
MATHEMATICS OF COMPUTATION
Volume 84, Number 294, July 2015, Pages 1795–1812
S 0025-5718(2014)02910-4
Article electronically published on December 18, 2014

THE INTERSECTION OF BIVARIATE ORTHOGONAL

POLYNOMIALS ON TRIANGLE PATCHES

TOM H. KOORNWINDER AND STEFAN A. SAUTER

Abstract. In this paper, the intersection of bivariate orthogonal polynomials
on triangle patches will be investigated. The result is interesting on its own but
also has important applications in the theory of a posteriori error estimation
for finite element discretizations with p-refinement, i.e., if the local polynomial
degree of the test and trial functions is increased to improve the accuracy. A
triangle patch is a set of disjoint open triangles whose closed union covers a
neighborhood of the common triangle vertex. On each triangle we consider
the space of orthogonal polynomials of degree n with respect to the weight

function which is the product of the barycentric coordinates. We show that
the intersection of these polynomial spaces is the null space. The analysis
requires the derivation of subtle representations of orthogonal polynomials on
triangles. Up to four triangles have to be considered to identify that the
intersection is trivial.

1. Introduction

In this paper, we will investigate the intersection of bivariate orthogonal poly-
nomials on triangle patches. This problem arises in the theory of a posteriori error
estimation for finite element discretizations of elliptic partial differential equations;
in particular, if the local polynomial degree of the finite element spaces is increased
during the solution process. Before we give the precise mathematical formulation
of this problem we will sketch its application in the finite element analysis.

A posteriori error estimation and adaptivity are well established methodologies
for the numerical solution of partial differential equations by finite elements (cf. [2],
[3], [21], [1], [4], [18], [9], [16], [19], [7]).

Some types of error estimators, for example hierarchical ones (see, e.g., [5], [8],
[6]), require explicitly or implicitly the saturation assumption which states that the
error on the refined mesh and/or with higher polynomial degree is strictly smaller
than the error on the previous mesh/polynomial degree. In the pioneering paper
[10] the saturation assumption is proved for the Poisson problem in two spatial
dimensions under the assumption that the data oscillations are small. In [16] the
convergence of adaptive finite element methods (AFEM) for general (nonsymmet-
ric) second order linear elliptic partial differential equations is proved, where the
term “adaptivity” is understood in the sense of adaptive mesh refinement and the
polynomial degree stays fixed. The theory in [16] also generalizes the proof of the
saturation property to quite general second order elliptic problems and estimates
the error on the refined mesh by the error of the coarser mesh plus a data oscillation
term.
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Figure 1. Triangle patch T := {Ki : 1 ≤ i ≤ q} around a point z.
The triangles Ki and Ki+1 share an edge Ei. Each triangle Ki has
z as a vertex while its other vertices are denoted by Ai−1 and Ai.

For the proof of the saturation assumption for p-refinement, i.e., when the local
polynomial degree of the finite element space is increased instead of the mesh being
refined, a difficulty arises which is related to a polynomial projection property on
triangle patches. Here orthogonal polynomials in two variables on a triangle (see
[17], [15], [12]) enter, and the problem just raised is also interesting on its own in that
area. By the way, these orthogonal polynomials also have important applications
in the field of spectral methods for discretizing partial differential equations and we
refer to [13] for further details. In particular, orthogonal polynomials on triangles
can be efficiently used for discontinous Galerkin (dG) methods or to discretize
boundary integral equation of negative order since no continuity is required across
simplex boundaries.

Let us now briefly state the problem which we will solve in this paper. For
a two-dimensional domain D ⊂ R

2, the set of bivariate polynomials of maximal
total degree n is denoted by Pn (D). Put P−1(D) := {0}. Let z ∈ R

2 and let
T := {Ki : 1 ≤ i ≤ q} denote a triangle patch around z, i.e., T is a set of (open)
triangles (cf. Figure 1) which

• are pairwise disjoint,
• have z as a common vertex.
• For all 1 ≤ i ≤ q, the triangles1 Ki and Ki+1 have one common edge,
denoted by Ei, which connects the common vertices z and Ai of Ki and
Ki+1.

Thus

(1.1) Ki = convo(z, Ai−1, Ai),

where conv denotes the convex hull of the given points and convo the open interior
of this convex hull.

1We use here the convention K0 := Kq and Kq+1 := K1 and analogously for the vertices Ai

and the edges Ei. Clearly q ≥ 3 holds.
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Let Ω := int
(⋃q

i=1 Ki

)
and let S := Ω ∩ (

⋃q
i=1 ∂Ki) denote the inner mesh

skeleton. We denote by Pn (T ) the space of piecewise polynomials, i.e.,

Pn (T ) :=
{
f : Ω\S → R | ∀i ∈ {1, . . . , q} f

∣∣
Ki

∈ Pn (Ki)
}
.

We consider Pn(Ω) as a linear subspace of Pn(T ) by its natural embedding.
For i = 1, . . . , q define a weight function ωi := aibici on Ki, where ai, bi, ci are

affine linear functions which vanish on the respective edges of Ki. Thus ωi is the
product of the barycentric coordinates in Ki or, in other terms, a cubic bubble
function which is positive on Ki. We define the inner product (·, ·)T on T by

(1.2) (u, v)T :=

q∑
i=1

(u, v)Ki
,

where

(1.3) (u, v)Ki
:=

∫
Ki

u(x, y) v(x, y)ωi(x, y) dx dy.

Denote by P
⊥
n−1(Ki) the orthoplement of Pn−1(Ki) in Pn(Ki) with respect to the

inner product (1.3). Let ΠT
n : Pn(Ω) → Pn−1(T ) denote the restriction to Pn(Ω) of

the orthogonal projection of Pn(T ) onto Pn−1(T ) with respect to the inner product
(1.2).

Theorem 1.1. Let n ≥ 1. Then the following three statements are equivalent and
each of them holds.
(a) If u ∈ Pn(Ω) and (u,w)T = 0 for all w ∈ Pn−1(T ) then u = 0.
(b)

⋂
i=1,...,q P

⊥
n−1(Ki) = {0}.

(c) The map ΠT
n : Pn(Ω) → Pn−1(T ) is injective.

The equivalence of the three statements is trivial, so we can pick one of them as
what we aim to prove. It turns out that (b) is the most convenient statement for
a proof. Then it is natural to examine first the intersection of two such spaces for
adjacent triangles, i.e., P⊥

n−1(Ki)∩P
⊥
n−1(Ki−1). This will be the subject of Section

3, where explicit knowledge of orthogonal polynomials on the triangle for the inner
product (1.3), to be summarized in Section 2, is crucial.

By Section 3 the intersection for two adjacent triangles is mostly {0}, but there
are exceptional cases. For these cases it is necessary to consider the intersection of
spaces for three adjacent triangles, and in one case for four adjacent triangles, in
order to get an intersection {0}. This is the subject of Section 4 (for n > 1) and of
Section 5 (for n = 1).

The equivalent formulation (c) of Theorem 1.1 raises the question of whether to
estimate (v,ΠT

n v)T from below, and on the dependence of the triangle patch T .
Some generalities about this will be given in Section 6.

In principle, all computations in this paper can be done by hand. Nevertheless,

some of the more tedious computations we have done in Mathematica
�
, while we

have also checked many of the other computations using this program.
It is quite probable that the results and proofs in this paper can be carried over

to the case that ωi := (aibici)
α (α > −1), i.e., that the weight function is some

power of the product of the barycentric coordinates. We have refrained from doing
the computations in this more general case because only the special case is needed
in the application we have sketched.
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2. Orthogonal polynomials on the triangle

Let α, β > −1. The Jacobi polynomial P
(α,β)
n (see for instance [20]) is a polyno-

mial of degree n such that∫ 1

−1

P (α,β)
n (x) q(x) (1− x)α(1 + x)β dx = 0

for all polynomials q of degree less than n, and

P (α,β)
n (1) =

(α+ 1)n
n!

.

Here the shifted factorial is defined by (a)n := a(a+1) . . . (a+n− 1) for n > 0 and

(a)0 := 1. All zeros of P
(α,β)
n lie in (−1, 1), so it has definite sign on [1,∞) and on

(−∞,−1].
The Jacobi polynomial has an explicit expression in terms of a terminating Gauss

hypergeometric series

2F1

(
−n, b

c
; z

)
:=

n∑
k=0

(−n)k(b)k
(c)k k!

zk

as follows:

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
.

There is the symmetry relation

P (α,β)
n (−x) = (−1)nP (β,α)

n (x).

Let T1 be the open (unit) triangle

(2.1) T1 := {(x, y) | x, y, 1− x− y > 0}.
Let α, β, γ > −1. Define in terms of Jacobi polynomials the bivariate polynomial

(2.2) P
(α,β,γ)
n,k (x, y) := (1− x)k P

(α,β+γ+2k+1)
n−k (1− 2x)P

(β,γ)
k

(
1− 2y

1− x

)
.

This is a polynomial of degree n in x and y. For (n, k) 
= (m, j) we have the
orthogonality relation

(2.3)

∫
T1

P
(α,β,γ)
n,k (x, y)P

(α,β,γ)
m,j (x, y)wα,β,γ(x, y) dx dy = 0,

where wα,β,γ(x, y) := xαyβ(1− x− y)γ . This follows immediately from the orthog-
onality relations for Jacobi polynomials if we write∫

T1

f(x, y) dx dy =

∫ 1

0

(∫ 1−x

0

f(x, y) dy

)
dx

=

∫ 1

0

(1− x)

(∫ 1

0

f(x, (1− x)t) dt

)
dx.

Thus with respect to the inner product for L2(T1, x
αyβ(1−x−y)γ dx dy) the system

{P (α,β,γ)
m,j }0≤j≤m≤n is an orthogonal basis of Pn(T1).
These bivariate orthogonal polynomials on the triangle were introduced by Pror-

iol [17]; see also the survey [15] and the monograph [12]. In the context of numerical
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analysis they were rediscovered in special cases in [11] and they got ample coverage
in the monograph [14].

Denote by P
⊥
n−1(T1) the orthoplement of Pn−1(T1) in Pn(T1) with respect to

the inner product just mentioned. (So P
⊥
−1(T1) = P0(T1) consists of the constant

functions.) Then the system {P (α,β,γ)
n,j }0≤j≤n is a basis of P⊥

n−1(T1). In particular,

the polynomial (x, y) �→ P
(α,β+γ+1)
n (1− 2x) is in P

⊥
n−1(T1).

The symmetric group S3 naturally acts on T1. By considering the action of S3

on (2.3) we obtain five further orthogonal bases for Pn with respect to the inner
product for L2(T1, x

αyβ(1−x−y)γ dx dy). The six bases are as follows (considered
as functions of (x, y)):

{P (α,β,γ)
m,j (x, y)}0≤j≤m≤n , {P (β,α,γ)

m,j (y, x)}0≤j≤m≤n ,

{P (β,γ,α)
m,j (y, 1− x− y)}0≤j≤m≤n , {P (α,γ,β)

m,j (x, 1− x− y)}0≤j≤m≤n ,

{P (γ,α,β)
m,j (1− x− y, x)}0≤j≤m≤n , {P (γ,β,α)

m,j (1− x− y, y)}0≤j≤m≤n .

(2.4)

In particular, each of these systems, when only taken for m = n, 0 ≤ j ≤ n, is
an orthogonal basis for P

⊥
n−1(T1). In combination with (2.2) this shows that the

following polynomials in (x, y) are elements of P⊥
n−1(T1):

(2.5) P (α,β+γ+1)
n (1− 2x), P (β,α+γ+1)

n (1− 2y), P (γ,α+β+1)
n (2(x+ y)− 1).

If T is another open triangle in R
2 and if Λ is an affine transformation of R2

which maps T onto T1 then the polynomials P
(α,β,γ)
n,k ◦Λ are orthogonal on T with

respect to the weight function wα,β,γ ◦ Λ. If α = β = γ then the inner product on
T is independent, up to constant factor, of the choice of Λ. In the sequel we will
have α = β = γ = 1. Similarly, as for T1, we denote by P

⊥
n−1(T ) the orthoplement

of Pn−1(T ) in Pn(T ) with respect to this inner product.

3. The intersection of n-th degree orthogonal polynomial spaces

for two adjacent triangles

In this section we keep using the conventions and definitions of Section 2 for
α = β = γ = 1, and we will compare the orthogonal polynomials on the triangle
T1 for the weight function w1,1,1 with the orthogonal polynomials on the adjacent
triangle

(3.1) Kc,d := convo
(
(1, 0), (0, 0),

(
−c
d−c ,

1
d−c

))
(c 
= d)

for the weight function w1,1,1 ◦ Λ, where Λ is the affine map sending Kc,d to T1,
which is given by

Λ(x, y) = (x+ cy, (d− c)y).

We will prove:

Theorem 3.1. For n > 2 the intersection of the spaces of orthogonal polynomials
of degree n on T1 and Kc,d, i.e., the space P

⊥
n−1(T1) ∩ P

⊥
n−1(Kc,d), has dimension

zero unless c = 0 or d = 1 or d − c = 1 or c = 1, d = 0. If c = 0, d = 1 then
the intersection trivially has dimension n + 1. In all other exceptional cases the
intersection has dimension 1.

For n = 2 the intersection has dimension zero unless c = 0 or d = 1 or d− c =
±1. If c = 0, d = 1 then the intersection trivially has dimension 3. In all other
exceptional cases the intersection has dimension 1.
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For n = 1 the intersection has dimension 1 except in the trivial case c = 0,
d = 1, when it has dimension 2.

In the cases that the intersection has dimension 1, it is spanned by a polynomial

q
(c,d)
n (x, y) as follows:

q(0,d)n (x, y) = P (1,3)
n (1− 2x),(3.2)

q(c,1)n (x, y) = P (1,3)
n (2(x+ y)− 1),(3.3)

q(c,c+1)
n (x, y) = P (1,3)

n (1− 2y),(3.4)

q(1,0)n (x, y) = y−1
(
P

(1,1)
n+1 (1− 2(x+ y))− P

(1,1)
n+1 (1− 2x)

)
,(3.5)

q
(c,c−1)
2 (x, y) = 28

(
6x2 + 6cxy + c(c+ 1)y2

)
− 21(c+ 3)(2x+ cy) + 3c2 + 15c+ 18,(3.6)

q
(c,d)
1 (x, y) = 3(c− d+ 1)x+ 3cy − 2c+ d− 1.(3.7)

In the case d− c = 1 the triangles T1 and Kc,d have nonempty open intersection,
so for the application we have in mind the result for this case is not needed.

Observe that, for n = 2, (3.6) agrees up to a constant factor with (3.2), (3.3),
(3.5) for c = 0, 2, 1, respectively.

For usage in the proof we pick from the orthogonal systems in (2.4) one particular
orthogonal basis for P

⊥
n−1(T1), and we also renormalize it. The resulting basis

consists of the following polynomials pn,k (k = 0, . . . , n).

pn,k(x, y) :=
P

(1,1,1)
n,k (y, x)

P
(1,1,1)
n,k (0, 0)

(3.8)

= 2F1

(
−n+ k, n+ k + 5

2
; y

)
(1− y)k 2F1

(
−k, k + 3

2
;

x

1− y

)

= 2F1

(
−n+ k, n+ k + 5

2
; y

) k∑
j=0

(−k)j(k + 3)j
(2)jj!

xj(1− y)k−j .(3.9)

Similarly, for an orthogonal basis of P
⊥
n−1(Kc,d) we will take the polynomials

(x, y) �→ pn,k(x+ cy, (d− c)y) (k = 0, . . . , n).

Proof of Theorem 3.1. By (2.5) the polynomials

(3.10) P (1,3)
n (1− 2x), P (1,3)

n (1− 2y), P (1,3)
n (2(x+ y)− 1)

in (x, y) are elements of P⊥
n−1(T1), and the polynomials

(3.11) P (1,3)
n (1− 2(x+ cy)), P (1,3)

n (1− 2(d− c)y), P (1,3)
n (2(x+ dy)− 1)

are elements of P⊥
n−1(Kc,d). Hence for c = 0 or d = 1 or d− c = 1 the intersection

considered in the theorem has dimension at least 1, and the polynomial given by
(3.2), (3.3), (3.4), respectively, is in this intersection.

A general element in P
⊥
n−1 (T1) has the form

∑n
k=0 αkpn,k(x, y), and a general

element in P
⊥
n−1 (Kc,d) has the form

∑n
k=0 βkpn,k(x + cy, (d − c)y). Hence each

nonzero element in P
⊥
n−1 (T1) ∩ P

⊥
n−1 (Kc,d) corresponds to a nontrivial solution of
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the homogeneous linear system of equations

coeff

(
n∑

k=0

(
αkpn,k(x, y)− βkpn,k(x+ cy, (d− c)y)

)
, xrym

)
= 0

(r,m = 0, 1, . . . , n, r +m ≤ n)

(3.12)

of 1
2 (n+ 1)(n+ 2) equations in the 2(n+ 1) unknowns α0, . . . , αn, β0, . . . , βn.
By (3.8) and (2.2) the n + 1 equations in (3.12) involving the coefficient of xr

(r = 0, . . . , n) amount to

n∑
k=0

(αk − βk)
P

(1,1)
k (1− 2x)

P
(1,1)
k (1)

= 0,

which implies αk = βk (k = 0, . . . , n). So the system of equations (3.12) reduces to

n∑
k=0

αk coeff (pn,k(x, y)− pn,k(x+ cy, (d− c)y), xrym) = 0

(r = 0, . . . , n− 1, m = 1, . . . , n, r +m ≤ n),

(3.13)

which are 1
2n(n+1) homogeneous linear equations in the n+1 unknowns α0, . . . , αn.

First we consider the case n = 1. From (3.9) we get that

p1,0(x, y) = 1− 3y p1,1(x, y) = 1− 2x− y.

Then we have to solve α0, α1 from the equation

α0(1− 3y) + α1(1− 2x− y) = α0(1− 3(d− c)y) + α1(1− 2x− (d+ c)y).

This yields

3(d− c− 1)α0 + (d+ c− 1)α1 = 0,

which has (if not c = 0, d = 1) a one-dimensional solution space spanned by

(α0, α1) := ( 12 (1 − d − c), 3
2 (d − c − 1)). Then q

(c,d)
1 (x, y) given by (3.7) equals

α0p1,0(x, y) + α1p1,1(x, y).
Now let n ≥ 2. The power series coefficients in the left-hand sides of the equations

(3.13) can be computed by using (3.9). We can rewrite the system (3.13) as

(3.14)
1

r!

n∑
k=r

αkfk,r,m(c, d) = 0 (r = 0, . . . , n− 1, m = 1, . . . , n, r +m ≤ n),

where

fk,r,m(c, d) =

min(m,n−k)∑
i=max(0,m−k+r)

(−n+ k)i(n+ k + 5)i
(2)i i!

× (−k)r(k + 3)r(r − k)m−i

(2)r(m− i)!
(1− (d− c)m)

−
min(m−1,n−k)∑

i=max(0,m−k+r)

(−n+ k)i(n+ k + 5)i
(2)i i!

×
min(k,m+r−i)∑

j=r+1

(−k)j(k + 3)j(j − k)m+r−i−j

(2)j(j − r)!(m+ r − i− j)!
cj−r(d− c)m+r−j.
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In particular,

fr,r,m(c, d) =
(−1)r(2r + 2)!

(r + 1) (r + 2)!

(−n+ r)m (n+ r + 5)m
(2)mm!

(1− (d− c)m),

which is nonzero (note that 0 ≤ m ≤ n−r, hence (−n+r)m 
= 0) except if d = c+1
or d = c− 1 and m even. Thus, for d 
= c+ 1 the system (3.14) has a subsystem

(3.15)
n∑

k=r

αkfk,r,1(c, d) = 0 (r = 0, . . . , n− 1)

with fr,r,1(c, d) 
= 0. Thus αn successively determines αn−1, αn−2, . . . , α0, by which
the system (3.14) has a solution space of dimension at most 1 if d 
= c+ 1.

For d = c+ 1 we have fr,r,m(c, c+ 1) = 0, while

fr+1,r,m(c, c+ 1) = (−1)m+r+1 (n− r − 1)! (n+ r + 6)m−1

(n− r −m)! (m− 1)!m!

(r + 4)r+1

r + 2
c.

This is nonzero unless c = 0, but if c = 0 then d = 1 and we are in the trivial
case. Thus, for d = c + 1, c 
= 0 we successively get from (3.15) together with
fr,r,m(c, c+1) = 0, fr+1,r,m(c, c+1) 
= 0 that αn = 0, αn−1 = 0,. . . ,α1 = 0. So only
α0 may be nonzero by which the system (3.14) has a solution space of dimension
at most 1. In the beginning of the proof we already saw that this dimension is at
least 1. This settles the case d = c+ 1 in the theorem.

In the next step we consider the cases (r,m) = (n− 1, 1), (n− 2, 1), (n− 2, 2) of
(3.14) (for n = 2 these are all possible cases). This gives the following system of
three homogeneous linear equations in αn, αn−1, αn−2:

− (−1)n(c+ d− 1)(2n+ 1)!

(n− 1)! (n+ 2)!
αn +

2(−1)n(c− d+ 1)(n+ 2)(2n− 1)!

(n− 1)! (n+ 1)!
αn−1 = 0,

(−1)n(c+ (c+ d− 1)n)(2n)!

(n− 2)! (n+ 2)!
αn

−
(−1)n 22n−1(c(n+ 1)− (d− 1)(n+ 3))( 12 )n

n(n+ 1)(n− 2)!
αn−1

− 2(−1)n(c− d+ 1)(2n+ 3)(2n− 3)!

(n− 2)!n!
αn−2 = 0,

−
(−1)n

(
2cd+ ((c+ d)2 − 1)n

)
(2n)!

2(n− 2)! (n+ 2)!
αn

+
(−1)n(c2 − d2 + 1)(n+ 2)(2n− 1)!

(n− 2)! (n+ 1)!
αn−1

− 2(−1)n((c− d)2 − 1)(n+ 2)(2n+ 3)(2n− 3)!

3(n− 2)!n!
αn−2 = 0.

(3.16)

The 3× 3 determinant of the coefficients of the system (3.16) can be computed to
be equal to

(−1)n+124n(2n)! ( 12 )n−1(
1
2 )n+2

3(n− 2)!n! ((n+ 1)!)2
c(d− 1)(c− d+ 1)(c− d− 1).

Thus αn = αn−1 = αn−2 = 0 if not c = 0 or d = 1 or c − d = ±1. Together with
(3.15) and fr,r,1(c, d) 
= 0 this implies that all αk are zero if not c = 0 or d = 1 or
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c−d = ±1. This settles the theorem in the nonexceptional case except if c−d = 1.
For c = 0 or d = 1 the theorem is also settled now because we already observed in
the beginning of the proof that the solution space has dimension at least 1 in these
cases.

Now consider the case d = c− 1. Then the third equation in (3.16) is a multiple
of the first equation, so we can solve from the first and second equation of (3.16)
that

αn−1 =
(c− 1)n(2n+ 1)

(n+ 2)2
αn,

αn−2 =
(n− 1)n(2n− 1)

(
3(n+ 1) + c(c− 2)(2n+ 1)

)
(n+ 1)(n+ 2)2(2n+ 3)

αn.

(3.17)

For n = 2 we conclude that the intersection has dimension 1 and that it contains
the polynomial p2,2(x, y)+α1p2,1(x, y)+α0p2,0(x, y) with α1 and α0 given by (3.17)
for n = 2 and α2 = 1. Together with (3.9) this yields (3.6).

For n > 2 we plug the above two equations into the cases (r,m) = (n−3, 1), (n−
3, 2), (n − 3, 3) of (3.14) with d = c − 1. The result is three homogeneous linear
equations in αn, αn−3 of which the one for m = 2 is trivial and of which the other
two yield αn = αn−3 = 0 unless c = 0, 1, 2. Again, together with (3.15) and
fr,r,1(c, d) 
= 0 this implies that all αk are zero if not c = 0, 1, 2. For c = 0 and for
c = 2 implying d = 1 we already saw that the solution space has dimension 1.

So the only remaining case to be considered is (c, d) = (1, 0). We will show that

qn(x, y) := q
(1,0)
n (x, y), given by (3.5), clearly a polynomial of degree n, yields a

(nonzero) element qn of P⊥
n−1 (T1) ∩ P

⊥
n−1 (Kc,d). By (2.5) and (2.2) we see that

(x, y) �→ P
(1,1)
n+1 (1−2x) is an orthogonal polynomial of degree n+1 on T1 with respect

to the weight function x and that (x, y) �→ P
(1,1)
n+1 (1−2(x+y)) = (−1)nP

(1,1)
n+1 (2(x+

y)−1) is an orthogonal polynomial of degree n+1 on T1 with respect to the weight
function 1− x− y. Then it holds for any polynomial r(x, y) of degree < n that∫∫

T1

qn(x, y) r(x, y) xy(1− x− y) dx dy

=

∫∫
T1

P
(1,1)
n+1 (1− 2(x+ y)) (1− x− y)r(x, y) x dx dy

−
∫∫

T1

P
(1,1)
n+1 (1− 2x) xr(x, y) (1− x− y) dx dy = 0− 0 = 0.

Hence qn ∈ P
⊥
n (T1). Since qn is invariant under the transformation (x, y) �→ (x +

y,−y), we have qn ∈ P
⊥
n (K1,0)∩P

⊥
n (T1). Since we already proved that in this case

the intersection has dimension at most one, we are finished. �

4. The intersection of n-th degree orthogonal polynomial spaces

for a triangle patch (case n > 1)

Since polynomial spaces Pn (D) are invariant under affine coordinate transfor-
mations, it suffices to prove Theorem 1.1 for a reference configuration with center
z := (0, 0) and with one of the triangles, say Ki, equal to the unit triangle T1

given by (2.1). Hence, the adjacent triangle Ki+1 to the left of Ki lies in the left
half-plane while the other one, i.e., Ki−1 lies in the lower half-plane. See Figure 2.
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In this Section we will prove the intersection property Theorem 1.1(b) for poly-
nomial degrees n > 1. First we will describe the exceptional cases in Theorem 3.1
in terms of geometric quantities. For this we introduce the “critical sets” for a
triangle; for an illustration see Figure 3.

Figure 2. Reference configuration. Ki = T1 is the unit triangle,
Ki+1 is in the left half-plane and Ki−1 in the lower half-plane.
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Figure 3. Critical sets for the triangle T and critical sets for the
unit triangle.
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Definition 4.1. For a triangle T with vertices2 A,B,C, the critical sets with
respect to two vertices A,B are

Lcritical (T,A,B) := {A+ t (B −A) : t ≥ 1} ,
Qcritical (T,A) := B + C −A,

L2
critical (T,A) := {2B −A+ t (C −B) : t ∈ R} ,

Ln,tot
critical (T,A) := Lcritical (T,A,B) ∪ Lcritical (T,A,C) ∪ {Qcritical (T,A)} (n > 2),

L2,tot
critical (T,A) := Lcritical (T,A,B) ∪ Lcritical (T,A,C) ∪ L2

critical (T,A) (n = 2).

Note that an orientation preserving affine map sending a triangle T to a tri-
angle T̃ maps the critical sets of T to the corresponding critical sets of T̃ . Also
note that, for n = 2, L2

critical (T,A) contains Qcritical (T,A) and intersects with
Lcritical (T,A,B) and with Lcritical (T,A,C).

Proposition 4.2. Let K1 = convo (A,B,C) and K2 = convo (B,A,D) be two
disjoint triangles with common edge AB. Then for n > 1:

dim
(
P
⊥
n−1 (K1) ∩ P

⊥
n−1 (K2)

)
=

{
0 if D /∈ Ln,tot

critical (K1, C) ,

1 if D ∈ Ln,tot
critical (K1, C) .

Proof. We consider first the case that K1 = T1, and apply Theorem 3.1. Let

D =
(

−c
d−c ,

1
d−c

)
(cf. (3.1)). The exceptional cases are given by

(1) c = 0. Since K1 and K2 have disjoint interior this is equivalent to

D ∈ Lcritical

(
T1, (0, 1), (0, 0)

)
.

(2) d = 1. Again, taking into account that K1 and K2 have empty open
intersection we get that this case is equivalent to

D ∈ Lcritical

(
T1, (0, 1), (1, 0)

)
.

(3) d − c = 1. This case contradicts the condition K1 ∩ K2 = ∅ and, hence,
cannot arise.

(4) c = 1, d = 0. This case is equivalent to D = Qcritical

(
T1, (0, 1)

)
= (1,−1).

(5) n = 2 and d = c− 1. Then D = (s,−1) (s ∈ R), so this case is equivalent
to D ∈ L2

critical

(
T1, (0, 1)

)
.

The general case follows by employing an affine pullback of a general triangle
K1 = convo (A,B,C) to T1 such that C is sent to (0, 1). �
Proof of Theorem 1.1(b) for n > 1. We use the numbering of triangles, edges, ver-
tices in Tz as in Figure 1. If there exists an edge Ei with adjacent triangles Ki,
Ki+1 such that

Ai+1 /∈ Ln,tot
critical (Ki, Ai−1) ∨ Ai−1 /∈ Ln,tot

critical (Ki+1, Ai+1)

we conclude from Proposition 4.2 that

P
⊥
n−1 (Ki) ∩ P

⊥
n−1 (Ki+1) = {0}

and the statement follows.
Hence, for the rest of the proof we always assume that

(4.1) ∀i ∈ {1, . . . , q} Ai+1 ∈ Ln,tot
critical (Ki, Ai−1) ∧ Ai−1 ∈ Ln,tot

critical (Ki+1, Ai+1) .

2As a convention we list the vertices A,B,C of a triangle T = convo (A,B,C) always in the
counterclockwise ordering.
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Figure 4. Illustration of Case a) in the proof of Theorem 1.1(b)
for n > 1.

Clearly we can pick a vertex Ai such that the inner angle at Ai, (i.e., the angle
∠Ai−1AiAi+1, seen from z) is less than π. This property excludes that Ai+1 ∈
Lcritical (Ki, Ai−1, Ai), or equivalently Ai−1 ∈ Lcritical (Ki+1, Ai+1, Ai). The prop-
erty is also preserved under affine maps. We distinguish between the following
cases.

Case a) Ai+1 ∈ Lcritical (Ki, Ai−1, z).
Without loss of generality we can work in the reference situation (cf. Figure 4) that
Ki+1 = T1, i.e., Ai+1 = (0, 1), z = (0, 0) and Ai−1 = (0, s) for some s < 0. From
Theorem 3.1, in particular from (3.2), it follows that P

⊥
n−1 (Ki+1) ∩ P

⊥
n−1 (Ki) is

spanned by the polynomial q(x, y) := P
(1,3)
n (1− 2x). Note that the adjacent trian-

gle Ki+2 left to T1 lies in the left half-plane. Hence q is either positive on Ki+2 or
negative, by which it cannot be orthogonal to all constant functions on Ki+2. We
conclude that

P
⊥
n−1 (Ki+2) ∩ P

⊥
n−1 (Ki+1) ∩ P

⊥
n−1 (Ki) = {0} .

Case b) Ai+1 = Qcritical (Ki, Ai−1) and Ai−2 ∈ Lcritical (Ki, Ai, z).
Then Ai ∈ Lcritical (Ki−1, Ai−2, z). So as in case a), but now with Ki = T1, we
conclude that

P
⊥
n−1 (Ki−1) ∩ P

⊥
n−1 (Ki) ∩ P

⊥
n−1 (Ki+1) = {0} .

Case c) Ai+1 = Qcritical (Ki, Ai−1) and Ai−2 ∈ Lcritical (Ki, Ai, Ai−1).
Without loss of generality we can work in the reference configuration (see Fig-
ure 5) that Ki = T1 with Ai−1 = (0, 0), Ai = (1, 0), z = (0, 1). Then Ki+1 =
convo ((1, 0), (1, 1), (0, 1)), Ki−1 = convo ((0, 0), (0, 1), (s, 0)) for some s < 0, and
Ki+2 = convo ((0, 1), (1, 1), (t, u)) with u > 1. From Theorem 3.1, in particular
from (3.4), we conclude that P

⊥
n−1 (Ki) ∩ P

⊥
n−1 (Ki−1) is spanned by the polyno-

mial r(x, y) := P
(1,3)
n (1− 2y). By arguing as in Case a) we conclude that r is not

changing sign in Ki+2 (since y ≥ 1). Hence

P
⊥
n−1 (Ki−1) ∩ P

⊥
n−1 (Ki) ∩ P

⊥
n−1 (Ki+1) ∩ P

⊥
n−1 (Ki+2) = {0} .
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Figure 5. Illustration of the geometric argument for case c). The
points Ai−2, Ai−1, Ai are collinear and Ki ∪Ki+1 form a parallel-
ogram.

Case d) Ai+1 = Qcritical (Ki, Ai−1) and Ai−2 = Qcritical (Ki, Ai).
Without loss of generality we can consider the reference situation that Ki = T1

with z = (0, 0), Ai−2 = (1,−1), Ai−1 = (1, 0), Ai = (0, 1), Ai+1 = (−1, 1). From
Theorem 3.1 we conclude that P⊥

n−1 (Ki)∩P⊥
n−1 (Ki−1) is spanned by the polynomial

qn(x, y) := q
(1,0)
n (x, y) given by (3.5), and that P⊥

n−1 (Ki+1)∩ P
⊥
n−1 (Ki) is spanned

by the polynomial qn(y, x). Since these two polynomials are linearly independent
(compare the highest degree part of both polynomials), we have shown that

P
⊥
n−1 (Ki−1) ∩ P

⊥
n−1 (Ki) ∩ P

⊥
n−1 (Ki+1) = {0} .

Case e) Ai+1 ∈ L2
critical (Ki, Ai−1) and Ai−2 ∈ Lcritical (Ki, Ai, Ai−1).

We can assume that Ki = T1 with z = (0, 0). Then Ai+1 = (−1, c). From (3.6) we

have that P⊥
n−1 (Ki+1) ∩ P

⊥
n−1 (Ki) is spanned by the polynomial q

(c,c−1)
2 (y, x) and

from (3.3) that P⊥
n−1 (Ki)∩P

⊥
n−1 (Ki−1) is spanned by the polynomial P

(1,3)
n (2(x+

y) − 1). A computation shows that these two polynomials are linearly dependent
iff c = 2. But then the inner angle at Ai equals π, which we excluded.

Case f) Ai+1 ∈ L2
critical (Ki, Ai−1) and Ai−2 ∈ Lcritical (Ki, Ai, z).

Again assume that Ki = T1 with z = (0, 0). Then Ai−2 = (0, s) for some s < 0.
We can argue as in case a), but now with Ki = T1.

Case g) Ai+1 ∈ L2
critical (Ki, Ai−1) and Ai−2 ∈ L2

critical (Ki, Ai).
Again assume that Ki = T1 with z = (0, 0). Then Ai+1 = (−1, c) and Ai−2 =
(d,−1) for some c, d ∈ R. From (3.6) we have that P

⊥
n−1 (Ki+1) ∩ P

⊥
n−1 (Ki)

is spanned by the polynomial q
(c,c−1)
2 (y, x) and that P

⊥
n−1 (Ki) ∩ P

⊥
n−1 (Ki−1) is

spanned by the polynomial q
(d,d−1)
2 (x, y). A computation shows that these two

polynomials are linearly dependent iff c = d = −3 or c = d = 2. But in the first
case the triangles Ki−1 and Ki+1 intersect, and in the second case the inner angle
at Ai equals π. �
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Figure 6. Illustration of the last part of the proof of Lemma 5.1
(q even). Ai+1 = Aj (left picture) because otherwise the top right
picture gives a contradiction. But now the bottom picture gives a
contradiction.

5. The intersection of n-th degree orthogonal polynomial spaces

for a triangle patch (case n = 1)

In this section we will prove the intersection property Theorem 1.1(b) polynomial
degrees n = 1. We need two simple lemmas.

Lemma 5.1. Let T := {Ki : 1 ≤ i ≤ q} denote a triangle patch around z ∈ R
2.

Then there are Ki−1, Ki, Ki+1 of which the barycenters are not collinear.

Proof. Let Mi be the barycenter of Ki. We will show that the points Mi (i =
1, . . . , q) cannot be collinear. This will imply the statement of the lemma.

We may choose z = (0, 0). Suppose that the points Mi = 1
3 (Ai−1 + Ai)

(i = 1, . . . , q) are collinear. Then all vectors 3(Mi − Mi−1) = Ai − Ai−2 are
proportional. If q is odd then this implies that all vertices Ai are collinear, which
is impossible. If q is even then the set of vertices A1, A3, . . . , Aq−1 and the set of
vertices A2, A4, . . . , Aq are both collinear and the two collinear sets lie on parallel
lines. Since all vertices cannot be collinear, these two parallel lines have to be dis-
tinct. After applying an affine linear map we may assume that one of the lines is
y = 0 with Ai = (0, 0) for some i and with all other vertices on this line having
coordinates (x, 0) with x > 0, and that the other line is y = 1 with Aj = (0, 1) for
some j 
= i and with all other vertices on this line having coordinates (x, 1) with
x > 0. First we show that j = i+1. Indeed, if j 
= i+1 then the edge connecting Aj

and Aj−1 will cross the edge connecting Ai and Ai+1, which is not allowed. Thus
Ai+1 = (0, 1). But now the edge connecting Ai+1 and Ai+2 will cross the edge
connecting Ai and Ai−1, which is not allowed (see Figure 6 for this last part of the
proof, where we successively arrive twice at a contradiction). Thus we cannot have
two collinear sets of vertices if q is even. �

Lemma 5.2. Let K be a triangle with barycenter M . Let μ be a finite measure on
K which is invariant under all affine transformations mapping K onto itself (these
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form a group ismorphic to S3). Then

∫
K

p dμ = p(M)μ(K) for all p ∈ P1(K).

This holds, in particular, if dμ(x, y) = ω(x, y) dx dy with ω the product of the
barycentric coordinates for K.

Proof. Let A,B,C be the vertices of K. Since the assertion is trivial for constant
functions, it is sufficient to prove the property for affine linear functions p vanish-
ing on one of the medians AM , BM , CM . Suppose p vanishes on AM . Then
the function p − p(M) is sent to its opposite under the affine map fixing A and
interchanging B and C (check this for the reference triangle T with A = (0, 0),
B = (1, 0), C = (0, 1)). Hence

∫
K
(p− p(M)) dμ = 0. �

Proof of Theorem 1.1(b) for n = 1. Let T := {Ki : 1 ≤ i ≤ q} denote a triangle
patch around a point z ∈ R

2 and let Ω := ∪q
i=1Ki. By Lemma 5.1 there are

Ki−1,Ki,Ki+1 such that their barycenters Mi−1,Mi,Mi+1 are not collinear. Now
suppose that u ∈ P1(Ω) and u ∈ P

⊥
0 (Kj) for j = i − 1, i, i + 1. By Lemma 5.2 we

have for j ∈ {i− 1, i, i+ 1} that

0 =

∫
Kj

u(x, y)ωj(x, y) dx dy∫
Kj

ωj(x, y) dx dy
= u(Mj).

Since the affine linear function u vanishes on three points which are not collinear,
u is identically zero. �

Remark 5.3. If we take the triangle patch such that Ki = T1 with z = (0, 0),

Ai−1 = (1, 0), Ai = (0, 1), Ai−2 = ( −c
d−c ,

1
d−c ) and Ai+1 = ( 1

d′−c′ ,
−c′

d′−c′ ), then we

see from (3.7) that

P
⊥
0 (Ki−1) ∩ P

⊥
0 (Ki) ∩ P

⊥
0 (Ki+1) 
= {0} .

implies that the polynomials q
(c,d)
1 (x, y) and q

(c′,d′)
1 (y, x) are multiples of each other.

A computation shows that then

c′ = k(c− d+ 1), d′ = k(1− d) + 1 (0 
= k ∈ R).

Hence Ai+1 = ( 1
1−kc ,

k(d−c−1)
1−kc ). Then Ai+1−Ai−1 and Ai−Ai−2 are proportional.

By the Proof of Lemma 5.1 this gives the collinearity of the barycenters of Ki−1,
Ki and Ki+1. Thus we have shown once more that, if the barycenters of these three
triangles are not collinear, then P

⊥
0 (Ki−1) ∩ P

⊥
0 (Ki) ∩ P

⊥
0 (Ki+1) = {0}.
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6. Injectivity for the polynomial projection operator:

some follow-up

Recall Theorem 1.1(c) about the injectivity of the polynomial projection operator

ΠT
n : Pn(Ω) → Pn−1(T ). Let ‖·‖T := (·, ·)1/2T and define

c′n(T ) := inf
v∈Pn(Ω)\{0}

(v,ΠT
n v)T

(v, v)T
= inf

v∈Pn(Ω)\{0}

‖ΠT
n v‖2T

‖v‖2T
> 0,(6.1)

c′′n(T ) := inf
v∈Pn(Ω)\{0}

‖v‖2T
‖v‖2L2(Ω)

> 0,(6.2)

čn(T ) := inf
v∈Pn(Ω)\{0}

(v,ΠT
n v)T

(v, v)L2(Ω)
≥ c′′n(T )c′n(T ) > 0.(6.3)

The inequality in (6.1) follows from the injectivity of ΠT
n , while the inequality in

(6.2) is a consequence of the equivalence of all norms on a finite dimensional space.

Remark 6.1. We can expand the squared norms in (6.1) and (6.2). Let Λi be
the orientation preserving affine linear map of T1 onto Ki which sends (0, 0) to z.
Let {pm}m=1,...,n(n+1)/2 be an orthonormal basis for Pn−1(T1) with respect to the
weight function ω on T1. Then

∥∥ΠT
n v

∥∥2
T =

q∑
i=1

detΛi

1
2n(n+1)∑
m=1

(∫
T1

v ◦ Λi pm ω

)2

,

‖v‖2T =

q∑
i=1

detΛi

∫
T1

(v ◦ Λi)
2 ω, ‖v‖2L2(Ω) =

q∑
i=1

detΛi

∫
T1

(v ◦ Λi)
2.

Hence c′′n = c′′n(T ) is independent of the choice of the patch T and it equals

(6.4) c′′n = inf
v∈Pn(T1)\{0}

∫
T1

v(x, y)2 x y (1− x− y) dx dy∫
T1

v(x, y)2 dx dy
.

Remark 6.2. From [21, Prop. 3.46] there follows an n-explicit lower bound for c′′n
as given by (6.4): c′′n ≥ C/(n+ 1)4 with a fixed n-independent constant C > 0.

Since the quotients of integrals in (6.1)–(6.3) are invariant under affine linear
maps, we might restrict to the case that K1 is the reference triangle T1. But in
view of the numerical applications, we consider only translations and rotations of
triangle patches. Thus we restrict in the following to the case that z = 0 and
Aq = (rq, 0) for some rq > 0. The further data determining T are, for i = 1, . . . , q,
the angles αi, βi, γi of the triangle Ki at z, Ai−1, Ai, respectively, together with the
length ri of the edge connecting z with Ai (see Figure 7). Evident constraints on
these numbers are that αi + βi + γi = π and α1 + · · · + αq = 2π. But T would
already be completely determined by α2, . . . , αq, β2, . . . , βq and rq, or by α2, . . . , αq

and r1, . . . , rq. The map (α2, . . . , αq, β2, . . . , βq, rq) ↔ (α2, . . . , αq, r1, . . . , rq) is
continuous in both directions, as can be seen from the following identities obtained
by a combination of the sine rule and the cosine rule for the triangle Ki :

(6.5)
sinαi√

r2i−1 + r2i − 2ri−1ri cosαi

=
sin βi

ri
=

sin(π − αi − βi)

ri−1
.
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Figure 7. Illustration of angles α1, βi, γi, and radii ri for a trian-
gle patch.

The quotients of integrals in (6.1)–(6.3) will depend continuously on v and the
data of T . Therefore, the three constants in (6.1)–(6.3) will depend continuously
on the data of T and they will remain bounded away from zero if we let the data
of T range over a compact set. To fix a compact set, choose δ ∈ (0, π/3] and ρ > 0.

Definition 6.3. The compact set of triangle patches Xq,δ,ρ consists of all T with
αi, βi, γi ≥ δ and ri ≥ ρ (i = 1, . . . , q). Furthermore, define

(6.6) c̃n(q, δ, ρ) := inf
T ∈Xq,δ,ρ

čn(T ).

By the second equality in (6.5) we see that, for given δ and q there exists C > 0
such that ρ ≤ ri ≤ Cρ (i = 1, . . . , q) if T ∈ Xq,δ,ρ. Since the quotients of integrals in
(6.1)–(6.3) are invariant under dilations, c̃n(q, δ, ρ) will be independent of ρ. Since
necessarily qδ ≤ 2π, Xq,δ,ρ is nonempty for only finitely many values of q. We
conclude:

Theorem 6.4. inf
ρ>0, q≥3

c̃n(q, δ, ρ) > 0.

References

[1] Mark Ainsworth and J. Tinsley Oden, A Posteriori Error Estimation in Finite Element

Analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley &
Sons], New York, 2000. MR1885308 (2003b:65001)
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