
MATHEMATICS OF COMPUTATION
Volume 84, Number 292, March 2015, Pages 815–830
S 0025-5718(2014)02906-2
Article electronically published on September 23, 2014

DIRECTIONAL CHEBYSHEV-TYPE METHODS

FOR SOLVING EQUATIONS

I. K. ARGYROS, M. A. HERNÁNDEZ, S. HILOUT, AND N. ROMERO

Abstract. A semi-local convergence analysis for directional Chebyshev-type
methods in m-variables is presented in this study. Our convergence analysis
uses recurrent relations and Newton–Kantorovich-type hypotheses. Numerical
examples are also provided to show the effectiveness of the proposed method.

1. Introduction

In this study we are concerned with the problem of approximating a solution x�

of equation

(1.1) F (x) = 0,

where F is a nonlinear Fréchet-differentiable mapping defined in an open convex
nonempty subset D of Rm (m a natural number) with values in R.

Computational sciences have received substantial and significant attention of
researchers in recent years in several areas such as engineering sciences, economic
equilibrium theory and mathematics. These sciences can solve various problems by
passing first through mathematical modelling and then later looking for the solution
iteratively [4, 6]. For example, finding a local minimum of function is connected
to solving a set of nonlinear equations. So, numerical methods are crucial and
necessary for solving nonlinear equations.

In computer graphics, the intersection of two surfaces is also modeled by nonlin-
ear equations and can be complicated in general, because of some closed loops and
singularities. This requires finding efficient algorithms for solving this intersection.
We usually compute the intersection C = A ∩ B of two surfaces A and B in R3

[8, 11]. If the two surfaces are explicitly given by

A = {(u, v, w)T : w = F1(u, v)} and B = {(u, v, w)T : w = F2(u, v)},
then the solution x� = (u�, v�, w�)T ∈ C must satisfy the nonlinear equation

F1(u
�, v�) = F2(u

�, v�) and w� = F1(u
�, v�).

Hence, we must solve a nonlinear equation in two variables x = (u, v)T of the
form

F (x) = F1(x)− F2(x) = 0,

which is a special case of equation (1.1).
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In mathematical programming [13], for an equality-constraint optimization prob-
lem, e.g.,

min ψ(x) s.t. F (x) = 0

where ψ, F : D ⊆ Rm −→ R are nonlinear mappings, we usually seek a feasible
point to start a numerical algorithm, which again requires the determination of x�.
Other areas of applications can be found in [4]–[16].

The study about convergence matter of iterative procedures is usually centered
on two types: semi-local and local convergence analysis. The semi-local conver-
gence matter is based on the information around an initial point, to give criteria
ensuring the convergence of iterative procedures; while the local one is based on the
information around a solution, to find estimates of the radii of convergence balls.
In the present paper we are interested only in the semi-local convergence.

An and Bai [1] used the directional Secant method (DSM)

xk+1 = xk + hk,

hk = − θk F (xk)

F (xk + θk dk)− F (xk)
dk,

(k ≥ 0, x0 ∈ Rn, dk ∈ Rn, ‖ dk ‖= 1, θk ≥ 0)

to generate a sequence {xk} converging to x�.
(DSM) is a usefull alternative to (DNM) [5, 8, 10]:

xk+1 = xk − F (xk)

∇F (xk) · dk
dk (k ≥ 0),

where

∇F (xk) =

(
∂F (xk)

∂x1
,
∂F (xk)

∂x2
, · · · , ∂F (xk)

∂xm

)
is the gradient of F and dk is a direction at xk.

(DNM) converges quadratically to x�, if x0 is close enough to x� [10]. However, as
already noted in [10], the computation of the gradient ∇F (xk) may be very expen-
sive as it is the case when the number n of unknowns is large. In some applications,
the mapping F may not be differentiable, or the gradient is impossible to compute.
The (DSM) avoids these obstacles. Note that if m = 1, (DSM) reduces to the classi-
cal Secant method, and (DNM) to Newton’s method [3]. The quadratic convergence
of (DSM) [1] and (DNM) [10] was established for directions dk sufficiently close to
the gradients ∇F (xk) and under standard Newton–Kantorovich-type hypotheses.

In the present paper, we introduce the directional Chebyshev-type method
(DCTM):

x0 ∈ D,

yk = xk −Ak F (xk), vk = xk + θk dk, Ak =
θk

F (vk)− F (xk)
· dk

zk = xk + a (yk − xk), a ∈ [0, 1],
xk+1 = xk −Ak (b F (xk) + c F (zk))
(k ≥ 0, dk ∈ Rm, ‖ dk ‖= 1, θk ≥ 0, b ∈ [0, 1], c ≥ 0, c (1− a) = 1− b)

to generate a sequence {xk} approximating the zero x�. Notice that if a = b = 1
and c = 0, we obtain the Secant method. However, c can be chosen to be positive
in this case. Clearly, in general additional hypotheses on a, b and c are needed to
obtain convergence for (DCTM). Such conditions are given later in Theorem 2.8.
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(DCTM) is a Secant-type analog of the third order Chebyshev-type method
(CTM) with efficiency close to Newton’s and the same region of accessibility defined
on Banach spaces by Ezquerro and Hernández [9]:

x0 ∈ D,
yk = xk − F ′(xk)

−1 F (xk),
zk = xk + d (yk − xk), d ∈ [0, 1],

xk+1 = xk − 1

d2
F ′(xk)

−1 ((d2 + d− 1)F (xk) + F (zk)), k ≥ 0.

The paper is organized as follows: Section 2 contains the semi-local convergence of
(DCTM). The numerical examples are given in Section 3.

2. Semi-local convergence analysis of (DCTM)

using recurrent relations

In this section, we use the Euclidean norms for both vector and matrix. The
unit direction dk is chosen such that dk ≈ ∇F (xk)/‖ ∇F (xk) ‖. The angle between
two vectors x, y in a Hilbert space H denoted by ∠(x, y) is given by

∠(x, y) = arccos
x · y

‖ x ‖ · ‖ y ‖ , x 
= 0, y 
= 0.

We need the definition of the first order divided difference for a mapping.

Definition 2.1. A mapping [., .;F ] belonging to L(H,R) is called the first order
divided difference of F at the points x and y in H (x 
= y) if the following holds:

[x, y;F ] (y − x) = F (y)− F (x).

If F is Fréchet differentiable at x, then [x, x;F ] = ∇F (x).

For x ∈ Rm and r > 0, we denote by U(x, r) and U(x, r) the open and closed
balls at x and of radius r, respectively. Let X and Y be Banach spaces. We shall
use the following measure of invertibility in L(X ,Y), d(Q) = inf‖x‖=1 ‖ Q(x) ‖ for

Q ∈ L(X ,Y). If Q is invertible and Q−1 ∈ L(Y ,X ), then d(Q) =‖ Q−1 ‖−1. We
also need the following Banach-type lemma on invertible operators [4, 12]

Lemma 2.2. If Q and T belong in L(X ,Y) such that Q is boundedly invertible and
d(Q) >‖ Q− T ‖, then T is also invertible and d(T ) ≥ d(Q)− ‖ Q− T ‖.

We shall use the following conditions:

(C1) |F (x0)| ≤ λ, ‖ ∇F (x0) ‖≥ β > 0 and |∇F (x0) · d0| ≥ α ‖ ∇F (x0) ‖ with
α ∈ [0, 1];

(C2) dk (k ≥ 0) satisfies
(C21) � |∇F (x0) · d0| ≤ |∇F (x) · d0|, x ∈ (x0, x0 + θ0 d0), � ∈ (0, 1),
(C22) ∠(dk+1,∇F (xk+1)) ≤ ∠(dk,∇F (xk));

(C3) θk satisfies θk+1 ≤ q θk ‖ xk+1 − xk ‖, q ∈ (0, 1);
(C4) Mapping ∇F is Lipschitz with constant M on D:

‖ ∇F (x)−∇F (y) ‖≤ M ‖ x− y ‖ for all x, y ∈ D;

(C5) Mapping F has a divided difference of order one [x, y;F ] at the points
(x, y) ∈ D2 satisfying Definition 2.1 and

‖ [x, z;F ]− [y, z;F ] ‖≤ N ‖ x− y ‖ for all x, y, z ∈ D.

We need some auxiliary lemmas to establish semi-local convergence of (DCTM).
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Lemma 2.3 ([12, 3.2.2]). Let D ⊆ Rm be an open convex nonempty subset and
F : D ⊆ Rm −→ R a differentiable mapping. Then, for any x, y ∈ D, there exists
a vector μ ∈ (x, y), such that

F (y)− F (x) = ∇F (μ) (y − x),

where
(x, y) = {z : z = x+ θ y, 0 < θ < 1}

represents the open straight line between the points x and y.

Remark 2.4. Note that (C22) implies

(2.1)
|∇F (xk+1) · dk+1|
‖ ∇F (xk+1) ‖

≥ |∇F (xk) · dk|
‖ ∇F (xk) ‖

(k ≥ 0),

since ‖ dk ‖= 1 for all k. These conditions state that the direction dk does not
have to be exactly along the gradient ∇F (xk) (which is the most common choice).
Small perturbations in the angle 〈dk,∇F (xk)〉 are allowed, if they do not increase
with k.

Lemma 2.5. Let F be a nonlinear Fréchet-differentiable mapping F : D ⊆ Rm −→
R under the previous conditions (C1)–(C5) and {xk} the sequence in D generated
by (DCTM). Then the following is satisfied:

(2.2) |∇F (xk) · dk| ≥ α ‖ ∇F (xk) ‖ (k ≥ 0).

Proof. Estimate (2.2) holds for k = 0 by (C1). Then, by a simple induction argu-
ment and (2.1) we get

α
‖ ∇F (xk+1) ‖

|∇F (xk+1) · dk+1|
≤ α

‖ ∇F (xk) ‖
|∇F (xk) · dk|

≤ 1.

That completes the proof of Lemma 2.5. �

We need an Ostrowski-type approximation for (DCTM) [4, 6, 12].

Lemma 2.6. Let F be a nonlinear Fréchet-differentiable mapping F : D ⊆ Rm −→
R. Suppose that sequence {xk} generated by (DCTM) is well defined. Then the
following assertions hold for all k ≥ 0:

(2.3) F (zk) = (1− a)F (xk) + a

(
[zk, xk;F ]− [vk, xk;F ]

)
(yk − xk),

(2.4) xk+1 − yk = −a cAk

(
[vk, xk;F ]− [zk, xk;F ]

)
(yk − xk)

and

(2.5)
F (xk+1) =

(
[xk+1, xk;F ]− [vk, xk;F ]

)
(xk+1 − xk)

−a c

(
[zk, xk;F ]− [vk, xk;F ]

)
(yk − xk).

Proof. Using (DCTM), we obtain in turn that

F (zk) = (1− a)F (xk) + F (zk)− F (xk) + a [vk, xk;F ]
θk F (xk)

F (vk)− F (xk)
· dk

= (1− a)F (xk) + F (zk)− F (xk) + a
F (vk)− F (xk)

F (vk)− F (xk)
F (xk)
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showing (2.3). We have for a 
= 1 that

xk+1 − yk = −Ak (b F (xk) +
1− b

1− a
F (zk)) +Ak F (xk)

= −Ak ((b− 1)F (xk) +
1− b

1− a
F (zk))

= −Ak ((b− 1)F (xk) + (1− b)F (xk))

+
a (1− b)

1− a
([zk, xk;F ]− [vk, xk;F ]) (yk − xk),

which is (2.4). Finally, we also have that

F (xk+1) = F (xk+1)− F (xk)− [vk, xk;F ] (yk − xk)

= [xk+1, xk;F ] (xk+1 − xk)− [vk, xk;F ] (yk − xk)

=

(
[xk+1, xk;F ]− [vk, xk;F ]

)
(xk+1 − xk)

+[vk, xk;F ] (xk+1 − xk)− [vk, xk;F ] (yk − xk)

=

(
[xk+1, xk;F ]− [vk, xk;F ]

)
(xk+1 − xk) + [vk, xk;F ] (xk+1 − yk)

=

(
[xk+1, xk;F ]− [vk, xk;F ]

)
(xk+1 − xk)

+[vk, xk;F ]

(
−a c ([vk, xk;F ]− [zk, xk;F ]) (yk − xk) θk · dk

F (vk)− F (xk)

)
=

(
[xk+1, xk;F ]− [vk, xk;F ]

)
(xk+1 − xk)

−a c

(
[zk, xk;F ]− [vk, xk;F ]

)
(yk − xk),

which is (2.5). That completes the proof of Lemma 2.6. �

It is convenient for us to introduce some notation and initial conditions:

a0 =
1

ραβ
, r0 = N a0 λ,

t0 = N θ0, s0 = (r0 + t0) a0, c0 = a0 λ, b0 =
M λ

ρβ2 α
.

Then, we have the following relations:

‖ A0 ‖ ≤
∣∣∣∣ θ0
F (v0)− F (x0)

∣∣∣∣ ≤ 1

|∇F (μ0) · d0|
≤ 1

ραβ
= a0,

N ‖ y0 − x0 ‖ ≤ N ‖ A0 ‖ |F (x0)| ≤ N a0 λ = r0,

N ‖ z0 − v0 ‖ ≤ r0 + t0,

N ‖ A0 ‖ ‖ z0 − v0 ‖ ≤ (r0 + t0) a0 = s0,

M ‖ ∇F (x0) ‖−1 ‖ y0 − x0 ‖ ≤ M λ

β2 ρα
= b0.
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Hence, we get that

‖ x1 − y0 ‖ ≤ a c ‖ A0 ‖ ‖ [v0, x0;F ]− [z0, x0;F ] ‖ ‖ y0 − x0 ‖
≤ a c a0N ‖ z0 − v0 ‖ ‖ y0 − x0 ‖≤ a c s0 ‖ y0 − x0 ‖,

‖ x1 − x0 ‖ ≤ (1 + a c s0) ‖ y0 − x0 ‖< R,

for some R > 0 to be determined later,

N ‖ x1 − v0 ‖ ≤ N ‖ x1 − x0 ‖ +N θ0
≤ N ((1 + a c s0) ‖ y0 − x0 ‖ +θ0)
≤ (1 + a c s0) (r0 + t0),

and

|F (x1)| ≤ N ‖ x1 − v0 ‖ ‖ x1 − x0 ‖ +a cN ‖ z0 − v0 ‖ ‖ y0 − x0 ‖
≤ ((1 + a c s0)

2 + a c) (r0 + t0) ‖ y0 − x0 ‖ .

We must define auxiliary real functions

f(x, y) =
1

1− (1 + a c x) y
,

g(x) = ((1 + a c x)2 + a c) x,

scalar sequences (k ≥ 1)

rk = rk−1 f(sk−1, bk−1) g(sk−1), ck = ck−1 f(sk−1, bk−1) g(sk−1),

tk = tk−1 q (1 + a c sk−1) ck−1, ak = ak−1 f(sk−1, bk−1), sk = (rk + tk) ak

and

bk = bk−1 f
2(sk−1, bk−1) g(sk−1).

Then, we shall show, using induction, the following recurrence relations.

Lemma 2.7. Let us suppose that x0, v0, y0, z0 ∈ D and xk, vk, yk, zk ∈ D for
k ∈ N�. Moreover, suppose that

(2.6) f(s0, b0)
2 g(s0) < 1

and

(2.7) q (1 + a c s0) f(s0, b0) c0 < 1.

Then, the following relations are satisfied for k ≥ 0:

(Ik)
1

ρ |∇F (xk) · dk|
≤ ak and ‖ Ak ‖≤ ak,

(IIk) ‖ yk − xk ‖≤ f(sk−1, bk−1) g(sk−1) ‖ yk−1 − xk−1 ‖≤ ck,
(IIIk) N ‖ Ak ‖ ‖ zk − vk ‖≤ sk,
(IVk) M ‖ ∇F (xk) ‖−1 ‖ yk − xk ‖≤ bk,
(Vk) ‖ xk+1 − yk ‖≤ a c sk ‖ yk − xk ‖,

(V Ik) ‖ xk+1 − xk ‖≤ (1 + a c sk) ‖ yk − xk ‖,

(V IIk) ‖ xk+1 − x0 ‖≤ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+1

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖ .

Proof. We shall first show conditions (Ik)–(V IIk) are satisfied for k = 1. We have
in turn that

‖ v1 − x0 ‖ ≤‖ x1 − x0 ‖ +θ1 ≤ (1 + q θ0) ‖ x1 − x0 ‖
≤ (1 + a c s0) (1 + q θ0) ‖ y0 − x0 ‖
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and

‖ ∇F (x1) ‖ ≥ ‖ ∇F (x0) ‖ − ‖ ∇F (x1)−∇F (x0) ‖
≥ ‖ ∇F (x0) ‖ −M ‖ x1 − x0 ‖
≥ ‖ ∇F (x0) ‖ −M (1 + a c s0) ‖ y0 − x0 ‖
= ‖ ∇F (x0) ‖ (1−M (1 + a c s0) ‖ ∇F (x0) ‖−1 ‖ y0 − x0 ‖)
≥ ‖ ∇F (x0) ‖ (1− (1 + a c s0) b0).

Hence, we have by Lemma 2.2 that

‖ ∇F (x1) ‖−1≤‖ ∇F (x0) ‖−1 f(s0, b0),

(I1)

‖ A1 ‖ ≤
∣∣∣∣ θ1
F (v1)− F (x1)

∣∣∣∣ ≤ ∣∣∣∣ θ1
∇F (μ1)θ1 · d1

∣∣∣∣
≤ 1

ρ |∇F (x1) · d1|
≤ ‖ ∇F (x0) ‖

ρ |∇F (x0) · d0| ‖ ∇F (x1) ‖

≤ f(s0, b0)

ρ |∇F (x0) · d0|
≤ a0 f(s0, b0) = a1,

(II2)

‖ y1 − x1 ‖ ≤ ‖ A1 ‖ |F (x1)|
≤ a0 f(s0, b0) (r0 + t0) ((1 + a c s0)

2 + a c) ‖ y0 − x0 ‖
= f(s0, b0) g(s0) ‖ y0 − x0 ‖,

‖ y1 − x0 ‖ ≤ ‖ y1 − x1 ‖ + ‖ x1 − x0 ‖
≤ f(s0, b0) g(s0) ‖ y0 − x0 ‖ +(1 + a c s0) ‖ y0 − x0 ‖
≤ (f(s0, b0) g(s0) + 1 + a c s0) ‖ y0 − x0 ‖,

‖ z1 − x0 ‖ ≤ a ‖ y1 − x1 ‖ + ‖ x1 − x0 ‖
≤ (a f(s0, b0) g(s0) + 1 + a c s0) ‖ y0 − x0 ‖,

N ‖ y1 − x1 ‖ ≤ r0 f(s0, b0) g(s0) = r1,

N θ1 ≤ N q θ0 ‖ x1−x0 ‖≤ N q θ0 (1+a c s0) ‖ y0−x0 ‖≤ t0 q (1+a0 c s0) a0 λ = t1,

(III1)

N ‖ A1 ‖ ‖ z1 − v1 ‖≤ a1 (N ‖ y1 − x1 ‖ +N θ1) ≤ a1 (r1 + t1) = s1,

(IV1)

M ‖ ∇F (x1) ‖−1 ‖ y1 − x1 ‖ ≤ M ‖ ∇F (x0) ‖−1 f(s0, b0)
2 g(s0) ‖ y0 − x0 ‖

≤ b0 f(s0, b0)
2 g(s0) = b1,

(V1)

‖ x2 − y1 ‖ ≤ a c ‖ A1 ‖ ‖ [v1, x1;F ]− [z1, x1;F ] ‖ ‖ y1 − x1 ‖
≤ a cN ‖ A1 ‖ ‖ v1 − z1 ‖ ‖ y1 − x1 ‖≤ a c s1 ‖ y1 − x1 ‖,

(V I1)

‖ x2 − x1 ‖≤‖ x2 − y1 ‖ + ‖ y1 − x1 ‖≤ (1 + a c s1) ‖ y1 − x1 ‖,
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(V II1)

‖ x2 − x0 ‖ ≤ (1 + a c s1) ‖ y1 − x1 ‖ +(1 + a c s0) ‖ y0 − x0 ‖
≤ ((1 + a c s1) f(s0, b0) g(s0) + 1 + a c s0) ‖ y0 − x0 ‖
≤ (1 + a c s0) (1 + f(s0, b0) g(s0)) ‖ y0 − x0 ‖

≤ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

2

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖ .

The rest follows by a simple induction argument. This completes the proof of
Lemma 2.7. �

We can show the following semi-local convergence result for (DCTM).

Theorem 2.8. Let F be a nonlinear Fréchet-differentiable mapping under condi-
tions (C1)–(C5). We also suppose that (2.6) and (2.7) hold. Then, if U(x0, R) ⊆ D,
where

R =
(1 + a c s0) (1 + q θ0) a0 λ

1− f(s0, b0) g(s0)
,

the sequence {xk} generated by (DCTM) starting in x0, is well defined, remains
in U(x0, R) for all k ≥ 0 and converges to a solution x� ∈ U(x0, R) of equation
F (x) = 0.

Proof. First, we have that

‖ v0 − x0 ‖≤ θ0 < R, ‖ y0 − x0 ‖< R, ‖ z0 − x0 ‖≤ a ‖ y0 − x0 ‖< R

and

‖ x1 − x0 ‖≤ (1 + a c s0) ‖ y0 − x0 ‖< R.

Thus, v0, y0, z0, x1 ∈ D. Similarly, we get v1, y1, z1, x2 ∈ D. Assume vi, yi, zi,
xi+1 ∈ D, i = 1, . . . , k. Then, using Lemma 2.7, we prove by induction vk+1, yk+1,
zk+1, xk+2 ∈ D. We have in turn by the recurrence relations that

‖ vk+1 − xk ‖ ≤ (1 + q θk) ‖ xk+1 − xk ‖
≤ (1 + a c sk) (1 + q θk) ‖ yk − xk ‖
≤ (1 + a c s0) (1 + q θ0) (f(s0, b0) g(b0))

k ‖ y0 − x0 ‖,
‖ vk+1 − x0 ‖ ≤ (1 + a c s0) (f(s0, b0) g(s0))

k (1 + q θ0) ‖ y0 − x0 ‖

+ (1 + a c s0)
1− (f(s0, b0) g(s0))

k

1− f(s0, b0) g(s0)
(1 + q θ0) ‖ y0 − x0 ‖

≤ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+1

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖< R,

‖ yk+1 − x0 ‖ ≤‖ yk+1 − xk+1 ‖ + ‖ xk+1 − x0 ‖
≤ f(sk, bk) g(sk) ‖ yk − xk ‖

+ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+1

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖

< (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+2

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖< R,

‖ zk+1 − x0 ‖ ≤‖ xk+1 − x0 ‖ +a ‖ yk+1 − xk+1 ‖< R,
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‖ xk+2 − x0 ‖ ≤ (1 + a c sk+1) ‖ yk+1 − xk+1 ‖

+ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+1

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖

≤ (1 + a c s0) (f(s0, b0) g(s0))
k+1 ‖ y0 − x0 ‖

+ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+1

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖

≤ (1 + a c s0) (1 + q θ0)
1− (f(s0, b0) g(s0))

k+2

1− f(s0, b0) g(s0)
‖ y0 − x0 ‖< R.

Hence, we deduce vk+1, yk+1, zk+1, xk+2 ∈ D. Next, we shall show the convergence
of the sequence {xk} by using recurrence relations:

‖ xk+1 − xk ‖≤ (1 + a c sk) ‖ yk − xk ‖≤ (1 + a c s0) (f(s0, b0) g(s0))
k ‖ y0 − x0 ‖ .

Then, we have that

(2.8)

‖ xk+j − xk ‖≤
i=k+j−1∑

i=k

‖ xi+1 − xi ‖

≤ (1 + a c s0)

i=k+j−1∑
i=k

(f(s0, b0) g(s0))
i ‖ y0 − x0 ‖

≤ (1 + a c s0) (f(s0, b0) g(s0))
k 1− (f(s0, b0) g(s0))

j

1− f(b0) g(s0)
‖ y0 − x0 ‖ .

It is obvious that {xk} is a complete sequence in Rm and as such it converges to
some x� ∈ U(x0, R) (since U(x0, R) is a closed set).

We shall show that F (x�) = 0. Indeed, we have that

|F (xk+1)| ≤ ((1 + a c sk)
2 + a c) (rk + tk) ‖ yk − xk ‖

≤ ((1 + a c s0)
2 + a c)(r0 + t0) (f(s0, b0) g(s0))

k ‖ y0 − x0 ‖ .

Thus, by letting k → ∞ it follows that |F (xk)| → 0, since f(s0, b0) g(s0) < 1
and ((1 + a c s0)

2 + a c)(r0 + t0) ‖ y0 − x0 ‖ is bounded. Hence, we deduce that
|F (x�)| = 0. This completes the proof of Theorem 2.8. �

It turns out that in an analogous way a second semi-local convergence result can
be given for (DCTM). We first need the lemma.

Lemma 2.9. Let q ∈ (0, 1), M > 0 and k ≥ 0. If θk ∈ (0,Υk], where

Υk =

√
‖ ∇F (xk) ‖2 +2M q |F (xk)|− ‖ ∇F (xk) ‖

M
.

Then, the following holds for all k ≥ 0:

θk ≤ q ‖ yk − xk ‖ .
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Proof. We have in turn that

|F (vk)− F (xk)| =

∣∣∣∣
∫ vk

xk

∇F (y) dy

∣∣∣∣
=

∣∣∣∣
∫ 1

0

(∇F (xk + τ θk dk) θk dk −∇F (xk) θk dk +∇F (xk) θk dk) dτ

∣∣∣∣
≤ θk

(
M

∫ 1

0

τ θk dτ+ ‖ ∇F (xk) ‖
)

= θk

(
M

2
θk+ ‖ ∇F (xk) ‖

)
=

M

2
θ2k+ ‖ ∇F (xk) ‖ θk.

Therefore,
M

2
θ2k+ ‖ ∇F (xk) ‖ θk ≤ q |F (xk)|

provided that θk ∈ (0,Υk]. Then we get that

‖ yk − xk ‖= θk |F (xk)|
|F (vk)− F (xk)|

≥ θk |F (xk)|
q |F (xk)|

=
θk
q
.

This completes the proof of Lemma 2.9. �

We shall assume conditions (C1), (C2), (C4), (C5) and

(C�
3) θ0 ∈ (0,Υ0] and 0 < θk ≤ min{Υk, q ‖ yk−1 − xk−1 ‖} for k ≥ 1.

We need to define auxiliary real functions

f(x, y) =
1

1− (1 + a c (a+ q) x) y
,

g(x) = (1 + q + a c (a+ q) x) (1 + a c (a+ q) x) + a c (a+ q)

and scalar sequences

sk = f(sk−1, tk−1)
2 g(sk−1) s

2
k−1, s0 =

N γ2 λ

β2
, γ =

1

ρα
,

tk = f(sk−1, tk−1)
2 g(sk−1) sk−1 tk−1, t0 =

M γ λ

β2
.

Then, we obtain exactly as Lemma 2.7 the recurrence relations:

(Ĩk) ‖ Ak ‖≤ γ ‖ ∇F (xk) ‖−1≤ γ ‖ ∇F (xk−1) ‖−1 f(sk−1, tk−1),

(ĨIk) ‖ yk − xk ‖≤ f(sk−1, tk−1) g(sk−1) sk−1 ‖ yk−1 − xk−1 ‖,
(ĨIIk) N ‖ Ak ‖ ‖ yk − xk ‖≤ sk,

(ĨVk) M ‖ ∇F (xk) ‖−1 ‖ yk − xk ‖≤ tk,

(Ṽk) ‖ xk+1 − yk ‖≤ a c (a+ q) sk ‖ yk − xk ‖,
(Ṽ Ik) ‖ xk+1 − xk ‖≤ (1 + a c (a+ q) sk) ‖ yk − xk ‖,

(Ṽ IIk) ‖ xk+1 −x0 ‖≤ (1+ q+ a c (a+ q) s0)
1− (f(s0, t0) g(s0) s0)

k

1− f(s0, t0) g(s0) s0
‖ y0 − x0 ‖

(Ṽ IIIk) |F (xk)| ≤ N g(sk−1) ‖ yk−1 − xk−1 ‖2 .

Hence, we arrive at the second convergence result for (DCTM).

Theorem 2.10. Let F a nonlinear Fréchet-differentiable mapping under conditions
(C1), (C2), (C�

3), (C4) and (C5). We also suppose that f(s0, t0)
2 g(s0) s0 < 1. Then,

if U(x0, R) ⊆ D, where

R =
1 + q + a c (a+ q) s0
1− f(s0, t0) g(s0) s0

‖ y0 − x0 ‖
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the sequence {xk} generated by (DCTM) is well defined, remains in U(x0, R) for
all k ≥ 0 and converges to a solution x� ∈ U(x0, R) of equation F (x) = 0.

Remark 2.11. (a) Condition (C5) can be replaced by the stronger, but more popular

‖ [x, y;F ]− [u, v;F ] ‖≤ N1 (‖ x− u ‖ + ‖ y − v ‖) for all x, y, u, v ∈ D.

In this case, we can set M = 2 N1.

(b) If directions dk are given by dk = ∇F (xk)/‖ ∇F (xk) ‖, the condition (C21)
holds for α = 1. A possible choice for α can also be

α =
|∇F (x0) · d0|
‖ ∇F (x0) ‖

≤ 1.

(c) Let dk = em(k), where m(k) is the index of component of ∇F (xk) of maxi-
mal modulus:

|∇F (xk) [m(k)]| := max
1≤j≤n

|∇F (xk) [j]|.

For this choice of dk, the results obtained here hold, if simply the Euclidean
norm is replaced by the infinity norm ‖ · ‖∞.

(d) Condition (C22) may be too difficult to verify. In this case it can be replaced
by the weaker (see [5])

∠(dk,∇F (xk)) ≤ ∠(d0,∇F (x0)).

Similar results can then be obtained using a different technique from recurrence
relations using recurrent functions. Such a technique has been given in a
Banach space setting [5, 7]. We leave the details to the motivated reader.

3. Numerical tests

We provide two numerical examples where we show the efficiency of the direc-
tional Chebyshev-type methods (DCTM) and we apply the convergence results pre-
viously obtained. For this, we compare some directional Chebyshev-type method
(DCTM) with the directional Newton method (DNM). In particular, in the first
numerical test we compare the iteration number, the computational order of con-
vergence (see [17])

ρ ≈ ln (‖xn − x∗‖/‖xn−1 − x∗‖)
ln (‖xn−1 − x∗‖/‖xn−2 − x∗‖)

and the computational efficiency defined by ρ1/(OC∗IN), being (OC) the operational
cost per iteration and (IN) the iteration number of the used method. In this case,
if the operator F is such that F : D ⊆ Rm → R, then the operational cost is
4m + 3 for methods (DCTM) and for method (DNM) it is 2m + 1. Although for
particular cases of the parameters a, b, c the operational cost of methods (DCTM)
can be improved. For instance, if a = b = c = 1, then the operational cost of
methods (DCTM) is 3m+ 1.

In the second numerical test, we consider a cubically polynomial equation with
m = 2. We check that all conditions (H) are satisfied and our Theorem 2.8 is
applied to solve this equation using (DCTM).

Example 3.1. First, we take the following nonlinear problem considered in [1]:

F (x) =

p∑
i=1

(sinxi)
2 +

m∑
i=p+1

(tanxi)
2, p is a given integer.
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Table 1. Iteration number (IN) for the directional methods
(DCTM) and (DNM).

m p (DCTM) (DNM)
IN IN

5 15 19
20 10 15 19

15 15 19
15 16 20

50 25 16 20
35 16 20
20 16 20

80 40 17 20
60 16 20

Table 2. The computational order of convergence and the com-
putational efficiency for (DCTM) and (DNM) methods.

m p (DCTM) (DNM)
COC CE COC CE

20 15 3.47348× 10−7 3.79615× 10−10 5.89895× 10−11 9.59233× 10−14

50 15 1.54433× 10−6 6.3921× 10−10 7.01974× 10−11 4.35207× 10−14

80 40 1.30575× 10−6 3.1871× 10−10 1.11893× 10−11 3.99680× 10−15

From the starting point x0 = (0.1, 0.1, . . . , 0.1), we have obtained the iteration
number (IN) given in Table 1, where the stopping criterion |F (xk)| < 10−12 is
used.

We have considered the directional Chebyshev-type method (DCTM) with a =
b = c = 1. The direction dk is chosen such that it is sufficiently close to the gradient
∇F (xk) of F in each iteration xk. Notice that if F (xk) 
= 0 and F (xk) ≈ 0, then
the vector

pk :=

(
F (xk + F (xk)e1)

F (xk)
− 1,

F (xk + F (xk)e2)

F (xk)
− 1, . . . ,

F (xk + F (xk)em)

F (xk)
− 1

)
where ek is the kth unit vector of Rm is near to ∇F (xk). Thus, we have chosen
dk := pk/‖pk‖ in the implementation.

Observe in Table 1 that the iteration number obtained by the directional
Chebyshev-type method (DCTM) with a = b = c = 1 is competitive if we com-
pare it with the usual directional Newton method (DNM). On the other hand, in
Table 2 we show the computational order of convergence and the computational
efficiency for (DCTM) and (DNM) methods using the logarithmic scale and de-
noted by (COC) and (CE), respectively. We can see that both (COC) and (CE)
for methods (DCTM) are better than the one obtained for (DNM).

In addition, we observe in both tables that the value of the parameter p does
not have much influence in the iteration number and neither in the computational
order for both directional methods.
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Finally, in Figure 1 we show the computational order of convergence and the
computational efficiency for the directional Chebyshev-type method with a = b =
c = 1 (the top curve) and for the directional Newton method (the bottom curve)
with m = 80 and p = 40 and using the logarithmic scale.

7 8 9 10 11 12 13 14 15 16 17
m

0.00001

0.00002

0.00003

0.00004

0.00005

COC

7 8 9 10 11 12 13 14 15 16 17
m

1�10
-8

2�10
-8

3�10
-8

4�10
-8

5�10
-8

EC

Figure 1. Left: The computational order of convergence for (DCTM)
and (DNM) methods; Right: The computational efficiency for (DCTM)
and (DNM) methods

Example 3.2. Let m = 2. Choose

x0 = (1, 1)T , D = {x : ‖ x− x0 ‖≤ 1− r} for r ∈ [0, 1/2)

and define function F on D by

(3.1) F (x) =
ς31 + ς32

2
− 2 r, x = (ς1, ς2)

T .

Then, the gradient ∇F of mapping F is given by

(3.2) ∇F (x) =
3

2
(ς21 , ς

2
2 )

T .

Let x = (ς1, ς2)
T , y = (κ1, κ2)

T , z = (τ1, τ2)
T in D. Using (3.2) and Definition 2.1,

we have that

∇F (x)−∇F (y) =
3

2
(ς21 − κ2

1, ς
2
2 − κ2

2)
T

and

[x, z;F ]− [y, z;F ] =
3

2

1

3
(τ1 ς1 + ς21 − τ1 κ1 − κ2

1, τ2 ς2 + ς22 − τ2 κ2 − κ2
2)

T

=
1

2
((τ1 + ς1 + κ1) (ς1 − κ1), (τ2 + ς2 + κ2) (ς2 − κ2))

T .
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Consequently,

‖ ∇F (x)−∇F (y) ‖ ≤ 3

2
‖ x+ y ‖ ‖ x− y ‖

≤ 3

2
(1− r + 1− r) ‖ x− y ‖

≤ 3 (2− r)
√
2 ‖ x− y ‖

and

‖ [x, z;F ]− [y, z;F ] ‖ ≤ 1

2
‖ x+ y + z ‖ ‖ x− y ‖

≤ 1

2
(4− 3 r) ‖ x− y ‖

≤ 3

2
(2− r)

√
2 ‖ x− y ‖ .

Using the above, we obtain that

M = 3 (2− r)
√
2, λ = 1− 2 r, N =

3

2
(2− r)

√
2, β =

3
√
2

2

and for dk = ∇F (xk)/‖ ∇F (xk) ‖, we can choose α = 1, so that (H21) is satisfied.
Set

a = b = .5, c = 1, θ0 = .5 and r = .495.

Then, in turn we get that

λ = .01, M = 4.515, N = 2.2575, q = .435,

a0 = .2357022605, t0 = 1.12875, r0 = .005320978531, s0 = .2673030933

and

b0 = .005016666667, c0 = .002357022605.

Conditions (2.6) and (2.7) hold since

f(s0, b0)
2 g(s0) = .4826545981 < 1

and

q (1 + a c s0) f(s0, b0) c0 = .001168986615 < 1.

All conditions (H) are satisfied. That is, Theorem 2.8 applies to solve equation
F (x) = 0 and (DCTM) starting at x0 converges to x� ∈ U(x0, R) with R =
.006255089406. For example x� = (.99999999, .9932883985)T is a solution of (3.1).

Example 3.3. Consider the following nonlinear integral equation of mixed Ham-
merstein type

x(s) = 1 +
1

2

∫ 1

0

G(s, t) x(t)2 dt, s ∈ [0, 1],

where x ∈ C[0, 1], t ∈ [0, 1] and the kernel G is G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.
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Now, we consider the following quadratic integral operator:

(3.3) F (x)(s) = x(s)− 1− 1

2

∫ 1

0

G(s, t)x(t)2 dt, s ∈ [0, 1],

where x ∈ C[0, 1], s, t ∈ [0, 1], and the kernel G is the Green function given previ-
ously.

To solve (3.3), we transform it into a finite dimensional problem by using a
process of discretization. For this, we approximate the integral that appears in
(3.3) by the Gauss-Legendre formula∫ 1

0

h(t) dt �
3∑

i=1

wih(ti),

where the nodes ti and the weights wi are known.
If we denote the approximation of x(ti) by xi (i = 1, 2, 3), then (3.3) is equivalent

to the following nonlinear system of equations:

(3.4) xi − 1− 1

2

3∑
j=1

aij x
2
j = 0, i = 1, 2, 3,

where

aij =

{
wjtj(1− ti) if j ≤ i,

wjti(1− tj) if j > i.

System (3.4) is now written as

F (x) ≡ x− 1−Avx = 0, F : R3 −→ R3,

where

x = (x1, x2, x3)
T , 1 = (1, 1, . . . , 1)T , A = (aij)

3
i,j=1, vx = (

x2
1

2
,
x2
2

2
,
x2
3

2
)T .

If we choose x̄0 = (1, 1, 1)t, after applying 12 iterations of method (DCTM),
we obtain the numerical solution x̄∗ = (1.0313 . . . , 1.0816 . . . , 1.0313 . . . ) of system
(3.4). On the other hand if we use (DNM) with the same starting point, the
method converges to another solution of system (3.4), x̄∗ = (4.7751 . . . , 16.5217 . . . ,
4.7751 . . . ), and using 95 iterations instead of 12 used by method (DCTM).

4. Conclusion

We presented a semi-local convergence analysis of directional Chebyshev-type
methods to solve nonlinear equations under Lipschitz-type conditions on Fréchet–
derivative and divided difference mapping of order one. Numerical examples demon-
strating the effectiveness of the method are also presented in this study.
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