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COMPUTING p-ADIC L-FUNCTIONS

OF TOTALLY REAL NUMBER FIELDS

XAVIER-FRANÇOIS ROBLOT

Abstract. We prove new explicit formulas for the p-adic L-functions of to-
tally real number fields and show how these formulas can be used to compute
values and representations of p-adic L-functions.

1. Introduction

The aim of this article is to present a general method for computing values and
representations of p-adic L-functions of totally real number fields. These functions
are the p-adic analogues of the “classical” complex L-functions and are related to
those by the fact that they agree, once the Euler factors at p have been removed
from the complex L-functions, at negative integers in some suitable congruence
classes. The existence of p-adic L-functions was first established in 1964 by Kubota-
Leopoldt [22] overQ and consequently over abelian extensions ofQ. It was proved in
full generality, 15 years later, by Deligne-Ribet [12] and, independently, by Barsky
[3] and Cassou-Noguès [7]. The interested reader can find a summary of the history
of their discovery in [7].

There have already appeared many works on the computation of p-adic L-
functions, starting with Iwasawa-Sims [20] in 1965 (although they are not explicitly
mentioned in this paper) to the more recent computational study of their zeroes by
Ernvall-Metsänkylä [16,17] in the mid-1990s and the current work of Ellenberg-Jain-
Venkatesh [15] that provides a conjectural model for the behavior of the λ-invariant
of p-adic L-functions in terms of properties of p-adic random matrices. However,
most of these articles deal only with L-functions over Q or that can be written as a
product of such L-functions. One remarkable exception is the work of Cartier-Roy
[6] in 1972 where computations were carried out to support the existence (at the
time not yet proven) of p-adic L-functions over some non-abelian fields of degree
3, 4 and 5.

The method for computing p-adic L-functions given in the present paper is de-
rived from the construction found in [7,21,23]. It generalizes a previous work with
Solomon [27]. The idea is the following. First, using Shitani cone decomposition
(see Subsection 3.3), we express L-functions in terms of cone zeta functions (see
Subsection 3.4, Proposition 3.2 and equation (3.6)). Then, for a given cone zeta
function, its values at negative integers are encoded into a power series (see Sub-
sections 3.4 and 3.5). Using the method of Section 2, this power series is then
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interpreted as a p-adic measure. The p-adic cone zeta function is obtained by inte-
grating suitable p-adic continuous functions against this measure (see Theorem 2.9)
once it is proved that it satisfies the required properties (see Subsection 4.1). The
main tool for the computation is a new explicit formula for the power series asso-
ciated with the cone zeta function, up to a given precision; see Theorem 4.1. From
this formula we give explicit expressions for the values of the cone zeta function at
some p-adic integer (Theorem 5.28) and for the corresponding Iwasawa power series
(Theorem 5.24). Note that these also are valid only up to a given precision. As
mentioned above, our construction relies on being able to compute explicit Shintani
cone decompositions, therefore it is at the moment only practical over the field of
rationals, over real quadratic fields and to some extend over totally real cubic fields
(see Subsection 5.4). For fields of higher degree, a recent paper [14] describes an
effective similar decomposition in general.

One shortcoming of our method is that it is not very efficient compared to the
complex case (see Subsection 5.5 for some complexity estimates). For example,
in this simplest case of p-adic L-functions over Q, for a Dirichlet character of
conductor f , the complexity in f of the method presented here is O(f1+ε), whereas
there exist methods to compute complex Dirichlet L-functions in O(f1/2+ε). Even
in this simple case it remains an open problem whether methods as efficient exist
in the p-adic case.

Note. The construction presented in this paper was developed over several years
and during that time was used in two previous works; see [5,28]. It is worth noting
that the method has evolved and therefore the brief description of it in these earlier
articles does not necessarily match exactly the one that is finally presented here.

2. p-adic interpolation

Let p be a prime number. Denote by Qp the field of rational p-adic numbers.
The subring of p-adic integers is denoted by Zp, and Cp is the completion of the
algebraic closure of Qp. Let | · |p denote the p-adic absolute value of Cp normalized
so that |p|p = p−1 and vp(.) the corresponding valuation; thus vp(p) = 1. For f ≥ 1,
an integer, let Wf denote the subgroup of f -th roots of unity in Cp. The torsion
part Tp of the group Z×

p of units in Zp is equal to Wϕ(q) where q := 4 if p = 2,

q := p if p is odd, and ϕ is Euler totient function. We have Z×
p = Tp × (1 + qZp),

and the projections ω : Z×
p → Tp and 〈·〉 : Z×

p → 1+ qZ×
p are such that x = ω(x)〈x〉

for all x ∈ Z×
p . In particular, we have x ≡ ω(x) (mod q) for all x ∈ Z×

p .

2.1. Continuous p-adic functions. For n ∈ N := {0, 1, 2, . . . }, the binomial
polynomial is defined by

(2.1)

(
x

n

)
:=

⎧⎨⎩1 if n = 0,
x(x− 1) · · · (x− (n− 1))

n!
otherwise.

The binomial polynomial takes integral values on Z, hence, by continuity, it takes
p-adic integral values on Zp. Let f be a function on Zp with values in Cp. One
can easily construct by induction a sequence (fn)n≥0 of elements of Cp (see Sub-
section 5.1) such that

(2.2) f(x) =
∑
n≥0

fn

(
x

n

)
for all x ∈ N.
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(Note that all but finitely many terms in the sum are zero.) The coefficients fn’s are
uniquely defined and are called the Mahler coefficients of f . We have the following
fundamental result (see [26, §4.2.4]).

Theorem 2.1 (Mahler expansion). Let f be a function on Zp with values in Cp.
Then f is continuous on Zp if and only if

lim
n→∞

|fn|p = 0.

If f is continuous, then the sequence of continuous functions

(2.3) x �→
N∑

n=0

fn

(
x

n

)
converges uniformly to f . Reciprocally, let (fn)n≥0 be a sequence of elements in Cp

converging to zero. Then the sequence of functions in (2.3) above converges to a
continuous function.

Denote by C(Zp,Cp) the set of continuous functions on Zp with values in Cp.
For f ∈ C(Zp,Cp), we define the norm of f by

‖f‖p := max
x∈Zp

|f(x)|p.

The norm of f is a finite quantity since Zp is compact and in fact, if (fn)n≥0 are
the Mahler coefficients of f , we have

(2.4) ‖f‖p = max
n≥0

|fn|p.

2.2. A family of continuous functions. We define a family of continuous func-
tions that will be useful later on. For s ∈ Zp, we would like to define x �→ xs, where
x is an p-adic number, in such a way as to extend the definition of x �→ xk when
s = k ∈ Z. In general, it is not possible. However, when x ∈ 1 + qZp, one can set

xs :=
∑
n≥0

(x− 1)n
(
s

n

)
.

The series converges since |x − 1|p < 1, and by Theorem 2.1, the function s �→ xs

is continuous.1 Furthermore, when s = k ∈ N we recover the usual definition of xk

by the binomial theorem, and it is easy to see that this function has the expected
properties. With that in mind, for s ∈ Zp we define the function φs in C(Zp,Cp)
by

φs(x) :=

{
0 if x ∈ pZp,

〈x〉s if x ∈ Z×
p .

It it easy to see that φs is a continuous function and that its restriction to Z×
p is a

group homomorphism. We state two results concerning the properties of φs. The
first one follows directly from its construction.

Lemma 2.2. Let k be a integer. Then, for all x ∈ 1 + qZp, we have

φk(x) = xk. �
Lemma 2.3. The map s �→ φs from Zp to C(Zp,Cp) is continuous.

1Actually, for p = 2 we only need x ∈ 1 + 2Z2. But in order to have an analytic function it is
necessary to assume x ∈ 1 + 4Z2; see Subsection 5.2.
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Proof. Let s, s′ in Zp. If x ∈ pZp, then φs(x) = φs′(x) = 0. If x ∈ Z×
p , then

|φs(x)− φs′(x)|p =
∣∣〈x〉s(1− 〈x〉s′−s

)∣∣
p
=

∣∣∣∣1−∑
n≥0

(
s′ − s

n

)
(x− 1)n

∣∣∣∣
p

≤ |s′ − s|p
∣∣∣∣ (x− 1)n

n!

∣∣∣∣
p

≤ |s′ − s|p. �

2.3. Integration of p-adic continuous functions. A measure μ on Zp is a
bounded linear functional on the Cp-vector space C(Zp,Cp). That is, there exists a
constant B > 0 satisfying

(2.5) |μ(f)|p ≤ B ‖f‖p for all f ∈ C(Zp,Cp).

The smallest possible B is called the norm of the measure μ and is denoted ‖μ‖p.
With this norm, the set M(Zp,Cp) of measures on Zp becomes a Cp-Banach space.
From now on, we will write ∫

f(x) dμ(x) := μ(f).

Usually we will drop the x to simplify the notation when the context is clear.

Lemma 2.4. The function μ is a continuous map from C(Zp,Cp) to Zp.

Proof. This is clear by (2.5). �

Lemma 2.5. Let f ∈ C(Zp,Cp) with Mahler coefficients (fn)n≥0. Then we have

(2.6)

∫
f dμ =

∑
n≥0

fn

∫ (
x

n

)
dμ.

Proof. This is clear since f = limN→∞
∑N

n=0 fn
(
x
n

)
and μ is continuous by the

previous lemma. �

For μ ∈ M(Zp,Cp) and g ∈ C(Zp,Cp), the measure gμ is defined, for any
f ∈ C(Zp,Cp), by ∫

f(x) dgμ(x) :=

∫
f(x)g(x) dμ(x).

When g = χA, the characteristic function of an open and closed subset A of Zp, we
will use the notation ∫

A

f dμ :=

∫
f dχAμ.

A measure μ is said to have support in A if μ = χAμ. In other words, for all
f ∈ C(Zp,Cp) we have ∫

A

f dμ :=

∫
f dμ.
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2.4. Measures and power series. Let Cp[[T ]]
bd be the Cp-algebra of power series

whose coefficients are in Cp and are bounded in absolute value. Let μ be a measure
in M(Zp,Cp). One associates with μ a power series Fμ ∈ Cp[[T ]]

bd defined by

Fμ(T ) :=
∑
n≥0

∫ (
x

n

)
dμ(x)Tn.

Reciprocally, given a power series F ∈ Cp[[T ]]
bd with coefficients Fn (n ≥ 0), one

associates with F a measure μF defined by

(2.7)

∫ (
x

n

)
dμF (x) := Fn.

Indeed, by Lemma 2.5, these equations uniquely determine the measure μF . These
maps define isometric isomorphisms of Cp-Banach spaces between M(Zp,Cp) and
Cp[[T ]]

bd where the norm on Cp[[T ]]
bd is defined to be the maximum of the absolute

values of the coefficients; see [23, Chap. 4].

Remark 2.6. Another characterization of the correspondence between measures
and bounded power series is that the power series Fμ is the unique power series in
Cp[[T ]]

bd such that∫
(1 + t)x dμ(x) = Fμ(t) for all t ∈ Cp such that |t|p < 1.

The measures corresponding to powers of 1 + T form an important class. The
result below follows directly from (2.3), Lemma 2.5 and (2.7) (or simply the remark
above).

Lemma 2.7. Let a ∈ Zp. Then the measure associated with the power series

(2.8) (1 + T )a :=
∑
n≥0

(
a

n

)
Tn

is the Dirac measure at a, that is, the measure μa such that∫
f dμa = f(a)

for all f ∈ C(Zp,Cp). �
2.5. The interpolation principle. Let Δ be the linear operator (1+T ) d

dT acting

on Cp[[T ]]
bd. Let μ ∈ M(Zp,Cp) be a measure. We have

ΔFμ(T ) = (1 + T )
∑
n≥1

n

∫ (
x

n

)
dμ · Tn−1 =

∑
n≥0

∫ [
(n+ 1)

(
x

n+ 1

)
+ n

(
x

n

)]
dμ · Tn

=
∑
n≥0

∫
x

(
x

n

)
dμ · Tn = Fxμ(T ).

Thus we have proved the first part of the result below; the second follows from
Remark 2.6.

Lemma 2.8. Let μ be a measure with associated power series Fμ. Then the measure
associated with the power series ΔFμ is xμ. In particular,

ΔkFμ(T )|T=0 =

∫
xk dμ

for any integer k ≥ 0. �
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We can now state the main result of this section.

Theorem 2.9. Let (an)n≥0 be a sequence of elements of Cp. Assume there exists
a power series F ∈ Cp[[T ]]

bd such that for all k ≥ 0 we have

ΔkF (T )|T=0 = ak

and that the associated measure μF has support in 1 + qZp. Let f : Zp → Cp be
defined by

f(s) :=

∫
φs(x) dμF (x).

Then f is a continuous function such that

(2.9) f(k) = ak

for all k ∈ N.

Proof. It is clear from Lemmas 2.3 and 2.4 that f is continuous. For k ∈ N we
compute

f(k) =

∫
1+qZp

φk(x) dμF (x) since μ has support in 1 + qZp

=

∫
1+qZp

xk dμF by Lemma 2.2

=

∫
xk dμF since μ has support in 1 + qZp

= ΔkF (T )|T=0 by Lemma 2.8

= ak. �

3. Values of zeta functions at negative integers

Let E be a totally real number field of degree d with ring of integers ZE . We
consider E, and all other number fields, as subfields of the algebraic closure Q̄ of
Q contained in C. We also fix once and for all an embedding of Q̄ into Cp. For

α in E, we denote by α(i) ∈ R, i = 1, . . . , d, its conjugates. An element α ∈ E
is totally positive if α(i) > 0 for i = 1, . . . , d. We write α � 0. The subgroup of
totally positive numbers in E× is denoted E+ and we let Z+

E := E+ ∩ ZE be the
set of totally positive algebraic integers in E. Let N = NE/Q denote the absolute
norm of the group I(E) of ideals of E. By abuse, for α a non-zero element in E we
write N (α) := N (αZE).

Let m := fz be a modulus of E, that is, the formal product of an integral ideal f
of E (the finite part) and a subset z of the set of infinite places of E (the infinite
part). We use the notations

Em for the subgroup of elements α in E× such that α ≡ 1 (mod ∗m),
Im(E) for the subgroup of fractional ideals of E that are relatively prime to

f,
Clm(E) for the ray class group of E modulo m, that is, the quotient of Im(E)

by the subgroup of principal ideals generated by elements of Em, and
hm(E) for the cardinality of Clm(E).

Finally, we set Um(E) := U(E) ∩Em where U(E) is the unit group of E.
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3.1. Twisted partial zeta functions. Let a be a fractional ideal of E, relatively
prime to f. The partial zeta function is defined, for s ∈ C with 
(s) > 1, by

Zm(a
−1; s) :=

∑
b∼ma−1

N (b)−s

where the sum is over all the integral ideals b that are in the same class of Clm(E)
as the inverse of a. For c, an ideal of E, relatively prime with f, the twisted partial
zeta function is defined, for 
(s) > 1, by

(3.1) Zm(a
−1, c; s) := N (c)1−sZm((ac)

−1; s)− Zm(a
−1; s).

Remark 3.1. Following Cassou-Noguès, we take the first argument of partial zeta
functions to be a−1 instead of a to simplify formulas later on.

The partial zeta functions have meromorphic continuation to the complex plane
with a simple pole at s = 1. Since the partial zeta functions all have the same
residue at s = 1, they cancel out in (3.1) and the twisted partial zeta functions
have analytic continuation to the whole complex plane.

Let χ be a character on the ray class group Clm(E), and let Lm(χ; s) be the
corresponding Hecke L-function defined, for 
(s) > 1, by

(3.2) Lm(χ; s) :=
∏
q�m

(
1− χ(q)N (q)−s

)−1

where the product is over all the prime ideals of E not dividing the finite part f

of the modulus m. The link between Hecke L-functions and partial zeta functions
provides a way to express the former in terms of twisted partial zeta functions.

Proposition 3.2. For all s ∈ C we have

(
χ(c)N (c)1−s − 1

)
Lm(χ; s) =

hm(E)∑
i=1

χ̄(ai)Zm(a
−1
i , c; s)

where the sum is over ideals ai representing all the classes of Clm(E).

Proof. We have

hm(E)∑
i=1

χ̄(ai)Zm(a
−1
i , c; s) = N (c)1−s

hm(E)∑
i=1

χ̄(ai)Zm((aic)
−1; s)−

hm(E)∑
i=1

χ̄(ai)Zm(a
−1
i ; s)

=
(
χ(c)N (c)1−s − 1

) hm(E)∑
i=1

χ̄(ai)Zm(a
−1
i ; s)

=
(
χ(c)N (c)1−s − 1

)
Lm(χ; s). �

We now make some important additional hypotheses.

Hypotheses.

(H1) the finite part f of the modulus m is divisible by q;
(H2) the infinite part z of the modulus m contains all the infinite (real) places of

E;
(H3) c is a prime ideal of residual degree 1.

We will denote by c the prime number below c; therefore c = N (c) by (H3).
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Remark 3.3. If m does not satisfy both (H1) and (H2) we can enlarge the modulus
so that it does satisfy these conditions and we can lift χ to a character of the new
modulus. Adding all the infinite places to z to satisfy (H2) does not actually change
the L-function. Replacing f by the lcm of f and q to satisfy (H1) has the effect of
removing the Euler factors of prime ideals above p in (3.2). This is necessary to
be able to do the p-adic interpolation. Another way to achieve this would be to
drop (H1) and to require instead that only the elements coprime to q are kept in
the cone decompositions (see Subsection 3.3). From a computational point of view
these two possibilities are basically the same.

Remark 3.4. The construction of Cassou-Noguès [7] additionally requires c to be
relatively prime to the co-different of E. However, as we will see in the next
subsection, this is not actually necessary.

3.2. Additive characters modulo c. An additive character modulo c is a group
homomorphism ξ from the additive group ZE to the multiplicative group C× whose
kernel contains c. We denote by X(c) the set of all these characters.

Lemma 3.5. X(c) is a finite group of order c and all elements in X(c) but the
trivial characters have kernel c. Furthermore, for x ∈ ZE we have∑

ξ∈X(c)

ξ(x) =

{
c if x ∈ c,

0 otherwise.

Proof. Let χ be a non-trivial character in X(c). Then ZE/Ker(χ) is a quotient
group of ZE/c ∼= Z/cZ and thus ξ is completely determined by its value on 1,
which can be an arbitrary non-trivial c-th root of unity. Therefore there are c − 1
non-trivial characters and each has kernel c since the non-trivial c-th roots of unity
all have order c. The last statement is the classical orthogonality relation for
characters. �
Proposition 3.6. Let a be an integral ideal coprime to fc. Let A be a set of
representatives of the elements of a∩Em under the (multiplicative) action of Um(E).
Then for 
(s) > 1,

(3.3) Zm(a
−1, c; s) = N (a)s

∑
ξ∈X(c)
ξ 	=1

∑
α∈A

ξ(α)N (α)−s.

Proof. An ideal b is equivalent to a−1 modulo m if and only if there exists α ∈ Em

such that b = αa−1. Furthermore, b is integral if and only if α belongs to a ∩ Em,
and two elements α and α′ of a∩Em yield the same ideal αa−1 = α′a−1 if and only
if there exists a unit ε ∈ Um such that α = εα′. Therefore there is a one-to-one
correspondence between the integral ideals equivalent to a−1 modulo m and the
elements of A. Thus we have

(3.4) Zm(a
−1; s) =

∑
α∈A

N (αa−1)−s = N (a)s
∑
α∈A

N (α)−s.

We now compute

Zm(a
−1, c; s) = N (c)1−sZm((ac)

−1; s)− Zm(a
−1; s)

= N (a)s
(
N (c)

∑
α∈A∩c

N (α)−s −
∑
α∈A

N (α)−s

)
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using (3.4) and the fact that A∩c is a set of representatives of ac∩Em modulo Um(E),
since a and c are coprime. Finally, we obtain the conclusion using Lemma 3.5. �
3.3. Cone decomposition. Let β, λ1, . . . , λg be elements in a∩Z+

E, with 1 ≤ g ≤
d, such that the λi’s are linearly independent. We define the discrete cone2 with
base point β and generators λ1, . . . , λg as the following subset of a ∩ Z+

E :

(3.5) C(β;λ1, . . . , λg) :=

{
β +

g∑
i=1

niλi with ni ∈ N for 1 ≤ i ≤ g

}
.

Following the work of Shintani [29], we have the following result of Pi. Cassou-
Noguès.

Theorem 3.7 (Cassou-Noguès). There exists a finite family {C1, . . . , Cm} of dis-
joint discrete cones of E with base points belonging to a ∩ Em and generators be-
longing to (af ∩ Z+

E) such that a set of representatives of a ∩ Em under the action
of Um(E) is given by the union C1 ∪ · · · ∪ Cm.

Proof. This is essentially [7, Lemma 1]. �
A finite set {C1, . . . , Cm} of cones satisfying Theorem 3.7 is called a cone decom-

position of a modulo m. A cone C is c-admissible if none of its generators belong
to c. A cone decomposition {C1, . . . , Cm} is c-admissible if all the cones Ci are
c-admissible (see Remark 5.29 on the existence of such a decomposition). From
Proposition 3.6, we have, for 
(s) > 1,

(3.6) Zm(a
−1, c; s) = N (a)s

∑
ξ∈X(c)
ξ 	=1

m∑
j=1

∑
α∈Cj

ξ(α)N (α)−s.

3.4. Cone zeta functions. Let C := C(β;λ1, . . . , λg) be a c-admissible cone and
ξ a non-trivial element of X(c). We define the zeta function of the pair (C, ξ), for

(s) > 1, by

(3.7) Z(C, ξ; s) :=
∑
α∈C

ξ(α)N (α)−s.

We associate with the same data a power series G(C, ξ;T1, . . . , Td) in Q̄[[T ]] :=
Q̄[[T1, . . . , Td]] in the following way. First, for r ∈ C, we define a power series in
C[[T ]] by3

(1 + T )r :=
∑
n≥0

(
r

n

)
Tn.

Then, for α ∈ E, we define the following power series in Q̄[[T ]]:

(3.8) (1 + T )α :=
d∏

i=1

(1 + Ti)
α(i)

.

Then finally, we set

(3.9) G(C, ξ;T ) :=
ξ(β)(1 + T )β

g∏
i=1

(1− ξ(λi)(1 + T )λi)

.

2We will say simply cone.
3This, of course, gives the usual definition when r ∈ N.
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Remark 3.8. From Lemma 3.5 and the fact that C is c-admissible it follows that
ξ(λi) is a non-trivial c-th root of unity for all i’s and thus the constant term of the
denominator is non-zero. Therefore G(C, ξ;T ) is indeed a power series. In fact,
this constant term is an algebraic integer divisible only by primes above c.

The cone zeta function of C (twisted by c) is defined by

(3.10) Z(C, c; s) :=
∑

ξ∈X(c)
ξ 	=1

Z(C, ξ; s),

and in a similar way

(3.11) G(C, c;T ) :=
∑

ξ∈X(c)
ξ 	=1

G(C, ξ;T ).

Finally, we define the Δ-operator acting on Q̄[[T ]] by

(3.12) Δ :=
d∏

i=1

(1 + Ti)
∂

∂Ti
.

Theorem 3.9 (Shintani). The function Z(C, c; s) admits an analytic continuation
to C, and, for any integer k ≥ 0, we have

(3.13) Z(C, c;−k) = ΔkG(C, c;T )|T=0.

Proof. We use the following lemma from Colmez [10, Lemma 3.2].

Lemma 3.10. For z1, . . . , zd ∈ R+ let f(z1, . . . , zd) be a C∞-function such that it
and all its derivatives tend to 0 rapidly at infinity. For all (s1, . . . , sd) ∈ Cd such
that 
(si) > 0 for i = 1, . . . , d define the function

(3.14) M(f ; s1, . . . , sd) :=

∫
(R+∗)d

f(z1, . . . , zd)
zs11 · · · zsdd

Γ(s1) · · ·Γ(sd)
dz1
z1

· · · dzd
zd

.

Then M(f ; ·) admits an analytic continuation to Cd and satisfies

M(f ;−k1, . . . ,−kd) =

d∏
i=1

(
− ∂

∂zi

)ki

f(z1, . . . , zd)|z1=···=zd=0

for all (k1, . . . , kd) ∈ Nd. �

Let ξ ∈ X(c) with ξ �= 1. We define a function fξ by

(3.15) fξ(z1, . . . , zd) := G(C, ξ; e−z1 − 1, . . . , e−zd − 1) =
ξ(β)e−Tz(β)

g∏
i=1

(
1− ξ(λi)e−Tz(λi)

)
where, for α ∈ ZE and z := (z1, . . . , zd) ∈ Cd, we set Tz(α) := z1α

(1)+ · · ·+ zdα
(d).

It is clear that this function satisfies the hypothesis of the lemma. Furthermore,
for z ∈ (R+∗)n and α � 0 we have 0 < e−Tz(α) < 1, and therefore, by expanding
the numerator and by (3.5),

fξ(z1, . . . , zd) =
∑
n∈Ng

ξ(β + n1λ1 + · · ·+ ngλg)e
−Tz(β+n1λ1+···+ngλg) =

∑
α∈C

ξ(α)e−Tz(α).
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Thus we find that

M(fξ; s1, . . . , sd) =
∑
α∈C

ξ(α)

∫
R+∗

e−z1α
(1) zs11

Γ(s1)

dz1
z1

· · ·
∫
R+∗

e−zdα
(d) zsdd

Γ(sd)

dzd
zd

.

Since ∫
R+∗

e−zazs
dz

z
= Γ(s) a−s

for a ∈ R+∗, it follows that

M(fξ; s, . . . , s) =
∑
α∈C

ξ(α)(α(1))s · · · (α(d))s = Z(C, ξ; s)

for 
(s) > 1. Lastly, we find that

− ∂

∂zi
fξ(z1, . . . , zd) =

(
(1 + Ti)

∂

∂Ti
G
)
(C, ξ; e−z1 − 1, . . . , e−zd − 1)

for all i’s. The conclusion now follows from the lemma, (3.10), and (3.11). �

Recall that we have embedded Q̄ into Cp. Thus we can see G(C, c;T ) as having
coefficients in Cp and, generalizing what we did in the first part to higher dimen-
sions, we can try to interpret G(C, c;T ) as a measure over Zd

p. There are two
problems. First, the power series G(C, c;T ) having several variables complicates
things, at least from a computational point of view; it would be much easier to
deal with a one-variable power series.4 Second, this power series might not have
bounded coefficients, since

(
β
n

)
has arbitrarily large p-adic absolute value when β

is not a rational p-adic integer. This problem can be solved by making a change of
variable in G(C, c;T ), as in [30], to transform it into a power series with bounded
coefficients. However, we will proceed differently in this paper. Indeed, in the next
subsection we will see how to transform the power series G(C, c;T ) into a one-
variable power series satisfying the direct analog of Theorem 3.9. It will turn out
that this power series has p-adic integral coefficients, thus solving both problems
at the same time.

3.5. The Ω operator. We now explain how to construct an operator that sends
G(C, c;T ) to an one-variable power series satisfying properties analogous to that of
Theorem 3.9. From the definition of Δ, we see that Ω should satisfy

Ω((1 + T1)
a1 · · · (1 + Td)

ad) = (1 + T )a1···ad .

Writing T ai
i = ((1+Ti)−1)ai and developing, we get the following formal definition.

Let Ω be the linear function from C[T ] to C[T ] defined for (a1, . . . , ad) ∈ Nd by

Ω(T a1
1 · · ·T ad

d ) := (−1)a1+···+ad

a1∑
n1=0

· · ·
ad∑

nd=0

( d∏
i=1

(−1)ni

(
ai
ni

))
(1 + T )n1···nd .

The lemma below establishes that this application can be continuously extended to
an application from C[[T ]] to C[[T ]].

Lemma 3.11. Let (a1, . . . , ad) ∈ Nd. Then, Ω(T a1
1 · · ·T ad

d ) is divisible by

Tmax(a1,...,ad).

4This is not a big problem though; in fact, the computations done in [27] use two-variable
power series.
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Proof. Assume, without loss of generality, that ad is the largest of the ai’s. We
have

Ω(T a1
1 · · ·T ad

d ) =(−1)a1+···+ad−1

a1∑
n1=0

· · ·
ad−1∑

nd−1=0

(−1)n1+···+nd−1

(
a1

n1

)
· · ·

(
ad−1

nd−1

)

×
ad∑

nd=0

(−1)ad−nd

(
ad

nd

)(
(1 + T )n1···nd−1

)nd

=(−1)a1+···+ad−1

a1∑
n1=0

· · ·
ad−1∑

nd−1=0

( d−1∏
i=1

(−1)ni

(
ai

ni

))(
(1+T )n1···nd−1−1

)ad

and every term in this sum is divisible by T ad . �
We now prove the main property of the Ω operator, that is, that it “commutes”

with the operator Δ.

Proposition 3.12. For A ∈ C[[T ]] we have

Ω(Δ(A)) = Δ(Ω(A)).

Proof. By linearity and the fact that the operators Δ, Δ, and Ω are linear and con-
tinuous,5 it is enough to prove the result for monomials T a1

1 · · ·T ad

d with (a1, . . . , ad)

∈ Nd. But any such monomial can be written as a finite linear combination of
(1 + T1)

b1 · · · (1 + Td)
bd with (b1, . . . , bd)

d ∈ N, for which the result is direct by
construction. �

Let C be a c-admissible cone. We set

F (C, c;T ) := Ω(G(C, c;T )).

Using Proposition 3.12, the next result is a direct consequence of Theorem 3.9.

Theorem 3.13. For any integer k ≥ 0 we have

Z(C, c;−k) = ΔkF (C, c;T )|T=0. �
Let D := {C1, . . . , Cm} be a c-admissible cone decomposition of a modulo m.

We define

(3.16) Fm(a, c;T ) :=

m∑
j=1

F (Cj , c;T ).

Corollary 3.14. For any integer k ≥ 0 we have

(3.17) Zm(a
−1, c;−k) = N (a)−kΔkFm(a, c;T )|T=0.

Proof. Clear from (3.6). �
To conclude this subsection, we prove that the power series Fm(a, c;T ) does not

depend on the choice of the cone decomposition D. Indeed, the previous corollary
prescribes the values of ΔkFm(a, c;T )|T=0 for all k ≥ 0 which, using the following
result, ensures the unicity of Fm(a, c;T ).

Lemma 3.15. Let F (T ) ∈ C[[T ]] and let k ≥ 0 be an integer such that T k |ΔF (T ).
Then T k+1 | F (T ) − F (0). Furthermore, if ΔkF (T )|T=0 = 0 for all k ≥ 0, then
F (T ) = 0.

5We leave to the reader the verification that Δ and Δ are continuous.
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Proof. Write F (T ) :=
∑

n≥0 fnT
n. We compute

ΔF (T ) = f1 +
∑
n≥1

(
(n+ 1)fn+1 + nfn

)
Tn.

From this it is easy to see that T k | ΔF (T ) implies f1 = · · · = fk+1 = 0, which
proves the first assertion. For the second, let k ≥ 1. Since ΔkF (T )|T=0 = 0, that is,

T |Δ(Δk−1F (T )), we have T 2 |Δk−1F (T ) by the first part, as Δk−1F (T )|T=0 = 0 by

hypothesis. Repeating this process (and using the fact that F (0) = Δ0F (T )|T=0 =

0), we eventually get T k+1 |F (T ). Since k is arbitrary, it follows that F (T ) = 0. �

4. p-adic L-functions

We put together the results of the last two sections to construct the p-adic L-
functions.

4.1. Some properties of Fm(a, c; T ). Let a be an integral ideal coprime to c and
m. We prove that the power series Fm(a, c;T ) possesses the properties required to
apply Theorem 2.9. We start by proving a useful expression for F (C, ξ;T ) modulo
powers of T .

Theorem 4.1. For integers k and K with 0 ≤ k ≤ K define the rational function

(4.1) Bk,K(x) := (−1)k
K∑

n=k

(
n

k

)(
x

x− 1

)n
∈ Q(x).

Let C := C(β;λ1, . . . , λg) be a c-admissible cone and let ξ be a non-trivial element
of X(c). For N ≥ 0 define the polynomial FN (C, ξ;T ) ∈ Q(ξ)[T ] by

FN (C, ξ;T ) := A(C, ξ)

(N−1)d∑
k1,...,kg=0

(1 + T )N (β+k·λ)
g∏

i=1

Bki,(N−1)d(ξ(λi))

where k · λ := k1λ1 + · · ·+ kgλg ∈ ZE and

A(C, ξ) :=
ξ(β)

g∏
i=1

(1− ξ(λi))

.

Then
F (C, ξ;T ) ≡ FN (C, ξ;T ) (mod TN ).

Proof. To simplify the notation we write ai := ξ(λi)/(1− ξ(λi)) and A := A(C, ξ).
We compute

G(C, ξ;T ) =
ξ(β)(1 + T )β

g∏
i=1

(1− ξ(λi)(1 + T )λi)

= A
(1 + T )β

g∏
i=1

(1− ai ((1 + T )λi − 1))

= A (1 + T )β
∑

n1,...,ng≥0

g∏
i=1

ani
i

(
(1 + T )λi − 1

)ni
.

Let I be the ideal of Cp[[T ]] generated by the monomials T a1
1 · · · T ad

d where
max(a1, . . . , ad) ≥ N . For any P (T ) ∈ I, it follows by Lemma 3.11 that Ω(P ) ∈
TNCp[[T ]]. Furthermore, for i = 1, . . . , g we have

((1 + T )λi − 1)ni ∈ I if ni ≥ (N − 1)d+ 1.
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It follows that

G(C, ξ;T ) ≡ A (1 + T )β
(N−1)d∑

n1,...,ng=0

g∏
i=1

ani
i

(
(1 + T )λi − 1

)ni

≡ A (1 + T )β
(N−1)d∑

n1,...,ng=0

g∏
i=1

[
ani
i

ni∑
ki=0

(−1)ni−ki

(
ni

ki

)
(1 + T )kiλi

]

≡ A

(N−1)d∑
k1,...,kg=0

(1 + T )β+k·λ
g∏

i=1

(N−1)d∑
ni=ki

(−1)ni−kiani
i

(
ni

ki

)
(mod I).

Applying Ω to each side we get

F (C, ξ;T ) ≡ A

(N−1)d∑
k1,...,kg=0

(1 + T )N (β+k·λ)
g∏

i=1

Bki,(N−1)d(ξ(λi)) (mod TN ). �

Corollary 4.2. The power series F (C, c;T ) has coefficients in Zp.

Proof. Let ξ be a non-trivial element of X(c) and write C = C(β;λ1, . . . , λg).
For i = 1, . . . , g we know 1− ξ(λi) is divisible only by primes above c and hence is
invertible in Zp[ξ]. Therefore the polynomials FN (C, ξ;T ) have coefficients in Zp[ξ],
and it follows from Galois theory (see also Subsection 5.3) that

FN (C, c;T ) :=
∑

ξ∈X(c)
ξ 	=1

FN (C, ξ;T )

has coefficients in Zp. By the theorem we have F (C, c;T ) ≡ FN (C, c;T ) (mod TN )
for all N ≥ 0, and therefore F (C, c;T ) has coefficients in Zp. �

Since Fm(a
−1, c;T ) is the sum of the F (Ci, c;T )’s where {C1, . . . , Cm} is a c-

admissible cone decomposition of a modulo m, it follows from the corollary that
Fm(a

−1, c;T ) has coefficients in Zp. In particular, Fm(a
−1, c;T ) defines a Zp-valued

measure, which we will denote μa,c
p,m. To be able to apply Theorem 2.9 to this

measure we need to prove that μa,c
p,m has support in 1+qZp. We will actually prove a

stronger statement that will be useful later. Let Q∞ be the cyclotomic Zp-extension
of Q. Denote by Q0 := Q, Q1, Q2, . . . the subfields of Q∞/Q with Gal(Qn/Q) �
Z/pnZ. Let E∞ be the cyclotomic Zp-extension of E and let E0 := E, E1, E2, . . .
be the subfields of E∞/E with Gal(En/E) � Z/pnZ. Define integers m0,m1 ≥ 0
by Qm0

= E ∩Q∞ and Qm0+m1
= E(m)∩Q∞. By construction Em1

= EQm0+m1

is the intersection of E(m), the ray-class field of E of modulus m, and E∞. The
commutative diagram

(4.2)

Clm(E)
N ��

��

(1 + qpm0Z)/(1 + qpm0+m1Z)

��

Gal(Em1
/E)

res �� Gal(Qm0+m1
/Qm0

)

comes from Class Field Theory, where the bottom map is the restriction map, the
top map is induced by the map a �→ 〈N (a)〉, and the vertical maps are the respective
Artin maps. Define e ≥ 1 to be the largest integer such that Wpe ⊂ E(Wq). It is
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clear that we have e = m0 + vp(q). We note in passing the lemma below, which
will be useful later and which is a direct consequence of the diagram.

Lemma 4.3. For any fractional ideal a of E coprime to p we have 〈N (a)〉 ∈
1 + peZp. �

We now prove our result on the support of the measure μa,c
p,m.

Proposition 4.4. The measure μa,c
p,m has support in 1 + pe+m1Zp.

Proof. Let C be a cone in a c-admissible cone decomposition of a modulo m and let
ξ be a non-trivial element of X(c). Denote by μC,ξ, respectively μN

C,ξ with N ≥ 1,

the measure associated with the power series F (C, ξ;T ), respectively FN (C, ξ;T ),
and write C = C(β;λ1, . . . , λg). For k ∈ Ng the algebraic integers β + k · λ, are
all congruent to 1 modulo q, and thus we have N (β + k · λ) ≡ 1 (mod q). It
follows that N (β + k · λ) = 〈N (β + k · λ)〉 ∈ 1 + pe+m1Zp by the diagram above,
since β + k · λ ∈ Em. Thus, by Lemma 2.7, the measures μN

ξ,C have support in

1 + pe+m1Zp. The same is true for μC,ξ since the measures μN
ξ,C converge (weakly)

to μC,ξ. The conclusion follows as well for μa,c
p,m, it being the sum of finitely many

such measures. �

Remark 4.5. Replacing f by fpa for some a ≥ 1 does not change the p-adic L-
function, as we will see from the interpolation property (4.5) that it satisfies (and
the unicity statement that follows from it; see Remark 4.11). In particular, by
taking a large enough we can force the measures μa,c

p,m to have support in 1 + pbZp

for b ≥ 1 arbitrarily large. The proposition shows that (H1) is enough to imply
that b is already quite large.

4.2. Construction of p-adic L-functions. We are now ready to define p-adic
L-functions. The first step is to define the p-adic equivalent of twisted partial zeta
functions.

Proposition 4.6. For m an integer and s ∈ Zp define Z(m)
p,m (a−1, c; s) to be the

p-adic twisted partial zeta function given by

(4.3) Z(m)
p,m (a−1, c; s) := ω(N (a))m〈N (a)〉s

∫
φ−s(x) dμ

a,c
p,m.

Then Z(m)
p,m (a−1, c; s) is a continuous function on Zp, and

Z(m)
p,m (a−1, c;−k) = Zm(a

−1, c;−k)

for all k ∈ N such that k +m ≡ 0 (mod ϕ(q)).

Remark 4.7. Using Proposition 4.4 we could restrict the domain of integration in
(4.3) to 1+ pe+m1Zp and then replace φ−s(x) by x−s. This would give a somewhat
neater formula, and we will actually use this expression several times in the next
subsection. However, from a computational point view it is better to express things
as in (4.3), since that is how the computation will actually be done.

Proof. This is a direct application of Theorem 2.9 (changing s to −s) with an =
Zm(a

−1, c;−n) and F = Fm(a
−1, c;T ), using Corollary 3.14 and Proposition 4.4

and the fact that for k ∈ N with k +m ≡ 0 (mod ϕ(q)) we have

ω(N (a))m〈N (a)〉−k = N (a)−k. �
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Let χ be a complex character on Clm(E). Recall that we have embedded Q̄ into
Cp and thus we can view χ also as a p-adic character. Define the character κ of
Clm(E) by the composition

κ : Clm(E) �� �� Clq(E)
� �� Gal(E(q)/E) �� (Z/qZ)×

� �� Tp.

The first map is the natural surjection coming from the fact that q divides m by
(H1). The second sends a class C to its Artin symbol σC , where E(q) is the ray-class
field of E of modulus q. The next comes from the fact that E(q) contains the q-th
root of unity, and thus we can associate with any σ ∈ Gal(E(q)/E) a class ā in
(Z/qZ)× such that σ(ζ) = ζa for all ζ ∈ Wq. The last map sends ā to ω(a) ∈ Tp.
For a fractional ideal a of E, relatively prime to m, it follows from the definition of
the Artin map that κ(a) = ω(N (a)). As a consequence of the previous result and
of Proposition 3.2, we recover the construction of p-adic L-functions.

Theorem 4.8 (Deligne-Ribet, Barsky, Cassou-Noguès). Let m be an integer, and
if χ �= κ1−m assume further that c is such that χ(c) �= κ1−m(c). Define a p-adic
L-function by

(4.4) L
(m)
p,m (χ; s) :=

(
χ(c)

ω(c)m−1〈c〉s−1
− 1

)−1 hm(E)∑
i=1

χ(a−1
i )Z(m)

p,m (a−1
i , c; s)

where the sum is over integral ideals ai, relatively prime to m and c, representing all

the classes of Clm(E). Then L
(m)
p,m(χ; s) is a continuous function on Zp (respectively

Zp � {1} if χ = κ1−m) and

(4.5) L
(m)
p,m (χ;−k) = Lm(χ;−k)

for all k ∈ N such that k +m ≡ 0 (mod ϕ(q)).

Remark 4.9. Assume χκm−1 is not the trivial character and let M be the Galois
closure of E(m)/Q. Let σ̃ ∈ Gal(E(m)/E) be such that χκm−1(σ̃) �= 1.6 Lift σ̃ to

an arbitrary element σ of Gal(M/Q). By the theorem of C̆ebotarev [24, Chap. VIII,
Th. 13.4] there exists a positive proportion of prime ideals of M whose Frobenius
in M/Q is σ. Let C be one of these prime ideals with C coprime to fZM . Then
c := C ∩ ZE is a prime ideal of E, coprime to f, of residual degree 1, such that
χκm−1(c) �= 1.

Proof. By the previous result the sum in the RHS of (4.4) is a continuous function
on Zp. We now look at the factor before the sum. It is continuous at s ∈ Zp unless
χ(c) = ω(c)m−1〈c〉s−1. Since 〈c〉 has infinite order, this can happen only for s = 1.

Thus, L
(m)
p,m (χ; s) is continuous on Zp � {1}, and also at s = 1 if χ(c) �= ω(c)1−m.

We get the first result by noting that ω(c) = κ(c). For the second assertion, let
k ∈ N be such that k + m ≡ 0 (mod q). The interpolation property follows from
Proposition 4.6, Proposition 3.2, and the fact that

χ(c)

ω(c)m−1〈c〉k−1
= χ(c)c1−k. �

Remark 4.10. Assume χκm−1 is non-trivial but χκm−1(c) = 1. Then (4.4) still
defines a continuous function on Zp � {1}. Moreover, that function is equal to

6We see χκm−1 as a character on Gal(E(m)/E) via the Artin map.
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L
(m)
p,m(χ; s) if s �= 1, and therefore, by continuity, it converges to L

(m)
p,m (χ; 1) as s

tends to 1.

Remark 4.11. Assume p is odd. Then the set {−k with k ∈ N and k + m ≡ 0
(mod p−1)} is dense in Zp, and there is a unique continuous p-adic function on Zp

(respectively Zp � {1} if χ = κ1−m) satisfying (4.5). This proves that L
(m)
p,m(χ; s)

does not depend on the choice of c. For p = 2 the closure of {−k with k ∈ N and
k + m ≡ 0 (mod 2)} is either 2Z2 or 1 + 2Z2. Thus (4.5) is not enough to prove

unicity. In that case we can use Proposition 4.13 below7 to conclude that L
(m)
2,m (χ; s)

does not depend on the choice of c.

There are actually ϕ(q) twisted partial zeta functions or L-functions defined by
these two results, depending on the choice of the congruence class ofmmodulo ϕ(q).
However, when χ is the trivial character we see that only for m ≡ 1 (mod ϕ(q))
does the corresponding p-adic zeta function possibly have a pole at s = 1. (See [10]
for the computation of the residue; the fact that it is non-zero is equivalent to the
Leopoldt conjecture.) Therefore, the p-adic L-function, denoted simply Lp,m(χ; s),
is defined to be the function corresponding to the choice m ≡ 1 (mod ϕ(q)). From
now on we will focus uniquely on that case, dropping the exponent in the notation

and writing Zp,m(a
−1, c; s) instead of Z(1)

p,m(a
−1, c; s), and so on. We will see below

(see Proposition 4.14) that the different L-functions for various m can be recovered
from Lp,m(χ; s) by twisting the character χ by some appropriate power of κ.

4.3. Some properties of p-adic L-functions. In this subsection we prove some
well-known results about p-adic L-functions that will be useful later. The first is a
direct consequence of Proposition 4.6 (and the remark that follows it).

Proposition 4.12. The Mahler expansion of the p-adic twisted partial zeta func-
tion is

Zp,m(a
−1, c; s) = ω(N (a))

∑
n≥0

∫
1+pe+m1Zp

(〈
N (a)

〉
x−1 − 1

)n
dμa,c

p,m

(
s

n

)
. �

From this, we deduce the analyticity of p-adic L-functions.

Proposition 4.13. Let Be be the open ball in Cp of center 0 and radius pe−1/(p−1).
Then the p-adic L-function Lp,m(χ; s) can be extended to an analytic function on
Be, if χ is non-trivial, and to a meromorphic function on Be with a pole of order
at most 1 at s = 1, if χ is trivial.

Proof. We first prove that the p-adic twisted partial zeta functions Zp,m(a
−1, c; s)

can be extended to analytic functions of radius8 pe−1/(p−1). For x ∈ 1+pe+m1Zp it

follows from Lemma 4.3 that
∣∣(〈N (a)x−1

〉
− 1
)n∣∣

p
≤ p−en, and since the measure

μa,c
p,m is of norm ≤ 1 and Fm(a

−1, c;T ) has coefficients in Zp we conclude by the
previous proposition that the n-th Malher coefficient of Zp,m(a

−1, c; s) has p-adic
absolute value ≤ p−en. The result then follows from Corollaire 2(c) of [1, p. 162].
(See also Theorem 5.9.)

7The proposition only applies to m ≡ 1 (mod 2), but it is straightforward to generalize.
8We say that an analytic function has radius r if it converges on the open ball in Cp of center

0 and radius r.



848 XAVIER-FRANÇOIS ROBLOT

Denoting by g(s) the inverse of the factor before the sum in the RHS of (4.4) we
have

g(s) := χ(c)〈c〉1−s − 1 = χ(c) expp((1− s) logp〈c〉)− 1

where expp and logp are respectively the p-adic exponential and logarithm functions

(see [26, §5.4]). The function g(s) is analytic on Be since | logp〈c〉| ≤ q−e, using again

Lemma 4.3 and the fact that the p-adic exponential function has radius p−1/(p−1).
Furthermore, from the properties of the p-adic exponential and logarithm functions
we see that g has a simple zero at s = 1 if χ(c) = 1, and does not vanish otherwise.
Now if χ is non-trivial we can proceed as in Remark 4.9 and choose c such that
χ(c) �= 1; this proves the result for the first case. Otherwise we write g(s) =
(s− 1)h(s) where h(s) is an analytic function non-vanishing on Be and the second
case follows. �

The next result establishes that the p-adic L-function L
(m)
p,m (χ; s) for any m in Z

can be recovered from the p-adic L-function (corresponding to m = 1).

Proposition 4.14. For any integer m and any s ∈ Zp, assuming s �= 1 if χ =
κ1−m, we have

L
(m)
p,m (χ; s) = Lp,m(χκ

1−m; s).

Proof. Let a be an integral ideal coprime to p. Then Z(m)
p,m (a−1, c; s)=κ(a)m−1Zp,m

(a−1, c; s), since κ(a) = ω(N (a)), and substitution in (4.4) yields the result. �

A key property of p-adic L-functions is that they are Iwasawa analytic functions
(see [25]); we will show this in the proof of the next theorem. Let Eχ be the
subextension of E(m)/E fixed by the kernel of χ. After Greenberg [18] we say that
χ is of type W if Eχ ⊂ E∞.9

Theorem 4.15 (Deligne-Ribet). Fix a topological generator u of 1 + peZp. Then
there exists a unique power series Ip,m(χ;X) in Qp(χ)[[X]]—or X−1Qp(χ)[[X]] if
χ is trivial—called the Iwasawa power series of χ (with respect to u) such that, for
all s ∈ Zp (excepting s = 0 if χ is trivial) we have

(4.6) Lp,m(χ; 1− s) = Ip,m(χ;u
s − 1).

Moreover, if χ is trivial or not of type W , then Ip,m(χ;X) has coefficients in Zp[χ].
Otherwise there exists a non-trivial root of unity ξ of order dividing pm1 such that
(ξ(1 +X)− 1)Ip,m(χ;X) has coefficients in Zp[χ].

Proof. Unicity is clear by (4.6) since the set {us − 1 with s ∈ Zp} = peZp admits 0
as a limit point. In particular, if the Iwasawa power series exits it does not depend
on the choice of c. We will use this fact below by choosing prime ideals c satisfying
additional properties. We now prove existence. For x ∈ Z×

p with 〈x〉 ∈ 1 + peZp

define

Lu(x) :=
logp〈x〉
logp u

∈ Zp,

so that

〈x〉s =
(
uLu(x)

)s
=
∑
	≥0

(us − 1)	
(
Lu(x)

�

)
.

9See the discussion after Corollary 4.2 for the notation used in the theorem and its proof.
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In particular, we can use this equation with x := N (a), for some ideal a coprime
to p, by Lemma 4.3. We define three power series, with coefficients in Zp, Zp, and
Zp[χ] respectively, as follows.

N(a;X) := N (a)
∑
�≥0

(
−Lu(N (a))

�

)
X� = N (a)(1 +X)−Lu(N (a)),

A(a, c;X) :=
∑
�≥0

∫
1+pe+m1Zp

x−1

(
Lu(x)

�

)
dμa,c

p,m X�=

∫
1+pe+m1Zp

x−1(1+X)Lu(x) dμa,c
p,m,

C(c, χ;X) := χ(c)
∑
�≥0

(
Lu(c)

�

)
X� − 1 = χ(c)(1 +X)Lu(c) − 1.

Then for all s ∈ Zp, using (4.3) for the first equality, we have

N(a;us − 1)A(a, c;us − 1) = Zp,m(a
−1, c; 1− s),

C(c, χ;us − 1) = χ(c)〈c〉s − 1.

We define

(4.7) Ip,m(χ;X) := C(c, χ;X)−1

hm(E)∑
i=1

χ(a−1
i )N(ai;X)A(ai, c;X)

where the sum is over integral ideals ai, relatively prime to c, representing all the
classes of Clm(E). For all s ∈ Zp such that C(c, χ;us − 1) �= 0 it follows from (4.4)
and the equalities above that (4.6) holds.

We now consider several cases, not necessarily disjoint. Assume first that the
order of χ is not a power of p. We reason as in Remark 4.9 with σ̃ ∈ Gal(E(m)/E)
such that the order of χ(σ̃) is not a power of p. Then χ(c) − 1, the constant
coefficient of C(c, χ;X), is a p-adic unit. Therefore C(c, χ;X) does not vanish on
peZp and is invertible in Zp[χ][[X]]. This proves that Ip,m(χ;X) ∈ Zp[χ][[X]] and
satisfies (4.6) for all s ∈ Zp.

Assume now that χ is such that Eχ ∩ E∞ = E. Let N be the Galois closure
over Q of the compositum of Eχ and E1. Then there exists σ ∈ Gal(N/Q) such
that σ|Eχ

is trivial but σ|E1
is non-trivial. Let C be a prime ideal of N , coprime

to fZN , whose Frobenius is equal to σ, and let c := C ∩ ZE . Then c has residual
degree 1, and χ(c) = 1 so the constant term of C(c, χ;X) is zero. Also, by con-
struction we have Lu(c) ∈ Z×

p , and since this is the coefficient of X in C(c, χ;X)
it follows that C(c, χ;X) = XU(X), where U(X) ∈ Zp[χ][[X]] is an invertible
power series. Therefore C(c, χ;X) vanishes only at 0, that is, for s = 0, and
Ip,m(χ;X) ∈ X−1Zp[χ][[X]]. This proves the result when χ is trivial. When χ is
non-trivial, the limit of Ip,m(χ;X) when X → 0 exists and is finite.10 Therefore
the coefficient of X−1 in Ip,m(χ;X) is zero. This proves the result in the non-trivial
case.

Before looking at the other cases we need additional notation and results. Recall
that m0 and m1 are such that Qm0

= E ∩Q∞ and Qm0+m1
= E(m) ∩Q∞. Let ξ0

be a root of unity of order pm1 . Define a function on 1 + qpm0Zp by

a �→ ξ
(logp a)/(qpm0 )

0 .

10It is equal to Lp,m(χ; 1).
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This map is a group homomorphism with kernel 1 + qpm0+m1Zp. Composing with
the function on the top in diagram (4.2) we get a character

a �→ ξ
logp〈N (a)〉/(qpm0 )

0

on the ray-class group Clm(E). It is easy to see from its construction that this
character generates the subgroup of characters of Clm(E) of typeW . Since e = m0+
vp(q), we have logp u/(qp

m0) ∈ Z×
p and, without loss of generality, we can replace

ξ0 by ξ
logp u/(qpm0 )

0 to get the character ρ : a �→ ξ
Lu(N (a))
0 , which still generates the

group of characters of Clm(E) of type W . For v ∈ Z we compute

A(a, c; ξv0(1 +X)− 1) =

∫
1+pe+m1Zp

x−1(ξv0(1 +X))Lu(x) dμa,c
p,m = A(a, c;X).

We also have N(a; ξv0 (1 + X) − 1) = ρ−v(a)N(a;X) and, for any character ψ of
Clm(E), C(c, ψ; ξv0(1 +X)− 1) = C(c, ψρv;X). We conclude that

(4.8) Ip,m(ψρ
v;X) = Ip,m(ψ; ξ

v
0(1 +X)− 1).

Assume now that χ is of type W . Then χ = ρv for some v ∈ Z. Using (4.8) with
ψ the trivial character, we find that (ξv0 (1 +X)− 1)Ip,m(χ;X) ∈ Zp[χ][[X]], which
proves the result in this case, taking ξ := ξv0 .

Finally, we consider the case Eχ �⊂ E∞, in which χ is not of type W and, in
particular, Eχ ∩ E∞ �= E. In this case we can write χ = ψρv for some non-trivial
character ψ of Clm(E) satisfying Eψ ∩E∞ = E and some v ∈ Z. Since the Iwasawa
power series for ψ is in Zp[χ][[X]] by the argument above, it follows from (4.8) that
the same is true for Ip,m(χ;X). �

As a first application we use this result to bound the size of the values of p-adic
L-functions.

Corollary 4.16. Let s ∈ Zp, with s �= 1 if χ is trivial. Then

|Lp,m(χ; s)|p ≤

⎧⎪⎨⎪⎩
1 if χ is not of type W,

p−1/(p−1) if χ is of type W and non-trivial,

pe|1− s|−1
p if χ is trivial.

Proof. The result is clear if χ is not of type W .11 Assume χ is of type W and
non-trivial. In the notation of the theorem we have vp(ξ − 1) ≤ 1/(p − 1) and
vp(u

1−s−1) ≥ vp(q). From the identity ab−1 = (a−1)b+b−1 we get vp(ξu
1−s−1) ≤

1/(p− 1) and the result follows. For trivial χ we have vp(u
1−s − 1) = vp(1− s)+ e,

which proves the result. �

5. Computational methods

In this last section we show how to use the results of the previous sections to
compute values and representations of p-adic L-functions explicitly. Note that all
computations will involve only p-adic integers—approximated by integers as we
explain below—and that we will need to deal with p-adic rational numbers only
in the last subsection (and we will do it somewhat indirectly).

In discussing the computation of p-adic approximations we will follow certain
terminological conventions. Let M ≥ 1 be an integer. For a ∈ Zp we denote

11In this case we also get the well-known statement: Lp,m(χ; s) ≡ Lp,m(χ; 0) (mod pe).
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by amod pM the unique integer ã with 0 ≤ ã < pM such that |a − ã|p ≤ p−M .
By “computing a to the precision pM” we mean computing amod pM . Let L be
a finite dimensional Zp-lattice with v1, . . . , vn a (fixed) basis of L. For α ∈ L,
by “computing α to the precision pM (with respect to the basis v1, . . . , vn)” we
mean computing the p-adic numbers a1, . . . , an to the precision pM , where α =
a1v1 + · · · + anvn. Note that in what follows the basis v1, . . . , vn is usually not
stated explicitly but it should be clear from the context what it is. Let N ≥ 1 be an
integer and let F (T ) ∈ Zp[[T ]] be a power series. By “computing F to the precision
(pM , TN )” we mean computing the first N coefficients of F to the precision pM .
Let μ ∈ M(Zp,Zp) be a measure with values in Zp. Its associated power series
Fμ(T ) must therefore lie in Zp[[T ]]. By “computing μ to the precision (pM , TN )”
we mean computing the power series Fμ to the precision (pM , TN ). Finally, let f
be a continuous function in C(Zp,Zp). Then its Mahler coefficients (fn)n≥0 are all
p-adic integers and tend p-adically to zero. For M ≥ 1 we denote by Nf (M) the
smallest integer N ≥ 0 such that |fn|p ≤ p−M for all n ≥ N . By “computing f
to the precision pM” we mean finding an integer N ≥ Nf (M) and computing the
coefficients f0, . . . , fN−1 to the precision pM .

In the complexity estimates below it is assumed that fast multiplication algo-
rithms are used. Therefore, for example, it takes O (̃M log p) bit operations to mul-
tiply two rational p-adic integers to the precision pM , and it takes O (̃NM log p)
bit operations to multiply two power series in Zp[[T ]] to the precision (pM , TN ).
Here, to simplify the complexity expressions, we have used O -̃notation: g ∈ O (̃f)
if there exists c > 0 such that g ∈ O(f(log f)c).

Finally, we will assume that the necessary data to work in the field E have
been computed. In particular, we assume that an integral basis, say (θ1, . . . , θd),
is known. We will express the elements of E with respect to this basis. Also, we
assume that the class group, the group of units, and the ray-class group modulo m

are known. Algorithms to perform these tasks can be found in [8] and [9]; see also
[4].

5.1. Computations with continuous functions. Let f ∈ C(Zp,Zp). For N ≥ 1,
we compute the first N Mahler coefficients of f with the following algorithm. We
assume that the function f is given here as a black box that returns, for any12

s ∈ Zp the value f(s) to the precision pM .

Algorithm 5.1 (Computation of Mahler coefficients).

Input: f ∈ C(Zp,Zp).

Output: The first N Mahler coefficients of f to the precision pM .

1. For n = 0 to N − 1, do f̃n ← f(n)mod pM .

2. For j = 1 to N − 1, for n = N − 1 to j (decreasing), do f̃n ← f̃n − f̃n−1

mod pM .

3. Return f̃0, . . . , f̃N−1.

Lemma 5.2. Assume for x ∈ Zp that it takes O(C) bit operations to compute f(x)
to the precision pM . Then Algorithm 5.1 computes the first N Mahler coefficients
of f to the precision pM in O(NC +N2M log p) bit operations. In particular, for

s ∈ Zp it takes O (̃NM2 log2 p+N2M log p) bit operations to compute the first N
Mahler coefficients of φs to the precision pM .

12In fact, we only need s ∈ N so we do not need to worry about the precision of s.
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Proof. Let f̃
(j)
n denote the value of f̃n after j iterations of the main loop in Step 2.

We claim for 0 ≤ j ≤ N − 1 that

f̃ (j)
n =

{
(∇nf)(0) mod pM for 0 ≤ n ≤ j,

(∇jf)(n− j) mod pM for j ≤ n ≤ N − 1,

where ∇ is the finite-difference operator defined by (∇f)(s) := f(s + 1) − f(s).
The claim follows for j = 0 by the initialization in Step 1 since ∇0 is the identity.

Assume now that the claim holds for some j. If 0 ≤ n ≤ j, then f̃
(j+1)
n = f̃

(j)
n and

the result is proved. If n ≥ j + 1, then

f̃ (j+1)
n = f̃ (j)

n − f̃
(j)
n−1 mod pM = (∇jf)(n− j)− (∇jf)(n− j − 1) mod pM

= (∇(∇jf))(n− j − 1) mod pM = (∇j+1f)(n− (j + 1)) mod pM

and the result follows by induction. In particular, at the end of the algorithm
we have f̃n = (∇nf)(0)mod pM = fn mod pM , where (fn)n≥0 are the Mahler
coefficients of f (see [26, §2.4]). This proves that the algorithm returns the correct
result. We now estimate its complexity. The initial step takes O(NC) bit operations
by definition and the second step takes O(N2M log p).13 This proves the first
complexity statement.

Now we turn to the computation of φs(x)mod pM . We assume s is given by
its approximation smod pM , which we will still denote s by abuse. We can also
replace x by xmod pM without loss of generality. If p divides x, then φs(x) =
0. We now suppose that x ∈ Z×

p . For p odd, assume we have computed and

stored the values ω(a)mod pM , for a = 1, . . . , p − 1.14 Then we can compute ω(x)
mod pM in O (̃M log p) bit operations, since ω(x) = ω(a), where a := xmod p.
The computation of ω(x) for p = 2 is trivial. Then 〈x〉 = x/ω(x) is computed to
the precision pM in O (̃M log p) bit operations. Assuming fast exponentiation, it
takes O (̃M2 log2 p) bit operations to compute 〈x〉s.15 Hence it takes O (̃M2 log2 p)
bit operations to compute the value of φs(x) to the precision pM . Combining this
with the first complexity result completes the proof of the last statement. �

To use the Mahler expansion to compute values of a continuous function we need
to compute binomials coefficients

(
s
n

)
to the precision pM for n = 0, . . . , N − 1.

(We will also need these coefficients for the computation of measures and Iwasawa
power series.) We use the following algorithm.

Algorithm 5.3 (Computation of binomial coefficients).

Input: s ∈ Zp.
16

Output: The binomial coefficients
(
s
n

)
, for n = 0, . . . , N−1, to the precision

pM .

0. For n = 1 to N , do vn ← vp(n) and un ← (np−vn)−1mod pM .

1. Let V be the largest integer v ≥ 0 such that pv ≤ N − 1.

Set s̃ ← smod pM+V .

2. Set A ← 1, B ← 0, b0 ← 1.

13The cost of computing the remainder modulo pM is also O(M log p), since −pM ≤ f̃n −
f̃n−1 ≤ pM .

14These can be easily computed using Hensel’s Lemma.
15For p odd, one could instead compute xt directly, with t as in the proof of Proposition 5.10.
16Note that s must be known at least to the precision pM+V where V is defined in Step 1.



COMPUTING p-ADIC L-FUNCTIONS OF TOTALLY REAL NUMBER FIELDS 853

3. For n = 1 to N − 1, do
If s̃− n+ 1 = 0, set bk ← 0 for k = n to N − 1 and go to Step 4.
b ← vp(s̃− n+ 1), a ← (s̃− n+ 1)p−b mod pM ,
A ← aunAmod pM , B ← B + b− vn,
bn ← ApB mod pM .

4. Return b0, . . . , bN−1.

Remark 5.4. The precomputations in Step 0 need to be done only once for fixed N
and M .

Lemma 5.5. Algorithm 5.3 computes
(
s
0

)
,
(
s
1

)
, . . . ,

(
s

N−1

)
to the precision pM in

O (̃NM log p) bit operations.

Proof. For n ≥ 0 and x ∈ N define[
x

n

]
=

⎧⎪⎨⎪⎩
0 if

(
x
n

)
= 0,(

x

n

)
p−vp((xn)) otherwise.

From the recurrence relation satisfied by binomial coefficients it follows that[
x

n

]
=

(x− n+ 1)p−vp(x−n+1)

np−vp(n)

[
x

n− 1

]
.

From this one can see by induction that at the end of n-th iteration of the loop in
Step 3 we will have A =

[
s̃
n

]
mod pM and B = vp(

(
s̃
n

)
). Thus the algorithm returns(

s̃
n

)
mod pM for n = 0, . . . , N − 1. Now for n ≥ 1 we can write

(
s
n

)
= s

n

(
s−1
n−1

)
and

therefore ∣∣∣∣(sn
)∣∣∣∣

p

≤ |s|p
|n|p

.

It follows that (1 + T )p
M+V ≡ 1 (mod pM , TN ) and thus

(1 + T )s ≡ (1 + T )s̃ (mod pM , TN ).

Therefore
(
s
n

)
≡
(
s̃
n

)
(mod pM ) for n = 0, . . . , N − 1, and hence the algorithm

returns the correct result.
Last, we estimate the complexity of the algorithm. For an integer n ≥ 1 we

can compute vp(n) and np−vp(n) using vp(n) + 1 divisions by p. Therefore Step 0
performs

N + �N/p�+ �N/p2�+ · · · ≤ N/(p− 1)

divisions and therefore takes O (̃NM log p) bit operations. However, if we use the
same method in Step 3 we may end up needing many divisions if s̃ − n + 1 has a
very large p-adic valuation. A better way to proceed is to use a divide-and-conquer
algorithm, so that the computation of a and b can be done in O(log(M + V ))
divisions. The computation of A and bn takes O (̃M log p) bit operations, the com-
putation of B is negligible, and, since V ∈ O(log(N)), Step 3 takes O (̃NM log p)
bit operations. This completes the proof. �

Remark 5.6. The algorithm can be improved in the following way. In Step 0 and
Step 3 we can keep a counter, say ct, that we set to p the first time we encounter
an integer with a non-zero p-adic valuation. Then at each step we decrease ct by
1. If the value of ct is non-zero, then the p-adic valuation of the corresponding
integer is zero. Otherwise we compute the valuation using the method explained
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above and reset ct to the value p. This gains a factor p in computing the p-adic
valuation and the prime-to-p part. It does not change the total computation cost
estimate however.

Once we have computed sufficiently many Mahler coefficients of f to the precision
pM we can use the algorithm below to compute values of f .

Lemma 5.7. Let f ∈ C(Zp,Zp). Assume we have computed f to the precision
pM with respect to N ≥ Nf (M). Then for all s ∈ Zp we can compute f(s) to the
precision pM in O (̃NM log p) bit operations.

Proof. Let f̃0, . . . , f̃N−1 be the first N Mahler coefficients of f to the precision pM .
Then

f(s) ≡
N−1∑
n=0

f̃n

(
s

n

)
(mod pM ).

The binomial coefficients are computed using Algorithm 5.3 in O (̃NM log p) bit
operations, and the computation of the sum also takes O (̃NM log p) bit operations.

�

Another reason to compute Mahler coefficients is for approximating integrals.

Lemma 5.8. Let f ∈ C(Zp,Zp) and let μ ∈ M(Zp,Zp). Assume we have computed
f to the precision pM with respect to N ≥ Nf (M) and have computed μ to the pre-
cision (pM , TN ). Then we can compute

∫
fdμ to the precision pM in O (̃NM log p)

bit operations.

Proof. Write F̃0, . . . , F̃N−1 (respectively f̃0, . . . , f̃N−1) for the first N coefficients
of Fμ(T ) (respectively Mahler coefficients of f) computed to the precision pM . We
have ∫

f dμ ≡
N−1∑
n=0

f̃nF̃n (mod pM ).

This computation takes O (̃NM log p) bit operations. �

From these results it is obvious that having the best possible upper bounds on
Nf is crucial for getting the best complexity estimates. In the next subsection we
consider this problem for the functions that interest us.

5.2. Analyticity and Mahler coefficients. A power series in Cp[[X]] is restricted
if its coefficients tend to zero or, equivalently, if it converges on Op := {x ∈ Cp such
that |x|p ≤ 1}. Let f : Zp → Cp be a function. We say f is analytic if there exists

a restricted power series f̂(X) ∈ Cp[[X]] such that

f(x) = f̂(x) for all x ∈ Zp.

For h ≥ 0 we say f is locally analytic of order h if there exist restricted power series

f̂a,h(X), with 0 ≤ a ≤ ph − 1, such that

(5.1) f(x) = f̂a,h((x− a)p−h) for all x ∈ a+ phZp.

Note that the series f̂a,h are uniquely defined. An analytic function is therefore
a locally analytic function of order 0 and one can verify that, if f is analytic of
order h0, then it is analytic of order h for any h ≥ h0. Clearly a locally analytic
function is continuous. We will see below that the fact that a continuous function
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is locally analytic has some important consequences for the rate of convergence to

zero of its Mahler coefficients.17 The norm of a restricted power series f̂ , denoted

‖f̂‖p,∞, is defined as the maximum of the absolute values of its coefficients. It can
be computed thanks to the following (see [26, Prop. 1, §6.1.4]):

(5.2) ‖f̂‖p,∞ = max
x∈O×

p

|f̂(x)|p.

Let f be a locally analytic function of order h. We define the h-norm of f by

Mh(f) := max
0≤a≤ph−1

‖f̂a,h‖p,∞.

It follows from (5.1) and (5.2) that

(5.3) Mh(f) = max
0≤a≤ph−1

x∈O×
p

|f(a+ phx)|p.

Theorem 5.9 (Amice). Let f be a function in C(Zp,Cp) with Mahler coefficients
(fn)n≥0. Then f is locally analytic of order h if and only if∣∣∣∣ fn

�n/ph�!

∣∣∣∣
p

→ 0.

Moreover, if f is locally analytic of order h, then for all n ≥ 0 we have

|fn|p ≤ Mh(f)
∣∣�n/ph�!∣∣

p
.

Proof. Indeed
(
�n/ph�!

(
x
n

))
n≥0

is an orthonormal basis of the Banach space of

locally analytic functions of order h by [11, Théorème I.4.7]. �

We are interested in finding optimal upper bounds for Nφs
. We remark that the

function φs is locally analytic of order 1 if p is odd and of order 2 if p = 2. Indeed,
for x ∈ a+ qZp with a ∈ Z×

p we have

(5.4) 〈x〉s = 〈a〉s
(
x− a

a
+ 1

)s

= 〈a〉s
∑
n≥0

(
s

n

)
qn

an

(
x− a

q

)n

.

In this way Theorem 5.9 provides bounds on the Mahler coefficients of φs. But we
can do better with the following result.

Proposition 5.10. Fix s ∈ Zp and let (φn)n≥0 be the Mahler coefficients of φs.
Then for all n ≥ 0 we have

|φn|p ≤
{
2−�n/2�+1 if p = 2,

|n!|p if p is odd.

Remark 5.11. This result is close to optimal for odd p. Indeed, it implies that
|φn/n!|p ≤ 1 for all n ≥ 0. On the other hand, we know this quantity is also
bounded from below; otherwise Theorem 5.9 would imply that φs is analytic, and
in general it is not.

17The main reference for these results is the article of Amice [1]; see also [11] for a more
accessible presentation.
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Proof. Assume p is odd and let B be a positive integer. By the Chinese Remainder
Theorem we can find a positive integer t such that⎧⎪⎨⎪⎩

t ≡ s (mod pB),

t ≡ 0 (mod p− 1),

t ≥ B.

Then xt = ω(x)t〈x〉t ≡ 〈x〉s (mod pB) for x ∈ Z×
p and xt ≡ 0 (mod pB) for x ∈ pZp.

Hence |φs(x) − xt|p ≤ p−B for all x ∈ Zp. It follows from (2.4) and Theorem 5.9
that

|φn|p ≤ max
{
|n!|p, p−B

}
and we obtain the result by taking B large enough.

For the case p = 2 a similar proof works, provided s is even. But for odd s we
need to use another approach. So we assume s ∈ 1 + 2Z2. Let B and t be positive
integers such that s ≡ t (mod 2B). As above we have

(5.5) |φs(x)− ω(x)xt|2 ≤ 2−B

where ω(x) := 0 if x ∈ 2Z2. We turn now to the computation of bounds on the
Mahler coefficients (an)n≥0 of ω(x)xt. Let i be a fixed square root of −1 in Q̄2.
Then x �→ (±i)x are continuous functions18 on Z2 and

ω(x) =
i

2
((−i)x − ix) =

i

2

∑
n≥0

(i− 1)n(in − 1)

(
x

n

)
.

Thus the Mahler coefficients (wn)n≥0 of ω satisfy

v2(wn) =

⎧⎪⎨⎪⎩
+∞ if n ≡ 0 (mod 4),

n/2 if n ≡ 2 (mod 4),

(n− 1)/2 if n ≡ 1, 3 (mod 4).

In particular, v2(wn) ≥ �n/2� for all n ≥ 0. We now apply the following lemma.

Lemma 5.12. Let f and g be two continuous functions with Mahler coefficients
(fn)n≥0 and (gn)n≥0. Then the Mahler coefficients (cn)n≥0 of fg satisfy

vp(cn) ≥ min
0≤k≤n

(
vp(fk) + min

n−k≤m≤n
vp(gm)

)
.

Proof of the lemma. Let k,m ≥ 0 be two integers. Then(
x

k

)(
x

m

)
=

k+m∑
n=max(k,m)

νn(k,m)

(
x

n

)
for some νn(k,m) ∈ Z. Hence

f(x)g(x) =
∑

k,m≥0

fkgm

(
x

k

)(
x

m

)
=
∑
n≥0

(
n∑

k=0

fk

n∑
m=n−k

gm νn(k,m)

)(
x

n

)
and the result follows from the expression of cn that can be derived from this
equality. �

18But they are not analytic functions.
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We take f(x) = ω(x) and g(x) = xt. Then

v2(an) ≥ min
0≤k≤n

(
v2(wk) + min

n−k≤m≤n
v2(m!)

)
= min

0≤k≤n

(
v2(wk) + v2((n− k)!)

)
≥ min

0≤k≤n
(�k/2�+ �(n− k)/2�) ≥ �n/2� − 1

and the result follows from this estimate, taking B sufficiently large in (5.5) as
before. �
Corollary 5.13. For every positive integer M we have

Nφs
(M) ≤

{
2M + 2 if p = 2,

pM if p is odd.

Proof. The result is clear for p = 2. For p odd, it is enough to prove that the p-adic
valuation of (pM)! is at least M . But vp((pM)!) =

∑
k≥1�pM/pk� ≥ M , and the

result follows. �
Recall that for x ∈ Z×

p with 〈x〉 ∈ 1 + peZp we have

Lu(x) :=
logp〈x〉
logp u

where u is a fixed topological generator of 1 + peZp. For an integer � ≥ 0 we define
a continuous function ψ	 in C(Zp,Zp) by

ψ	(x) :=

⎧⎨⎩x−1

(
Lu(x)

�

)
if 〈x〉 ∈ 1 + peZp,

0 otherwise.

We have x−1(1+S)Lu(x) =
∑

	≥0 ψ	(x)S
	 if 〈x〉 ∈ 1+peZp. These functions appear

in the construction of the Iwasawa power series and will play an important part in
their computations.

Proposition 5.14. The Mahler coefficients (ψ	,n)n≥0 of ψ	 satisfy

|ψ	,n|p ≤ |�n/pe�!|p
|�!|p

for all n ≥ 0.

Proof. It is clear that the function ψ	 is locally analytic of order e. The e-norm is
1/|�!|p, by (5.3). The result follows from Theorem 5.9. �
Corollary 5.15. For every positive integer M we have

Nψ�
(M) ≤ pe(pM + �).

Proof. It is enough to prove that vp((pM+ �)!) ≥ M +vp(�!). But this is clear from
the facts that vp((a+ b)!) ≥ vp(a!) + vp(b!) for any two non-negative integers a and
b, and that vp((pM)!) ≥ M . �
Remark 5.16. This upper bound is in general quite far from optimal. For example,
with p = 3, e = 1, and � = 10 the corollary gives an upper bound of 210 for M = 20,
but computations give Nψ10

(20) = 85. As the complexity of the computation of
Iwasawa power series depends heavily upon the size of Nψ�

(M)— see for example
Theorem 5.24— it is a good idea to precompute the values Nψ�

(M) for small � and
M and to use these instead in the computations.
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5.3. Computation of p-adic cone zeta functions. From (3.16) we see that,
once a cone decomposition has been computed,19 the computation of the p-adic
twisted partial zeta functions, and in turn that of the p-adic L-functions, boils down
to the computation of p-adic cone zeta functions. We now turn to this computation,
but first explaining how to deal with the several zeta functions associated with
different additive characters all at once. Define the étale algebra

R := Qp[X]/(Xc−1 + · · ·+ 1)

and an additive character Ξ from ZE to R by setting

(5.6) Ξ(α) := ηa

for each α ∈ ZE , where η is the image of X in R and a is any positive integer such
that α ≡ a (mod c). The next result is straightforward.

Lemma 5.17. Let TR be the trace of R/Qp and let α ∈ ZE. Then

TR(Ξ(α)) =
∑

ξ∈X(c)
ξ 	=1

ξ(α). �

Note that TR is trivial to compute since it is Qp-linear and we have

TR(ηa) =

{
c− 1 if c | a,
−1 otherwise.

Let C := C(β;λ1, . . . , λg) be a c-admissible cone. For N ≥ 1 we define

(5.7) FN (C, c;T ) := TR

[
A(C,Ξ)

(N−1)d∑
k1,...,kg=0

(1 + T )N (β+k·λ)
g∏

i=1

Bki,(N−1)d

(
Ξ(λi)

)]
where A(C,Ξ) := Ξ(β)/

∏g
i=1(1 − Ξ(λi)) and TR is extended in the natural way

to R[[T ]]. It follows from Lemma 5.17 and Theorem 4.1 that FN (C, c;T ) ≡
F (C, c;T ) (mod TN ). We will use the expression above to compute approxima-
tions of F (C, c;T ) and of its associated measure μc

p,C . We define

(5.8) Zp(C, c; s) :=

∫
φ−s(x) dμ

c
p,C .

We now determine some computation costs. These results, or at least their
proofs, will be useful later to estimate the complexity of the computation of p-adic
L-functions; see Subsection 5.5. The first step is the computation of values of the
rational functions Bk,K .

Proposition 5.18. If K is a non-negative integer, then

B0,K(x) = x

(
x

x− 1

)K

− x+ 1

and for 0 ≤ k < K we have the recurrence formula

Bk+1,K(x) = x

[
(−1)k+1

(
K + 1

k + 1

)(
x

x− 1

)K

+Bk,K

]
.

Proof. We first establish another expression for the Bk,K(x)’s.

19This will be the topic of the next subsection.
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Lemma 5.19. For k ≥ 0 let Coeffk denote the linear map that sends a polynomial
in Q(x)[X] to the coefficient of its monomial of degree k. Then

Bk,K(x) =

(
−x

x− 1

)k

Coeffk

⎡⎢⎢⎢⎣
(

x

x− 1
+X

)K+1

− 1

1

x− 1
+X

⎤⎥⎥⎥⎦ .

Proof of the lemma. We compute

Bk,K(x)=

(
−x

x− 1

)k K∑
n=k

(
n

k

)(
x

x− 1

)n−k

=

(
−x

x− 1

)k K∑
n=k

Coeffk

[(
x

x− 1
+X

)n]

and the conclusion follows by evaluating the sum. �

Now define

AK(X) :=

((
x

x− 1
+X

)K+1

− 1

)/(
1

x− 1
+X

)
and let ak denote the coefficient of Xk in AK(X). Then B0,K = AK(0), which
gives the first assertion. Since

AK(X)

(
1

x− 1
+X

)
=

(
x

x− 1
+X

)K+1

− 1

we see that

ak+1

x− 1
+ ak =

(
K + 1

k + 1

)(
x

x− 1

)K−k

for 0 ≤ k < K. The second assertion follows by induction. �

Corollary 5.20. Let α ∈ ZE, coprime with c, and let K ≥ 1 be an integer.
Then we can compute B0,K(Ξ(α)), . . . , BK,K(Ξ(α)) ∈ R to the precision pM in
O (̃KMc log p+ d log c) binary operations.

Proof. We apply Lemma 5.5 to precompute the binomial coefficients
(
K+1
0

)
,. . . ,(

K+1
K+1

)
in O (̃KM log p) bit operations. Since the prime ideal c is of degree 1 there

exist integers t1, . . . , td ∈ {0, . . . , c− 1} such that θi ≡ ti (mod c) for i = 1, . . . , d.
We assume t1, . . . , td have been precomputed (using, say, [9, Algo. 1.4.12]). Write
α := a1θ1 + · · · + adθd ∈ ZE . Then α ≡ a (mod c), where a := a1t1 + · · · + adtd
mod c is computed in O (̃d log c) bit operations. Next we precompute (ηa/(ηa −
1))K in O (̃Mc logK log p) bit operations. From this we get B0,K(ηa) at negligible
additional cost. Then, using the induction formula and the precomputed values, the
computation of Bk+1,K(ηa) from Bk,K(ηa) takes only O (̃Mc log p) bit operations.

�

We now can give our first estimate. As we want our results to be valid for
several different cones at once, we will express these estimates using d and not g
(the number of generators), using the fact that g ≤ d.

Theorem 5.21. For any positive integers M and N we can compute the measure
μc
p,C to the precision (pM , TN ) in O (̃Nd+1dd+3Mc log p) bit operations.
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Proof. We compute F (C;T ) using (5.7). Applying the previous proposition we
precompute Bk,(N−1)d(Ξ(λi)), for k = 0, . . . , (N − 1)d and i = 1, . . . , d, in

O (̃Nd2Mc log p) binary operations. With these values precomputed each com-
putation of the inner product in (5.7) takes O (̃dMc log p) bit operations. Now let
a := N (β+k ·λ). We compute (1+T )a to the precision (pM , TN ), using Lemma 5.5,
in O (̃NM log p) bit operations, after having computed a to the precision of pM+V

(in the notation of Lemma 5.5). The main part of the computation of a is the
computation of the norm, which boils down to the computation modulo pM+V of
the determinant of a d × d matrix; see [8, §4.3]. This takes O (̃d3(M + V ) log p)
bit operations. The multiplication of the power series with the inner product takes
O (̃NMc log p) bit operations. The sum has O(Nddd) terms so the computation
of the sum requires O (̃Nddd(N + d3)Mc log p) bit operations. The multiplication
by A(C,Ξ) and the computation of the trace take negligible time compared to the
computation of the sum. The conclusion follows by putting everything together
and simplifying. �
Remark 5.22. It is a good idea to retain the values of Bk,K(ηa) in order to reuse
them if several generators have the same image under Ξ. This does not affect the
estimate of the cost of the computation since that estimate is dominated by the
cost of computing the sum.

Once the measure μp,C has been computed we can use it to compute values of
Zp(C, c; s).

Corollary 5.23. With a precomputation of cost O (̃pd+1dd+3Md+2c) bit opera-
tions, for any given s in Zp we can compute Zp(C, c; s) to the precision pM in
O (̃p2M3) bit operations.

Proof. We use the integral expression (5.8) for Zp(C, c; s). For this we need to
compute μc

p,C to the precision (pM , TN ) with N > Nf (φs). By Corollary 5.13 we
can take N = pM + 2; the cost of the precomputation comes from the previous
theorem. To perform the integration we need to compute the firstN (= pM) Mahler
coefficients of φs; by Lemma 5.2 the cost is O (̃p2M3). The cost of computing the
integral, as given by Lemma 5.8, is O (̃pM2). �

Recall that e is the largest positive integer such that Wpe ⊂ E(Wq) and that
u is a fixed topological generator of 1 + peZp. Denote by Ip(C, c;X) the Iwasawa
power series of Zp(C, c; s), that is, the (unique) power series in Zp[[X]] such that
Zp(C, c; 1 − s) = Ip(C, c;u

s − 1) for all s ∈ Zp. It is easy to adapt the proof of
Theorem 4.15 to show that this power series exists.20 We now give an explicit
formula for Ip(C, c;X) modulo (pM , XL).

Theorem 5.24. Let L and M be positive integers and let K = (pe(pM +L)− 1)d.
Then

Ip(C, c;X) ≡

TR

[
A(C,Ξ)

K∑
k1,...,kg=0

N (β+k · λ)−1(1+X)Lu(N (β+k·λ))
g∏

i=1

Bki,K

(
Ξ(λi)

)]
(mod pM , XL).

Hence we can compute Ip(C, c;X) to the precision (pM , XL) in O (̃peddd+3(pM +
L)dM2Lc) bit operations.

20Actually, the definition of Ip(C, c;X) is given in the proof of the next theorem.
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Proof. We start with a useful lemma.

Lemma 5.25. Let f be a continuous function on Zp with Mahler coefficients
(fn)n≥0. Let M and N be integers with M ≥ 1 and N ≥ Nf (M). Let μ be a
measure of norm ≤ 1. Assume there exist a finite set A of elements of Zp and an
element ca in Op := {x ∈ Cp : |x|p ≤ 1} for each a ∈ A such that

Fμ(T ) ≡
∑
a∈A

ca(1 + T )a (mod TN ).

Then ∣∣∣∣∫ f dμ−
∑
a∈A

caf(a)

∣∣∣∣
p

≤ p−M .

Proof of the lemma. For each a ∈ Zp let δa be the Dirac measure at a, and define
the measure μ̃ := μ−

∑
a∈A caδa. Then∫

g dμ̃ =

∫
g dμ−

∑
a∈A

cag(a)

for all g ∈ C(Zp,Cp). From this and the facts that ‖μ‖p ≤ 1 and |ca|p ≤ 1 for all
a ∈ A we see that μ̃ has norm ≤ 1. By Lemma 2.7 the associated power series is
divisible by TN , and thus∣∣∣∣∫ f dμ̃

∣∣∣∣
p

=

∣∣∣∣∣∑
n≥N

fn

∫ (
x

n

)
dμ̃

∣∣∣∣∣
p

≤ sup
n≥N

|fn|p ≤ p−M . �

We apply the lemma repeatedly with μ = μc
p,C and f = ψ	 for each � = 0, . . . , L

and using (5.7) for the definitions of the set A and the coefficients ca. By Corol-
lary 5.15 we can take N = pe(pM + L). We have

Ip(C, c;X) =
∑
�≥0

∫
ψ�(x) dμ

c
p,C X� ≡

L−1∑
�=0

∫
ψ�(x) dμ

c
p,C X� (mod XL)

≡ TR

[
L−1∑
�=0

A(C,Ξ)

(N−1)d∑
k1,...,kg=0

ψ�(N (β+k·λ))
g∏

i=1

Bki,(N−1)d

(
Ξ(λi)

)
X�

]
(mod pM, XL),

the expression for Ip(C, c;X) coming from the fact that
∑L−1

	=0 ψ	(x)X
	 ≡

x−1(1 +X)Lu(x) (mod XL).
We now estimate the cost of computing Ip(C, c;X) by this formula. As above,

precomputation of the Bk,K ’s has a cost of O (̃pe+1dM2Lc) binary operations, after
which we can compute each inner product in O (̃dMc log p) bit operations. The
computation of a := Lu(N (β+k ·λ)) to the precision pM takes O (̃M(M+e) log p+
d3(M + V ) log p) bit operations.21 Once the norm has been computed the main
computation is that of the p-adic logarithm, which must be done to the precision
pM+e since we will be dividing by logp(u) ∈ peZp. Since 〈N (β + k · λ)〉 ∈ 1 + peZp

this computation can be done using at most M multiplications of precision pM+e.
Computing (1 +X)a to the precision (pM , XL) takes O (̃ML log p) operations and
multiplying by the inner product and the inverse of the norm costs O (̃MLc log p)

21See the proof of Theorem 5.21 for the computation of the norm.
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bit operations. The result follows from simplifying and noting that the sum has
O(peddd(pM + L)d) terms.22 �

Corollary 5.26. With a precomputation of cost O (̃p(e+1)ddd+3Md+2c) bit oper-
ations, for any given s in Zp we can compute Zp(C, c; s) to the precision pM in

O (̃M2 log2 p) bit operations.

Proof. With L := �M/e� we precompute Ip(C, c;X) to the precision (pM , XL),
using the theorem to estimate the cost. Given s ∈ Zp, we compute t := u1−s − 1 ∈
peZp to the precision pM in O (̃M2 log2 p) bit operations and compute Ip(C, c; t) ≡
Zp(C, c; s) (mod pM ) in O (̃(M2/e) log p) operations. The corollary follows. �

Remark 5.27. From its definition it would seem more natural to compute Ip(C, c;X)
modulo (X, pe)L. In particular, it would be enough to compute values of Zp(C, c; s).
This implies that, for 0 ≤ � < L, the coefficient of X	 would have to be computed
to the precision pe(L−	). By Corollary 5.15 we can replace N = pe(p�L/e� + L)
with N = max0≤	<L pe(pe(L − �) + �) = pe+1Le in the formula K = (N − 1)d.
It is clear that this does not give a significant improvement in the estimate of the
computation time.

We finish this subsection with a result on the direct computation of Zp(C, c; s)
for a given s ∈ Zp.

Theorem 5.28. If s ∈ Zp, then

Zp(C, c; s) ≡ TR

[
A(C,Ξ)

(pM+1)d∑
k1,...,kg=0

N (β + k · λ)−s
g∏

i=1

Bki,(pM+1)d

(
Ξ(λi)

)]
(mod pM )

and hence we can compute Z(C, c; s) to the precision pM in O (̃pddd+3Md+2c) bit
operations.

Proof. We use Lemma 5.25 again with μ = μc
p,C and f(x) = φ−s(x). By Corol-

lary 5.13 we can take N = pM + 2. This establishes the formula. We estimate the
computation cost as in Theorem 5.21, replacing the computation of (1 + T )a by
that of a−s, with a := N (β+k ·λ), and accounting for the difference in the number
of terms in the sum. �

5.4. Explicit cone decomposition. The construction of the measure μa,c
p,m relies

on the existence of a cone decomposition of a modulo m. Such a construction exists
by a result of Cassou-Noguès [7] (see Theorem 3.7), based on the work of Shintani
[29], but the proof is non-constructive. For d = 1 the construction is trivial, and the
case d = 2 has been well studied (see below). For d = 3 an explicit decomposition
is given in [13], but quantitative results on the number of discrete cones obtained
at the end are missing although numerical experiments show that it grows very
rapidly so that only cases with small discriminant and conductor can be dealt with.
A general construction is given in [10], but this construction relies on the existence
of a set of units satisfying certain conditions and there does not appear to be any
practical way to construct such a set. However, the construction is generalized in

22The costs of computing the product by A(C,Ξ) and the trace are negligible compared to
that of the sum.
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[14] for any set of units of maximal rank, at the price of using signed cones rather
than cones.23 We will deal in this subsection only with the cases d = 1 and d = 2.

Remark 5.29. The construction given in the present article assumes that we can
always find a c-admissible cone decomposition. Although this is always possible in
the case d = 1 and d = 2 (see below), it is not guaranteed by Theorem 3.7 in general.
This is not really a problem however; one can always first construct the several
cone decompositions needed, then choose c so that these cone decompositions are
c-admissible. This is how it is done in [7].

We start with the case d = 1, which is straightforward.

Proposition 5.30. Assume d = 1, that is, E = Q. Let f and a be positive integers
such that m = fZ ·∞ and a = aZ and let b = a(a−1mod f).24 Then a c-admissible
cone decomposition of a modulo m is given by the unique cone C(b; af). �

It is also not difficult to construct a cone decomposition in the quadratic case.
Indeed, assume d = 2; then E is a real quadratic field. For two linearly independent
elements γ0 and γ1 of E+ we define the half-open rational cone of a modulo m (or
simply the rational cone of a modulo m) generated by γ0 and γ1 to be the following
subset of a ∩E+:

RCm(γ0, γ1; a) := { sγ0 + tγ1 with s, t ∈ Q, 0 < s, 0 ≤ t } ∩ a ∩Em.

We go from half-open rational cones to discrete cones using the formula

(5.9) RCm(γ0, γ1; a) =
⋃

α∈PCm(γ0,γ1;a)

C(α; γ0, γ1) (disjoint union)

where

PCm(γ0, γ1; a) := { sγ0 + tγ1 with s, t ∈ Q, 0 < s ≤ 1, 0 ≤ t < 1 } ∩ a ∩ Em.

Thus from a finite family of disjoint half-open rational cones giving a set of represen-
tatives of a∩Em modulo Um(E) we can get a c-admissible cone decomposition of a
modulo m, provided that the generators of the rational cones are in af\c. Let ε+ be

the generator of U+(E), the group of totally positive units of E, with ε
(2)
+ > 1 > ε

(1)
+ .

Let im be the index of Um(E) as a subgroup of U+(E); thus εm := εim+ is a genera-
tor of Um(E). For any totally positive element γ of af \ c one can easily check that
RCm(γ, εmγ; a) is a set of representatives of a ∩ Em modulo Um(E), and therefore
we can construct from this rational cone a c-admissible cone decomposition by the
formula above.25 However, the number of points in PCm(γ, εγ; a) is of the order of

ε
(2)
m = (ε

(2)
+ )im and therefore much too large for computations in general. We use

instead the following algorithm, also used in [27], which is based on the continued
fraction algorithm of Hayes [19]; see also the original work of Zagier [32]. For two
elements γ0 and γ1 of E+ we set

b(γ0, γ1) :=
⌈
γ
(1)
0 /γ

(1)
1

⌉
and R(γ0, γ1) := −γ0 + b(γ0, γ1) γ1.

23That is, cones together with a ± sign; the decomposition is obtained by “removing” the
cones with a − sign.

24In particular, by (H1), q divides f .
25We will explain below in the proof of the next proposition how to compute the elements of

PCm(γ0, γ1; a).
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Algorithm 5.31 (Computation of cone decomposition in degree 2).

Input: Ideal a coprime to c and m.

Output: A c-admissible cone decomposition of a modulo m.

1. Compute g ∈ N and h ∈ ZE such that af = Zg + Zh.

2. If h(2) < h(1) then do h ← −h.

Do h ← h+ �−h(1)/g�g. Set (g0, g1) ← (g, h).

3. While g
(2)
1 < g

(2)
0 , do (g0, g1) ← (g1, R(g0, g1)).

4. If g0 ∈ c then do (g0, g1) ← (g1, R(g0, g1)).

5. Set D ← ∅ and glast ← g0εm.

6. While g0 �= glast, do
6.1. If g1 �∈ c then do

b0 ← g0, b1 ← g1 and (g0, g1) ← (g1, R(g0, g1)),
Else

g2 ← R(g0, g1),
b0 ← g0, b1 ← g2 and (g0, g1) ← (g2, R(g1, g2)).

6.2. For a ∈ PCm(b0, b1; a), do D ← D ∪ {C(a; b0, b1)}.
7. Return D.

Proposition 5.32. Let DE be the discriminant of E and let ε+ be the generator
of the group U+(E) of totally positive units of E such that ε+ > 1.26 Then Algo-
rithm 5.31 computes a c-admissible cone decomposition of a modulo m in
O
(̃
N (af)

√
DE + N (f)2 ε+

)
operations in E. Moreover, this cone decomposition

contains O
(
N (f) ε+

)
cones.

Proof. The pair (g, h) constructed in Step 2 of the algorithm satisfies af = Zg+Zh,
g(1) > h(1) and 1 < h(2)/h(1). From this pair we construct in the following steps a
sequence (γ̃n)n≥0 with (γ̃0, γ̃1) := (g, h) and γ̃n+1 := R(γ̃n−1, γ̃n) for n ≥ 1. One
can prove that the elements of this sequence satisfy

(1) af = Zγ̃n + Zγ̃n+1, (2) γ̃(1)
n > γ̃

(1)
n+1, and (3) γ̃(2)

n /γ̃(1)
n < γ̃

(2)
n+1/γ̃

(1)
n+1.

One can also prove that there exists an integer N ≥ 1 such that

(4) γ̃
(2)
n−1 < γ̃(2)

n for all n ≥ N.

In fact, one proves (see below) that there exists an integer N ≥ 1 such that γ̃
(2)
N−1 <

γ̃
(2)
N and then verifies by induction that the same is true for all n ≥ N . We let

γn := γ̃N+n for n ≥ 0. This is the sequence that is computed after Step 3. The
points γn are successive points on the convexity polygon of af as defined in [19]. We
can also extend the sequence in the other direction to obtain a sequence (γn)n∈Z,
infinite in both directions, containing all the points on the convexity polygon, and
for which we still have γn+1 = R(γn−1, γn) for all n ∈ Z. It will be necessary
to ensure that γ0 �∈ c. If γ0 ∈ c, we iterate one more time in Step 4 to replace
γ0 by γ1 (that is, replacing N by N + 1). Indeed, by (1) γ0 and γ1 cannot both
be in c. We assume from now on that γ0 �∈ c. The group U+(E) acts on the
convexity polygon of af and thus also on the set {γn, n ∈ Z}; thus there exists an

26To simplify the expressions, from now on we identify E with its image in R by the map
x �→ x(2).
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integer P0 ≥ 1 such that γn+P0
= ε+γn for all n ≥ 0. Therefore, for any n ∈ Z the

union of the (disjoint) rational cones RCm(γn, γn+1; a), . . . , RCm(γn+P−1, γn+P ; a),
with P := imP0, gives a set of representatives of a ∩ Em modulo Um(E) with
generators in af. However, although γ0, and thus also γP , do not belong to c,
it is possible that γn ∈ c for some n in the range 1 ≤ n ≤ P − 1. In that
case, γn−1 and γn+1 do not lie in c, by (1), and we use in Step 6.1 the fact that
RCm(γn−1, γn; a)∪RCm(γn, γn+1; a) = RCm(γn−1, γn+1; a) to get rid of cones with
γn ∈ c. We end up with a rational cone decomposition having generators suitable
for constructing a c-admissible cone decomposition of a modulo m using (5.9).

We will now estimate the complexity of the algorithm and the number of cones
obtained at the end. First we prove that there exists an integer N ≥ 1 such that
(4) is satisfied. Note that N is also the number of iterations in Step 3. Assume

N does not exist, then we have γ̃
(1)
t+1 < γ̃

(1)
t and γ̃

(2)
t+1 < γ̃

(2)
t for all t ≥ 1, thus

N (γ̃t+1) < N (γ̃t) < · · · < N (h) but this sequence must eventually end since these
norms are all positive integers. This proves that N exists and, furthermore, since
all these norms are divisible by N (af), we have N ≤ N (h)/N (af)+1. Now assume,

without loss of generality, that
√
DE

(1)
=

√
DE > 0 and

√
DE

(2)
= −

√
DE < 0.

Write h = a+b
√
DE with a, b ∈ 1

2Z. Since h
(2) > h(1), it follows that b < 0, and also

a > −b
√
DE > 0, as h ∈ Z+

E . On the other hand, a < g − b
√
DE because h(1) < g.

From the fact that af = Zg + Zh, we find that b = −N (af)/2g. We compute
N (h) = a2 − b2DE < (g − b

√
DE)

2 − b2DE = g2 − 2gb
√
DE = g2 +N (af)

√
DE ∈

O(N (af)2
√
DE). Thus Step 3 requires O(N (af)

√
DE) operations in E.

Next we estimate the size of P = imP0. For that we use the results and methods
of [19]. For n ∈ Z we see that γn−1, γn and γn+1 are collinear if and only if γn is
midway between γn−1 and γn+1 if and only if b(γn−1, γn) = 2; in which case we say
γn is a midpoint. If γn is not a midpoint we say γn is a vertex. The following result
states that the norms of vertices are bounded.

Lemma 5.33 (Hayes). Let γn be a vertex. Then N (γn) ≤ N (af)
√
DE .

Proof. Assume N (γn) > N (af)
√
DE . We identify af with a lattice of R2 by the map

x �→ (x(1), x(2)). With this identification, the lattice af has volume N (af)
√
DE . Let

ε > 0. Consider the closed rectangular box B with sides parallel to the coordinate

axes and with opposite vertices at (γ
(1)
n − ε, γ

(2)
n − ε) and (−γ

(1)
n + ε,−γ

(2)
n + ε);

see Figure 1. Taking ε small enough, we can assume that the volume of B is
≥ 4N (af)

√
DE . Therefore, by Minkowski theorem, there exists β ∈ af such that

β ∈ B. Replacing β by −β if necessary, we can assume that β(2) > 0. Recall that
a point γ ∈ af is on the convexity polygon of af if and only if there are no points
α ∈ af such that 0 < α(i) < γ(i) for i = 1, 2; thus β(1) < 0. Let

s :=
γ
(2)
n−1 − γ

(2)
n

γ
(1)
n−1 − γ

(1)
n

and t :=
γ
(2)
n − γ

(2)
n+1

γ
(1)
n − γ

(1)
n+1

be the slopes of the lines containing γn and γn−1 and γn and γn+1 respectively.
Since γn is a vertex, we have s �= t and at least one of the two numbers s and t is
distinct from β(2)/β(1). Assume s �= β(2)/β(1). If β(2)/β(1) > s, consider γn−β ∈ a.



866 XAVIER-FRANÇOIS ROBLOT

B

γn•

β •

−β•

γn + β •

Figure 1

We have

0 < γ(2)
n − β(2) < γ(2)

n < γ
(2)
n−1

and, since β(1) < s−1β(2), we have also

0 < γ(1)
n − β(1) < γ(1)

n − s−1β(2) = s−1(γ(2)
n − β(2)) + γ(1)

n − s−1γ(2)
n

< s−1(γ
(2)
n−1 − γ(2)

n ) + γ(1)
n by the above

< γ
(1)
n−1.

Therefore we get a contradiction with the fact that γn−1 belongs to the convexity
polygon of af. If β(2)/β(1) < s, we get a similar contradiction by considering γn+β.
Similar reasoning can be used in the case t �= β(2)/β(1). Finally, we see that all
cases lead to a contradiction and therefore N (γn) ≤ N (af)

√
DE . �

Let n ∈ Z be such that γn is a vertex. Recall that P0 ≥ 1 is the smallest integer
such that γn+P0

= ε+γn. For n ≤ r < n + P0, let Tr be the triangle with vertices
the origin, γr and γr+1 where, as in the proof of the previous lemma, we identify af

with its image in R2 by the map x �→ (x(1), x(2)). The slopes joining γr and γr+1

are negative and increase in absolute value with r, thus all of these triangles are
contained in the triangle T with vertices the origin, γn and γn+P0

; see Figure 2 for
an example with n = 0 and P0 = 3. By the property (1) above, all the triangles Tr

have the same volume equal to 1
2N (af)

√
DE whereas the volume of T is

Vol(T ) =
1

2
det

(
γ
(1)
n ε

(1)
+ γ

(1)
n

γ
(2)
n ε

(2)
+ γ

(2)
n

)
=

1

2
N (γ)(ε

(2)
+ − ε

(1)
+ ).

Using the above lemma, it follows that

P0 N (af)
√
DE ≤ N (γ)(ε

(2)
+ − ε

(1)
+ ) ≤ N (af)

√
DE(ε

(2)
+ − ε

(1)
+ ),

thus P0 ∈ O(ε
(2)
+ ) and finally P ∈ O(imε

(2)
+ ).
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•
γ0

• γ1

• γ2

•γ3 = ε+γ0

T0

T1

T2

T

Figure 2

Last, we need to explain how to perform Step 6.2, we need to estimate the cost
of the computation, and we need to estimate the number of points in the sets
PCm(b0, b1; a). There are two cases to consider, (I) (b0, b1) = (γn, γn+1) and (II)
(b0, b1) = (γn, γn+2), for an arbitrary n ∈ Z. We have the bijection

a/(Zb0 + Zb1)
1:1−→ {sb0 + tb1 with s, t ∈ Q, 0 < s ≤ 1, 0 ≤ t < 1} ∩ a,

defined as follows. For a given class ᾱ in a/(Zb0 + Zb1), lift ᾱ to an arbitrary
element α ∈ a and write α = sb0 + tb1 with s, t ∈ Q. Then the map above sends ᾱ
to

[α](b0,b1) := (s− �s�+ 1)b0 + (t− �t�)b1.
Moreover, since b0 and b1 lie in af there is a well-defined map from a/(Zb0 + Zb1)
to a/af which sends ᾱ to the class of α modulo af. The set PCm(b0, b1; a) consists
of precisely those elements [α](b0,b1) for which ᾱ ∈ a/(Zb0 + Zb1) is congruent
to 1 modulo f. Since a and f are coprime this map is surjective and therefore
PCm(b0, b1; a) contains exactly d/N (f) elements, where d := (a : Zb0 +Zb1). Using
the methods of [9, §4.1.3], two elements α0 and α1 of a can be constructed with
a = Zα0 +Zα1 and a/(Zb0 +Zb1) = (Z/d0Z)ᾱ0 + (Z/d1Z)ᾱ1, where d0 and d1 are
positive integers and d := d0d1. Thus the elements of a/(Zb0 + Zb1) can easily be
enumerated in O(d) operations in E. For case (I) we have Zγn + Zγn+1 = af and
therefore d = N (f) and PCm(γn, γn+1; a) contains only one element. For case (II)
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we have

d=(a : Zγn +Zγn+2)=(a : Zγn +Zγn+1)(Zγn +Zγn+1 : Zγn +Zγn+2)=N (f) b(γn, γn+1).

If γn+1 is a midpoint we have b(γn, γn+1) = 2. We now need to estimate the size
of b(γn, γn+1) when γn is a vertex. Since b(γn, γn+1) = b(γn+P0

, γn+P0+1) it is
enough to look at what happens for the vertices among γ0, . . . , γP0−1. Writing
bn := b(γn−1, γn) to simplify the notation, we have by construction

γ
(1)
n−1

bn − 1
> γ(1)

n >
γ
(1)
n−1

bn

and therefore

γ
(1)
0

(bP0
− 1)(bP0−1 − 1) · · · (b1 − 1)

> γ
(1)
P0

>
γ
(1)
0

bP0
bP0−1 · · · b1

.

From the fact that γP0
= ε+γ0 we find that

(5.10) ε
(2)
+ >

P0∏
i=1

(bi − 1).

The indices i for which bi = 2, that is, corresponding to the midpoints, do not
contribute to the product. For indices corresponding to vertices we get∑

1≤i≤P0
γi is a vertex

bi ∈ O(ε
(2)
+ ).

We now put everything together to get the result. For Step 1, we assume that
an ideal is given by a 2×2 integral matrix expressing a basis of the ideal on the
(fixed) integral basis of E. This step amounts to an HNF reduction of a 2×4
matrix (see [8, §4.7.1]). Since we can reduce the entries of this matrix modulo
N (af) this step takes O (̃log(N (af))) bit operations and hence is negligible. Step
3 takes O(N (af)

√
DE) operations in E. The loop in Step 6 is iterated P times.

The most costly operation is in Step 6.2. The cost of computing α0, α1, d0, and
d1 is essentially that of an SNF reduction of a 2×2 matrix with coefficients of size
≤ N (af) and hence can be neglected. Enumerating the elements of PCm(b0, b1; a)
takes a total of O(N (f)P ) operations in E for the midpoints and O(imN (f)ε+)
for the vertices. This gives the estimate on the complexity of the algorithm. To
count the cones we observe that the midpoints give O(P ) cones and the vertices
give O(imε+) cones. The conclusion is established by using the fact that im ∈
O(N (f)). �

Remark 5.34. One could ask what would happen if we were first to construct a
cone decomposition using the algorithm without any restriction related to c, that
is, deleting Step 4 and always doing the first part in Step 6.1, then choosing the
prime ideal c so that the decomposition computed is c-admissible. In fact this would
not change the complexity or even the order of the number of cones, since both are
dominated by the contributions of the midpoints and, in fact, for these we get the
same number of discrete cones in cases (I) and (II). On the other hand, this would
probably force the norm of c to get significantly larger and that would adversely
affect the complexity of the remaining computations.
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Remark 5.35. The complexity and the estimate of the number of cones given by
this proposition appear in practice to be very pessimistic as they are of the order
of the exponential of RE , the regulator of E, whereas computations point towards
something of the size of RE . Indeed, one can use (5.10) to show that the number of
vertices among γ0, . . . , γP+

is O(RE). However, it appears difficult to bound the
number of midpoints. One can prove that, if γn is a vertex, then the number of

midpoints following it is
⌊
1/(1 − bn + γ

(1)
n−1/γ

(1)
n )
⌋
, and so this problem is related

to the question of how close a quadratic irrationality can be to an integer. In order
to bound more efficiently the number of cones one would need to bound the size of
the bn’s. This could be done for example using (5.10) by finding some non-trivial
lower bound on the number of vertices.

5.5. Computations of p-adic L-functions. We use the results from the preced-
ing subsections to estimate the complexity of computing L-functions. We will make
certain assumptions. As noted above, we assume we have computed the necessary
data to work in E: ring of integers, class group, units, etc. We assume also that
we have at our disposal a prime ideal c satisfying the hypotheses (H1), (H2), and
(H3) and the additional hypothesis

(H4) Either χ is non-trivial and χ(c) �= 1, or χ is trivial and 〈c〉 �∈ 1 + pe+1Zp.
27

We assume we have computed a list of integral ideals ai, i = 1, . . . , hm(E), coprime
to c and m and representing all the classes of Clm(E). Finally, we assume we have
computed a cone decomposition for each ideal ai; we will denote by B the maximum
number of cones among these decompositions (see the previous subsection). In what
follows δ will denote the degree of Qp(χ)/Qp.

Lemma 5.36. Assume the ERH. Then there exists a prime ideal c satisfying hy-
potheses (H1) through (H4), with c ∈ O(log2(N (f)DE)) if χ is non-trivial and
c ∈ O (̃p2m0 log2(DE)) if χ is trivial, where m0 ≥ 0 is such that Qm0

= E ∩Q∞.

Proof. We use Theorem 1 of [2]. For the case χ non-trivial the application is direct.
For the case χ trivial we apply the theorem to the character ρ generating the group
of characters of Gal(E1/E). The absolute norm of the conductor of ρ divides the
absolute norm of the conductor of Qm0+1/Qm0

, the p-adic valuation of which is
vp(q) + (pm0+1 − 1)/(p− 1). The result follows. �

Theorem 5.37. Let M and N be positive integers. Under the assumptions enumer-
ated at the beginning of this subsection the measures μai,c

p,m , for i = 1, . . . , hm(E),
can be computed to the precision (pM , TN ) in O (̃hm(E)dd+3BNd+1Mc log p) bit
operations.

Proof. This follows directly from Theorem 5.21. �

Corollary 5.38. Let M be a positive integer and let s ∈ Zp, with s �= 1 if χ
is trivial. Under the assumptions enumerated at the beginning of this subsection
and after precomputations of cost O (̃hm(E)pd+1dd+3BMd+2c) bit operations, two
algebraic integers β and γ, both belonging to Z[χ] and with γLp,m(χ; s) lying in Zp[χ]
and |γLp,m(χ; s)−β|p ≤ p−M, can be computed in O (̃hm(E)(p2M3+ δM log p)) bit

operations. Moreover, p−1/(p−1) ≤ |γ|p ≤ 1 if χ is non-trivial and |γ|p = p−e|s−1|p
if χ is trivial.

27Note that we always have 〈c〉 ∈ 1 + peZp by Lemma 4.3.
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Proof. We precompute the measures μai,c
p,m , for i = 1, . . . , hm(E), to the precision

(pM , TN ), with N := pM + 2, the computation cost being given by Theorem 5.37.
We let β be an approximation of the sum in (4.4) to the precision pM . The values
of Zp,m(a

−1
i , c; s), for i = 1, . . . , hm(E), to the precision pM are computed using

Corollary 5.23 mutatis mutandis in O (̃hm(E)p2M3) operations. The rest of the
computation of β takes O(hm(E)δM log p) bit operations. We now let γ be an
approximation of χ(c)〈c〉1−s − 1 to the precision pM . The computation of γ takes
O (̃M2 log2 p+ δM log p) bit operations, and it follows from (4.4) that γLp,m(χ; s)
lies in Zp[χ] and |γLp,m(χ; s)− β|p ≤ p−M . The assertions concerning the absolute
value of γ are straightforward (see the proof of Corollary 4.16). �

Recall that E ∩Q∞ = Qm0
and E(m)∩Q∞ = Qm0+m1

, so that e = m0 + vp(q).

Theorem 5.39. Let M and L be positive integers. Under the assumptions enu-
merated at the beginning of this subsection there exist polynomials B(X) and C(X)
in Zp[χ][X], with a cost of O (̃hm(E)(peddd+3B(pM + L)dM2Lc + δM log p)) bit
operations to compute, such that

C(X)Ip,m(χ;X)−B(X) ∈

⎧⎪⎪⎨
⎪⎪⎩
pMZp[χ][[X]] +XLZp[χ][[X]] if χ is trivial or

not of type W ,
pM

X + π
Zp[χ][[X]] +

XL

X + π
Zp[χ][[X]] otherwise,

with π ∈ Cp satisfying

1

pm1−1(p− 1)
≤ vp(π) ≤

1

p− 1
.

Moreover, p−1/(p−1) ≤ |C(0)|p ≤ 1 if χ is non-trivial and C(0) = 0, |C ′(0)|p = 1 if
χ is trivial.

Proof. We use the notation and results from the proof of Theorem 4.15. The poly-
nomial C(X) is an approximation modulo (pM , XL) of the power series C(c, χ;X)
and the polynomial B(X) is approximation modulo (pM , XL) of the power series

hm(E)∑
i=1

χ(a−1
i )N(ai;X)A(ai, c;X).

The first assertion follows by (4.7) and the integral properties of Ip,m(χ;X), with
π := (ξ − 1)/ξ. Since ξ has order pm for some integer m with 1 ≤ m ≤ m1

this proves the inequalities on the p-adic valuation of π. The properties of C(X)
follow from (H4). We now evaluate the complexity of the computation of B(X)
and C(X). Let a be one of the ideals ai and let {C1, . . . , Cm} be a c-admissible
cone decomposition of a. Then

A(a, c;X) =

m∑
j=1

Ip(Cj , c;X)

and the computation cost of A(a, c;X) to the precision (pM , XL) follows from
Theorem 5.24. The computation time of C(X) is negligible compared to that
of B(X). �

Corollary 5.40. Let M be a positive integer and let s ∈ Zp, with s �= 1 if χ is
trivial. Under the assumptions enumerated at the beginning of this subsection and
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after precomputations costing O (̃hm(E)(p(e+1)ddd+3BMd+2Lc+ δM log p)) bit op-
erations, two algebraic integers, β and γ, both belonging to Z[χ] and with γLp,m(χ; s)
lying in Zp[χ] and

(5.11) |γLp,m(χ; s)− β|p ≤
{
p−M if χ is trivial or not of type W,

p−M+1/(p−1) otherwise,

can be computed in O (̃M2 log p (δ/e+log p)) bit operations. Moreover, p−1/(p−1) ≤
|γ|p ≤ 1 if χ is non-trivial and |γ|p = p−e|s− 1|p if χ is trivial.

Proof. We precompute the polynomials B(X) and C(X) with L := �M/e�. The
precomputation cost is given by Theorem 5.39. Then we compute t := u1−s − 1
to the precision pM in O (̃M2 log2 p) bit operations, and compute β to be B(t),
respectively γ to be C(t), to the precision pM in O (̃δM2/e log p) bit operations.
The result follows from (4.6) and the theorem. �

We conclude with the cost of computing a single value of a p-adic L-function
without precomputations.

Theorem 5.41. Let M be a positive integer and let s ∈ Zp, with s �= 1 if χ is trivial.
Under the assumptions enumerated at the beginning of this subsection, two algebraic
integers β and γ, both belonging to Z[χ] and with γLp,m(χ; s) lying in Zp[χ] and
|γLp,m(χ; s)− β|p ≤ p−M , can be computed at a cost of O (̃hm(E)(pddd+3Md+2c+

δM log p)) bit operations. Moreover, p−1/(p−1) ≤ |γ|p ≤ 1 if χ is non-trivial and
|γ|p = p−e|s− 1|p if χ is trivial.

Proof. We proceed as in the proof of Corollary 5.38 with the same definitions for β
and γ. The cost of computing γ is the same. We construct β by computing the val-
ues of Zp,m(a

−1
i , c; s), for i = 1, . . . , hm(E), to the precision pM , using Theorem 5.28

mutatis mutandis. The cost of this computation is O (̃hm(E)(pddd+3Md+2c +
δM log p)) bit operations. The result follows. �

6. An example

The algorithms described in this paper have been implemented by the author
as a PARI/GP script [31] in order to compute p-adic L-functions over Q, real
quadratic fields and, in some simple cases, totally real cubic fields. We illustrate
these methods in this last section with an example computed with this script. We
take E := Q(

√
5), f := 2p19 where p19 := 19Z + (−9 +

√
5)/2Z is one of the two

prime ideals above 19. The ray-class group Clf(E) is cyclic of order 3 generated
by the class C of the ideal 21ZE . Let χ be the character that sends C to the third
root of unity in Z7 that is congruent to 2 (mod 7). Using the formula given in
Theorem 5.24, we compute an approximation of the Iwasawa series of the 7-adic
L-function of χ to the precision (pM , XL) with M = 12 and L = 12. Recall that we
actually have to work with the character of m := fz, where z := {∞1,∞2} contains
the two infinite places of E, obtained by composing χ with the natural surjection
Clm(E) → Clf(E). We take c :=

√
5ZE.

28 For each class in Clm(E), we choose
for a a suitable integral ideal of minimal norm. For all classes, we find that the
c-admissible cone decomposition of a modulo m computed has 432 cones. The value
of K prescribed in Theorem 5.24 is K = 1342. However, using a better estimate
for Nψ�

(M) as suggested in Remark 5.16, we can actually reduce it to K = 289.
Still, in the end, we need to compute and sum up 216 486 432 terms of the form

28Note that such a choice is not possible in the original construction of Cassou-Noguès.
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α(1+X)β mod (pM , XL) with α, β ∈ Z7, to get the result. The computation takes
about 35 minutes on a 2.7 GHz Intel Core i5 running OS X 10.8.4 and PARI/GP
version 2.6.1. We find that

I7,m(χ;X) ≡ 0.5423254310227 + 0.0653420322157X + 0.6605400351257X
2

+ 0.3203605443647X
3 + 0.0164033162257X

4 + 0.5355004066527X
5

+ 0.3512260132107X
6 + 0.6561165402147X

7 + 0.4546126032267X
8

+0.3636556414437X
9 +0.2222231535307X

10 +0.4523166131127X
11 (mod p12, X12).

Here, for a 7-adic rational number α ∈ Q7 with the expansion

α = a−m · 7−m + a−m+1 · 7−m+1 + · · ·+ a0 + a1 · 7 + · · ·

where m ∈ N and an ∈ {0, 1, 2, 3, 4, 5, 6} for n ≥ −m, we represent α by the string

a−ma−m+1 · · · a−1.a0a1 · · ·7 .

Once we have computed the approximation of I7,m(χ;X), we can compute (ap-
proximations of) values of L7,m(χ, s) very easily. Take, say, s = 13 ∈ Z7. With the
notations of Theorem 4.15, the value of u used for the computation of I7,m(χ;X)
is u = 8, and

81−13 − 1 ≡ 0.0263554022027 (mod 712)

so, finally, we get

L7,m(χ, 13) = I7,m(χ; 8
−12 − 1) ≡ 0.5431664154267 (mod 712).

This last computation time is negligible. We can compute the same result directly
using the implementation of the formula given by Theorem 5.28. In this case, the
computation takes about 3min, 20s on the same machine.
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