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ANALYSIS OF A NON-SYMMETRIC COUPLING

OF INTERIOR PENALTY DG AND BEM

NORBERT HEUER AND FRANCISCO-JAVIER SAYAS

Abstract. We analyze a non-symmetric coupling of interior penalty discon-
tinuous Galerkin and boundary element methods in two and three dimensions.
Main results are discrete coercivity of the method, and thus unique solvabil-
ity, and quasi-optimal convergence. The proof of coercivity is based on a
localized variant of the variational technique from [F.-J. Sayas, The validity

of Johnson-Nédeléc’s BEM-FEM coupling on polygonal interfaces, SIAM J.
Numer. Anal., 47(5):3451–3463, 2009]. This localization gives rise to terms
which are carefully analyzed in fractional order Sobolev spaces, and by using
scaling arguments for rigid transformations. Numerical evidence of the proven
convergence properties has been published previously.

1. Introduction

In a recent article, Of, Rodin, Steinbach and Taus [20] propose three discretiza-
tion methods that combine Interior Penalty Discontinuous Galerkin methods
(IPDG) with Boundary Element Methods (BEM). One of the methods falls into
the category of non-symmetric coupling of Finite and Boundary Elements, while
the other two belong to the general symmetric coupling philosophy. Only one of
the symmetric methods is analyzed, but numerical evidence of the good properties
of the non-symmetric coupling is given. In this paper we prove that the non-
symmetric method in [20] converges, this being, to the best of our knowledge, the
first successful analysis of a non-symmetric coupling of DG and BEM.

Let us first briefly revise the milestones of the literature of BEM-FEM coupled
schemes. The mathematical literature on BEM-FEM coupling can be traced back
to the seminal work of Brezzi, Johnson and Nédélec [5,17], the article [17] being an
early and very relevant contribution to the subject. (It has to be noted, though,
that the engineering literature had previously visited these ideas and produced in-
teresting results [23, 24].) The method of [17] uses one integral equation—derived
from Green’s Third Identity—to construct a non-local boundary condition in order
to cut off the computational domain for an exterior diffusion problem. Because
of the way the analysis was approached, using compactness arguments, the cut-off
boundary where the non-local integral condition is imposed had to be taken to be
smooth in order for the analytical arguments to be meaningful. While practitioners
never found clear reasons to dismiss the use of simpler polygonal interfaces, theory
did not move very much from this initial stagnation for more than two decades.
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Instead, symmetric coupling methods overcame the theoretical difficulty by using
a second integral equation in the set, either mixing the integral operators with
the interior formulation (two-field method) or by using an additional boundary un-
known (three-field method). This restored symmetry to the coupled formulation
and, with it, coercivity. The original work of Costabel and Stephan [9, 10], and
Han [15] started this fruitful trend that for many years enjoyed the prestige of full
theoretical justification. In particular, most coupling schemes for the Boundary Ele-
ment method with other domain methods (Mixed Finite Elements, Non-conforming
FEM or Discontinuous Galerkin approximations) were directly based on the ideas
of symmetric coupling. The monograph [12] collects much of what was known in
the mid-nineties on the mathematics of BEM-FEM coupling.

Non-symmetric coupling was revisited recently with the very simple result that
variational techniques were enough to prove stability of Galerkin methods for non-
symmetric BEM-FEM coupling. The first result in this direction [21] was further
simplified in [22] and [13], and right now, it is clear that the proof itself does not
contain any theoretical ingredient that does not belong to the analytical toolbox
that is employed for analysis of elliptic boundary integral equations [16,18]. Similar
ideas are treated in [19] for non-symmetric coupling of Mixed-FEM with BEM. As
already mentioned, this work is the first contribution to non-symmetric coupling of
DG and BEM.

Mathematical theory for the coupling of Discontinuous Galerkin methods (DG)
and BEM is less than one decade old. The coupling of Locally DG (LDG) meth-
ods with BEM was proposed in [14], and extended in [6], based on a symmetric
three-field formulation with an additional mortar variable. Although the LDG
method has the aspect of a mixed method (it approximates both the potential and
its gradient), it can be described using a so-called primal form (that uses only the
potential). Barring technical difficulties, this meant that the symmetric coupling
led to an analysis based on an energy (coercivity) estimate in the proper discrete
norm. The primal formulation in [6, 14] is non-consistent and a Strang-type anal-
ysis is needed. A later paper [11] eliminated the need of the mortar variable and
many of the theoretical difficulties by demanding that the discontinuous piecewise
polynomial functions that approximate the potential in the LDG method become
continuous at the coupling interface. In practice this can be enforced using La-
grange multipliers (see some further explanations in [20]). The paper [11] also
showed how to generalize to some methods of the IPDG class.

Insisting in the symmetric approach, the paper [8] proposes a systematic ap-
proach to couple BEM with DG-FEM and shows that most known methods fit into
a double general framework. The symmetric coupling of Hybridizable DG (HDG)
with BEM is proposed in [8], although analysis was postponed to the more recent
paper [7]. Note that, in the very different context of the transient wave equation,
and including only a stability analysis based on energy arguments, Abboud, Joly,
Rodŕıguez and Terrase [1] present the first time-domain coupling of DG methods
with BEM.

Coming back to the idea of non-symmetric methods, in this paper we analyze a
non-symmetric coupling of IPDG with BEM proposed in [20]. The model problem
will be a transmission problem in free space (in two and three dimensions). Without
giving full details at this moment, let us explain what the difficulties are. The
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discrete scheme is the search for (uh, λh) ∈ Vh × Λh such that:

(1.1)

[
aDG(uh, vh)− 〈λh, vh〉Γ = (f, vh)Ω− + 〈β1, vh〉Γ ∀vh ∈ Vh,
〈μh,

1
2uh −Kuh〉Γ + 〈μh,Vλh〉Γ = 〈μh,

1
2β0 −Kβ0〉Γ ∀μh ∈ Λh.

Here Vh is a space of discontinuous piecewise polynomial functions on a triangula-
tion of the domain Ω− and Λh is a space of piecewise polynomials of one degree
less on the triangulation of the interface Γ that is inherited from the one of Ω−.
The bilinear form aDG(uh, vh) approximates the Dirichlet form (∇u,∇v)Ω− and
contains a first group of non-conforming terms, including jumps of the solution and
the test function and a penalization term on the element faces included to stabi-
lize the method. The class of methods that we treat in this general DG scheme
include the original Interior Penalty method of Arnold [2] and some symmetric
and non-symmetric variants, all of them fitting in the successful unified framework
developed by Arnold, Brezzi, Cockburn and Marini in [3]. The symbols K and V
correspond to two boundary integral operators and create the non-local integral
boundary condition for the problem. The off-diagonal terms in (1.1), involving
boundary and interior quantities, are actually non-conforming approximations of
H−1/2(Γ)×H1/2(Γ) duality products in the variational formulation of the problem.

As already seen in a remark in [20], the variational technique of [21] (essen-
tially integration by parts after recognizing that the exterior potential has to be
transmitted to the interior domain) plays a key role in this analysis. However,
integration by parts now has to be applied element-by-element and a whole new
array of terms have to be bounded below and hidden by carefully tuned weighted
Young inequalities in the essential coercivity estimate (given in Theorem 2.1). The
analysis requires the handling of fractional order Sobolev spaces on the interior
faces (scalability of these norms—or lack thereof—will be a fact to keep in mind)
and some scaling arguments that have to be dealt with rigidly, due to the fact that
harmonicity of the exterior potential that is transmitted to the interior domain is
needed in key steps of the process. A new source of theoretical complications stems
from the fact that the discrete norm for which the coercivity result holds does not
contain any term involving the value of uh on the interface Γ. This fact will make
the bilinear form not bounded in the coercivity norm and a stronger norm has to
be produced in upper bounds for the global bilinear form. A final detail that is
not entirely obvious arises from the fact that we are dealing with a transmission
problem in free space and that constants in the interior domain play a certain sep-
arate role from the analytical point of view. While this difficulty could be easily
removed by considering a simpler problem (an exterior Dirichlet problem), we find
it worthwhile to work out all the details for this case. The entire analysis (especially
discrete coercivity) requires the careful handling of inequalities related to fractional
order Sobolev norms in some reference configurations. We have strived to make all
details as transparent as possible to the reader, in the hope that they will be of
help for possible future generalizations.

The paper is structured as follows. In Section 2 we present the model problem,
its variational formulation as a boundary-field problem and its discretization with
an IPDG-BEM scheme. We also state the two main results of this paper: discrete
coercivity (Theorem 2.1) and optimal convergence (Theorem 2.3). Section 3 is
devoted to proving Theorem 2.1, building up from technical estimates to a full
detailed proof of the discrete coercivity of the method. Section 4 works in a very
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similar way to provide a proof of Theorem 2.3. We remark that numerical evidence
of the performance of this method has already been presented in [20].

Prerequisites. Some basic knowledge of the basic Sobolev spaces Hm(O), their
norms ‖ · ‖m,O and seminorms | · |m,O will be assumed throughout. A simple
subscripted norm ‖ · ‖B will always refer to the L2(B) norm. The fractional order
Sobolev spaces H±1/2(Γ) will be used from the beginning of the paper in order
to introduce the formulation and to present the results. However, in Section 3
we will be very precise in positive and negative order Sobolev spaces both on a
domain, its boundary or part of it. A very detailed reference for these results is the
monograph of McLean [18] that also includes proofs of all the mapping properties
of the potentials and integral operators that will be loosely used in this work.

2. A non-symmetric coupling of IPDG and BEM

2.1. Model problem and two-field non-symmetric formulation. Let Ω− be
a bounded polygonal domain in the plane or a polyhedral domain with Lipschitz
boundary in the space. Let Γ := ∂Ω− and Ω+ := R

d\Ω−. For the sake of simplicity,
we will assume that Ω+ is connected. The symbol γ will be used to denote the trace
operator, while ∂ν will be used for the normal derivative. The model problem is a
transmission problem of the form

(2.1)

⎡⎢⎢⎢⎢⎣
−Δu = f in Ω−,
γu = γu+ + β0 on Γ,
∂νu = ∂νu+ + β1 on Γ,
−Δu+ = 0 in Ω+,
u = O(1/r) as r → ∞.

We assume that β0 ∈ H1/2(Γ), β1 ∈ L2(Γ) and f ∈ L2(Ω−). A necessary and
sufficient condition for existence of solution in the two-dimensional case is

(2.2)

∫
Ω−

f +

∫
Γ

β1 = 0.

In the two-dimensional case, it follows from well-known results on potential theory
that

(2.3) ∂νu+ ∈ H
−1/2
0 (Γ) := {λ ∈ H−1/2(Γ) : 〈λ, 1〉Γ = 0},

where the angled brackets are used to denote the H−1/2(Γ) × H1/2(Γ) duality
product.

For representation of the exterior solution we need to introduce the layer poten-
tials on Γ and some associated boundary integral operators. Let

Φ(x,y) :=

⎧⎨⎩ − 1
2π log |x− y|, if d = 2,

1

4π|x− y| , if d = 3,

be the fundamental solution of the Laplace operator. Then, let

Sλ :=

∫
Γ

Φ( · ,y)λ(y)dΓ(y),

Dϕ :=

∫
Γ

∂ν(y)Φ( · ,y)ϕ(y)dΓ(y),
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be the single and double layer potentials, that define solutions of the Laplace equa-
tion in R

d \ Γ for arbitrary λ ∈ H−1/2(Γ) and ϕ ∈ H1/2(Γ). Decay at infinity

of Sλ and Dϕ is O(1/r), with the additional assumption that λ ∈ H
−1/2
0 (Γ) in

the two-dimensional case. The exterior solution can be represented using Green’s
Formula (Green’s Third Identity):

(2.4) u+ = Dγu+ − S∂νu+ = D(γu− β0)− Sλ, λ := ∂νu+.

Considering the boundary integral operators

(2.5) Vλ := γ±(Sλ) Kϕ := 1
2 (γ

+Dϕ+ γ−Dϕ),

the transmission problem can be equivalently written as the search for (u, λ) ∈
H1(Ω−)×H−1/2(Γ) that satisfy

(2.6)

[
(∇u,∇v)Ω− − 〈λ, γv〉Γ = (f, v)Ω− + 〈β1, γv〉Γ ∀v ∈ H1(Ω−),
〈μ, 1

2γu−Kγu〉Γ + 〈μ,Vλ〉Γ = 〈μ, 12β0 −Kβ0〉Γ ∀μ ∈ H−1/2(Γ),

followed by the integral representation (2.4). Note that in the two-dimensional case,

condition (2.2) guarantees that λ ∈ H
−1/2
0 (Γ), as can be seen by testing the first

equation in (2.6) with v ≡ 1. An important aspect of the single layer operator V is
the fact that it is coercive, namely, there exists CΓ > 0 such that

(2.7) C−1
Γ ‖λ‖2−1/2,Γ ≤ 〈λ,Vλ〉Γ = ‖∇(Sλ)‖2

Rd

{
∀λ ∈ H

−1/2
0 (Γ) if d = 2,

∀λ ∈ H−1/2(Γ) if d = 3.

In some forthcoming arguments (but not in the numerical method itself) it will be
useful to decompose the interior unknown as
(2.8)
u = u� + c, c ∈ P0(Ω−), u� ∈ L2

�(Ω−) := {v ∈ L2(Ω−) : (v, 1)Ω− = 0}.

Since K1 ≡ − 1
2 , using the decomposition (2.8) in the second equation of (2.6) tested

with μ ≡ 1 yields the formula

(2.9) c = − 1

|Γ|

∫
Γ

(
Vλ+ 1

2 (γu� − β0)−K(γu� − β0)
)
.

2.2. Discretization with IPDG and BEM. Consider now a conforming shape
regular family of triangulations {Th} of Ω−, made up of triangles/tetrahedra. Let
Eh be the set of all edges/faces (in the two/three-dimensional cases) of elements
of Th and let E◦

h be the set of interior edges/faces. On each internal edge/face
we assume that a fixed orientation of the normal vector has been chosen. Using
this orientation, to each e ∈ E◦

h we can associate two elements K± ∈ Th such that

e = K+ ∩K− and that the normal vector on e points from K− to K+. This allows
us to introduce the following notation for jumps of traces and averages of normal
derivatives

(2.10) [[u]] := u|K+
− u|K− {{∂νu}} = 1

2 (∂νu|K+
+ ∂νu|K−).

This notation coincides with the one used in [20] and differs from the one in the
unified presentation of DG methods in [3] where the jump of a scalar magnitude is a
vector pointing in the normal direction and the average of vector valued quantities
is a scalar magnitude. For the purpose of our analysis (and for ease of comparison
with [20]) the choice (2.10) seems to be the adequate one. Note, however, that the
algebraic expressions for the IPDG method are the same with the two choices of
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notation. The triangulation Th creates a partition/triangulation Γh of the boundary
Γ.

The discrete spaces that are needed for the method are simply discontinuous
piecewise polynomial functions:

Vh := {vh : Ω → R : vh|K ∈ Pk(K) ∀K ∈ Th},
Λh := {λh : Γ → R : λh|e ∈ Pk−1(e) ∀e ∈ Γh},

where k ≥ 1 is an integer. For functions that are sufficiently smooth on each
element, we can define the IPDG bilinear form:

aDG(uh, vh) := (∇huh,∇hvh)Ω− −
∑
e∈E◦

h

〈{{∂νuh}}, [[vh]]〉e

−ξ
∑
e∈E◦

h

〈{{∂νvh}}, [[uh]]〉e +
∑
e∈E◦

h

σe

he
〈[[uh]], [[vh]]〉e.

Here, ∇h is the gradient operator applied elementwise, he is the length/diameter of
e ∈ Eh and σe > 0 is a constant associated to each edge/face. Careful explanation
of how to arrive at this bilinear form (and why), as well as of the three choices for
ξ ∈ {−1, 0, 1} can be found in [3]. A quantity we will need to control is

σmin := min
e∈E◦

h

σe.

The coupled IPDG-BEM scheme consists of the non-conforming Galerkin discretiza-
tion of (2.6) based on the subspaces Vh and Λh, and on the substitution of the
Dirichlet form (∇u,∇v)Ω− by aDG(u, v). The method looks for (uh, λh) ∈ Vh ×Λh

such that

(2.11)

[
aDG(uh, vh)− 〈λh, vh〉Γ = (f, vh)Ω− + 〈β1, vh〉Γ ∀vh ∈ Vh,
〈μh,

1
2uh −Kuh〉Γ + 〈μh,Vλh〉Γ = 〈μh,

1
2β0 −Kβ0〉Γ ∀μh ∈ Λh.

All occurrences of angled brackets in (2.11) correspond to L2(Γ) inner products
(they are no longer duality products). In comparison with (2.6), the trace operator
has been eliminated, since now uh and vh are piecewise smooth functions that can
be restricted to the boundary, although not with the global trace operator. The
additional regularity assumed for β1 (for the sake of existence of solution to the
original problem, only β1 ∈ H−1/2(Γ) is needed) is justified by its occurrence in
the right-hand side of (2.11). The operator K acts on the restriction of uh to the
boundary. Since K : L2(Γ) → L2(Γ) is bounded (see [18]), this term poses no
problem from the practical point of view.

Algorithmic aspects of this formulation are treated in [20]. Let us just point out
a detail referred to the two-dimensional case that is not covered in [20]. If we test

the first equation of (2.11) with vh ≡ 1 ∈ Vh, it follows that λh ∈ H
−1/2
0 (Γ). This

allows for the discrete exterior solution

(2.12) u+,h := D(uh − β0)− Sλh

to have the right O(1/r) decaying behavior at infinity. For some future theoretical
considerations, it will be convenient to consider the space

Λ
(0)
h =

{
Λh ∩H

−1/2
0 (Γ), if d = 2,

Λh, if d = 3.



NON-SYMMETRIC COUPLING OF INTERIOR PENALTY DG AND BEM 587

Also, parallel to (2.8), and only for analytical purposes, it will be convenient to
consider the decomposition

(2.13) uh = uh,� + ch, ch ∈ P0(Ω−), uh,� ∈ V �
h := Vh ∩ L2

�(Ω−).

Note that

(2.14) ch = − 1

|Γ|

∫
Γ

(
Vλh + 1

2 (uh,� − β0)−K(uh,� − β0)
)
.

2.3. Main results. In order to deal in a simpler way with the analysis of the
method (2.11), we introduce a global bilinear form:

B((uh, λh), (vh, μh)) := aDG(uh, vh)− 〈λh, vh〉Γ
+〈 12uh −Kuh, μh〉Γ + 〈Vλh, μh〉Γ.

In principle, this bilinear form is restricted to discrete elements in both compo-
nents. With some abuse of notation, we will allow the exact solution of (2.6) to
be placed in the first component of this bilinear form. This can be done assuming
some additional regularity for this solution and recuperating trace operators for the
restrictions of u to Γ. An important property of this method is its consistency:

(2.15) B((uh, λh), (vh, μh)) = B((u, λ), (vh, μh)) ∀(vh, μh) ∈ Vh × Λh.

For analytical purposes we now need to restrict the kind of meshes. We assume
that there is a neighborhood of Γ where the triangulation Th is quasi-uniform. This
fact will be needed for the use of an inverse inequality (see (3.12) below) on the
discrete space Λh. This might be restrictive in some practical applications when
β0 and β1 do not vanish. Nevertheless, there are situations when the transmission
problem (2.1) (or equivalently (2.6)) originates from cutting off the computational
domain for a problem in free space: in this situation the boundary Γ can be placed
apart from the support of the data function f and u is continuous across Γ (that
is, β0 ≡ 0 and β1 ≡ 0); for that case, the local quasi-uniformity of the triangulation
might not be very restrictive. It has to be emphasized though, that at present the
inverse inequality plays an important role in the coercivity estimates and cannot
be easily removed.

The analysis starts with a quasi-coercivity estimate in terms of a discrete semi-
norm and the bilinear form induced by the operator V (see (2.7)). For convenience,
we write:

|uh|2h :=
∑
e∈E◦

h

h−1
e ‖[[uh]]‖2e

The detailed proof of this first result requires the introduction of several elements
and the proof of some preliminary estimates. This will be dealt with in Section 3.
The proof of the theorem itself will be given in Section 3.4.

Theorem 2.1 (Coercivity). There exists a constant σ0 depending on characteristics
of the mesh (shape-regularity, local quasi-uniformity near Γ) and the polynomial
degree k such that if σmin ≥ σ0, then

B((uh, λh), (uh, λh)) ≥ 1
4‖∇huh‖2Ω− + 1

4 |uh|2h+ 1
4 〈λh,Vλh〉, ∀(uh, λh) ∈ Vh×Λ

(0)
h .

Corollary 2.2 (Unique solvability). Under the hypotheses of Theorem 2.1, the
system (2.11) has a unique solution.
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Proof. Since (2.11) can be equivalently written as a square system of linear equa-
tions, only the uniqueness part is needed. If (uh, λh) ∈ Vh × Λh is a homogeneous

solution of (2.11), then testing with vh ≡ 1 shows that λh ∈ Λ
(0)
h . Then Theorem

2.1 and (2.7) show that λh ≡ 0 and uh ≡ c. The decomposition (2.13)-(2.14) shows
finally that uh ≡ 0. �

Convergence estimates will be only given for a solution of the highest regularity.
For the interior field u, we will consider

Hm(Th) :=
∏

K∈Th

Hm(K), |u|2m,Th
:=

∑
K∈Th

|u|2m,K .

For the boundary unknown λ, we consider the set of edges/faces {Γ1, . . . ,ΓM} of
the polygon/polyhedron Γ and the broken (but not discrete) Sobolev spaces

Xm(Γ) :=
M∏
�=1

Hm(Γ�),

endowed with the product norms.

Theorem 2.3 (Convergence). Assume that the solution of (2.6) is in Hk+1(Th)×
Xk(Γ). Then, the error of the method of (2.11) can be bounded as

‖u−uh‖Ω− + ‖∇u−∇huh‖Ω− + |uh|h + ‖λ−λh‖−1/2,Γ ≤ Chk (|u|k+1,Th
+ |λ|k,Γ) .

Moreover, for all x ∈ Ω+,

(2.16) |u+(x)− u+,h(x)| ≤ Chk‖Φ(x, · )‖2,Ω− (|u|k+1,Th
+ |λ|k,Γ) .

As will be made clear by the proof of this result (Section 4.3), the estimates of
Theorem 2.3 can also be given in more local terms both for u and λ, using local
meshsizes. That part of the analysis is just related to approximation properties
and we will not insist on it. Note that the bound |uh|h = O(hk) takes into account
how close uh gets to being continuous.

3. Discrete coercivity

3.1. A geometric construction. Part of the forthcoming analysis hinges on a
class of rigid scaling arguments in order to deal with solenoidal vector fields and
fractional order Sobolev spaces with different scalability properties. We assume the
existence of a finite set of reference configurations with the following characteristics:

• In the two-dimensional case ê := (0, 1) × {0} and K̂ is a fixed isosceles
triangle with ê as base and such that its two equal angles are less than
half the minimum angle of the sequence of triangulations Th. By rotation,
translation and scaling, we can place an isosceles triangle Ke, congruent to

K̂, with bases on every e ∈ E◦
h and such that Ke ⊂ Ω−. In order to have

unified notation with the three-dimensional case we will write K̂ := {K̂}.
• In the three-dimensional case we take a set of pyramids K̂ := {K̂1, . . . , K̂�}
with respective to bases {ê1, . . . , ê�}, with êj ⊂ R

2 × {0}. We assume that
every interior face of the triangulation e ∈ E◦

h, with diameter he, can be
extended to be the base of a pyramid Ke ⊂ Ω−, such that h−1

e Ke is a rigid

motion of one of the elements of K̂.
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Given now any e ∈ E◦
h, we consider an invertible affine map Fe : Rd → R

d of the
form

Fe(x) := heΘex+ be, Θ�
e Θe = Id,

such that F−1
e (Ke) ∈ K̂ and F−1

e (e) is contained in the base of F−1
e (Ke). Note

that in the two-dimensional case, this implies that F−1
e (e) = ê, whereas in the

three-dimensional case F−1
e (e) is a triangle contained in the base of F−1

e (Ke). By
construction, there exists C◦ > 0 (in the two-dimensional case C◦ = 1) such that

(3.1)
∑
e∈E◦

h

‖v‖2Ke
≤ C◦‖v‖2Ω− ∀v ∈ L2(Ω−).

3.2. Fractional order Sobolev norms in reference configurations. Given a
bounded open set O ⊂ R

d (or the closure of a bounded open set) and s ∈ (0, 1) we
consider the space Hs(O), endowed with the Sobolev-Slobodetskij norm

(3.2) ‖v‖2s,O := ‖v‖2O + |v|2s,O, |v|2s,O :=

∫
O

∫
O

|v(x)− v(y)|2
|x− y|2s+d

dxdy

and the space H̃s(O), endowed with the norm

(3.3) ‖v‖2s,O,∼ := |v|2s,O +

∫
O

|v(x)|2
dist(x, ∂O)2s

dx.

The negative order spaces are defined by duality, considering the duality represen-
tation that pivots around L2(O),

H̃−s(O) := Hs(O)′, H−s(O) := H̃s(O)′,

and endowed with the dual norms:

(3.4) ‖v‖−s,O := sup
0�=u∈ ˜Hs(O)

(u, v)O
‖u‖s,O,∼

, ‖v‖−s,O,∼ := sup
0�=u∈Hs(O)

(u, v)O
‖u‖s,O

.

For open polyhedral surfaces (polygonal curves), we can consider the spaces Hs(S)

and H̃s(S) for −1 < s < 1. For closed polyhedral surfaces Γ, the spaces Hs(Γ) for
0 < s < 1 are defined by parametrization and H−s(Γ) := Hs(Γ)′, pivotal to L2(Γ).

Since for ε ∈ (0, 1/2) the trace operator H1−ε(K̂) → H1/2−ε(∂K̂) is bounded
and surjective, it has a bounded right inverse Lε and we can bound, with a constant

C
1
ε > 0 that depends only on ε,

(3.5) ‖∇(Lεϕ)‖−ε, ̂K ≤ C 1
ε ‖ϕ‖1/2−ε,∂ ̂K ∀ϕ ∈ H1/2−ε(∂K̂), K̂ ∈ K̂.

Since Hs(K̂) ∼= H̃s(K̂) for 0 < s < 1/2, with equivalent but different norms, for

ε ∈ (−1/2, 1/2), we can identify constants C
2
ε > 0 depending only on ε such that

(3.6) ‖v‖−ε, ̂K,∼ ≤ C 2
ε ‖v‖−ε, ̂K ∀v ∈ H−ε(K̂), K̂ ∈ K̂.

The third group of inequalities requires some additional work in the three-dimen-
sional case.

Lemma 3.1. For ε ∈ (0, 1/2), there exists C
3
ε > 0 such that

(3.7) ‖ϕ̃‖1/2−ε,∂ ̂K ≤ C 3
ε ‖ϕ‖1/2−ε,D,∼ ∀ϕ ∈ H̃1/2−ε(D), K̂ ∈ K̂,

where D = ê if d = 2 and D is any triangle contained in the base of K̂ if d = 3,
and ϕ̃ is the extension by zero of ϕ.
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Proof. The first part of the proof is only required for the three-dimensional case.

Let ê be the base of K̂ and let D be any triangle contained in ê. Then

|ϕ̃|2s,ê = |ϕ|2s,D + 2

∫
D

(∫
ê\D

dx

|x− y|2s+2

)
|ϕ(y)|2dy

≤ |ϕ|2s,D + 2

∫
D

(
2π

∫ ∞

dist(y,∂D)

dr

r2s+1

)
|ϕ(y)|2dy

≤ |ϕ|2s,D +
2π

s

∫
D

|ϕ(y)|2
dist(y, ∂D)2s

dy,

and therefore

‖ϕ̃‖2s,ê,∼ ≤
(
2π

s
+ 1

)
‖ϕ‖2s,D,∼,

where the key fact is that the constant does not depend on D. In the second step,

we use that extension-by-zero is a bounded operator from H̃s(ê) to Hs(∂K̂) and
take s = 1/2− ε. �

Lemma 3.2. For ε ∈ (0, 1/2), there exists C
4
ε > 0 such that

(3.8) ‖v · n‖−1/2+ε,D ≤ C 4
ε ‖v‖ε, ̂K ∀v ∈ Hε(K̂)d such that div v = 0

where D = ê if d = 2 and D is any triangle contained in the base of K̂ if d = 3.

Proof. Let ϕ ∈ H̃1/2−ε(D), ϕ̃ be the extension by zero of ϕ to the rest of ∂K̂, and
u := Lεϕ̃, where Lε is the trace lifting of (3.5). Since the hypotheses on v imply

that v ∈ H(div, K̂), we can apply Green’s Theorem and prove that

〈v · n, ϕ〉D = 〈v · n, ϕ̃〉∂ ̂K = (div v, u)
̂K + (v,∇u)

̂K

≤ ‖v‖ε, ̂K‖∇u‖−ε, ̂K,∼ ≤ C 2
ε ‖v‖ε, ̂K‖∇u‖−ε, ̂K

≤ C 1
ε C 2

ε ‖v‖ε, ̂K‖ϕ̃‖1/2−ε,∂ ̂K ≤ C 1
ε C 2

ε C 3
ε ‖v‖ε, ̂K‖ϕ‖1/2−ε,D,∼,

where we have applied (3.6), (3.5) and Lemma 3.1. The proof is now a direct
consequence of the definition of the H−1/2+ε(D) norm. �

3.3. Two key lemmas. We first divide the set of edges as

(3.9) Estrip
h := {e ∈ E◦

h : dist(e,Γ) ≤ C} and E int
h := E◦

h \ Estrip
h .

If C above is large enough (or the triangulation is refined enough), we can select
an interior domain Ωint, so that we can fit

(3.10) ∪{Ke : e ∈ E int
h } ⊂ Ωint ⊂ Ω−.

Since we are assuming that the triangulation is shape-regular and quasi-uniform
near the boundary Γ, then the partition Γh is quasi-uniform and the diameter of
the elements of Γh is equivalent to

(3.11) hstrip := max{he : e ∈ Estrip
h ∪ Γh}.

Therefore, we have an inverse inequality for elements of the discrete space Λh:

(3.12) hε
strip‖λh‖−1/2+ε,Γ ≤ C inv

ε ‖λh‖−1/2,Γ ∀λh ∈ Λh, ε ∈ [0, 1/2].
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An additional ingredient for the proofs below is related to continuity of layer po-

tentials, namely, we can choose C
5
ε for every ε ∈ [0, 1/2] such that

(3.13) ‖∇(Sλ)‖ε,Ωint
≤ C 5

ε ‖λ‖−1/2,Γ ∀λ ∈ H−1/2(Γ)

and

(3.14) ‖∇(Sλ)‖ε,Ω− ≤ C 5
ε ‖λ‖−1/2+ε,Γ ∀λ ∈ H−1/2+ε(Γ).

Note that the interior regularity bound (3.13) can be proved directly by bounding
the fundamental solution, since the distance between Ωint and Γ is positive. On the
other hand, (3.14) is a well-known regularity result of layer potentials (see [18]).

Lemma 3.3. For all ε ∈ (0, 1/2), there exists C
6
ε > 0 such that∑

e∈E◦
h

hd−2
e ‖∂ν(u∗ ◦ Fe)‖2−1/2+ε,F−1

e (e)
≤ C 6

ε ‖∇u∗‖2
Rd ∀u∗ = Sλh, λh ∈ Λ

(0)
h .

Proof. Note that Δu∗ = 0 in Ke for all e, since Ke ⊂ Ω−. Since Fe is a dilation and

a rigid transformation, it is clear that Δ(u∗ ◦ Fe) = 0 in K̂. Therefore, by Lemma
3.2, we can bound

(3.15) ‖∂ν(u∗ ◦ Fe)‖−1/2+ε,F−1
e (e) ≤ C 4

ε ‖∇(u∗ ◦ Fe)‖ε, ̂K ∀e ∈ E◦
h.

A simple change of variables proves that

‖∇(u∗ ◦ Fe)‖2ε, ̂K
= ‖∇(u∗ ◦ Fe)‖2

̂K
+ |∇(u∗ ◦ Fe)|2ε, ̂K

= h2−d
e

(
‖∇u∗‖2Ke

+ h2ε
e |∇u∗|2ε,Ke

)
.(3.16)

Before adding over all edges, notice that the estimate (3.1) and the definitions of
the subsets of edges (3.9) and property (3.10) imply that∑

e∈E int
h

|v|2ε,Ke
≤ C◦|v|2ε,Ωint

and
∑

e∈Estrip
h

|v|2ε,Ke
≤ C◦|v|2ε,Ω− .

Hence, (3.16), the estimates (3.13)-(3.14) and the inverse inequality (3.12) imply
that ∑

e∈E◦
h

hd−2
e ‖∇(u∗ ◦ Fe)‖2ε, ̂K

≤ C◦

(
‖∇u∗‖2Ω− + h2ε|∇u∗|2ε,Ωint

+ h2ε
strip|∇u∗|2ε,Ω−

)
≤ C◦

(
‖∇u∗‖2Ω− + (C 5

ε )2(h2ε + C2−2ε
inv )‖λh‖2−1/2,Γ

)
.

(3.17)

The result is then a straightforward consequence of (3.15), (3.17) and (2.7). �

Lemma 3.4. For all ε ∈ (0, 1/2), there exists C
7
ε > 0 such that∑

e∈E◦
h

hd−2
e ‖[[uh ◦ Fe]]‖21/2−ε,F−1

e (e),∼ ≤ C 7
ε |uh|2h ∀uh ∈ Vh.

Proof. Some preparations are first needed in the three-dimensional case. Let D̂ be a

fixed triangle in R
2×{0} and let D̂e := F−1

e (e). The affine maps Ge : R
2 → R

2 that

transform D̂ to D̂e are uniformly bounded and have uniformly bounded inverses,
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because the triangles D̂e are shape regular and their area is of order one. Therefore,
we can bound

(3.18) ‖ϕ‖s, ̂De,∼ ≤ Bs‖ϕ ◦Ge‖s, ̂D,∼ ∀ϕ ∈ Hs(D̂e), 0 < s < 1.

Using (3.18) with s = 1/2 − ε, a finite dimension argument on D̂, and the change

of variables Ge, we can prove that there exists C
7
ε such that

(3.19) ‖û‖2
1/2+ε, ̂De,∼

≤ C 7
ε ‖û‖2

̂De
∀û ∈ Pk.

Note that this result is straightforward in the two-dimensional case since then, for

all e, D̂e = ê. Finally,

hd−2
e ‖[[uh ◦ Fe]]‖21/2−ε,F−1

e (e),∼ ≤ hd−2
e C 7

ε ‖[[uh ◦ Fe]]‖2
̂De

= C 7
ε h−1

e ‖[[uh]]‖2e. �

3.4. Proof of Theorem 2.1. A standard argument in DG analysis (see [3] for
example) can be used to prove that
(3.20)

aDG(uh, uh) ≥ ‖∇huh‖2Ω− − |1 + ξ|
(
C�δ‖∇huh‖2Ω− + (4δ)−1|uh|2h

)
+ σmin|uh|2h,

where C� is a positive constant that allows us to bound

(3.21)
∑

K∈Th

∑
Eh∈e⊂∂K

he‖vh‖2e ≤ C�‖vh‖2Ω− ∀vh ∈ Vh.

Taking δ = 1/(4C�|1 + ξ|) in (3.20) for ξ �= −1, we can present all cases together
with the estimate

(3.22) aDG(uh, uh) ≥ 3
4‖∇huh‖2Ω− + (σmin − |1 + ξ|2C�)|uh|2h ∀uh ∈ Vh.

We now turn our attention to the full bilinear form. Let λh ∈ Λh (satisfying the
additional constraint

∫
Γ
λh = 0 in the two-dimensional case). Then, let u∗ := Sλh.

By well-known results on boundary integral operators it follows that

(3.23) 1
2λh −Ktλh = −∂+

ν u∗, λh = ∂−
ν u∗ − ∂+

ν u∗, 〈Vλh, λh〉Γ = ‖∇u∗‖2
Rd

(recall (2.7)). Therefore

B((uh, λh), (uh, λh))

= aDG(uh, uh)− 〈λh, uh〉Γ + 〈uh,
1
2λh −Ktλh〉Γ + 〈Vλh, λh〉Γ

= aDG(uh, uh)− 〈∂−
ν u∗ − ∂+

ν u∗, uh〉Γ − 〈∂+
ν u∗, uh〉Γ + ‖∇u∗‖2

Rd

= aDG(uh, uh)− (∇u∗,∇huh)Ω− + ‖∇u∗‖2
Rd +

∑
e∈E◦

h

〈{{∂νu∗}}, [[uh]]〉e,

where in the last step we have applied Green’s formula elementwise, taking advan-
tage of the fact that Δu∗ = 0. Using (3.22) and the fact that ∂νu

∗ is single-valued
across interelement faces, it follows that

B((uh, λh), (uh, λh)) ≥ 1
4‖∇huh‖2Ω− + 1

2‖∇u∗‖2
Rd

+ (σmin − |1 + ξ|2C�)|uh|2h +
∑
e∈E◦

h

〈∂νu∗, [[uh]]〉e.(3.24)
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Finally, since Fe are rigid motions composed with dilations, we can easily apply
Lemmas 3.3 and 3.4 to bound∑
e∈E◦

h

〈∂νu∗, [[uh]]〉e =
∑
e∈E◦

h

hd−2
e 〈∂ν(u∗ ◦ Fe), [[uh ◦ Fe]]〉F−1

e (e)

≤
∑
e∈E◦

h

hd−2
e ‖∂ν(u∗ ◦ Fe)‖−1/2+ε,F−1

e (e)‖[[uh ◦ Fe]]‖1/2−ε,F−1
e (e),∼

≤ C 6
ε δ‖∇u∗‖2

Rd +
C

7
ε

4δ
|uh|2h.

Now, taking δ = C
6
ε /4 and inserting this bound in (3.24), it follows that

B((uh, λh), (uh, λh)) ≥ 1
4‖∇huh‖2Ω−+

1
4‖∇u∗‖2

Rd+(σmin−|1+ξ|2C�−C 7
ε /C 6

ε )|uh|2h.

The result now follows by simply taking σmin ≥ 1
4 + |1+ ξ|2C�+C

7
ε /C

6
ε and using

(2.7).

4. Convergence analysis

4.1. Quasi-optimality. We consider the following discrete seminorm, defined in
H1(Th)×H−1/2(Γ),

|||(u, λ)|||2h := ‖∇hu‖2Ω− + |u|2h + ‖λ‖2−1/2,Γ,

as well as the stronger norm

|||(u, λ)|||2h,st := |||(u, λ)|||2h+
∑

e∈Γh

h−1
e ‖u‖2e +

∑

e∈Γh

he‖λ‖2e +
∑

e∈Γh

h−1
e ‖Phλ‖2e +

∑

K∈Th

h2
K |u|22,K ,

defined in H2(Th)×L2(Γ). Here Ph : L2(Γ) → Λh is the orthogonal projection onto
Λh.

Proposition 4.1 (Continuity of the bilinear form). There exists C1 > 0 such that

|B((u, λ), (vh, μh))| ≤ C1|||(u, λ)|||h,st|||(vh, μh)|||h
∀(u, λ) ∈ H2(Th)× L2(Γ),
∀(vh, μh) ∈ V �

h × Λh.

Proof. Using a local trace inequality

(4.1)
∑

Eh�e⊂∂K

he‖v‖2e ≤ hK‖v‖2∂K ≤ C��

(
‖v‖2K + h2

K‖∇v‖2K
)

∀v ∈ H1(K),

and applying (3.21) to the components of ∇hvh, it is simple to obtain the bound

|aDG(u, vh)| ≤ ‖∇hu‖Ω−‖∇hvh‖Ω−

+ C
1/2
��

(
‖∇hu‖2Ω− +

∑
K∈Th

h2
K |u|22,K

)1/2

|vh|h

+ C
1/2
� |u|h‖∇hvh‖Ω− + σmax|u|h|vh|h.

(4.2)

Now, note that

(4.3) 〈λ, vh〉Γ = 〈Phλ, vh〉Γ + 〈λ, vh − Phvh〉Γ.
Using a discrete Poincaré-Friedrichs inequality (see [4] and [2]), we can bound

(4.4) ‖vh‖Ω− ≤ CPF

(
‖∇hvh‖2Ω− + |vh|2h

)1/2

∀vh ∈ V �
h ,
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which, together with (3.21) allows us to bound

|〈Phλ, vh〉Γ| ≤
(∑

e∈Γh

h−1
e ‖Phλ‖2e

)1/2 (∑
e∈Γh

he‖vh‖2e

)1/2

≤ C
1/2
� CPF

(∑
e∈Γh

h−1
e ‖Phλ‖2e

)1/2 (
‖∇hvh‖2Ω− + |vh|2h

)1/2

.(4.5)

On the other hand, a finite dimensionality argument can be used to bound

h−1
e ‖vh − Phvh‖2e ≤ Ck‖∇vh‖2K e ⊂ ∂K, ∀vh ∈ Vh

and therefore

(4.6) |〈λ, vh − Phvh〉Γ| ≤
(∑

e∈Γh

he‖λ‖2e

)1/2

‖∇hvh‖Ω− ∀vh ∈ Vh.

The third term in the bilinear form is bounded using the inverse inequality (3.12)
(recall (3.11) for the definition of the local meshsize), proving that

|〈 12u−Ku, μh〉Γ| ≤ ‖ 1
2I − K‖L2(Γ)→L2(Γ)‖u‖Γ‖μh‖Γ

≤ C inv
1/2‖ 1

2I − K‖L2(Γ)→L2(Γ)

(∑
e∈Γh

h−1
e ‖u‖2e

)1/2

‖μh‖−1/2,Γ.(4.7)

The result is now a direct consequence of (4.2), (4.3), (4.5), (4.6), (4.7), the conti-
nuity of V : H−1/2(Γ) → H1/2(Γ), and the definition of the broken norms. �

Let Πh : L2(Ω−) → Vh be the orthogonal projection onto Vh and recall that
Ph : L2(Γ) → Λh is the projector onto Λh. Since constant elements are in Vh, we
can decompose (using (2.8) and (2.13))

(4.8) uh −Πhu = uh,� −Πhu� + ch − c.

Also, using the fact that constant functions are in Λh, we can show (see the first
equations in (2.6) and (2.11)) that

(4.9)

∫
Γ

Phλ =

∫
Γ

λ =

∫
Ω−

f +

∫
Γ

β1 =

∫
Γ

λh.

(All of them vanish in the two-dimensional case because of (2.2).)

Proposition 4.2 (Quasi-optimality). Let (u, λ) and (uh, λh) be the respective so-
lutions of (2.6) and (2.11) and assume that (u, λ) ∈ H2(Th) × L2(Γ). Then there
exists C2 > 0 such that

|||(uh − u, λh − λ)|||h ≤ C2|||(u−Πhu, λ− Phλ)|||h,st.

Proof. Note that by (4.9), λh − Phλ ∈ Λ
(0)
h . We can then apply Theorem 2.1 and

(2.7) to bound

|||(uh −Πhu, λh − Phλ)|||2h = |||(uh,� −Πhu�, λh − Phλ)|||2h
≤ 4max{1, CΓ}B((uh,� −Πhu�, λh − Phλ), (uh,� −Πhu�, λh − Phλ))

= 4max{1, CΓ}B((u−Πhu, λ− Phλ), (uh,� −Πhu�, λh − Phλ)),(4.10)
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by the consistency of the method (2.15), the decomposition (4.8) and the fact that

B((c− ch, 0), (uh,� −Πhu�, λh − Phλ)) = (c− ch)

∫
Γ

(λh − Phλ) = 0

(see (4.9) and recall that K1 ≡ − 1
2 ). Since uh,� − Πhu� ∈ V �

h , we can apply
Proposition 4.1 and the result is a direct consequence of (4.10). �

4.2. Estimate of the interior average. Because we are dealing with the pure
transmission problem (no boundary conditions), the discrete seminorm does not
take into account the average of the component u of the solution in Ω−. This is
very clear from the coercivity estimate (Theorem 2.1), which is written in terms of
that seminorm and, as such, is not able to estimate the error

|c− ch| =
1

|Ω−|

∣∣∣∣∣
∫
Ω−

(u− uh)

∣∣∣∣∣
(see decompositions (2.8) and (2.13)). We start the analysis of this term with a
lemma that combines some of the arguments of the previous sections.

Lemma 4.3. Let ξ := 1
2 −Kt1. Then there exists C3 > 0 such that

(4.11) |〈ξ, vh〉Γ| ≤ C3

(
‖∇hvh‖2Ω− + |vh|2h

)1/2

∀vh ∈ V �
h .

Proof. Note that ξ = 1− ∂−
ν S1. We can then bound

(4.12) |〈∂−
ν S1, vh〉Γ| ≤ C4

(
‖∇hvh‖2Ω− + |vh|2h

)1/2

∀vh ∈ Vh,

by proceeding as in the proof of Theorem 2.1 (see Section 3.4). Note that when we

aim to apply Lemma 3.3, in the two-dimensional case λh ≡ 1 �∈ Λ
(0)
h . However, we

can still bound as in (3.17)∑
e∈E◦

h

hd−2
e ‖∇((S1) ◦ Fe)‖2ε, ̂K

≤ C◦

(
‖∇(S1)‖2Ω− + h2ε|∇(S1)|2ε,Ω−

)
,

which is enough for our current needs. In order to estimate the remaining term, we
consider the solution of the interior Neumann problem

−Δũ ≡ c in Ω−, ∂ν ũ ≡ 1, with c :=
|Γ|
|Ω−|

,

and note that classical Sobolev regularity results can be invoked to show that
ũ ∈ H3/2+ε(Ω−) for some ε > 0. We then apply integration by parts element-by-
element to obtain

(4.13) 〈1, vh〉Γ = −
∑
e∈E◦

h

〈∂ν ũ, [[vh]]〉e + (∇ũ,∇hvh)Ω− − c(1, vh)Ω− .

The first term is bounded using∣∣∣− ∑
e∈E◦

h

〈∂ν ũ, [[vh]]〉e
∣∣∣ ≤ ( ∑

e∈E◦
h

he‖∂ν ũ‖2e
)1/2

|vh|h ≤
( ∑

K∈Th

hK‖∇ũ‖2∂K
)1/2

|vh|h

≤ C 8
ε

( ∑
K∈Th

‖∇ũ‖2K + h2ε
K |∇ũ|2ε,K

)1/2

|vh|h,(4.14)
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where the last inequality follows from a scaling argument and the trace inequality in
a fixed reference element. Since vh ∈ L2

�(Ω−), the result follows from the inequalities
(4.12), (4.13) and (4.14). �

Proposition 4.4. There exists C5 > 0 such that

|c− ch| ≤ C|||(u−Πhu, λ− Phλ)|||h,st
Proof. Using the integral formulas for c and ch (that is, (2.9) and (2.14)), we can
easily bound

|Γ| |c− ch| ≤ ‖V(λ− λh)‖1/2,Γ + ‖ξ‖Γ‖γu� −Πhu�‖Γ + |〈ξ, u�,h − Πhu�〉Γ|
≤‖V‖H−1/2(Γ)→H1/2(Γ)‖λ− λh‖−1/2,Γ+‖ξ‖Γ‖γu−Πhu‖Γ+|〈ξ, u�,h − Πhu�〉Γ|

where ξ := 1
2 − Kt1. Note that uh,� − Πhu� ∈ V �

h and we can thus apply Lemma
4.3 to bound

|〈ξ, u�,h −Πhu�〉Γ| ≤ Cξ|||(u�,h −Πhu�, λh − Phλ)|||h = |||(uh −Πhu, λh − Phλ)|||h.

The result is now a consequence of the quasi-optimality bound (Proposition 4.2)
and the definition of the discrete norms. �

4.3. Proof of Theorem 2.3. By simple approximation properties (using scaling
arguments and the Bramble-Hilbert lemma), we can bound

(4.15) |||(u−Πhu, λ− Phλ)|||h,st ≤ C6

( ∑
K∈Th

h2k
K |u|2k+1,K +

∑
e∈Γh

h2k+1
e |λ|2k,e

)1/2

.

This inequality and Proposition 4.2 provide the bound

‖∇u−∇huh‖Ω− + |uh|h + ‖λ− λh‖−1/2,Γ

≤ C7

( ∑
K∈Th

h2k
K |u|2k+1,K +

∑
e∈Γh

h2k+1
e |λ|2k,e

)1/2

.

For the bound of the L2(Ω−) error we use the decompositions (2.8) and (2.13) and
the discrete Poincaré-Friedrichs inequality (4.4) to prove that

‖Πhu− uh‖Ω− ≤ |c− ch| |Ω−|1/2 + ‖Πhu� − uh,�‖Ω−

≤ |c− ch| |Ω−|1/2 + CPF|||(Πhu� − uh,�, 0)|||h.

Propositions 4.2 and 4.4, and the approximation estimate (4.15) then provide the
L2(Ω−)-estimate. Note that this estimate is suboptimal (some of the IP methods
included in this analysis have no superconvergence properties), but that it is needed
as a complement of previously given error bounds, since ||| · |||h is only a seminorm.

Subtracting the representation formula (2.4) from the discrete approximation for
the exterior solution (2.12), and using the definition of the layer potentials given in
Section 2.1, we can bound

|u+,h(x)− u+(x)|
≤ ‖Φ(x, · )‖1/2,Γ‖λ− λh‖−1/2,Γ + ‖Φ(x, · )‖Γ‖γu− Πhu‖Γ
+ |〈∂νΦ(x, · ),Πhu− uh〉Γ|.(4.16)
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For fixed x ∈ Ω+, Φ(x, · ) ∈ C∞(Ω−) is harmonic. Using element-by-element
integration by parts and a scaling argument (4.1), we can write

|〈∂νΦ(x, · ), vh〉Γ| =
∣∣∣− ∑

e∈E◦
h

〈∂νΦ(x, · ), [[vh]]〉e + (∇Φ(x, · ),∇hvh)Ω−

∣∣∣
≤

( ∑
K∈Th

hK‖∇Φ(x, · )‖2∂K
)1/2

|vh|h + ‖∇Φ(x, · )‖Ω−‖∇hvh‖Ω−

≤ max{C1/2
�� , h2C

1/2
�� + 1}‖Φ(x, · )‖2,Ω− |||(vh, 0)|||h ∀vh ∈ Vh.

The bound (2.16) is then a consequence of this latter inequality applied to vh =
Πhu− uh, (4.16) and the above estimates for the error.
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