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VARIATIONAL DISCRETIZATION OF

WAVE EQUATIONS ON EVOLVING SURFACES

CHRISTIAN LUBICH AND DHIA MANSOUR

Abstract. A linear wave equation on a moving surface is derived from Hamil-
ton’s principle of stationary action. The variational principle is discretized with
functions that are piecewise linear in space and time. This yields a discretiza-
tion of the wave equation in space by evolving surface finite elements and in
time by a variational integrator, a version of the leapfrog or Störmer–Verlet

method. We study stability and convergence of the full discretization in the
natural time-dependent norms under the same CFL condition that is required
for a fixed surface. Using a novel modified Ritz projection for evolving sur-
faces, we prove optimal-order error bounds. Numerical experiments illustrate
the behavior of the fully discrete method.

1. Introduction

In recent years, there have been significant advances in the numerical analy-
sis of partial differential equations on fixed and moving surfaces. Concerning the
latter, we refer to the review articles by Deckelnick, Dziuk and Elliott [4] and
Dziuk and Elliott [11] and to recent papers on linear parabolic equations on time-
dependent surfaces discretized by evolving surface finite elements and various time
discretizations [9,10,13,21,27], by finite volume methods [19], by a grid-based par-
ticle method [20] and by level set methods [1,29], and to [12] for conservation laws
on time-dependent surfaces. Many more references are found in [11].

In the present paper we consider a linear wave equation on a given time-depen-
dent surface, which is the natural analog of the classical acoustic wave equation
on a fixed spatial domain. We have no specific application in mind, but consider
the problem as prototypical for dynamical problems on a moving surface that are
described by Hamilton’s principle of stationary action, a fundamental principle of
mechanics. Just as the numerical analysis of the linear wave equation on a fixed do-
main has provided much insight into the numerical treatment of more complicated,
linear and nonlinear, wave problems in a variety of application areas, we expect
similar benefits from a thorough numerical analysis of the linear wave equation on
evolving surfaces based on the variational formulation.

Among novel analytic techniques developed here is a stability analysis of full
discretizations with time-dependent mass and stiffness matrices in the natural time-
dependent norms, and the use of appropriately modified Ritz projections to derive
optimal-order error bounds. Our stability analysis operates at the matrix-vector
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level and could also be applied to discretizations of wave equations on a moving
domain and to moving-mesh methods for wave equations on a fixed domain. The
newly introduced Ritz map on evolving surfaces is potentially useful in a much
wider context than for the particular bilinear forms considered here.

In Section 2 we derive the wave equation on an evolving surface from the Hamil-
ton variational principle with a Lagrangian that is the precise analog of the La-
grangian for the acoustic wave equation on a fixed domain. In Section 3 we de-
scribe a discretization of the variational principle by the piecewise linear evolving
surface finite elements of Dziuk and Elliott [9]. For discretization in time we use a
variational integrator based on piecewise linear approximation, the Störmer–Verlet
or leapfrog method, which is discussed in Section 4. We analyze the stability of the
fully discrete scheme under the natural CFL condition in Section 5. Unconditionally
stable Gauss-Runge-Kutta time discretization is studied in [23].

Our stability estimate is sufficiently strong to permit us to derive optimal-order
error estimates. This is done in several steps. In Section 6 we bound the fully dis-
crete error in terms of the residual of mappings of the exact solution onto the finite
element space on the discretized surface. To estimate this residual, we need the
preparatory Section 7 that provides known and new estimates for lifts of functions
from the discretized to the original time-dependent surface. In Section 8 we intro-
duce the Ritz map for evolving surfaces as the appropriate mapping of functions on
the original surface to finite element functions on the discretized surface, and we
study its approximation properties. This allows us, in Section 9, to give an optimal
second-order bound of the residual that results when the Ritz map applied to the
exact solution is inserted into the semidiscrete surface finite element equations.

Combining all the results obtained thus far, in Section 10 we finally obtain our
main result, which states optimal-order convergence of the full discretization in
the natural time-dependent norms under the CFL condition. We show second
order of the error measured in the L2-norm over the time-dependent surface for
displacements and their material derivatives, and first order for the L2-norm of
the error in the surface gradient of the displacements, uniformly on bounded time
intervals. We conclude the paper with numerical experiments in Section 11.

Throughout the paper, C and c denote generic constants (independent of the
spatial meshwidth h and the time step size τ ) that take on different values on
different occurences.

2. The wave equation on evolving surfaces

2.1. Basic notation. Let Γ(t), t ∈ [0, T ], be a smoothly evolving family of smooth
m-dimensional compact closed hypersurfaces in R

m+1 without boundary. We de-
note the corresponding space-time surface by GT =

⋃
t∈[0,T ] Γ(t)× {t}.

Let v(x, t), for x ∈ Γ(t) and t ∈ [0, T ], denote the given velocity of the surface,
with the interpretation that a material point x(t) on the surface moves with velocity
ẋ(t) = v(x(t), t).

We will work with the following time and space derivatives, for which we refer to
[14] and [9] for a more detailed discussion. For a smooth function u : GT → R we let
∂•u denote the material derivative, defined such that d

dtu(x(t), t) = (∂•u)(x(t), t);
that is,

(2.1) ∂•u =
∂u

∂t
+ v · ∇u,
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where a · b =
∑m+1

j=1 ajbj for vectors a and b in R
m+1, and ∇u denotes the usual

(m+ 1)-dimensional gradient of a smooth extension of u(·, t) to a neighborhood of
Γ(t). The material derivative ∂•u only depends on the values of the function u on
the space-time surface GT and is independent of the choice of the extension.

By∇Γ we denote the tangential gradient on the surface Γ, which is the projection
of the (m+1)-dimensional gradient to the tangent space. For a smooth function u
on a neighborhood of Γ we define

∇Γu = ∇u−∇u · ν ν,

where ν is a normal vector field to Γ. The tangential gradient only depends on the
values of u on the surface Γ and is independent of the extension.

The Laplace-Beltrami operator on Γ is the tangential divergence of the tangential
gradient:

ΔΓu = ∇Γ · ∇Γu =
m+1∑
j=1

(∇Γ)j(∇Γ)ju.

2.2. Hamilton’s principle of stationary action. With the Lagrangian (kinetic
energy minus potential energy)

(2.2) L(u, ∂•u, t) =
1

2

∫
Γ(t)

|∂•u|2 − 1

2

∫
Γ(t)

∣∣∇Γ(t)u
∣∣2

we consider the action integral

(2.3) S[u] =
∫ T

0

L(u(t), ∂•u(t), t) dt

for u(t) = u(·, t) ∈ H1(Γ(t)). The analogous action integral on a fixed domain Ω
instead of moving surfaces Γ(t) is minimized by solutions of the classical acoustic
wave equation ∂2

t u − Δu = 0. In our situation we arrive at the following partial
differential equation, which was first communicated to us by G. Dziuk. In [11] this
equation is called the Jenner equation.

Lemma 2.1. If u : GT → R is a smooth function that extremizes the action
integral S[u] among all smooth functions on GT with given endpoints u(·, 0) and
u(·, T ), then u is a solution of the Euler–Lagrange partial differential equation

∂•∂•u(x, t) + ∂•u(x, t) ∇Γ(t) · v(x, t)−ΔΓ(t)u(x, t) = 0(2.4)

for x ∈ Γ(t) and 0 ≤ t ≤ T .

We refer to (2.4) as the wave equation on the evolving surface. An inhomogeneity
f(x, t) on the right-hand side of (2.4) is obtained by adding the term

∫
Γ(t)

fu to

the Lagrangian.

Proof. The result is a consequence of the Leibniz formula on surfaces [9, Lemma 2.2]:

d

dt

∫
Γ(t)

g =

∫
Γ(t)

∂•g + g∇Γ(t) · v.(2.5)
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Computing variations of the action while keeping the endpoints of u(., t) fixed
(δu(0) = δu(T ) = 0), using (2.5) and partial integration, we get

δS[u] = d

dε

∣∣∣∣
ε=0

S (u+ εδu) =

∫ T

0

∫
Γ(t)

(
∂•u ∂•δu−∇Γ(t)u∇Γ(t)δu

)
dt

=

∫ T

0

d

dt

∫
Γ(t)

∂•u δu dt−
∫ T

0

∫
Γ(t)

(
∂•∂•u δu+ ∂•u δu∇Γ(t) · v +∇Γ(t)u∇Γ(t)δu

)
dt

= −
∫ T

0

∫
Γ(t)

(
∂•∂•u+ ∂•u∇Γ(t) · v −ΔΓ(t)u

)
δu dt = 0.

With the fundamental lemma of the calculus of variations we obtain the result. �

Using the Leibniz formula on surfaces (2.5), a weak form of the wave equation
(2.4) is readily obtained: for all smooth ϕ : GT → R and for almost every t ∈ [0, T ],

(2.6)
d

dt

∫
Γ(t)

∂•uϕ+

∫
Γ(t)

∇Γ(t)u · ∇Γ(t)ϕ =

∫
Γ(t)

∂•u ∂•ϕ.

We will consider the initial value problem of the wave equation on the evolving
surface, with given initial data

u(·, 0) = u0 ∈ H2(Γ(0)) and ∂•u(·, 0) = u̇0 ∈ H1(Γ(0)).(2.7)

Wellposedness and regularity results are shown in [22].

3. Variational space discretization

3.1. Recap: The evolving surface finite element method. Following [9], the
smooth surface Γ(t) is interpolated at nodes ai(t) ∈ Γ(t) (i = 1, . . . , J) by a discrete
polygonal surface Γh(t), where h denotes the grid size. These nodes move with
velocity dai(t)/dt = v(ai(t), t). The discrete surface

Γh(t) =
⋃

E(t)∈Th(t)

E(t)

is the union of m-dimensional simplices E(t) that is assumed to form an admissible
triangulation Th(t); see [9] for details. The finite element space on the discrete
surface Γh(t) is chosen as

Sh(t) = {φh ∈ C0(Γh(t)) : φh|E ∈ P1 for all E ∈ Th(t)},

where P1 denotes the space of polynomials of degree at most 1. Let χj(·, t) (j =
1, . . . , J) be the nodal basis of Sh(t), given by χj(ai(t), t) = δji for all i, so that

Sh(t) = span{χ1(·, t), . . . , χJ(·, t)}.
We define a velocity for material points X(t) on the surface Γh(t) by

Ẋ(t) = Vh(X(t), t), Vh(x, t) :=

J∑
j=1

v(aj(t), t)χj(x, t), x ∈ Γh(t).(3.1)

Then the discrete material derivative on Γh(t) is given by

∂•
hφh =

∂φh

∂t
+ Vh · ∇φh.(3.2)
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The construction is such that the discrete material derivatives of the basis functions
satisfy the transport property [9, Proposition 5.4]:

∂•
hχj = 0.(3.3)

The discrete surface gradient is defined piecewise as

∇Γh
g = ∇g −∇g · νhνh,

where νh denotes the normal to the discrete surface.

3.2. The semidiscrete Hamilton principle. We replace the Lagrangian (2.2)
with the Lagrangian on the discretized surface,

(3.4) Lh (Uh, ∂
•
hUh, t) =

1

2

∫
Γh(t)

|∂•
hUh|2 −

1

2

∫
Γh(t)

|∇Γh
Uh|2 ,

and minimize the action integral

(3.5) Sh[Uh] =

∫ T

0

Lh (Uh(t), ∂
•
hUh(t), t) dt

for Uh(t) = Uh(·, t) ∈ Sh(t). This turns out to be equivalent to the Galerkin
discretization of (2.6): for all temporally smooth φh with φh(·, t) ∈ Sh(t) and for
all t,

(3.6)
d

dt

∫
Γh(t)

∂•
hUh φh +

∫
Γh(t)

∇Γh(t)Uh · ∇Γh(t)φh =

∫
Γh(t)

∂•
hUh∂

•
hφh.

3.3. Matrix-vector formulation and Hamiltonian ODE system. We denote
the discrete solution

Uh(·, t) =
J∑

j=1

qj(t)χj(·, t) ∈ Sh(t)

and define q(t) ∈ R
J as the nodal vector with entries qj(t) = Uh(aj(t), t). Then by

the transport property (3.3), we have

∂•
hUh(·, t) =

J∑
j=1

q̇j(t)χj(·, t) ∈ Sh(t),

where q̇j = dqj/dt. We often abbreviate Uh(t) = Uh(·, t), ∂•
hUh(t) = ∂•

hUh(·, t),
χj(t) = χj(·, t), etc.

The evolving mass matrix M(t) and the stiffness matrix A(t) are defined by

M(t)ij =

∫
Γh(t)

χi(t)χj(t), A(t)ij =

∫
Γh(t)

∇Γh(t)χi(t) · ∇Γh(t)χj(t)

for i, j = 1, . . . , J . The mass matrix is symmetric and positive definite. The stiffness
matrix is symmetric and only positive semidefinite. Its null-space is spanned by
the vector (1, . . . , 1)T because we consider closed surfaces.

With these matrices, the discrete Lagrangian becomes

(3.7) Lh

(
Uh, ∂

•
hUh, t

)
=

1

2
q̇TM(t)q̇− 1

2
qTA(t)q =: Lh(q, q̇, t)

with an obvious doubling of notation. The minimizer of the action integral

(3.8) Sh[q] =

∫ T

0

Lh(q(t), q̇(t), t) dt
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is a solution of the Euler-Lagrange equation

(3.9)
d

dt
(M(t)q̇(t)) +A(t)q(t) = 0.

By introducing the conjugate momenta

p(t) :=
∂Lh

∂q̇
(q(t), q̇(t), t) = M(t)q̇(t),

we reformulate (3.9) as the Hamiltonian system

ṗ(t) = −A(t)q(t),(3.10a)

q̇(t) = M(t)−1p(t)(3.10b)

corresponding to the time-dependent Hamiltonian

H(q,p, t) =
1

2
pTM(t)−1p+

1

2
qTA(t)q.

We work with the norms

|q|2M(t) = 〈q |M(t)|q〉 = qTM(t)q, q ∈ R
J ,

|p|2M(t)−1 =
〈
p
∣∣M(t)−1

∣∣p〉 = pTM(t)−1p, p ∈ R
J ,

and the seminorm

|q|2A(t) = 〈q |A(t)|q〉 = qTA(t)q, q ∈ R
J .

Note that for finite element functions Uh(t) =
∑J

j=1 qj(t)χj(t) ∈ Sh(t) with the

vector of nodal values q(t) = (qj(t)) ∈ R
J and p(t) = M(t)q̇(t), we have

|q(t)|M(t) = ‖Uh(t)‖L2(Γh(t)), |q(t)|A(t) = ‖∇Γh(t)Uh(t)‖L2(Γh(t)),

|p(t)|M(t)−1 = |q̇(t)|M(t) = ‖∂•
hUh(t)‖L2(Γh(t)).

(3.11)

The following result from [13, Lemma 4.1] and [21, Lemma 2.2] provides basic
estimates.

Lemma 3.1. There are constants μ, κ (independent of the meshwidth h) such that

wT
(
M(s)−M(t)

)
z ≤ μ|s− t| |w|M(t) |z|M(t),(3.12)

wT
(
M−1(s)−M(t)−1

)
z ≤ μ|s− t| |w|M(t)−1 |z|M(t)−1 ,(3.13)

wT
(
A(s)−A(t)

)
z ≤ κ|s− t| |w|A(t) |z|A(t)(3.14)

for all w, z ∈ R
J and s, t ∈ [0, T ].

Apart from the fact that M(t), M(t)−1 and A(t) are symmetric positive semi-
definite, the inequalities (3.12)–(3.14) are the only properties of the evolving surface
finite elements that will be used in the stability analysis of the full discretization.

4. Variational time discretization

For a given set of discrete time points 0 = t0 < t1 < · · · < tN = T , for simplicity
assumed equidistant with step size τ , we compute approximations qn, q̇n to the
solution q(tn), q̇(tn) of the Euler-Lagrange equation (3.9) at time tn. Here this is
done by minimizing an approximate action.
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4.1. Recap: Variational integrators. We give a brief review of variational in-
tegrators which have been studied by Suris [25], Veselov [26] and in a series of
papers by Marsden and coauthors. For a comprehensive discussion of variational
integrators we refer the reader to Marsden and West [24] and [16, Section VI.6].

We use an approximation

Lh,τ (qn,qn+1, tn) ≈
∫ tn+1

tn

Lh (q(t), q̇(t), t) dt.(4.1)

Then the action integral over the whole time interval is approximated by the discrete
action sum

Sh,τ

(
{qn}N0

)
=

N−1∑
n=0

Lh,τ (qn,qn+1, tn).

Computing variations of this discrete action sum with the boundary points q0 and
qN held fixed, gives the discrete Euler-Lagrange equations

D2Lh,τ (qn−1,qn, tn−1) +D1Lh,τ (qn,qn+1, tn) = 0, 1 ≤ n ≤ N − 1,(4.2)

where D1 and D2 denote the partial derivative with respect to the first and second
arguments of Lh,τ , respectively. If we take initial conditions (q0,q1), then the
discrete Euler-Lagrange equations (4.2) implicitly define a two-step integrator

(qn−1,qn) −→ (qn,qn+1)

that calculates recursively the sequence {qn}N0 by solving in every step the discrete
Euler-Lagrange equations.

Since we rewrote our problem (3.10) in a Hamiltonian position-momenta form,
we also want to have an integrator in this form. We define the discrete momenta
at every time step n as

pn := D2Lh,τ (qn−1,qn, tn−1) = −D1Lh,τ (qn,qn+1, tn),

where the second equality holds in view of (4.2). With this definition the variational
integrator in the position-momenta form is written as the one-step method

pn = −D1Lh,τ (qn,qn+1, tn),(4.3a)

pn+1 = D2Lh,τ (qn,qn+1, tn).(4.3b)

If we take initial conditions (q0,p0), then we solve the first equation for q1, then
evaluate the second equation to get p1, and repeat this procedure to get the full
sequence {qn}N0 .

4.2. The leapfrog or Störmer–Verlet method. For a given stepsize τ , we
choose Lh,τ (qn,qn+1, tn) by approximating q(t) as the linear interpolant of qn

and qn+1 and approximating the first part of the integral (4.1) with the two terms
of (3.7) by the midpoint rule and the second part by the trapezoidal rule. This
gives

Lh,τ (qn,qn+1, tn) =
τ

2

〈
q̇n+ 1

2

∣∣∣Mn+ 1
2

∣∣∣ q̇n+ 1
2

〉
− τ

4

(
〈qn |An|qn〉+ 〈qn+1 |An+1|qn+1〉

)
with q̇n+ 1

2
= (qn+1 − qn)/τ, An = A(tn) and Mn+1/2 = M(tn + 1

2τ ).
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Then we compute the scheme (4.3):

pn = −D1Lh,τ (qn,qn+1, tn) = Mn+ 1
2
q̇n+ 1

2
+

τ

2
Anqn,

pn+1 = D2Lh,τ (qn,qn+1, tn) = Mn+ 1
2
q̇n+ 1

2
− τ

2
An+1qn+1.

Inserting the term of q̇n+ 1
2
and solving the first equation for qn+1, we obtain a

version of the leapfrog or Störmer–Verlet method (see, e.g., [15]):

qn+1 = qn + τM−1
n+ 1

2

pn − 1

2
τ2M−1

n+ 1
2

Anqn,(4.4a)

pn+1 = pn − τ

2
Anqn − τ

2
An+1qn+1,(4.4b)

or equivalently

pn+1/2 = pn − τ

2
Anqn,(4.5a)

qn+1 = qn + τM−1
n+ 1

2

pn+1/2,(4.5b)

pn+1 = pn+1/2 −
τ

2
An+1qn+1.(4.5c)

The scheme is explicit except for solving a linear system with the mass matrix in
each time step.

From the vectors qn = (qnj ) and q̇n = (q̇nj ) := M(tn)
−1pn we obtain the finite

element functions on the discrete surface Γh(tn),

(4.6) Un
h =

J∑
j=1

qnj χj(tn), ∂•
hU

n
h =

J∑
j=1

q̇nj χj(tn),

as approximations to u(tn) and ∂•u(tn), respectively. We note that ∂•
hU

n
h is just

a suggestive notation (with ∂•
h here having no meaning as an operator) for the

approximation to (∂•
hUh)(tn) with the discrete material derivative defined in (3.2).

5. Stability analysis of the full discretization

5.1. Defects and errors. Let q̃n and p̃n be reference values that we want to
compare with qn and pn, respectively (e.g., q̃n = q(tn) and p̃n = p(tn)). Inserted
into (4.4), they yield defects dq

n+1 and dp
n+1 in

q̃n+1 = q̃n + τM−1
n+ 1

2

p̃n − 1

2
τ2M−1

n+ 1
2

Anq̃n + dq
n+1,(5.1a)

p̃n+1 = p̃n − τ

2
Anq̃n − τ

2
An+1q̃n+1 + dp

n+1.(5.1b)

For the errors we use the notation

eqn = qn − q̃n,(5.2a)

epn = pn − p̃n(5.2b)

and subtract to get the error equation

eqn+1 = eqn + τM−1
n+ 1

2

epn − 1

2
τ2M−1

n+ 1
2

Ane
q
n − dq

n+1,(5.3a)

epn+1 = epn − τ

2
Ane

q
n − τ

2
An+1e

q
n+1 − dp

n+1.(5.3b)
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5.2. The CFL condition. From now on we assume that the step size τ fulfills the
following restriction:

1

4
τ2ρ

(
M(t)−1/2A(t)M(t)−1/2

)
≤ 1− θ(5.4)

for all 0 ≤ t ≤ T and for a fixed 0 < θ < 1, where ρ(·) denotes the spectral radius.
For a quasi-uniform triangulation we have ρ

(
M(t)−1/2A(t)M(t)−1/2

)
∼ h−2, so

that we have a time step restriction τ ≤ ch.
Under the CFL condition (5.4), the symmetric matrix

Â(t) = A(t)− 1

4
τ2A(t)M(t)−1A(t) is positive semidefinite,(5.5)

and there exists Cθ such that for every eq ∈ R
J we have〈

eq
∣∣Â(t)

∣∣eq〉 ≤ 〈eq∣∣A(t)
∣∣eq〉 ≤ Cθ

〈
eq
∣∣Â(t)

∣∣eq〉.(5.6)

5.3. Stability estimate. We use a time-dependent modified energy norm on R
2J :

for e = (eq, ep) ∈ R
2J ,

‖e‖2t =
〈
eq
∣∣M(t) + Â(t)

∣∣eq〉+ 〈ep∣∣M(t)−1
∣∣ep〉.(5.7)

We denote by en = (eqn, e
p
n) the error vector at time tn and by dn = (dq

n,d
p
n) the

defect vector in (5.3). With this notation we prove the following stability result.

Lemma 5.1. There exists τ0 > 0 (depending only on μ and κ of Lemma 3.1 and
on θ of (5.4)) such that for step sizes τ ≤ τ0 satisfying the CFL condition (5.4),
the error is bounded, for tn = nτ ≤ T , by

‖en‖tn ≤ C
(
‖e0‖t0 +

n∑
k=1

‖dk‖tk
)
.

The constant C is independent of h, τ , and n subject to the stated conditions (but
depends on μ, κ, θ, and T ).

Proof. We prove the lemma in three steps.
(a) Local error: Here we analyze the error after one step, starting with en = 0.

Thus the error equation (5.3) simply reads

eqn+1 = −dq
n+1,(5.8a)

epn+1 = −τ

2
An+1e

q
n+1 − dp

n+1.(5.8b)

Using the seminorm equivalence (5.6) for the first equation of (5.8) yields〈
eqn+1 |An+1 +Mn+1| eqn+1

〉
=
〈
dq
n+1 |Mn+1 +An+1|dq

n+1

〉
≤ Cθ

〈
dq
n+1

∣∣∣Mn+1 + Ân+1

∣∣∣dq
n+1

〉
.(5.9)

Furthermore, we get by the second equation of (5.8)〈
epn+1 + dp

n+1

∣∣M−1
n+1

∣∣ epn+1 + dp
n+1

〉
=

1

4
τ2
〈
eqn+1

∣∣An+1M
−1
n+1An+1

∣∣ eqn+1

〉
.

Thus we obtain〈
epn+1

∣∣M−1
n+1

∣∣ epn+1

〉
=

1

4
τ2
〈
eqn+1

∣∣An+1M
−1
n+1An+1

∣∣ eqn+1

〉
− 2

〈
epn+1

∣∣M−1
n+1

∣∣dp
n+1

〉
−
〈
dp
n+1

∣∣M−1
n+1

∣∣dp
n+1

〉
.
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We estimate the second term on the right-hand side by the Cauchy–Schwarz in-
equality and Young’s inequality to obtain

(5.10)
1

2

〈
epn+1

∣∣M−1
n+1

∣∣ epn+1

〉
− 1

4
τ2
〈
eqn+1

∣∣An+1M
−1
n+1An+1

∣∣ eqn+1

〉
≤ 2

〈
dp
n+1

∣∣M−1
n+1

∣∣dp
n+1

〉
.

Therefore, adding (5.9) to (5.10) yields

‖en+1‖tn+1
≤ Cθ ‖dn+1‖tn+1

.(5.11)

(b) Error propagation: We now consider one step of the error equations without
defects and estimate ‖en+1‖tn+1

in terms of ‖en‖tn :

eqn+1 = eqn + τM−1
n+ 1

2

epn − 1

2
τ2M−1

n+ 1
2

Ane
q
n,(5.12a)

epn+1 = epn − τ

2
Ane

q
n − τ

2
An+1e

q
n+1.(5.12b)

We start by direct computation taking the squared A-seminorm of eqn+1 at time

tn+1 and the squared M−1-norm of epn+1 at time tn+ 1
2
to find〈

eqn+1 |An+1| eqn+1

〉
= 〈eqn |An+1| eqn〉+ 2τ

〈
eqn |An+1|M−1

n+ 1
2

epn

〉
− τ2

〈
eqn |An+1|M−1

n+ 1
2

Ane
q
n

〉
+ τ2

〈
epn

∣∣∣M−1
n+ 1

2

An+1M
−1
n+ 1

2

∣∣∣ epn〉− τ3
〈
epn

∣∣∣M−1
n+ 1

2

An+1M
−1
n+ 1

2

∣∣∣Ane
q
n

〉
+

1

4
τ4
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An+1M
−1
n+ 1

2

An

∣∣∣ eqn〉 ,〈
epn+1

∣∣∣M−1
n+ 1

2

∣∣∣ epn+1

〉
=
〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣ epn〉− τ
〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
− τ

〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣An+1e
q
n+1

〉
+

1

4
τ2
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An

∣∣∣ eqn〉+
1

2
τ2
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

∣∣∣An+1e
q
n+1

〉
+

1

4
τ2
〈
eqn+1

∣∣∣An+1M
−1
n+ 1

2

An+1

∣∣∣ eqn+1

〉
.

Expressing eqn+1 by (5.12a), it follows that〈
epn+1

∣∣∣M−1
n+ 1

2

∣∣∣ epn+1

〉
=
〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣ epn〉− τ
〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
− τ

〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣An+1e
q
n

〉
− τ2

〈
epn

∣∣∣M−1
n+ 1

2

An+1M
−1
n+ 1

2

∣∣∣ epn〉+
1

2
τ3
〈
epn

∣∣∣M−1
n+ 1

2

An+1M
−1
n+ 1

2

∣∣∣Ane
q
n

〉
+

1

4
τ2
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An

∣∣∣ eqn〉+
1

2
τ2
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

∣∣∣An+1e
q
n

〉
+

1

2
τ3
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

An+1M
−1
n+ 1

2

∣∣∣ epn〉− 1

4
τ4
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An+1M
−1
n+ 1

2

An

∣∣∣ eqn〉
+

1

4
τ2
〈
eqn+1

∣∣∣An+1M
−1
n+ 1

2

An+1

∣∣∣ eqn+1

〉
.
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Adding both expressions leads to

(5.13)

〈
eqn+1

∣∣∣∣An+1 −
1

4
τ2An+1M

−1
n+ 1

2

An+1

∣∣∣∣ eqn+1

〉
+
〈
epn+1

∣∣∣M−1
n+ 1

2

∣∣∣ epn+1

〉
= 〈eqn |An+1| eqn〉+

〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣ epn〉− 1

2
τ2
〈
An+1e

q
n

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
+

1

4
τ2
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
+
〈
eqn |An+1 −An| τM−1

n+ 1
2

epn

〉
.

We estimate the terms on the right-hand side of (5.13) separately, starting by the
first and second terms, then the third and the fourth together, and in the end the
last term.

• In the first and second terms on the right hand side of (5.13) we write An+1 =

(An+1 −An) + An and M−1
n+ 1

2

=
(
M−1

n+ 1
2

−M−1
n

)
+ M−1

n respectively. Then

conditions (3.14) and (3.13) yield

〈eqn |An+1| eqn〉 = 〈eqn |An+1 −An| eqn〉+ 〈eqn |An| eqn〉
≤ (1 + κτ ) 〈eqn |An| eqn〉 ,(5.14) 〈

epn

∣∣∣M−1
n+ 1

2

∣∣∣ epn〉 ≤ (1 + μτ )
〈
epn
∣∣M−1

n

∣∣ epn〉 .(5.15)

• In the third term of (5.13) we also write An+1 = (An+1 −An) +An and add
it to the fourth term on the right side of (5.13) to get

(5.16) − 1

2
τ2
〈
An+1e

q
n

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
+

1

4
τ2
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
=

〈
eqn

∣∣∣An+1 −An

∣∣∣− 1

2
τ2M−1

n+ 1
2

Ane
q
n

〉
− 1

4
τ2
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An

∣∣∣ eqn〉 .
We start with the first term on the right-hand side and use condition (3.14) and
Young’s inequality to get〈

eqn

∣∣∣An+1 −An

∣∣∣− 1

2
τ2M−1

n+ 1
2

Ane
q
n

〉
≤ Cτ |eqn|An

∣∣∣∣12τ2M−1
n+ 1

2

Ane
q
n

∣∣∣∣
An

≤ Cτ

(
|eqn|

2
An

+
1

4

∣∣∣∣12τ2M−1
n+ 1

2

Ane
q
n

∣∣∣∣2
An

)
.

Using the CFL condition (5.4), similar arguments to those used for (5.14) and
(5.15), and (5.6) yield that this is further bounded by〈
eqn

∣∣∣An+1 −An

∣∣∣− 1

2
τ2M−1

n+ 1
2

Ane
q
n

〉
≤ Cτ

⎛⎝|eqn|
2
An

+
1

4

∣∣∣∣12τ2M−1
n+ 1

2

Ane
q
n

∣∣∣∣2
A

n+1
2

⎞⎠
≤ Cτ

(
|eqn|

2
An

+
1

4
τ2 |Ane

q
n|

2
M−1

n+1
2

)
≤ Cτ

(
|eqn|

2
An

+
1

4
τ2 |Ane

q
n|

2
M−1

n

)
≤ Cθ τ

〈
eqn

∣∣∣Ân

∣∣∣ eqn〉 .
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For the last term of (5.16) we write M−1
n+ 1

2

=
(
M−1

n+ 1
2

−M−1
n

)
+ M−1

n and use

condition (3.13), the CFL condition (5.4) and (5.6) to get

− 1

4
τ2
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An

∣∣∣ eqn〉
= −1

4
τ2
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

−M−1
n

∣∣∣Ane
q
n

〉
− 1

4
τ2
〈
eqn
∣∣AnM

−1
n An

∣∣ eqn〉
≤ Cτ

〈
1

4
τ2M−1

n Ane
q
n |An| eqn

〉
− 1

4
τ2
〈
eqn
∣∣AnM

−1
n An

∣∣ eqn〉
≤ Cθ τ

〈
eqn

∣∣∣Ân

∣∣∣ eqn〉− 1

4
τ2
〈
eqn
∣∣AnM

−1
n An

∣∣ eqn〉 .
Combining the above bounds yields

(5.17) − 1

2
τ2
〈
An+1e

q
n

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
+

1

4
τ2
〈
Ane

q
n

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
≤ −1

4
τ2
〈
eqn
∣∣AnM

−1
n An

∣∣ eqn〉+ Cθ τ
〈
eqn

∣∣∣Ân

∣∣∣ eqn〉 .
• For the last term on the right-hand side of (5.13), we use condition (3.14),

Young’s inequality, and the CFL condition (5.4) to estimate〈
eqn

∣∣∣An+1−An

∣∣∣τM−1
n+ 1

2

epn

〉
≤ Cτ

(
〈eqn |An| eqn〉+

1

4

〈
τM−1

n+ 1
2

epn

∣∣∣An

∣∣∣τM−1
n+ 1

2

epn

〉)
≤ Cτ

(
〈eqn |An| eqn〉+

〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣ epn〉)
≤ Cθ τ

(〈
eqn

∣∣∣Ân

∣∣∣ eqn〉+
〈
epn
∣∣M−1

n

∣∣ epn〉) .(5.18)

Now we take the squared M-norm of eqn+1 at time tn+ 1
2
to find〈

eqn+1

∣∣∣Mn+ 1
2

∣∣∣ eqn+1

〉
=
〈
eqn

∣∣∣Mn+ 1
2

∣∣∣ eqn〉+ 2τ 〈eqn|epn〉 − τ2 〈eqn |An| eqn〉+ τ2
〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣ epn〉
− τ3

〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
+

1

4
τ4
〈
eqn

∣∣∣AnM
−1
n+ 1

2

An

∣∣∣ eqn〉 .
The Cauchy–Schwarz inequality, the CFL condition (5.4) and the bound (3.12)
yield 〈

eqn

∣∣∣Mn+ 1
2

∣∣∣ eqn〉 ≤ (1 + μτ ) 〈eqn |Mn| eqn〉

2τ 〈eqn|epn〉 ≤ τ
(
|eqn|2Mn

+ |epn|2M−1
n

)
−τ2

〈
eqn

∣∣∣∣An − 1

4
τ2AnM

−1
n+ 1

2

An

∣∣∣∣ eqn〉 ≤
(
−τ2 + Cθτ

3
) 〈

eqn

∣∣∣Ân

∣∣∣ eqn〉
τ3
〈
epn

∣∣∣M−1
n+ 1

2

∣∣∣Ane
q
n

〉
≤ τ3|epn|M−1

n+1
2

|Ane
q
n|M−1

n+1
2

≤ Cτ
(
|epn|2M−1

n
+ Cθ

〈
eqn

∣∣∣Ân

∣∣∣ eqn〉) .
Thus we have〈

eqn+1

∣∣∣Mn+ 1
2

∣∣∣ eqn+1

〉
≤(1 + Cτ ) |eqn|2Mn

+Cτ |epn|2M−1
n

+ Cθτ
〈
eqn

∣∣∣Ân

∣∣∣ eqn〉 .(5.19)
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Combining (5.13)-(5.18) and the above bound (5.19) yields

(5.20)

〈
eqn+1

∣∣∣∣Mn+ 1
2
+An+1 −

τ2

4
An+1M

−1
n+ 1

2

An+1

∣∣∣∣ eqn+1

〉
+
〈
epn+1

∣∣∣M−1
n+ 1

2

∣∣∣ epn+1

〉
≤ (1 + Cθτ ) ‖en‖2tn .

This is almost the desired estimate, except that here we have Mn+1/2 instead of
Mn+1. It remains to show that we have a bound of the same type also with Mn+1.
Since by (3.12) and (3.13),〈

eqn+1

∣∣∣Mn+1 −Mn+ 1
2

∣∣∣ eqn+1

〉
≤ μτ

〈
eqn+1

∣∣Mn+1/2

∣∣ eqn+1

〉
,〈

epn+1

∣∣∣M−1
n+1 −M−1

n+ 1
2

∣∣∣ epn+1

〉
≤ μτ

〈
epn+1

∣∣∣M−1
n+1/2

∣∣∣ epn+1

〉
and by (3.13) and (5.5),〈

eqn+1

∣∣∣∣τ24 An+1(M
−1
n+1 −M−1

n+ 1
2

)An+1

∣∣∣∣ eqn+1

〉
≤ μτ

〈
eqn+1

∣∣∣∣τ24 An+1M
−1
n+1An+1

∣∣∣∣ eqn+1

〉
≤ μτ

〈
eqn+1 |An+1| eqn+1

〉
,

we obtain

‖en+1‖2tn+1
≤ (1 + μτ )

(〈
eqn+1

∣∣∣∣Mn+ 1
2
+An+1 −

τ2

4
An+1M

−1
n+ 1

2

An+1

∣∣∣∣ eqn+1

〉
+
〈
epn+1

∣∣∣M−1
n+ 1

2

∣∣∣ epn+1

〉)
,

which together with (5.20) finally yields

‖en+1‖tn+1
≤ (1 + Cτ ) ‖en‖tn .

(c) Error accumulation: A standard application of Lady Windermere’s fan (see
[17, 18]) completes the proof. �

6. Bounding the error in terms of the semidiscrete residual

We compare the numerical solutions Un
h and ∂•

hU
n
h given in (4.6), which are finite

element functions on the discretized surface Γh(tn), with a near-identity mapping
of the PDE solution u to the finite element space Sh(t) at t = tn:

(Phu)(t) =
J∑

j=1

q̃j(t)χj(t), ∂•
h(Phu)(t) =

J∑
j=1

˙̃qj(t)χj(t).

The map Ph with (Phu)(t) ∈ Sh(t) is arbitrary in this section and will later be
chosen as the Ritz map of Section 8. The finite element function (Phu)(t) on Γh(t)

has a residual Rh(t) =
∑J

j=1 rj(t)χj(t) ∈ Sh(t) when inserted into Equation (3.6)

of the spatial semidiscretization: for all temporally smooth φh with φh(·, t) ∈ Sh(t)
and for all t,

(6.1)
d

dt

∫
Γh(t)

∂•
h(Phu)φh +

∫
Γh(t)

∇Γh(t)(Phu) · ∇Γh(t)φh

=

∫
Γh(t)

∂•
h(Phu) ∂

•
hφh +

∫
Γh(t)

Rhφh,
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or equivalently, on inserting the nodal vector q̃(t) = (q̃j(t)) of (Phu)(t) into (3.9),

d

dt

(
M(t) ˙̃q(t)

)
+A(t)q̃(t) = M(t)r(t),(6.2)

where r(t) = (rj(t)) ∈ R
J .

Using the stability bound of the previous section and translating it back into
a function-space framework, we will show the following result which reduces the
problem of estimating the fully discrete error to estimating the semidiscrete residual.

Theorem 6.1. Under the CFL condition (5.4) and suitable regularity conditions
on the exact solution u of the wave equation (2.4), the errors En

h = Un
h − (Phu)(tn)

and ∂•
hE

n
h = ∂•

hU
n
h − ∂•

h(Phu)(tn) are bounded for sufficiently small h ≤ h0 and for
tn = nτ ≤ T by

‖En
h‖L2(Γh(tn))

+ ‖∇Γh
En

h‖L2(Γh(tn))
+ ‖∂•

hE
n
h‖L2(Γh(tn))

≤ C
(∥∥E0

h

∥∥
L2(Γh(t0))

+
∥∥∇Γh

E0
h

∥∥
L2(Γh(t0))

+
∥∥∂•

hE
0
h

∥∥
L2(Γh(t0))

)
+ Cβhτ

2 + Cτ

n∑
k=0

‖Rh(tk)‖L2(Γh(tk)).

Here C is independent of h (but depends on T and θ), and

βh =

∫ T

0

(
‖∇Γh

(Phu)
(3)(t)‖L2(Γh(t)) +

4∑
�=1

‖(Phu)
(�)(t)‖L2(Γh(t))

)
dt,

where the superscript (�) denotes the �th discrete material derivative.

Proof. We reformulate (6.2) as

˙̃p(t) = −A(t)q̃(t) +M(t)r(t),(6.3a)

˙̃q(t) = M(t)−1p̃(t).(6.3b)

Considering the errors

eqn = qn − q̃(tn),

epn = pn − p̃(tn),

the defects appearing in the error equation (5.3) satisfy

dq
n+1 = q̃ (tn+1)− q̃ (tn)− τM−1

n+ 1
2

p̃ (tn) +
1

2
τ2M−1

n+ 1
2

Anq̃ (tn) ,

dp
n+1 = p̃ (tn+1)− p̃ (tn) +

τ

2
Anq̃ (tn) +

τ

2
An+1q̃ (tn+1) .

By (6.3) and Taylor expansion, we obtain

dq
n+1 = τ3

∫ 1

0

K1(θ)
...
q̃(tn + θτ ) dθ + τ3M−1

n+ 1
2

∫ 1
2

0

K2(θ)¨̃p(tn + θτ ) dθ

+
1

2
τ2M−1

n+ 1
2

Mnrn,(6.4)

dp
n+1 = τ2

∫ 1

0

K3(θ)
...
p̃(tn + θτ ) dθ +

τ

2
Mnrn +

τ

2
Mn+1rn+1,(6.5)

with bounded Peano kernels K1,K2 and K3.
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Using Lemma 3.1 and the norm identity (3.11) we first have

|
...
q̃(t)|M(s) + |

...
q̃(t)|A(s)

≤
√
2
(
‖(Phu)

(3)(t)‖L2(Γh(t)) + ‖∇Γh
(Phu)

(3)(t)‖L2(Γh(t))

)
,

(6.6)

provided that μ|t − s| ≤ 1 and κ|t − s| ≤ 1. Now by Lemma 3.1 and the CFL
condition (5.4) we estimate for t ∈ [tn, tn+1]

τ3|M−1
n+ 1

2

¨̃p(t)|Mn+1
≤

√
2τ3|M−1

n+ 1
2

¨̃p(t)|M
n+1

2

≤ 2τ3|¨̃p(t)|M(t)−1 ,

τ3|M−1
n+ 1

2

¨̃p(t)|An+1
≤ Cθτ

2|¨̃p(t)|M−1

n+1
2

≤ 2Cθτ
2|¨̃p(t)|M(t)−1 .

Therefore in view of (6.3) we find for sufficiently small τ :

τ3
(
|M−1

n+ 1
2

¨̃p(t)|Mn+1
+ |M−1

n+ 1
2

¨̃p(t)|An+1

)
≤ Cτ2|(Mq̃)(3)(t)|M(t)−1 .(6.7)

Lemma 9.2 of [13] shows that for wh(t) =
∑J

j=1 wj(t)χj(t) with w(t) = (wj(t)):

|(Mw)(k)|2M−1 ≤ c

k∑
j=0

‖w(�)
h ‖2L2(Γh)

.(6.8)

Thus, (6.8) and (6.7) yield

τ3
(
|M−1

n+ 1
2

¨̃p(t)|Mn+1
+ |M−1

n+ 1
2

¨̃p(t)|An+1

)
≤ Cτ2

3∑
�=1

‖(Phu)
(�)(t)‖L2(Γh(t)).

Again by Lemma 3.1 and the CFL condition (5.4) used similarly to (6.7), and by
the norm identity (3.11), we get the bound

τ2
(
|M−1

n+ 1
2

Mnrn|Mn+1
+ |M−1

n+ 1
2

Mnrn|An+1

)
≤ Cτ‖Rh(tn)‖L2(Γh(tn)).(6.9)

Combining (6.6) and (6.9), we thus have by (6.4)
n∑

k=1

|dq
k|Mk

+ |dq
k|Ak

≤ Cτ2βh + Cτ

n∑
k=0

‖Rh(tk)‖L2(Γh(tk)).(6.10)

For dp
k+1 of (6.5) we use the same arguments (Lemma 3.1 and (6.8)) as above to

find

|
...
p̃(t)|M(s)−1 ≤ C|

...
p̃(t)|M(t)−1 = C| (Mq̃)

(4)
(t)|M(t)−1

≤ C
4∑

�=1

‖(Phu)
(�)(t)‖L2(Γh(t)).

Thus, it follows that
n∑

k=1

|dp
k|M−1

k
≤ Cτ2βh + Cτ

n∑
k=0

‖Rh(tk)‖L2(Γh(tk)).(6.11)

Inserting the bounds (6.10) and (6.11) into Lemma 5.1 and using the norm identity
(3.11) completes the proof. �

7. Lifts

In this section we summarize some results from [8–10] and show some others
about lifts of functions from the discretized to the original surface.
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7.1. Estimates between surface finite elements and their lifts. We denote
by d(x, t), x ∈ R

m+1, t ∈ [0, T ], the signed distance function to the smooth closed
surface Γ(t) and let N (t) be a neighbourhood of Γ(t) such that for every x ∈ N (t)
and t ∈ [0, T ] there exists a unique p(x, t) ∈ Γ(t) which is the normal projection of
x onto Γ(t), i.e.

x− p(x, t) = d(x, t)ν(p(x, t), t).(7.1)

We assume Γh(t) ⊂ N (t). Thus for each triangle E(t) in Γh(t) there is a unique
curved triangle e(t) = p(E(t), t) ⊂ Γ(t), and this induces an exact triangulation
of Γ(t) with curved edges. Furthermore we assume that Γh(t) consists of triangles
E(t) in Th(t) with inner radius bounded below by σh ≥ ch for some c > 0.

For any continuous function ηh : Γh → R we define its lift ηlh : Γ → R by

ηlh(p, t) = ηh(x, t), p ∈ Γ(t),

where x ∈ Γh(t) is such that p = p(x, t). Then we have the lifted finite element
space

Sl
h(t) = {ϕh = φl

h : φh ∈ Sh(t)}.

Note that χl
j(·, t)(j = 1, . . . , J) form a basis of Sl

h(t).
We denote by δh the quotient between the smooth and discrete surface measures

dA and dAh, defined by δhdAh = dA.
We further introduce Pr and Prh as the projections onto the tangent planes

of Γ and Γh respectively and the Weingarten map H (Hij = ∂xj
νi). Defining

Qh = 1
δh
(I − dH)PrPrhPr(I − dH) we get the relation [10, Lemma 5.5]

∇Γh
η(x) · ∇Γh

φ(x) = δhQh∇Γη
l(p) · ∇Γφ

l(p).(7.2)

Lemma 7.1. Assume Γ(t) and Γh(t) satisfy the requirements stated above. Then
we have

‖d‖L∞(Γh)
≤ ch2, ‖1− δh‖L∞(Γh)

≤ ch2, ‖ν − νh‖L∞(Γh)
≤ ch,

‖Pr −Qh‖L∞(Γh)
≤ ch2,

∥∥∥∂(�)
h d

∥∥∥
L∞(Γh)

≤ ch2,
∥∥∥∂(�)

h δh

∥∥∥
L∞(Γh)

≤ ch2,∥∥∥Pr(∂
(�)
h Qh)Pr

∥∥∥
L∞(Γh)

≤ ch2,

where the superscript (�) denotes the �th discrete material derivative.

Proof. A proof for the first four estimates can be found in [9, Lemma 5.1]. To
prove the other estimates, we consider a single element E(t) ⊂ Γh(t), and w.l.o.g.

we assume E ∈ R
2 × {0}. Since ∂

(�)
h d = 0 in the vertices of the triangle E, the

linear interpolant Ih∂
(�)
h d vanishes on E. By the standard interpolation estimates

it follows that∥∥∥∂(�)
h d

∥∥∥
L∞(E)

=
∥∥∥∂(�)

h d− Ih∂
(�)
h d

∥∥∥
L∞(E)

≤ ch2
∥∥∥∂(�)

h d
∥∥∥
W 2,∞(E)

≤ ch2.

Similarly, ∥∥∥∂xj
(∂

(�)
h d)

∥∥∥
L∞(E)

≤ ch for j = 1, 2.
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Since νj = ∂xj
d and ∂•

h(∂xj
f) = ∂xj

(∂•
hf)− ∂xj

Vh · ∇f , we obtain recursively∥∥∥∂(�)
h νj

∥∥∥
L∞(E)

≤ ch for j = 1, 2.

For x = (x1, x2, 0) ∈ E we have by (7.1)

pxj
= ej − νjν − dνxj

(j = 1, 2),

where ej ∈ R
3 denotes the jth standard basis vector. Then direct computation

yields

δh = ‖px1
× px2

‖ = |ν3|+ dR(ν, νx1
, νx2

) =
√
1− ν21 − ν22 + dR(ν, νx1

, νx2
)

with some smooth remainder function R. Since |d|, |∂(�)
h d| = O(h2) and |νj |, |∂(�)

h νj |
= O(h) for j = 1, 2, it follows that |∂(�)

h ν3| ≤ ch2 and∥∥∥∂(�)
h δh

∥∥∥
L∞(E)

≤ ch2.

Let us now prove the last estimate for � = 1. The general case follows recursively
with similar arguments. We note that for Qh in (7.2), we have

Qh =
1

δh
PrPrhPr + dR(δh, P r, Prh,H)

with some smooth remainder function R. Since |d|, |∂•
hd| = O(h2), δh = 1 +O(h2)

and |∂•
hδh| = O(h2), we find

Pr (∂•
hQh)Pr = Pr∂•

h (PrPrhPr)Pr +O(h2).(7.3)

Using the fact that ∂•
hν · ν = 0, we get

Pr∂•
h (PrPrhPr)Pr = Pr∂•

h (PrPrhPr − Pr)Pr

= −Pr∂•
h

(
Prνhν

T
hPr

)
Pr.(7.4)

We keep in mind that in our situation νh = e3. Thus

|Prνh| = |νh − (νh · ν)ν| = |e3 − ν3ν| =
√
1− ν23 =

√
ν21 + ν22 = O(h),(7.5a)

|∂•
h(Prνh)| = | − (∂•

hν3)ν − ν3∂
•
hν| = O(h).(7.5b)

Inserting the bounds (7.5) into (7.4) and finally into (7.3) completes the proof. �

7.2. Error bound of the lifted interpolation. We shall make use of the follow-
ing interpolation estimate given in [8, Lemma 5]:

Lemma 7.2. For a given η ∈ H2(Γ),

‖η − Ihη‖L2(Γ) + h ‖∇Γ(η − Ihη)‖L2(Γ) ≤ ch2
(∥∥∇2

Γη
∥∥
L2(Γ)

+ h ‖∇Γη‖L2(Γ)

)
,

where Ihη ∈ Sl
h is the lift of the pointwise linear interpolation Ĩhη ∈ Sh.
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7.3. Velocity of lifted material points and material derivatives. By the
definition (3.1) of the discrete material velocity Vh for a material point X(t) on
Γh(t), we get the associated material velocity on Γ(t): for y(t) = p(X(t), t), we
have

ẏ(t) = vh(y(t), t)

with

vh (y, t) =
∂p

∂t
(x, t) + Vh (x, t) · ∇p (x, t)

= (Pr − dH)(x, t)Vh(x, t)− ∂td(x, t)ν(x, t)− d(x, t)∂tν(x, t),(7.6)

for y = p(x, t). We note that −∂td(x, t)ν(x, t) is just the normal component of
v(p, t), and the other two terms on the right-hand side of (7.6) are tangent to Γ(t)
in p. It follows that

vh − v is a tangent vector.(7.7)

The discrete material derivatives on Γh(t) and Γ(t) then read

∂•
hφh =

∂φh

∂t
+ Vh · ∇φh,

∂•
hϕh =

∂ϕh

∂t
+ vh · ∇ϕh.

It was shown in [10, Lemma 4.1] that the basis functions of Sl
h(t) also satisfy the

transport property

∂•
hϕj = ∂•

hφ
l
j = 0.(7.8)

Therefore the discrete material derivative and the lifting process commute in the
following sense: For ϕh = φl

h ∈ Sl
h,

∂•
hϕh = (∂•

hφh)
l =

J∑
j=1

φ̇h,jχ
l
j ,

where φh,j(t) = φh(aj(t), t) = ϕh(aj(t), t).
We have the following bounds for the difference between the different velocities:

Lemma 7.3. The error between the continuous velocity v and the lifted discrete
velocity vh on the smooth surface Γ satisfies the bounds, for � ≥ 0,

‖∂(�)
h (v − vh)‖L∞(Γ) + h‖∇Γ∂

(�)
h (v − vh)‖L∞(Γ) ≤ C� h

2.(7.9)

Proof. The definition (7.6) of vh together with the fact that Vh = Ihv give (see
[10, Lemma 5.6])

|v(p, t)− vh(p, t)| = |Pr(v − Ihv)(p, t) + d(HIhv(p, t) + ∂tν)| ≤ Ch2.

For � = 1, we have by the transport property (7.8) and Lemma 7.1

|∂•
h(v − vh)| ≤ |(∂•

hPr)(v − Ihv)|+ |Pr(∂•
hv − Ih∂

•
hv)|

+ |(∂•
hd)(HIhv + ∂tν)|+ |d∂•

h(HIhv + ∂tν)|
≤ Ch2.
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Using the fact that ∇Γd = ∇Γ∂
•
hd = 0 and Lemma 7.1, we obtain

|∇Γ(v − vh)| ≤ c |v − Ihv|+ c |∇Γ(v − Ihv)|+ ch2 ≤ ch,

|∇Γ∂
•
h(v − vh)| ≤ c |v − Ihv|+ c |∇Γ(v − Ihv)|+ c |∂•

hv − Ih∂
•
hv|

+ c |∇Γ(∂
•
hv − Ih∂

•
hv)|+ ch2

≤ ch.

For � > 1 the proof uses the same arguments. �

7.4. Lifts and bilinear forms. We define the bilinear forms for w,ϕ ∈ H1(Γ) as

a(w,ϕ) =

∫
Γ

∇Γw · ∇Γϕ,(7.10a)

m(w,ϕ) =

∫
Γ

wϕ,(7.10b)

where the forms also depend on time t. We write a(w,ϕ; t), etc. when we want to
make the dependence on t explicit.

The discrete analogs of the above bilinear forms for Wh, φh ∈ Sh are defined by

ah(Wh, φh) =
∑
E∈Th

∫
E

∇Γh
Wh · ∇Γh

φh,(7.11a)

mh(Wh, φh) =

∫
Γh

Whφh.(7.11b)

We are interested in the time derivatives of these bilinear forms. For this we need
some more bilinear forms:

g(v;w,ϕ) =

∫
Γ

(∇Γ · v)wϕ,(7.12a)

b(v;w,ϕ) =

∫
Γ

B(v)∇Γw · ∇Γϕ(7.12b)

with the matrix

B(v)ij = δij∇Γ · v − ((∇Γ)ivj + (∇Γ)jvi) , i, j = 1, . . . ,m+ 1.

Their discrete analogs read

gh(Vh;Wh, φh) =

∫
Γh

(∇Γh
· Vh)Whφh,(7.13a)

bh(Vh;Wh, φh) =
∑
E∈Th

∫
E

Bh(Vh)∇Γh
Wh · ∇Γh

φh(7.13b)

with

Bh(Vh)ij = δij∇Γh
· Vh − ((∇Γh

)iVhj + (∇Γh
)jVhi) , i, j = 1, . . . ,m+ 1.

We shall make use of the following transport lemma [10, Lemma 4.2].

Lemma 7.4. For ϕ,w, ∂•ϕ, ∂•w, ∂•
hϕ, ∂

•
hw ∈ H1(Γ) we have:

d

dt
m(w,ϕ) = m(∂•w,ϕ) +m(w, ∂•ϕ) + g(v;w,ϕ),

d

dt
a(w,ϕ) = a(∂•w,ϕ) + a(w, ∂•ϕ) + b(v;w,ϕ).
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The same formulas hold when ∂• and v are replaced with ∂•
h and vh, respectively.

Furthermore for Wh, φh ∈ Sh we have the following analogs:

d

dt
mh(Wh, φh) = mh(∂

•
hWh, φh) +mh(Wh, ∂

•
hφh) + gh(Vh;Wh, φh),

d

dt
ah(Wh, φh) = ah(∂

•
hWh, φh) + ah(Wh, ∂

•
hφh) + bh(Vh;Wh, φh).

We show the following bounds for the lifting process.

Lemma 7.5. For any (Wh, φh) ∈ Sh × Sh with the corresponding lifts (wh, ϕh) ∈
Sl
h × Sl

h we have

|m(wh, ϕh)−mh(Wh, φh)| ≤ ch2‖wh‖L2(Γ)‖ϕh‖L2(Γ),

|a(wh, ϕh)− ah(Wh, φh)| ≤ ch2‖∇Γwh‖L2(Γ)‖∇Γϕh‖L2(Γ),

|g(vh;wh, ϕh)− gh(Vh;Wh, φh)| ≤ ch2‖wh‖L2(Γ)‖ϕh‖L2(Γ),

|b(vh;wh, ϕh)− bh(Vh;Wh, φh)| ≤ ch2‖∇Γwh‖L2(Γ)‖∇Γϕh‖L2(Γ).

Proof. The first two estimates have been shown in [10, Lemma 5.5]. To prove the
third estimate, we apply the transport lemma, Lemma 7.4, once on Γh and a second
time on Γ, to get the following identities:

d

dt
m(wh, ϕh) =

d

dt
mh(Wh, φh · δh)

= mh(∂
•
hWh, φh · δh) +mh(Wh, ∂

•
hφh · δh) +mh(Wh, φh · ∂•

hδh)

+ gh(Vh;Wh, φh · δh)
= m(∂•

hwh, ϕh) +m(wh, ∂
•
hϕh) + g(vh;wh, ϕh).

Due to the fact that ∂•
hwh = (∂•

hWh)
l, using Lemma 7.1 and the equivalence of

norms between the continuous and discrete surface, it follows that

|g(vh;wh, ϕh)− gh(Vh;Wh, φh)| = |mh(Wh, φh · ∂•
hδh) + gh(Vh;Wh, φh · (δh − 1))|

≤ c
(
‖∂•

hδh‖L∞(Γh)
+ ‖δh − 1‖L∞(Γh)

)
‖wh‖L2(Γ)‖ϕh‖L2(Γ)

≤ ch2‖wh‖L2(Γ)‖ϕh‖L2(Γ).

Similarly we prove the last estimate. We use Lemma 7.4 and the relation (7.2) to
find

d

dt

∫
Γh

∇Γh
Wh∇Γh

φh =

∫
Γ

Ql
h∇Γwh∇Γϕh

=

∫
Γ

Ql
h∇Γ∂

•
hwh∇Γϕh +

∫
Γ

Ql
h∇Γwh∇Γ∂

•
hϕh +

∫
Γ

∂•
hQl

h∇Γwh∇Γϕh

+

∫
Γ

B(vh)Ql
h∇Γwh∇Γϕh

=

∫
Γh

∇Γh
∂•
hWh∇Γh

φh +

∫
Γh

∇Γh
Wh∇Γh

∂•
hφh +

∫
Γh

Bh(Vh)∇Γh
Wh∇Γh

φh.
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Therefore, the relation ∂•
hwh = (∂•

hWh)
l, (7.2) and Lemma 7.1 yield

|bh(Vh;Wh, φh)− b(vh;wh, ϕh)|

=

∣∣∣∣∫
Γ

∂•
hQl

h∇Γwh∇Γϕh +

∫
Γ

B(vh)
(
Ql

h − I
)
∇Γwh∇Γϕh

∣∣∣∣
≤ ch2‖∇Γwh‖L2(Γ)‖∇Γϕh‖L2(Γ),

which completes the proof. �

8. The Ritz map for evolving surfaces

8.1. A modified Ritz projection. It turns out to be convenient in the error

analysis to use a modified Ritz projection P̃h(t) onto Sh(t) defined in the following
way, where we use the bilinear forms of Section 7.4 and the lifted discrete velocity
of Section 7.3. To motivate the definition, we rewrite the weak form (2.6) of the
wave equation in terms of the bilinear forms,

d

dt
m(∂•u, ϕ) + a(u, ϕ) = m(∂•u, ∂•ϕ),

and use the Leibniz formula with the discrete material derivative ∂•
h on Γ and note

that ∂•
hϕ = ∂•ϕ + (vh − v) · ∇Γϕ, because vh − v is a tangent vector (see (7.7)).

Then this equation becomes

m(∂•
h∂

•
hu, ϕ) + g(vh; ∂

•u, ϕ) +m(∂•
h∂

•u− ∂•
h∂

•
hu, ϕ)

+m(∂•u, (v − vh) · ∇Γϕ) + a(u, ϕ) = 0.(8.1)

We now define a Ritz map that collects the last two terms on the left-hand side
of this equation, which are the only terms that contain the surface gradient of the
test function ϕ. Since a(·, ·) is only positive semidefinite, we consider the positive
definite bilinear forms

a∗(w,ϕ) = a(w,ϕ) +m(w,ϕ), w, ϕ ∈ H1(Γ),

a∗h(Wh, φh) = ah(Wh, φh) +mh(Wh, φh), Wh, φh ∈ Sh.

We note that a∗(w,w) = ‖w‖2H1(Γ). We write a∗(w,ϕ; t), etc. to make the depen-

dence on t explicit.

Definition 8.1. Let z : GT → R and t ∈ [0, T ]. If z(·, t) ∈ H1(Γ(t)) and ∂•z(·, t) ∈
L2(Γ(t)), there is a unique (P̃hz)(t) ∈ Sh(t) such that for all φh ∈ Sh(t) we have,
with the corresponding lift ϕh = φl

h,

a∗h((P̃hz)(t), φh; t) = a∗(z(t), ϕh; t) +m(∂•z(t), (v(t)− vh(t)) · ∇Γ(t)ϕh; t).(8.2)

We define (Phz)(t) ∈ Sl
h(t) as the lift of (P̃hz)(t), i.e., (Phz)(t) = (P̃hz)(t)

l.

8.2. Error in the Ritz map.

Theorem 8.2. Let z : GT → R with z(·, t) ∈ H1(Γ(t)) and ∂•z(·, t) ∈ L2(Γ(t))
for 0 ≤ t ≤ T . The error in the Ritz map satisfies the bounds, for 0 ≤ t ≤ T and
h ≤ h0 with sufficiently small h0,

(8.3) ‖z(t)− (Phz)(t)‖L2(Γ(t)) + h
∥∥∇Γ(t)

(
z(t)− (Phz)(t)

)∥∥
L2(Γ(t))

≤ Ch2
(
‖z(t)‖H2(Γ(t)) + ‖∂•z(t)‖L2(Γ(t))

)
.

The constant C is independent of h and z and t.
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Proof. We omit the omnipresent argument t in the following. We first note that in
view of (7.9) and Lemma 7.5, we have for all ϕh ∈ Sl

h:

a∗(z − Phz, ϕh) = a∗h(P̃hz, φh)− a∗(Phz, ϕh)−m(∂•z, (v − vh) · ∇Γϕh)

≤ Ch2 ‖Phz‖H1(Γ) ‖ϕh‖H1(Γ) + Ch2 ‖∂•z‖L2(Γ) ‖ϕh‖H1(Γ) .(8.4)

This relation will serve as a substitute for the Galerkin orthogonality in standard
finite element theory on fixed domains. Together with the interpolation error bound
of Lemma 7.2 this yields

‖z − Phz‖2H1(Γ) = a∗(z − Phz, z − Ihz) + a∗(z − Phz, Ihz − Phz)

≤ ‖z − Phz‖H1(Γ) ‖z − Ihz‖H1(Γ)

+ Ch2(‖Phz‖H1(Γ) + ‖∂•z‖L2(Γ)) ‖Ihz − Phz‖H1(Γ)

≤ Ch ‖z − Phz‖H1(Γ) ‖z‖H2(Γ)

+ Ch2
(
‖Phz‖H1(Γ) + ‖∂•z‖L2(Γ)

)
‖Ihz − Phz‖H1(Γ) .

Using Lemma 7.2 once more we estimate(
‖Phz‖H1(Γ) + ‖∂•z‖L2(Γ)

)
‖Ihz − Phz‖H1(Γ)

≤
(
‖Phz − z‖H1(Γ) + ‖z‖H1(Γ) + ‖∂•z‖L2(Γ)

)
·
(
Ch ‖z‖H2(Γ) + ‖z − Phz‖H1(Γ)

)
≤ 2 ‖z − Phz‖2H1(Γ) + ‖z‖2H1(Γ) + ‖∂•z‖2L2(Γ) + Ch2 ‖z‖2H2(Γ) .

Combining both of the above inequalities yields, for sufficiently small h,

‖z − Phz‖2H1(Γ) ≤ Ch2
(
‖z‖2H2(Γ) + ‖∂•z‖2L2(Γ)

)
,(8.5)

which implies the gradient estimate in (8.3).
Now we use the Aubin-Nitsche trick to prove the O(h2) bound of the L2(Γ) error,

and solve the problem

−ΔΓw + w = z − Phz on Γ.

Then by the elliptic theory on smooth surfaces (see [2] and [28] for more details),
w ∈ H2(Γ) satisfies the bound

‖w‖H2(Γ) ≤ c ‖z − Phz‖L2(Γ) .(8.6)

The Cauchy–Schwarz inequality, the interpolation estimate of Lemma 7.2 and the
bounds (8.5) and (8.4) yield

‖z − Phz‖2L2(Γ) = a∗(z − Phz, w)

= a∗(z − Phz, w − Ihw) + a∗(z − Phz, Ihw)

≤ Ch2
(
‖z‖H2(Γ) + ‖∂•z‖L2(Γ)

)
‖w‖H2(Γ)

+ Ch2
(
‖Phz‖H1(Γ) + ‖∂•z‖L2(Γ)

)
‖Ihw‖H1(Γ) .

Noting, from (8.5) and Lemma 7.2,

‖Phz‖H1(Γ) ≤ ‖z‖H1(Γ) + Ch
(
‖z‖H2(Γ) + ‖∂•z‖L2(Γ)

)
,

‖Ihw‖H1(Γ) ≤ ‖w‖H1(Γ) + Ch ‖w‖H2(Γ) ,



WAVE EQUATION ON EVOLVING SURFACES 535

we obtain

‖z − Phz‖2L2(Γ) ≤ Ch2
(
‖z‖H2(Γ) + ‖∂•z‖L2(Γ)

)
‖w‖H2(Γ) .

Applying the bound (8.6) completes the proof. �

8.3. Error in the material derivatives of the Ritz map. In general, ∂•
hPhz �=

Ph∂
•
hz, but we have the following result.

Theorem 8.3. The error in the material derivatives of the Ritz map satisfies the
bounds, for � ≥ 1, 0 ≤ t ≤ T and h ≤ h0 with sufficiently small h0,∥∥∥∂(�)

h (z − Phz) (t)
∥∥∥
L2(Γ(t))

+ h
∥∥∥∇Γ

(
∂
(�)
h (z − Phz) (t)

)∥∥∥
L2(Γ(t))

≤ C� h
2

�∑
i=0

(∥∥∥∂(i)z(t)
∥∥∥
H2(Γ(t))

+
∥∥∥∂(i+1)z(t)

∥∥∥
L2(Γ(t))

)
.(8.7)

Proof. We prove this bound only for � = 1. The general case follows with similar
arguments.

We take the time derivative of equation (8.2) and use the transport lemma,
Lemma 7.4, the relation

∂•
h∇Γf = ∇Γ∂

•
hf −D(vh)∇Γf with D(vh)ij = (∇Γ)ivhj −

m+1∑
l=1

νlνi(∇Γ)jvh,l,

which is proved in [12, Lemma 2.6], and the definition of the Ritz projection (8.2)
to arrive at

a∗(∂•
hz − ∂•

hPhz, ϕh) = − b(vh; z − Phz, ϕh)− g(vh; z − Phz, ϕh)

+ F1(ϕh) + F2(ϕh)(8.8)

for ϕh ∈ Sl
h, where

F1(ϕh) = a∗h(∂
•
hP̃hz, φh)− a∗(∂•

hPhz, ϕh) + bh(Vh; P̃hz, φh)− b(vh;Phz, ϕh)

+ gh(Vh; P̃hz, φh)− g(vh;Phz, ϕh),

F2(ϕh) = −m(∂•
h∂

•z, (v − vh) · ∇Γϕh)− g(vh; ∂
•z, (v − vh) · ∇Γϕh)

−m(∂•z, (∂•
h[v − vh]) · ∇Γϕh) +m(∂•z, (v − vh) · D(vh)∇Γϕh).

We start by bounding F1(ϕh) and F2(ϕh). Lemma 7.5 yields

|F1(ϕh)| ≤ Ch2
(
‖∂•

hPhz‖H1(Γ) + ‖Phz‖H1(Γ)

)
‖ϕh‖H1(Γ) .(8.9)

In view of (7.9) and the fact that (v − vh) is a tangent vector, it follows that

‖∂•
h∂

•z‖L2(Γ) ≤ ‖∂•
h∂

•z − ∂•∂•z‖L2(Γ) + ‖∂•∂•z‖L2(Γ)

= ‖(vh − v) · ∇Γ∂
•z‖L2(Γ) + ‖∂•∂•z‖L2(Γ)

≤ ch2 ‖∇Γ∂
•z‖L2(Γ) + ‖∂•∂•z‖L2(Γ) .

Thus we get the bound

|F2(ϕh)| ≤ Ch2
(
‖∂•∂•z‖L2(Γ) + ‖∂•z‖H1(Γ)

)
‖ϕh‖H1(Γ) .(8.10)

We use the relation (7.9) to find

‖∂•
hz‖H1(Γ) ≤ ‖∂•z‖H1(Γ) + ch ‖z‖H2(Γ) .
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Then inserting ϕh = ∂•
hPhz in (8.8), and using Theorem 8.2, (8.9) and (8.10),

for h ≤ h0, we obtain

‖∂•
hPhz‖H1(Γ) ≤ C ‖∂•z‖H1(Γ) + Ch ‖z‖H2(Γ) + Ch2 ‖∂•∂•z‖L2(Γ) .

Combining the above bounds, we estimate the right-hand side of (8.8), for suf-
ficiently small h ≤ h0, as follows:

a∗(∂•
hz − ∂•

hPhz, ϕh)

≤ Ch
(
‖z‖H2(Γ) + h ‖∂•∂•z‖L2(Γ) + h ‖∂•z‖H1(Γ)

)
‖ϕh‖H1(Γ) .(8.11)

So we obtain

‖∂•
hz − ∂•

hPhz‖2H1(Γ)

= a∗(∂•
hz − ∂•

hPhz, ∂
•
hz − Ih∂

•z) + a∗(∂•
hz − ∂•

hPhz, Ih∂
•z − ∂•

hPhz)

≤ ‖∂•
hz − ∂•

hPhz‖H1(Γ) ‖∂•
hz − Ih∂

•z‖H1(Γ)

+ Ch
(
‖z‖H2(Γ) + h ‖∂•∂•z‖L2(Γ) + h ‖∂•z‖H1(Γ)

)
‖Ih∂•z − ∂•

hPhz‖H1(Γ) .

(8.12)

The interpolation error bound of Lemma 7.2 and (7.9) yield

‖∂•
hz − Ih∂

•z‖H1(Γ) = ‖∂•
hz − ∂•z‖H1(Γ) + ‖∂•z − Ih∂

•z‖H1(Γ)

≤ Ch ‖z‖H2(Γ) + Ch ‖∂•z‖H2(Γ) ,

and similarly

‖Ih∂•z − ∂•
hPhz‖H1(Γ) ≤ Ch ‖∂•z‖H2(Γ) + Ch ‖z‖H2(Γ)

+ ‖Ih∂•
hz − ∂•

hPhz‖H1(Γ) .

Applying the last two estimates to (8.12) and using Young’s inequality, for h ≤ h0,
yield

‖∂•
hz − ∂•

hPhz‖2H1(Γ) ≤ Ch2
(
‖z‖2H2(Γ) + ‖∂•z‖2H2(Γ) + ‖∂•∂•z‖2L2(Γ)

)
,(8.13)

which implies the gradient estimate in (8.7).
To prove the L2(Γ) estimate, we use as before the Aubin-Nitsche trick and solve

the problem

−ΔΓw + w = ∂•
hz − ∂•

hPhz on Γ.

Then by the elliptic theory it follows that

‖w‖H2(Γ) ≤ c ‖∂•
hz − ∂•

hPhz‖L2(Γ) .(8.14)

A calculation that is nearly identical to [10, proof of Theorem 6.2] gives

−b(vh; z − Phz, Ihw) ≤ Ch2
(
‖z‖H2(Γ) + ‖∂•z‖L2(Γ)

)
‖w‖H2(Γ) .

Therefore combining (8.8), (8.9), (8.10) and Theorem 8.2 yields

a∗(∂•
hz − ∂•

hPhz, Ihw) ≤ Ch2
(
‖z‖H2(Γ) + ‖∂•z‖H1(Γ) + ‖∂•∂•z‖L2(Γ)

)
‖w‖H2(Γ) .
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Together with (8.13) and Lemma 7.2 this yields

‖∂•
hz − ∂•

hPhz‖2L2(Γ) = a∗(∂•
hz − ∂•

hPhz, w)

= a∗(∂•
hz − ∂•

hPhz, w − Ihw) + a∗(∂•
hz − ∂•

hPhz, Ihw)

≤ Ch2
(
‖z‖H2(Γ) + ‖∂•z‖H2(Γ) + ‖∂•∂•z‖L2(Γ)

)
‖w‖H2(Γ) .

Finally applying the bound (8.14) completes the proof. �

9. Bound of the semidiscrete residual

We show an optimal-order bound of the residual Rh(t) ∈ Sh(t) of (6.1) when we

take the mapping Ph(t) to be the Ritz map P̃h(t) defined in (8.2).

Lemma 9.1. Assume that the solution u of the wave equation is sufficiently smooth.
Then, there exist C > 0 and h0 > 0 such that for h ≤ h0 and 0 ≤ t ≤ T ,

‖Rh(t)‖L2(Γh(t))
≤ Ch2.(9.1)

Proof. We start by rewriting the residual equation (6.1) for Rh ∈ Sh with Ph = P̃h

as

mh(Rh, φh) =
d

dt
mh(∂

•
hP̃hu, φh) + ah(P̃hu, φh)−mh(∂

•
hP̃hu, ∂

•
hφh)

= mh(∂
•
h∂

•
hP̃hu, φh) + gh(Vh; ∂

•
hP̃hu, φh) + ah(P̃hu, φh),

where we have used the transport lemma, Lemma 7.4. Combining this equation
with (8.1) and using the definition of the Ritz map (8.2) yield

mh(Rh, φh) = F1(ϕh) + F2(ϕh) + F3(ϕh) + F4(ϕh), ϕh = φl
h ∈ Sl

h,(9.2)

where

F1(ϕh) = mh(∂
•
h∂

•
hP̃hu, φh)−m(∂•

h∂
•
hu, ϕh),

F2(ϕh) = gh(Vh; ∂
•
hP̃hu, φh)− g(vh; ∂

•u, ϕh),

F3(ϕh) = m(∂•
h∂

•
hu− ∂•

h∂
•u, ϕh),

F4(ϕh) = m(u, ϕh)−mh(P̃hu, φh).

Applying Lemma 7.5, using (∂•
h∂

•
hP̃hu)

l = ∂•
h∂

•
hPhu and applying Theorem 8.3 with

� = 2 yields

|F1(ϕh)| =
∣∣∣mh(∂

•
h∂

•
hP̃hu, φh)−m(∂•

h∂
•
hPhu, ϕh) +m(∂•

h∂
•
hPhu− ∂•

h∂
•
hu, ϕh)

∣∣∣
≤ ch2 ‖ϕh‖L2(Γ) ,

and with the same arguments

|F2(ϕh)| ≤ ch2 ‖ϕh‖L2(Γ) ,

|F4(ϕh)| ≤ ch2 ‖ϕh‖L2(Γ) .

Furthermore Lemma 7.3 yields

|F3(ϕh)| = m(∂•
h[(v − vh) · ∇Γu], ϕh) ≤ ch2 ‖ϕh‖L2(Γ) .

Inserting the above bounds into (9.2) with φh = Rh and noting the equivalence of
L2-norms between the original and discretized surfaces completes the proof. �
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10. Error bound for the full discretization

We consider the lifts of the fully discrete numerical solution and its numerical
material derivative as determined by (4.6),

un
h := (Un

h )
l =

J∑
j=1

qnj χ
l
j(tn), ∂•

hu
n
h := (∂•

hU
n
h )

l =

J∑
j=1

q̇nj χ
l
j(tn),

which are lifted finite element functions defined on the surface Γ(tn). This will
be compared with the solution u(tn) of the wave equation (2.4) and its material
derivative ∂•u(tn).

We rewrite the error by subtracting and adding the Ritz map applied to the
exact solution:

un
h − u(tn) = un

h − (Phu)(tn) + (Phu)(tn)− u(tn).

We use Theorem 6.1 together with Lemma 9.1 (residual bound) and Theorem 8.3
(for estimating βh) to bound the first difference and note the equivalence of norms
on the discretized and original surface (Lemma 7.1). We use Theorems 8.2 and 8.3
directly to bound the second difference. This proves our main result:

Theorem 10.1. Let u be a sufficiently smooth solution of the wave equation (2.4)
and assume that the discrete initial data satisfy∥∥u0

h − (Phu)(0)
∥∥
L2(Γ(0))

+
∥∥∇Γ(0)u

0
h −∇Γ(0)(Phu)(0)

∥∥
L2(Γ(0))

+
∥∥∂•

hu
0
h − ∂•

h(Phu)(0)
∥∥
L2(Γ(0))

≤ C0h
2.

Then, there exist h0 > 0 and τ0 > 0 such that for h ≤ h0 and τ ≤ τ0 satisfying the
CFL condition (5.4), the following error bound holds for 0 ≤ tn = nτ ≤ T :

‖un
h − u(., tn)‖L2(Γ(tn))

+ h
∥∥∇Γ(tn)u

n
h −∇Γ(tn)u(., tn)

∥∥
L2(Γ(tn))

+ ‖∂•
hu

n
h − ∂•u(., tn)‖L2(Γ(tn))

≤ C
(
h2 + τ2

)
.

The constant C is independent of h, τ , and n subject to the stated conditions.

The condition on the starting values is satisfied with the choice

u0
h = (Phu)(0), ∂•

hu
0
h = Ih∂

•u(0).

For the nodal vectors q0 and p0 = M(0)q̇0 this corresponds to the entries

q0j = (Phu)(aj(0), 0), q̇0j = u̇0(aj(0)).

Instead of using the Ritz map Ph defined by (8.2) we can use the simpler approxi-
mation u0

h given by the more standard Ritz projection

a∗h(u
0
h, φh; 0) = a∗(u0, ϕh; 0) for all φh ∈ Sh(0), ϕh = φl

h

with a sufficiently accurate approximation to the integrals on the right-hand side.
By the estimates of Theorem 8.2 (with 0 in place of ∂•z(t) at t = 0 in the definition
and proof), this approximation still satisfies the condition on the initial data in
Theorem 10.1. While this simplified projection is sufficient for determining the
numerical initial values, it cannot replace the Ritz map of (8.2) in the second-order
error analysis (see the proof of Lemma 9.1).

This construction of the starting values requires solving a linear system with the
extended stiffness matrix A(0) +M(0) for q0. As for the classical wave equation
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on a fixed domain, the simpler choice of the linear interpolant u0
h = Ihu(0) does

not guarantee second-order convergence (cf. [7]).

11. Numerical experiments

In this section, we present two numerical experiments to illustrate our theoret-
ical results. The implementation is done using the DUNE-FEM module, which is
based on the Distributed and Unified Numerics Environment (DUNE); see [3, 5, 6]
for details. The implementation of the evolving surface finite element method is
described in [9].

Example 1. We solve the wave equation

∂•∂•u+ ∂•u ∇Γ · v −ΔΓu = f on Γ(t),(11.1)

where

Γ(t) =

{
x ∈ R

3 :
x2
1

1 + 0.25 sin(π · t) + x2
2 + x2

3 − 1 = 0

}
.

The right-hand side f is calculated so that the exact solution is given by

u(x, t) = sin(
√
6t)x1x2.

Let
{
T i
h

}k
i=0

and {τi}ki=0 be a sequence of meshes of a surface by uniform refinement
and a sequence of time steps respectively. The uniform refinement is such that
hi ≈ 1

2hi−1, and since we have the same rate of convergence in τ and h, we choose

τi =
1
2τi−1. In order to satisfy the CFL condition, we start with τ0 = 5 × 10−2.

Then the experimental order of convergence (EOC) is given by

EOCi =
log Ei−1

Ei

log 2
, i = 1, · · · , k,

where Ei presents the error for the grid size hi and the time step size τi. We solve
on the time interval 0 ≤ t ≤ 1. In Table 1 we give the errors and the corresponding
EOCs in the following norms:

L∞ (L2
)
: max

0≤n≤N
‖un

h − u(tn)‖L2(Γ(tn))
,

L∞ (H1
)
: max

0≤n≤N

∥∥∇Γ(tn)u
n
h −∇Γ(tn)u(tn)

∥∥
L2(Γ(tn))

,

L∞ (L2
)•

: max
0≤n≤N

‖∂•
hu

n
h − ∂•u(tn)‖L2(Γ(tn))

.

Example 2. We choose a time-dependent surface of the form

Γ(t) :=

{
x1 +max(0, x1)t,

g(x, t)x2√
x2
2 + x2

3

,
g(x, t)x3√
x2
2 + x2

3

: x ∈ Γ(0) = S2

}
,(11.2)

g(x, t) = e−2t
√
x2
2 + x2

3 + (1− e−2t)

((
1− x2

1

) (
x2
1 + 0.05

)
+ x2

1

√
(1− x2

1)

)
.

We consider the wave equation (11.1) posed on the above surface on the time interval

[0, 3], with right-hand side f = 0 and initial data u(x, 0) = e−5|x−x0|2 + e−5|x−x1|2 ,
where x0 = (1, 0, 0), x1 = (−1, 0, 0), and ∂•u(x, 0) = 0. The surface evolves from an
initially spherical shape at t = 0 to a “baseball bat” like shape. Simultaneously we
observe a wave traveling from the right to the left and another from the left to the
right. They superimpose for a short time and cross paths without any dissipation.
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Table 1. Errors and observed orders of convergence for Example 1.

Level Dof L∞ (L2
)

EOC L∞ (H1
)

EOC L∞ (L2
)•

EOC

0 318 2.05 · 10−2 – 1.77 · 10−1 – 2.26 · 10−2 –

1 1266 5.27 · 10−3 1.958 8.91 · 10−2 0.996 5.88 · 10−3 1.942

2 5058 1.34 · 10−3 1.970 4.27 · 10−2 1.058 1.47 · 10−3 2.001

3 20226 3.35 · 10−4 2.003 2.18 · 10−2 0.968 3.74 · 10−4 1.971

4 80898 8.35 · 10−5 2.006 1.11 · 10−2 0.969 9.50 · 10−5 1.980

5 323586 2.08 · 10−5 1.999 5.58 · 10−3 0.999 2.37 · 10−5 1.999

We choose the time step τ = 5× 10−4 in order to satisfy the CFL condition (5.4).
Figure 1 shows snapshots of the discrete solution at time t = 0, 0.8, 1.2, 1.8, 2.2, 3
from the left to the right.

Figure 1. Snapshots of the discrete solution of the wave equation
on a time-dependent surface of the form (11.2).
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