj ∈ L(H), j = 1, 2 be symmetric
and positive definite. Assume that tr(−A)θjQj < ∞, in particular, Qj admits an
integral kernel of the form

(A5)
(
Qju

)
(ξ) =

∫∫ 1

0

qj(ξ, ζ)qj(ρ, ζ)u(ρ) dζ dρ, qj ∈ Hθj
(
(0, 1)2

)
.

In the case of Q2 we assume furthermore that q2 ∈ L∞((0, 1)2). The scalar valued
noise intensities bj : [0, 1] × R × R → R are supposed to be bounded and Lipschitz
continuous, in particular, |bj(ξ, v, w)| ≤ 1 and

(A6) |bj(ξ1, v1, w1)− bj(ξ2, v2, w2)| ≤
(
|ξ1 − ξ2|+ |v1 − v2|+ |w1 − w2|

)
for all ξ, ξ1, ξ2 ∈ [0, 1] and v, v1, v2, w, w1, w2 ∈ R.
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Remark 2.1. The stronger assumptions for Q2 are due to the less regularizing drift
of w and are necessary for the derivation of sufficiently strong a priori estimates of
the approximating solutions.

In the same manner as for the nonlinear drift, we define the Nemytskii operators
Bj(v, w)(ξ) := bj(ξ, v(ξ), w(ξ)), j = 1, 2. Furthermore, let x = (v, w)T ∈ V and

A(x) :=

(
Av
0

)
+Φ(v, w), B(x) :=

(
B1(v, w)

√
Q1

B2(v, w)
√
Q2

)
, W (t) :=

(
W1(t)
W2(t)

)
.

Then, the stochastic evolution equation for X(t) :=
(
v(t), w(t)

)T
corresponding to

equation (1.1) is given by

(2.1) dX(t) = A
(
X(t)

)
dt+ B

(
X(t)

)
dW (t), X(0) = x0.

Existence and uniqueness of a solution for such an equation can be studied in the
variational framework (see for example [19]), in particular, a recent extension in
[17]. The following theorem is a corollary to [17, Theorem 1.1].

Theorem 2.2. Suppose T > 0, x0 ∈ Lp(Ω,F ,P;H), p ≥ 2m, and Assumptions
A and B are satisfied. Then, equation (2.1) has a unique variational solution
(X(t))t∈[0,T ] which satisfies

E

[
sup

t∈[0,T ]

‖X(t)‖pH +

∫ T

0

‖X(t)‖2V dt

]
< ∞.

Proof. We have to verify the conditions (H1)–(H4) in [17]. Of course, for x1, x2, x3 ∈
V the map s �→ V∗〈A(x1 + sx2), x3〉V is continuous on R, hence (H1) holds. Fur-
thermore, we can easily obtain the monotonicity of A by the one-sided Lipschitz
condition (A1)

2 V∗〈A(x1)−A(x2), x1 − x2〉V ≤ −2‖v1 − v2‖+ 2L‖x1 − x2‖2H.

Moreover, B is Lipschitz continuous in the Hilbert-Schmidt norm ‖·‖L2
since

‖B(x1)− B(x2)‖L2(H)

≤
∑
j

‖Bj(v1, w1)−Bj(v2, w2)‖L(Hθj ,H)‖
√
Qj‖L2(H,Hθj )

≤ cθj‖x1 − x2‖H
∑
j

(
tr(−A)θjQj

) 1
2 .

(2.2)

The latter inequality holds because of the embedding Hθ(0, 1) ↪→ L∞(0, 1) for
θ > 1

2 with constant cθ. Thus, we have verified (H2) with ρ ≡ 0. (A2) together
with the fact that ‖B(x)‖L(H) ≤ 1 implies

2 V∗〈A(x), x〉V + ‖B(x)‖2HS ≤ −2‖x‖2V + (L+ 2)‖x‖2H + trQ
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for all x ∈ V and (H2) holds with α = 2. With (A3) and (A4) the matching growth
condition is

‖A(x)‖V∗ ≤ ‖x‖V + sup
‖u‖V =1

∫ 1

0

|φ1(v, w)u|(ξ) dξ + sup
‖u‖H=1

∫ 1

0

|φ2(v, w)u|(ξ) dξ

≤ ‖x‖V + C sup
‖u‖V =1

∫ 1

0

|v(ξ)|m|u(ξ)| dξ + C sup
‖u‖H=1

∫ 1

0

(
1 + |w(ξ)|+ |v(ξ)|

)
|u(ξ)| dξ

≤ ‖x‖2V + c1C‖v‖V
(∫ 1

0

|v(ξ)|2m−2 dξ
) 1

2

+ C
(
1 + ‖w‖H + ‖v‖H

)
,

where we used the embedding V ↪→ L∞(0, 1). The latter is finite if m ≤ 3, hence

‖A(x)‖2V∗ ≤ C
(
1 + ‖x‖2V

)(
1 + ‖x‖2m−2

H
)

and condition (H4) in [17] holds. This condition determines the lower bound p ≥
(2m− 2) + 2 = 2m for the integrability of the initial condition x0. �

3. The finite differences scheme and the main result

In this section we briefly describe the approximation scheme and state the main
convergence result in Theorem 3.1. Equation (2.1) is spatially approximated using
an equidistant grid given by 1

n{0, . . . , n}, approximating the domain (0, 1), and the

vectors vn, wn ∈ R
n+1 denote the functions v and w evaluated on this grid. Further-

more, we introduce the spaces Vn
∼= R

n+1 with the discrete boundary conditions
u1 − u0 = un − un−1 = 0 corresponding to the homogeneous Neumann boundary.
We equip Vn with the semi-norm ‖v‖2n := n

∑n
k=1(vk−vk−1)

2. The finite difference
approximation An of A is just the discrete Laplacian, given by

(Anv)k := n2(vk+1 − 2vk + vk−1), 1 ≤ k ≤ n− 1, v ∈ Vn

together with the appropriate boundary values (Anv)0 = n2(v1 − v0), (A
nv)n =

n2(vn − vn−1) which are 0 for v ∈ V n. This allows us to imitate the variational
approach in the discrete setting since a summation by parts formula holds, i.e.,

(3.1) 1
n

n∑
k=0

(
Anv

)
k
uk = −n

n∑
k=1

(vk − vk−1)(uk − uk−1)

for all v ∈ V n, u ∈ R
n+1. The nonlinearities are simply evaluated pointwise, i.e.,

φn
j (v, w) :=

(
φj

(
k
n , vk, wk

))
0≤k≤n

and bnj (v) := diag
(
bj
(
k
n , vk, wk

))
0≤k≤n

for v, w ∈ Vn, j = 1, 2 where by diag v we denote the diagonal matrix with the
entries of the vector v on the main diagonal. In the next step let us construct
the approximating noise in terms of the given realization of the driving cylindrical
Wiener processes (Wj(t))t≥0, j = 1, 2. Recall that

(3.2) 〈Wj(t),
√
n1[ k−1

n , kn )〉H =: βj,k(t), 1 ≤ k ≤ n

defines a family of 2n iid real valued Brownian motions. The spatial covariance
structure given by the kernels qj is discretized as

qnj,k,l := n2

∫ k
n

k−1
n

∫ l
n

l−1
n

qj(ξ, ζ) dζ dξ, 1 ≤ k, l ≤ n,
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together with qnj,0,l := 0, 1 ≤ l ≤ n. With this discrete covariance matrix we can

replace q by a piecewise constant kernel, i.e., for 1 ≤ k ≤ n and ξ ∈
[
k−1
n , k

n

)
,∫ 1

0

qj(ξ, ζ)Wj(t, ζ) dζ �
n∑

l=1

qnj,k,l

∫ 1

0

1[ l−1
n , l

n )(ζ)Wj(t, ζ) dζ

= 1√
n

n∑
l=1

qnj,k,l〈Wj(t),
√
n1[ l−1

n , l
n )〉 = 1√

n

n∑
l=1

qnj,k,lβj,l(t) =:
(√

Qn
j PnWj(t)

)
k
,

where Pnh = (〈h,√n1[ l−1
n , l

n )〉)1≤l≤n. Denote by Wn
j (t) = PnWj(t) the resulting

n-dimensional Brownian motions and the finite dimensional system of stochastic
differential equations approximating equation (2.1) or rather (1.1) is

dvn(t) =
[
Anvn(t) + φn

1

(
vn(t), wn(t)

)]
dt+ bn1

(
vn(t), wn(t)

)√
Qn

1 dW
n
1 (t),

dwn(t) =
[
φn
2

(
vn(t), wn(t)

)]
dt+ bn2

(
vn(t), wn(t)

)√
Qn

2 dW
n
2 (t).

(3.3)

Standard results on stochastic differential equations imply the existence of a unique
strong solution (vn(t), wn(t)) to (3.3); see e.g., [19, Chapter 3]. In order to formu-
late the convergence result, we embed the processes vn and wn into the space
C([0, T ], V ) by linear interpolation with respect to the space variable ξ. Given
v ∈ Vn, define

ṽ(ξ) := (nξ − k + 1)vk + (k − nξ)vk−1, ξ ∈
[
k−1
n , k

n

]
.

Denote by ιn : Vn → V ; v �→ ṽ the embedding given above. Furthermore, define

X̃n(t) :=

(
ṽn(t)
w̃n(t)

)
and En(t) := X(t)− X̃n(t).

Theorem 3.1. Suppose Assumptions A and B hold, v0 ∈ L∞(Ω,F ,P;C([0, 1]))
and w0 ∈ L∞(Ω,F ,P;C1([0, 1])). Then for every 1 ≤ p < ∞ there exists a finite
constant C = C(v0, w0, p, T,Q, L, β, γ) such that

E

[
sup

t∈[0,T ]

‖En(t)‖pH

] 1
p

≤ C

(
E

[
‖En(0)‖2pH

]
+ E

[(∫ T

0

In
(
v(t)

)2
dt
)p

] 1
2
) 1

2p

which converges to 0 as n → ∞. Denote by v′(t, ξ) = ∂ξv(t, ξ) the first derivative
with respect to ξ, then the rate of convergence is implicitly given by the expression

In(v(t)) :=
( n∑

k=1

∫ k
n

k−1
n

(
v′(t, ξ)− v′

(
t, ξ ± 1

n

))2

dξ
) 1

2

.

If, in addition, v ∈ Xα := Lp∗
(Ω,F ,P;L2([0, T ], H1+α)) for some α > 0 and

1 < p∗ < ∞, then the rate of convergence is explicitly given by

E

[
sup

t∈[0,T ]

‖En(t)‖pH

] 1
p

≤ C3.1

(
E

[
‖En(0)‖2pH

] 1
2p

+ n− 1
2 min{1,α}

)

for all p < p∗ and some constant C3.1 = C(v0, w0, p, p
∗, T,Q, L, β, γ, ‖v‖Xα

).

Remark 3.2. (i) Existence and uniqueness for solutions to (2.1), in particular, the
verification of the conditions in the variational framework, relies on Sobolev
embeddings. Hence generalizations to dimension d ≥ 2 are more difficult
and especially m = m(d) is a decreasing function of d. In particular,
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m(2) = m(3) = 7/3; see [17, Example 3.2]. For example, the FitzHugh-
Nagumo system studied in Section 6 as a relevant neurobiological applica-
tion is currently not covered in d ≥ 2.

(ii) The calculus for the error estimation essentially stays the same if we a priori
assume the existence of analytically strong solution with Itô’s formula for
‖X(t)‖2H. Thus, a separation of existence and uniqueness of solutions and
the numerical approximation may be appropriate to study the multivariate
case. Also, note that the condition m ≤ 3 used in the proof of Theorem
3.1 in Step 3 is dimension independent.

(iii) For the error analysis in the multivariate case it is crucial how the approxi-
mation of the linear part and the covariance operator generalize. However,
this is yet to be done.

4. Uniform a priori estimates

In addition to the a priori estimates in Theorem 2.2, the proof of Theorem 3.1
requires such estimates corresponding to the approximating solutions ṽn and w̃n.
These estimates are formally obtained by applying Itô’s formula to the square of
the H-norm and we will do the same in the discrete case and obtain an exponential
a priori estimate for the L2([0, T ], V )-norm of ṽn and the discrete lm+1-norm of vn

uniform in the parameter n. Moreover, we derive uniform a priori estimates for w̃n

in Lp(Ω,F ,P;L∞([0, T ], V )) for any 1 ≤ p < ∞. For a concise statement of the
results let us introduce the notation

lnp (v) :=
1
n

n∑
k=1

|vk|p, v ∈ Vn, 1 ≤ p < ∞.

Lemma 4.1. Let n ∈ N. The approximating solution (vn(t), wn(t)) satisfies the
estimate

E

[
ln2
(
vn(t)

)
+ ln2

(
wn(t)

)
+ 2

∫ t

0

‖vn(t)‖2n dt+ γ

∫ t

0

lnm+1

(
vn(t)

)
dt

]

≤ eLt
(
E
[
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)]
+ t

∑
j

trQj

)(4.1)

for all t ∈ [0, T ].

Proof. Itô’s formula applied to (vnk )
2+(wn

k )
2, the summation by parts formula (3.1)

and the dissipativity condition on Φ in (A2) imply

ln2
(
vn(t)

)
+ ln2

(
wn(t)

)
+ 2

∫ t

0

‖vn(s)‖2n ds+ γ

∫ t

0

lnm+1

(
vn(s)

)
ds

≤ ln2
(
vn(0)

)
+ ln2

(
wn(0)

)
+ L

∫ t

0

ln2
(
vn(s)

)
+ ln2

(
wn(s)

)
ds+Mn

1 (t) +Mn
2 (t)

+
1

n2

∫ t

0

n∑
k,l=1

|b1
(
k
n , v

n
k (s), w

n
k (s)

)
qn1,k,l|2 + |b2

(
k
n , v

n
k (s), w

n
k (s)

)
qn2,k,l|2 ds.

Here, Mn
i (t) denotes the stochastic integrals that vanish after taking the expecta-

tion using a standard localization argument. Since both b1 and b2 are bounded we
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obtain

E

[
ln2
(
vn(t)

)
+ ln2

(
wn(t)

)
+ 2

∫ t

0

‖vn(s)‖2n ds+ γ

∫ t

0

lnm+1

(
vn(s)

)
ds

]

≤ E
[
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)]
+ L

∫ t

0

E
[
ln2
(
vn(s)

)
+ ln2

(
wn(s)

)]
ds+ t

∑
j

trQj .

Gronwall’s lemma now yields the result. �

Using a similar strategy we can also obtain exponential a priori estimates that
are crucial for a Gronwall type argument in the error analysis. The proof is based on
a standard decomposition of the exponential of a martingale into a supermartingale
and the exponential of its quadratic variation process. The precise statement is the
following.

Proposition 4.2. Let v0, w0 ∈ L∞(
Ω,F ,P;C([0, 1])

)
and choose 0 < α ≤ α∗ :=

β/(144 trQ2). Then

E

[
exp

(
α

∫ T

0

‖ṽn(t)‖2V + γlnm+1

(
vn(t)

)
dt

)]
≤ C4.2

uniformly in n ∈ N, where C4.2 = C(α, v0, w0, T,Q1, Q2, L,m, γ) is an explicitly
known finite constant.

Proof. Note, that Lemma 4.1 is not optimal in terms of wn since the recurrent
term −β|w|2 in (A2) was not used. However, this is essential for the exponential
moments. Let α > 0, then Itô’s formula as in Lemma 4.1 implies

α

3

∫ T

0

β ln2
(
wn(t)

)
+ 2‖vn(t)‖2n + γ lnm+1

(
vn(t)

)
dt

≤ α

3

(
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)
+ T

(
trQ1 + trQ2

))

+
α

3
L

∫ T

0

ln2
(
vn(t)

)
dt+

α

3
Mn

1 (T ) +
α

3
Mn

2 (T ),

≤ α

3

(
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)
+ T

(
trQ1 + trQ2 + C(L,m, γ)

))

+
αγ

6

∫ T

0

lnm+1

(
vn(t)) dt+

α

3
Mn

1 (T ) +
α

3
Mn

2 (T ),
(4.2)

where again Mn
j (T ) denote the stochastic integrals. Instead of using Gronwall’s

lemma, we absorbed the integral on the right-hand side by the one on the left via
Young’s inequality, i.e., we exchange the exponentially growing (in time) multi-
plicative constant for an additive one, namely C(L,m, γ)T . Now recall that for
every continuous local martingale Mt vanishing at t = 0 the process

Zα
t := exp

(
αMt −

α2

2
〈M〉t

)
, α > 0,

is again a continuous local martingale, thus a supermartingale by Fatou’s lemma
and therefore E[Zα

t ] ≤ 1 for all t. With this information we can derive

(4.3) E
[
exp

(
αMt

)]
≤ E

[
exp

(
2α2〈M〉t

)] 1
2 .
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After taking expectations in (4.2) and an application of Hölder’s inequality, (4.3)
implies

E

[
exp

(
α

3

∫ T

0

β ln2
(
wn(t)

)
+ 2‖vn(t)‖2n +

γ

2
lnm+1

(
vn(t)

)
dt

)]3

≤ E

[
exp

(
α
(
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)
+ T

(
trQ1 + trQ2 + C(L,m, γ)

)))]

× E

[
exp

(
αMn

1 (T )

)]
E

[
exp

(
αMn

2 (T )

)]

≤ E

[
exp

(
α
(
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)
+ T

(
trQ1 + trQ2 + C(L,m, γ)

)))]

× E

[
exp

(
2α2〈Mn

1 (·)〉T

)] 1
2

E

[
exp

(
2α2〈Mn

2 (·)〉T

)] 1
2

.

In order to calculate the quadratic variations, let us state the explicit formulas for
Mn

j . These are

Mn
j (t) =

2

n

∫ t

0

n∑
k,l=1

uj,k(s)bj
(
k
n , v

n
k (s), w

n
k (s)

)qnj,k,l√
n

dβj,l,

where uj,k(s) stands for vnk (s) and wn
k (s) in the cases j = 1 and 2, respectively.

Their quadratic variations can be bounded by the integrals on the left-hand side,
in particular, by

〈Mn
j (·)〉T =

4

n3

∫ T

0

n∑
l=1

( n∑
k=1

uj,k(t)bj
(
k
n , v

n
k (t)

)
qnj,k,l

)2

dt

≤ 4

n2

( n∑
k,l=1

(
qnj,k,l

)2)∫ T

0

1

n

n∑
k=1

(
uj,k(t)

)2
dt

≤ 4 trQj

∫ T

0

ln2
(
uj(t)

)
dt.

In the case j = 1, Young’s inequality allows us to absorb this factor by the left-hand
side in the same way as in (4.2) in exchange for an additional constant eCT on the
right-hand side. In particular, this can be done independent of the size of trQ1.
This is obviously not the case for j = 2, hence α ≤ β/(24 trQ2) should be satisfied.
We have shown that

E

[
exp

(
α

∫ T

0

‖vn(t)‖2n + γ lnm+1

(
vn(t)

)
dt

)]2

≤ E

[
exp

(
6α

(
ln2
(
vn(0)

)
+ ln2

(
wn(0)

)
+ T

(
trQ1 + trQ2 + C(L,m, γ)

)))]

(4.4)

where we have replaced α by 6α and the constant C(L,m, γ) is a different one than
in (4.2). Finally, observe that for v ∈ V n the piecewise linear interpolation ṽ is in
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V and its weak derivative is explicitly given by the differences n(vk − vk−1). Hence

‖ṽ‖2V =

∫ 1

0

|∂ξ ṽ(ξ)|2 dξ =
n∑

k=1

∫ k
n

k−1
n

n2
(
vk − vk−1

)2
dξ = n

n∑
k=1

(
vk − vk−1

)2
.

Moreover, note that for v0, w0 ∈ C([0, 1]) we can define the pointwise evaluation
vn(0) and wn(0), which satisfy

ln2
(
vn(0)

)
≤ ‖v0‖2C([0,1]) and ln2

(
wn(0)

)
≤ ‖w0‖2C([0,1])

and we found an upper bound for (4.4) uniformly in n ∈ N. �

Unlike v, the equation for w has no regularizing linear part. Nevertheless, one
can improve the a priori estimate significantly if the initial condition has more
regularity, because the coupling with v is Lipschitz continuous.

Proposition 4.3. For every n ∈ N and 1 ≤ p < ∞ the approximation wn satisfies
the following improved a priori estimate

E

[
sup

t∈[0,T ]

‖wn(t)‖pn

]
≤ C4.3

uniformly in n ∈ N, where C4.3 = C(p, w0, T,Q2, L, C4.2) is an explicitly known
finite constant.

Proof. Consider Itô’s formula for the difference |wn
k (t) − wn

k−1(t)|2. Directly plug
in (A4) to obtain

d|wn
k (t)− wn

k−1(t)|2 ≤ 2L
(

1
n2 + |vnk (t)− vnk−1(t)|2 + |wn

k (t)− wn
k−1(t)|2

)
dt

+
2√
n

n∑
l=1

(
wn

k (t)− wn
k−1(t)

)(
b2
(
k
n , v

n
k (t), w

n
k (t)

)
qn2,k,l

− b2
(
k−1
n , vnk−1(t), w

n
k−1(t)

)
qn2,k−1,l

)
dβ2,l(s)

+
1

n

n∑
l=1

(
b2
(
k
n , v

n
k (t), w

n
k (t)

)
qn2,k,l − b2

(
k−1
n , vnk−1(t), w

n
k−1(t)

)
qn2,k−1,l

)2

dt.

The Itô correction term can be divided into two parts, each resembles a gradient in
either b2 or q2. In particular, we have

1

n

n∑
l=1

(
b2
(
k
n , v

n
k (t), w

n
k (t)

)
qn2,k,l − b2

(
k−1
n , vnk−1(t), w

n
k−1(t)

)
qn2,k−1,l

)2

≤ 2

n

n∑
l=1

(
b2
(
k
n , v

n
k (t), w

n
k (t)

)
− b2

(
k−1
n , vnk−1(t), w

n
k−1(t)

))2(
qn2,k,l

)2

+
2

n

n∑
l=1

(
b2
(
k
n , v

n
k (t), w

n
k (t)

))2(
qn2,k,l − qn2,k−1,l

)2
≤ 6‖q2‖2∞

(
1
n2 + |vnk (t)− vnk−1(t)|2 + |wn

k (t)− wn
k−1(t)|2

)
+

2

n

n∑
l=1

(
qn2,k,l − qn2,k−1,l

)2
.
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In the last inequality we used that the kernel q2 is L∞ and (A6), i.e., b2 Lipschitz
and bounded. A summation over k yields the inequality

d‖wn(t)‖2n ≤
(
2L+ 6‖q2‖2L∞

)(
1 + ‖vn(t)‖2n + ‖wn(t)‖2n

)
dt

+ 2 tr(−A)Q2 dt+ dMt,
(4.5)

where we denote the stochastic integral with Mt for further reference. The trace
appears naturally, since

n∑
k,l=1

(
qn2,k,l − qn2,k−1,l

)2 ≤
∫ 1

0

∫ 1

0

|∂ξq2(ξ, ζ)|2 dξ dζ ≤ ‖q2‖2H1((0,1)2) = tr(−A)Q2

by the fundamental theorem of calculus. We can use (4.5) to derive some estimate
for the supremum in t ∈ [0, T ]. Thus, consider the inequality to the power of p > 1,

sup
t∈[0,T ]

‖wn(t)‖2pn ≤ 5p−1‖wn(0)‖2pn + (5T )p−1
(
2L+ 6‖q2‖2L∞

)p∫ T

0

sup
s∈[0,t]

‖wn(s)‖2pn dt

+ 5p−1
(
2L+ 6‖q2‖2L∞

)p(∫ T

0

(
1 + ‖vn(t)‖2n

)
dt
)p

+ 5p−1
(
2T tr(−A)Q2

)p
+ 5p−1 sup

t∈[0,T ]

|Mt|p.

Taking expectations on both sides and applying the Burkholder-Davis-Gundy in-
equality results in an estimate involving 〈M〉T . Similar to the Itô correction term
above this is given by

〈M〉T = 4

∫ T

0

‖wn(t)‖2n
(
6‖q2‖2L∞

(
1 + ‖vn(t)‖2n + ‖wn(t)‖2n

)
+ tr(−A)Q2

)
dt,

hence

E

[
〈M〉

p
2

T

]
≤ 1

2Cp5p−1
E

[
sup

t∈[0,T ]

‖wn(t)‖2n

]
+ 2Cp5

p−1T p−1

∫ T

0

E

[
sup

s∈[0,t]

‖wn(s)‖2pn

]
dt

+ 2Cp5
p−1

E

[(∫ T

0

1 + ‖vn(t)‖2n dt
)p

]
,

where Cp denotes the constant in Burkholder-Davis-Gundy’s inequality. In conclu-
sion, we derived

E

[
sup

t∈[0,T ]

‖wn(t)‖2pn

]
≤ C1E

[
‖w0‖2pC1([0,1])

]
+ C2

∫ T

0

E

[
sup

s∈[0,t]

‖wn(s)‖2pn

]
dt

+ C3E

[(∫ T

0

1 + ‖vn(t)‖2n dt
)p

]
.

Gronwall’s lemma and Proposition 4.2 yield the result. �

5. Error estimation, proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1 and the estimation of the
error in Lp(Ω,F ,P;C([0, T ],H)). We proceed in several steps, first some pathwise
estimates and then using the Burkholder-Davis-Gundy inequality together with the
a priori information on the approximating solution X̃n in Propositions 4.2 and 4.3
to prove that X̃n converges strongly to the exact solution X.
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Step 1. Itô’s formula applied to the square of the H-norm (which is available for
the variational solution) implies

‖En(t)‖2H − ‖En(0)‖2H = 2

∫ t

0
V ∗〈Av(s)− ιnA

nvn(s), v(s)− ṽn(s)〉V ds

+ 2

∫ t

0
V∗〈Φ

(
v(s), w(s)

)
− ιnΦ

n
(
vn(s), wn(s)

)
, En(s)〉V ds

+ 2

∫ t

0

〈En(s),

(
B1

(
v(s), w(s)

)√
Q1 − ιnb

n
1

(
vn(s), wn(s)

)√
Qn

1Pn

B2

(
v(s), w(s)

)√
Q2 − ιnb

n
2

(
vn(s), wn(s)

)√
Qn

2Pn

)
dW (s)〉

+
∑
j

∫ t

0

‖Bj

(
v(s), w(s)

)√
Qj − ιnb

n
j

(
vn(s), wn(s)

)√
Qn

j Pn‖2L2(H) ds

= E1 + E2 + E3 + E1
4 + E2

4 .

Each of the error terms E1, E2, E
j
4 can be split into two parts with the first one only

involving the difference En and the second one the approximation of the parameters
of the equation. This corresponds to the monotonicity of the equation shown in
Theorem 2.2. For the stochastic integral in E3 we use the same argument after
applying the Burkholder-Davis-Gundy inequality later. Now let us begin with, for
instance E1, where an integration by parts yields

E1 = −2

∫ t

0

‖v(s)− ṽn(s)‖2V ds+ 2

∫ t

0
V ∗〈Aṽn(s)− ιnA

nvn(s), v(s)− ṽn(s)〉V ds.

Moreover, the one-sided Lipschitz condition (A1) for the nonlinear drift part and
the Lipschitz continuity of B in equation (2.2) yield

E2 ≤ L

∫ t

0

‖En(s)‖2H ds+ 2

∫ t

0
V∗〈Φ

(
ṽn(s), w̃n(s)

)
− ιnΦ

n
(
vn(s), wn(s)

)
, En(s)〉V ds

Ej
4 ≤ 2cθj tr(−A)θjQj

∫ t

0

‖En(s)‖2H ds

+ 2

∫ t

0

‖Bj

(
ṽn(s), w̃n(s)

)√
Qj − ιnb

n
j

(
vn(s), wn(s)

)√
Qn

j Pn‖2L2(H) ds.

In the following, we estimate each of the integrands in the error terms for fixed s,
thus we drop the time dependence in the notation.

Step 2 (Approximation error of the Laplacian). At first, we will prove that the
error term coming from the linear part converges to 0 if v ∈ V , i.e., we need only
the guaranteed regularity of the variational solution. The rate of convergence is
not uniform and given implicitly in terms of the solution v. Second, if we assume
additional regularity on v, we deduce an explicit rate in terms of n. Let ϕ ∈ V ,
then

V ∗〈Aṽn − ιnA
nvn, ϕ〉V = V ∗〈Aṽn, ϕ〉V − 〈ιnAnvn, ϕ〉

since the linear interpolation is in V . In the first term an integration by parts yields

(5.1) V ∗〈Aṽn, ϕ〉V = −n
n∑

k=1

(
vnk − vnk−1

)
(ϕ( kn )− ϕ(k−1

n )).
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In the second term we use the summation by parts formula (3.1), hence

〈ιnAnvn, ϕ〉 =
n∑

k=1

∫ k
n

k−1
n

(
Anvn

)
k
(nξ − k + 1)ϕ(ξ) +

(
Anvn

)
k−1

(k − nξ)ϕ(ξ) dξ

=

n∑
k=1

(
Anvn

)
k
gk +

(
Anvn

)
k−1

ḡk−1

= −n2
n∑

k=1

(vnk − vnk−1)
(
(gk − gk−1) + (ḡk − ḡk−1)

)
,(5.2)

where we denote the integrals by gk and ḡk−1, respectively. Note that the boundary
terms vanish because of the boundary conditions for vn. The next step is to replace
ϕ by En but since the computations differ for v and the piecewise linear ṽn we split
these terms and obtain the following lemmas.

Lemma 5.1. For all n ∈ N it holds that

V ∗〈Aṽn − ιnA
nvn, ṽn〉V ≤ 0.

Proof. Since ṽn is piecewise linear we can compute gk and ḡk, which are

gk =
1

3n
vnk +

1

6n
vnk−1 and ḡk =

1

6n
vnk+1 +

1

3n
vnk .

Obviously, we also have ṽn
(
k
n

)
= vnk and ṽn

(
k−1
n

)
= vnk−1. Equations (5.1) and

(5.2) now read as

V ∗〈Aṽn − ιnA
nvn, ṽn〉V = −n

n∑
k=1

(vnk − vnk−1)
2 +

2n

3

n∑
k=1

(vnk − vnk−1)
2

+
n

6

n∑
k=2

(vnk − vnk−1)(v
n
k−1 − vnk−2) +

n

6

n−1∑
k=1

(vnk − vnk−1)(v
n
k+1 − vnk ).

With Cauchy’s inequality we can bound the latter terms by the former ones, thus
the statement is proven. �

Lemma 5.2. Let ϕ ∈ V , then

V ∗〈Aṽn − ιnA
nvn, ϕ〉V ≤ 2‖ṽn‖V · In(ϕ),

where

In(ϕ) :=
( n∑

k=1

∫ k
n

k−1
n

(
ϕ′(ξ)− ϕ′(ξ ± 1

n

))2

dξ
) 1

2

.

Proof. The factor with ϕ in equations (5.1) and (5.2) can be written as

1
n

(
ϕ
(
k
n

)
− ϕ

(
k−1
n

))
− (gk − gk−1) + (ḡk − ḡk−1)

=

∫ k
n

k−1
n

(nζ − k + 1)
[(
ϕ
(
k
n

)
− ϕ(ζ)

)
−
(
ϕ
(
k−1
n

)
− ϕ

(
ζ − 1

n

))]

+ (k − nζ)
[(
ϕ(ζ)− ϕ

(
k−1
n

))
−
(
ϕ
(
ζ + 1

n

)
− ϕ

(
k
n

))]
dζ =: cn(ϕ),
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because (nζ − k + 1) + (k − nζ) = 1 and the integrals appearing in gk−1 and ḡk
are shifted to the same interval. Rewrite cn(ϕ) with the fundamental theorem of
calculus and use Jensen’s inequality to obtain

cn(ϕ)
2 =

(∫ k
n

k−1
n

(nζ − k + 1)

∫ k
n

ζ

ϕ′(ξ)− ϕ′(ξ − 1
n

)
dξ dζ

+

∫ k
n

k−1
n

(k − nζ)

∫ ζ

k−1
n

ϕ′(ξ)− ϕ′(ξ + 1
n

)
dξ dζ

)2

≤ 2n−3

∫ k
n

k−1
n

(
ϕ′(ξ)− ϕ′(ξ ± 1

n

))2

dξ.(5.3)

All there remains to do is an application of the Cauchy-Schwarz inequality. �

Lemma 5.3. Let In(ϕ) be defined as in Lemma 5.2.

(i) If ϕ ∈ V , then In(ϕ) ≤ 4‖ϕ‖V and, moreover, limn→∞ In(ϕ) = 0.
(ii) If ϕ ∈ H1+α(0, 1), the explicit rate of convergence is given by In(ϕ) ≤

2α+2n−α‖ϕ‖H1+α.

Proof. At first, we will consider the second assertion. Thus, let ϕ ∈ C1+α([0, 1])
and denote by ϕ′ its first derivative. Recall the definition of cn(ϕ) in the proof
above. An additional integral in ζ over the same interval yields another n, while
we can insert ϕ′(ζ) into the square above. The distance |ζ ± 1

n − ξ| is of course

bounded by 2
n , hence

cn(ϕ)
2 ≤ 22α+3n−3−2α

∫ k
n

k−1
n

∫ k
n

k−1
n

(
ϕ′(ζ)− ϕ′(ξ)

)2
|ζ − ξ|2α+1

+

(
ϕ′(ξ)− ϕ′(ζ ± 1

n

))2
|ζ ± 1

n − ξ|2α+1
dζ dξ

and we have shown (ii), since the sum of the latter expression is uniformly bounded
by the Sobolev-Slobodeckij semi-norm of ϕ in H1+α.

In a second step, we prove that if ϕ ∈ V , the expression In(ϕ) is bounded
uniformly in n and we can indeed approximate ϕ by sufficiently smooth functions
in V to obtain the desired convergence. For this purpose, we estimate (5.3) simply
by

cn(ϕ)
2 ≤ 8n−3

∫ k
n

k−1
n

|ϕ′(ξ)|2 + |ϕ′(ξ ± 1
n

)
|2 dξ,

hence In(ϕ) ≤ 4‖ϕ‖V . Now, let ε > 0 be given. Clearly, C1+α([0, 1]) ⊂ V densely
for α > 0, therefore one can find ϕε ∈ C1+α([0, 1]) such that ‖ϕ − ϕε‖V ≤ ε

8 .
Furthermore, we can find n0 ∈ N such that for all n ≥ n0,

In(ϕ) ≤ In(ϕ− ϕε) + In(ϕε) ≤ 4‖ϕ− ϕε‖V + 2α+2n−α‖ϕε‖H1+α <
ε

2
+

ε

2
= ε. �

If we turn our focus back on the original error term E1 and apply the previous
lemmas, we have shown that

(5.4) E1 ≤ −2

∫ t

0

‖v(s)− ṽn(s)‖2V ds+ 2

∫ t

0

‖ṽn(s)‖V In
(
v(s)

)
ds.

Step 3 (Approximation error of the nonlinearities). The nonlinear terms in E2 are
estimated with the (local) Lipschitz conditions (A3) and (A4) together with the



758 MARTIN SAUER AND WILHELM STANNAT

uniform a priori estimates on the approximating solutions ṽn and w̃n. The error
term in E2 is

V∗〈Φ
(
ṽn(s), w̃n(s)

)
− ιnΦ

n
(
vn(s), wn(s)

)
, En(s)〉V

which consists of contributing parts of φ1 and φ2. Since the assumptions on φ2 are
much stronger, we exemplarily estimate the one for φ1 in the following:

n∑
k=1

∫ k
n

k−1
n

[
φ1

(
ξ, ṽn(ξ), w̃n(ξ)

)
− (nξ − k + 1)φ1

(
k
n , v

n
k , w

n
k

)
− (k − nξ)φ1

(
k−1
n , vnk−1, w

n
k−1

)](
v(ξ)− ṽn(ξ)

)
dξ

≤
n∑

k=1

∫ k
n

k−1
n

[
|(nξ − k + 1)| · |φ1

(
ξ, ṽn(ξ), w̃n(ξ)

)
− φ1

(
k
n , v

n
k , w

n
k

)
|

+ |k − nξ| · |φ1

(
ξ, ṽn(ξ), w̃n(ξ)

)
− φ1

(
k−1
n , vnk−1, w

n
k−1

)
|
]
|v(ξ)− ṽn(ξ)| dξ

≤
n∑

k=1

∫ k
n

k−1
n

L
2

[(
1 + |vnk |m−1 + |vnk−1|m−1

)(
1
n + |vnk − vnk−1|

)
+ |wn

k − wn
k−1|

]
|v(ξ)− ṽn(ξ)| dξ,

where we used (A3), |ṽn(ξ)| ≤ |vnk |+|vnk−1| and that |ṽn(ξ)−vnk | = (k−nξ)|vnk−vnk−1|
as well as |ṽn(ξ)− vnk−1| = (nξ − k + 1)|vnk − vnk−1|. Of course, the same holds for
w̃n. With Young’s inequality and α∗ from Proposition 4.2 we can further estimate

≤ α∗

p n

n∑
k=1

(
1
n2 + |vnk − vnk−1|2

) ∫ k
n

k−1
n

|v(ξ)− ṽn(ξ)|2 dξ

+ L2p
8α∗n2

n∑
k=1

(
1 + |vnk |m−1 + |vnk−1|m−1

)2
+ L

4n2 ‖w̃n‖2V + L
4 ‖v − ṽn‖2H

≤
(

α∗

p

(
1 + ‖ṽn‖2V

)
+ L

4

)
‖v − ṽn‖2H + 3L2p

4α∗n

(
1 + lnm+1

(
vn

))
+ L

4n2 ‖w̃n‖2V ,

since 2(m − 1) ≤ m + 1 for m ≤ 3. We need to remark at this point, that the
superlinear growth of φ1 in v (of order m in (A3)) is the reason for the importance
of the exponential a priori estimate in Proposition 4.2. Compared to the Lipschitz
part in w there appears a nonconstant coefficient in front of the error and the
Gronwall type argument relies on this exponential integrability.

φ2’s part of the error can be obtained in the same way as for w above, hence

E2 ≤
∫ t

0

(
α∗

p

(
1 + ‖ṽn(s)‖2V

)
+ L

)
‖En(s)‖2H ds

+ 3L2p
4α∗n

∫ t

0

1 + lnm+1

(
vn(s)

)
ds+ L

n2

∫ t

0

1 + ‖ṽn(s)‖2V + ‖w̃n(s)‖2V ds.

(5.5)

Step 4 (Approximation of the covariance operator). The Itô correction terms con-
tain a Hilbert-Schmidt norm which, in our case, is given by the L2-norm of the
associated kernels. Thus, we can write these parts of the error terms Ej

4 similarly to
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the one of the nonlinear part in Step 3. Recall that Pnh = (〈h,√n1[ l−1
n , l

n )〉)1≤l≤n.

‖Bj(ṽ
n, w̃n)

√
Qj − ιnb

n
j (v

n, wn)
√
Qn

j Pn‖2L2(H)

=

∫∫ 1

0

(
bj
(
ξ, ṽn(ξ), w̃n(ξ)

)
qj(ξ, ζ)−

n∑
k,l=1

1[ k−1
n , kn )(ξ)1[ l−1

n , l
n )(ζ)

·
[
(nξ − k + 1)bj

(
k
n , v

n
k , w

n
k

)
qnj,k,l + (k − nξ)bj

(
k−1
n , vnk−1, w

n
k−1

)
qnj,k−1,l

])2

dζ dξ.

A closer look reveals that the error consists of parts Sj
1 contributed by the approx-

imation of bj and Sj
2 by the approximation of the kernel qj . Therefore, we split the

norm square into two parts where the first one is

Sj
1 = 2

n∑
k=1

∫ 1

0

∫ k
n

k−1
n

(
bj
(
ξ, ṽn(ξ), w̃n(ξ)

)
− (nξ − k + 1)bj

(
k
n , v

n
k , w

n
k

)

− (k − nξ)bj
(
k−1
n , vnk−1, w

n
k−1

))2

qj(ξ, ζ)
2 dζ dξ.

Similarly to Step 3 for the nonlinear drift term, since b is Lipschitz continuous,(
bj
(
ξ, ṽn(ξ), w̃n(ξ)

)
− (nξ − k + 1)bj

(
k
n , v

n
k , w

n
k

)
− (k − nξ)bj

(
k−1
n , vnk−1, w

n
k−1

))2

≤ 1
2

(
1
n2 + |vnk − vnk−1|2 + |wn

k − wn
k−1|2

)
and the summation over k yields

Sj
1 ≤ 1

n trQj

(
1 + ‖ṽn‖2V + ‖w̃n‖2V

)
.

The second error Sj
2 term is due to the approximation of the covariance kernel and

given by

Sj
2 = 4

n∑
k,l=1

∫ k
n

k−1
n

∫ l
n

l−1
n

(
bj
(
k
n , v

n
k , w

n
k

)(
qj(ξ, ζ)− qnj,k,l

))2

+
(
bj
(
k−1
n , vnk−1, w

n
k−1

)(
qj(ξ, ζ)− qnj,k−1,l

))2

dζ dξ,

where we already used (nξ− k+1) ≤ 1 as well as (k−nξ) ≤ 1. Exemplarily we do
the estimate for the part with qnj,k,l but note that the procedure remains the same
in the one with qnj,k−1,l except for a constant. Since bj is bounded, we obtain

Sj
2 ≤ 4

n∑
k,l=1

∫ k
n

k−1
n

∫ l
n

l−1
n

(
qj(ξ, ζ)− qnj,k,l

)2
dζ dξ

= 4

n∑
k,l=1

∫ k
n

k−1
n

∫ l
n

l−1
n

(
qj(ξ, ζ)− n2

∫ k
n

k−1
n

∫ l
n

l−1
n

qj(ρ, η) dρ dη
)2

dζ dξ

≤ 4n2
n∑

k,l=1

∫ k
n

k−1
n

∫ l
n

l−1
n

∫ k
n

k−1
n

∫ l
n

l−1
n

|qj(ξ, ζ)− qj(ρ, η)|2 dρ dη dζ dξ.
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Since |ξ − ρ| ≤ 1
n as well as |ζ − η| ≤ 1

n we can expand this expression to the
Sobolev-Slobodeckij semi-norm of qj .

≤ 16
n

∫∫∫∫ 1

0

|qj(ξ, ζ)− qj(ρ, η)|2(
|ξ − ρ|2 + |ζ − η|2

) 3
2

dρ dη dζ dξ

≤ 16
n ‖qj‖2

H
1
2 ((0,1)2)

≤ 16
n tr(−A)θjQj .

In summary, we have shown that (the modified constants are due to the omitted
terms)

Ej
4 ≤ 2cθj tr(−A)θjQj

∫ t

0

‖En(s)‖2H ds+ 64t
n tr(−A)θjQj

+ 2
n trQj

∫ t

0

(
1 + ‖ṽn(s)‖2V + ‖w̃n(s)‖2V

)
ds

(5.6)

Step 5: Control over the supremum. The four previous steps allow a first estimate
nonuniform in t. For this purpose define the processes

Ln
p (t) := α∗(1 + ‖ṽn(t)‖2V

)
+ 2p2

∑
j

cθj tr(−A)θjQj

and

Kn
p (t) := 2‖ṽn(t)‖V In

(
v(t)

)
+

3L2p2

4α∗n

(
1 + lnm+1

(
vn(t)

))
+

p2

n

(
L+ 2

∑
j

trQj

)(
1 + ‖ṽn(t)‖2V + ‖w̃n(t)‖2V

)
+

64p2

n

∑
j

tr(−A)θjQj .

Now we apply Itô’s formula with the function f(x) = xp, p ≥ 1 for the square of
the H-norm of the error En(t).

(5.7) d‖En(t)‖2pH = p‖En(t)‖2p−2
H d‖En(t)‖2H + 2p(p− 1)‖En(t)‖2p−4

H d〈M〉t,

where the local martingale M(t) is given by E3, i.e.,

dM(t) := 〈En(t),

(
B1

(
v(t), w(t)

)√
Q1 − ιnb

n
1

(
vn(t), wn(t)

)√
Qn

1Pn

B2

(
v(t), w(t)

)√
Q2 − ιnb

n
2

(
vn(t), wn(t)

)√
Qn

2Pn

)
dW (t)〉

and quadratic variation bounded from above by

d〈M〉t ≤ ‖En(t)‖2H
∑
j

‖Bj

(
v(t), w(t)

)√
Qj − ιnb

n
j

(
vn(t), wn(t)

)√
Qn

j Pn‖2L2(H) dt

≤ 2
∑
j

cθj tr(−A)θjQj‖En(t)‖4H dt+ 64
n

∑
j

tr(−A)θjQj‖En(t)‖2H dt

+ 2
n

∑
j

trQj

(
1 + ‖ṽn(t)‖2V + ‖w̃n(t)‖2V

)
‖En(t)‖2H dt,

(5.8)
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which were essentially the estimates of Ej
4. Thus (5.7), Itô’s product rule, (5.8) and

Steps 1–4 imply

sup
t∈[0,T ]

e−
∫ t
0
Ln

p (s) ds‖En(t)‖2pH ≤ ‖En(0)‖2pH +

∫ T

0

e−
∫ t
0
Ln

p (s) dsKn
p (t)‖En(t)‖2p−2

H dt

+ 2p sup
t∈[0,T ]

∣∣∣∣
∫ t

0

e−
∫ s
0
Ln

p (r) dr‖En(s)‖2p−2
H dM(s)

∣∣∣∣
≤ ‖En(0)‖2H + p−1

p sup
t∈[0,T ]

e−
∫

t
0
Ln

p (s) ds‖En(t)‖2pH + 1
p

(∫ T

0

Kn
p (t) dt

)p

+ 2p sup
t∈[0,T ]

∣∣∣∣
∫ t

0

e−
∫ s
0
Ln

p (r) dr‖En(s)‖2p−2
H dM(s)

∣∣∣∣ .
The second inequality is due to Young’s inequality and we can absorb the second
summand by the left-hand side. Now, take the expectation and Burkholder-Davis-
Gundy’s inequality bounds the supremum of the stochastic integral from above by
its quadratic variation; more precisely,

E

[
sup

t∈[0,T ]

e−
∫ t
0
Ln

p (s) ds‖En(t)‖2pH

]
≤ pE

[
‖En(0)‖2pH

]

+ E

[(∫ T

0

Kn
p (t) dt

)p
]
+ 4pE

[(∫ T

0

e−2
∫ t
0
Ln

p (s) ds‖En(t)‖4p−4
H d〈M〉t

) 1
2

]
.

(5.9)

With the bound on the quadratic variation from (5.8) and Young’s inequality we
can estimate the latter summand in terms of the left-hand side and Kn

p as follows:

4pE

⎡
⎣
(∫ T

0

e−2
∫ t
0
Ln

p (s) ds‖En(t)‖4p−4
H d〈M〉t

) 1
2

⎤
⎦

≤ 1

2
E

[
sup

t∈[0,T ]

e−
∫ t
0
Ln

p (s) ds‖En(t)‖2pH

]

+
(
2p

∑
j

cθj tr(−A)θjQj

) ∫ T

0

E

[
sup

s∈[0,t]

e−
∫ s
0
Ln

p (r) dr‖En(s)‖2pH

]
dt

+ 2(16p− 8)2p−1
E

[(∫ T

0

Kn
p (t) dt

)p
]
.

Thus, we can apply Gronwall’s inequality for any p ≥ 1 to obtain

E

[
sup

t∈[0,T ]

e−
∫ t
0
Ln

p (s) ds‖En(t)‖2pH

]

≤ eC1T

(
2pE

[
‖En(0)‖2pH

]
+ C2E

[(∫ T

0

Kn(t) dt
)p

])
,

(5.10)

with C1 = 4pT
∑

j cθj tr(−A)θjQj and C2 = 4(16 − 8)2p−1 + 2. This preliminary
error estimate yields the desired one via Hölder’s inequality provided the right-
hand side of (5.10) is finite since we can control the exponential by Proposition 4.2.
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Therefore, we have for p ≥ 1,

E

[
sup

t∈[0,T ]

‖En(t)‖pH

] 1
p

≤ E

[
sup

t∈[0,T ]

e−
1
2

∫ t
0
Ln

p (s) ds‖En(t)‖pHe
1
2

∫ T
0

Ln
p (t) dt

] 1
p

≤ E

[
sup

t∈[0,T ]

e−
∫ t
0
Ln

p (s) ds‖En(t)‖2pH

] 1
2p

E

[
e
∫ T
0

Ln
p (t) dt

] 1
2p

≤ C
1
2p

4.2 e
C1T

(
2pE

[
‖En(0)‖2pH

]
+ C2E

[(∫ T

0

Kn
p (t) dt

)p
]) 1

2p

(5.11)

and it remains to study the convergence of Kn to 0. For this purpose, we fix p = 1
at first. Then, it follows by Propositions 4.2 and 4.3 that

E

[∫ T

0

Kn
1 (t) dt

]
≤ C

n
+ 2E

[∫ T

0

‖ṽn(t)‖V In
(
v(t)

)
dt

]

Since by Lemma 5.2 In(v(t)) ≤ 4‖v(t)‖V and both v and ṽn are (uniformly)
bounded in L2(Ω,F ,P;L2([0, T ], V )), we can use Lebesgue’s dominated conver-
gence theorem to deduce

E

[∫ T

0

Kn(t) dt

]
→ 0, hence E

[
sup

t∈[0,T ]

‖En(t)‖H

]
→ 0 as n → ∞

by Lemma 5.2. Thus, the exponential moment estimates carry over to the limit
v and we can apply the dominated convergence theorem in cases p > 1 which
concludes the first assertion of Theorem 3.1. If v ∈ Lp∗

(Ω,F ,P;L2([0, T ], H1+α))
for some α > 0 and p∗ > 1, then again by Lemma 5.2 and Proposition 4.2 we get

E

[(∫ T

0

Kn(t) dt
)p

]
≤ C

np
+ C ′

E

[(∫ T

0

‖ṽn(t)‖2V dt
) p

2
(∫ T

0

In
(
v(t)

)2
dt
) p

2

]

≤ C

np
+ C ′

E

[(∫ T

0

‖ṽn(t)‖2V dt
) pp∗

2(p∗−p)

] p∗−p
p∗

E

[(∫ T

0

In
(
v(t)

)2
dt
) p∗

2

] p
p∗

≤ C

np
+

C ′′

nαp
E

[(∫ T

0

‖v(t)‖2H1+α dt
) p∗

2

] p
p∗

,

hence the second assertion is proven for all p < p∗. �

6. Applications

As an application for our results in Theorem 3.1, we consider the spatially
extended FitzHugh-Nagumo system with noise. Originally, this was stated by
FitzHugh [4] as a system of ODEs simplifying the famous Hodgkin-Huxley model
[10] for the generation of an action potential in a neuron in terms of a voltage vari-
able v and a so-called recovery variable w. Its spatially extended version is a model
for the propagation of the action potential in the axon of a neuron. See, e.g., the
monographs [3, 14] for more details on the deterministic case. Now consider this
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system subject to external noise only in the voltage variable v. Together with the
original parameters from [5] this reads as

v̇(t, ξ) = ∂2
ξv(t, ξ) + v(t, ξ)− 1

3
v(t, ξ)3 − w(t, ξ) + η(t, ξ),

ẇ(t, ξ) = 0.08
(
v(t, ξ)− 0.8w(t, ξ) + 0.7

)
, t ≥ 0, ξ ∈ (0, L)

(6.1)

equipped with homogeneous Neumann boundary conditions in 0 and L. The noise
η is modelled by

√
QW (t) with a cylindrical Wiener process W on H and Q to be

specified below. One can immediately see that (6.1) is of the type (1.1). The first
mathematical rigorous analysis of this equation in the context of mild solutions can
be found in [1]. It has been observed, e.g., in [23] that this system has traveling
pulse solutions (Figure 1) which may break down due to the influence of the external
noise, hence there is no transmission of the signal from 0 to L. This phenomenon is
usually referred to as the propagation failure and one is interested in calculating its
probability depending on the strength of the external noise; see [23] for a heuristic
approach.

0 20 40 60 80 100 120 140 160 180 200
0.2
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0.4

0.5

0.6

0.7

0.8

ξ ∈ [0, L]

v
−

v
∗

Figure 1. A traveling pulse solution of (6.1) obtained by the
scheme (6.2) propagating along (0, L) at three different times
(solid, dashed, dotted).

Numerical Approximation: The numerical approximation in the study [23] is
done via finite difference approximations in space and the Euler-Maruyama scheme
in time. Set Δx = L/n and Δt = T/(4n2) and denote by (xi)i,(tj)j the equidistant
grids corresponding to this. Approximating v and w in (xi, tj) by vi,j and wi,j

results in the scheme

vi,j = vi,j−1 +
1
4

(
vi+1,j−1 − 2vi,j−1 + vi−1,j−1

)
+ φ1

(
xi, vi,j−1, wi,j−1

)
Δt+ 2σ

√
nNi,j ,

wi,j = wi,j−1 + φ2

(
xi, vi,j−1, wi,j−1

)
Δt

(6.2)

with iid standard normal random variables Ni,j . Note that the author assumes
that η is space-time white noise, hence the approximated noise only has this simple
structure.
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The Covariance Operator: Although the noise is supposed to be white in
time and space, we may use Theorem 3.1 to deduce convergence of the spatial
approximation. Using properly scaled versions of the bump function

Ψ(ξ, ζ) =

{
exp

(
−
(
1− ξ2 − ζ2

)−1
)
, for ξ2 + ζ2 < 1,

0, else,

one can construct a smooth kernel q seeing only local interactions up to some dis-
tance n∗ and satisfying qnk,l = nδk,l for n ≤ n∗, thus the numerical approximations
using Q and I, i.e., space-time white noise, as covariance operator do not differ.

An Estimator for the Propagation Failure: An appropriate estimator de-
tecting the event of a propagation failure is given by the integral

Φ(v) :=

∫ L

0

v(ξ)− v∗ dξ,

which significantly differs in cases with or without the traveling pulse based on
the observation from Figure 1. Here, v∗ ≈ −1.1994 is the voltage component of
the unique real equilibrium point for the drift in (6.1). Given Φ, the event of a
propagation failure can be defined by

Φ
(
v(t)

)
≤ κ for some T0 ≤ t ≤ T,

for some appropriate threshold κ > 0 and some initializing time T0. The quantity
of interest is the probability

PQ

[
min

T0≤t≤T
Φ
(
v(t)

)
≤ κ

]
=: pQ,κ

of propagation failure depending on the noise covariance Q. Essentially we have
to estimate the parameter of a Bernoulli distributed random variable. The sample
average

p̂Q,κ(v̂) :=
1

m

m∑
k=1

1{minT0≤t≤T Φ(v(k)(t))≤κ}

based on m iid copies v̂ := (v(k))1≤k≤m is a natural estimator. Since the solution
v is not given explicitly, we can approximate p̂Q,κ based on independent numerical

observations v̂n := (ṽn,(k))1≤k≤m, as independent realizations of ṽn only. Besides
the statistical Monte Carlo error, there appears additional uncertainty due to the
approximation of the exact solution. Theorem 3.1 now allows us to quantify this.

Corollary 6.1. Let p̂nQ,κ := p̂Q,κ(v̂
n) and ε > 0 be a priori given. Furthermore,

assume that the solution v ∈ Lp(Ω,F ,P;L2([0, T ], H2(0, 1))) for some p > 2. Then,
a confidence interval for the estimation p̂nQ,κ−ε of pQ,κ with confidence level α is

given by [p̂nQ,κ−ε − γ, p̂nQ,κ−ε + γ] where

γ = (αm)−
1
2

(
1 + 4ε−2C3.1n

−1
) 1

2

.

Remark 6.2. The additional regularity of the solution may be obtained in the con-
text of mild solutions as in [1] if Q is sufficiently regular, since the heat semigroup in
the equation for v is analytic and therefore maps H to D(A) = H2(0, 1). However,
this needs further investigation.
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Proof. We can estimate the probability of pQ,κ being outside of an interval of size
γ around the estimator p̂nQ,κ−ε by Chebychev’s inequality with

PQ

[
|pQ,κ − p̂nQ,κ−ε| > γ

]
= PQ

[
|pQ,κ − p̂Q,κ + p̂Q,κ − p̂nQ,κ−ε| > γ

]
≤ PQ

[
|pQ,κ − p̂Q,κ| > γ

2

]
+ PQ

[
|p̂Q,κ − p̂nQ,κ−ε| > γ

2

]
≤ 1

γ2m
+ PQ

[
m∑

k=1

1{supt∈[0,T ]|Φ(v(k)(t))−Φ(ṽn,(k)(t))|>ε} > mγ
2

]

≤ 1

γ2m
+

4

γ2ε2m
E

[
sup

t∈[0,T ]

(
Φ(v(k)(t))− Φ(ṽn,(k)(t))

)2
]
.

The additional uncertainty due to the approximation of the exact solution is the
mean squared error of Φ

(
ṽn(t)

)
.

E

[
sup

t∈[0,T ]

(
Φ
(
v(t)

)
− Φ

(
ṽn(t)

))2
]
= E

[
sup

t∈[0,T ]

(∫ L

0

v(t, ξ)− ṽn(t, ξ) dξ
)2

]

≤ LE

[
sup

t∈[0,T ]

‖v(t)− ṽn(t)‖2H

]
≤ LE

[
sup

t∈[0,T ]

‖En(t)‖2H

]
.

Theorem 3.1 now implies the convergence rate of n−1 and we set

α =
1

γ2m
+

4L

γ2ε2m
C3.1n

−1. �
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