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AN ACCELERATED RANDOMIZED KACZMARZ ALGORITHM

JI LIU AND STEPHEN J. WRIGHT

Abstract. The randomized Kaczmarz (RK) algorithm is a simple but pow-
erful approach for solving consistent linear systems Ax = b. This paper pro-
poses an accelerated randomized Kaczmarz (ARK) algorithm with better con-
vergence than the standard RK algorithm on ill-conditioned problems. The
per-iteration cost of RK and ARK are similar if A is dense, but RK is much
more able to exploit sparsity in A than is ARK. To deal with the sparse case,
an efficient implementation for ARK, called SARK, is proposed. A compar-
ison of convergence rates and average per-iteration complexities among RK,
ARK, and SARK is given, taking into account different levels of sparseness
and conditioning. Comparisons with the leading deterministic algorithm —
conjugate gradient applied to the normal equations — are also given. Finally,
the analysis is validated via computational testing.

1. Introduction

We consider the problem of finding a solution to a consistent linear system

(1.1) Ax = b,

where A ∈ R
m×n and b ∈ R

m. We denote the rows of A by aTi and the elements of
b by bi, i = 1, 2, . . . ,m. That is,

A =

⎡
⎢⎢⎢⎣
aT1
aT2
...

aTm

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣
b1
b2
...
bm

⎤
⎥⎥⎥⎦ .

(Our convergence results do not apply directly to inconsistent systems. For inconsis-
tent systems, we can solve instead the least-squares problem minx ‖Ax−b‖2, whose
solution x can be found by solving the consistent linear system Ax = y,AT y =
AT b.) Besides consistency of Ax = b, we assume throughout that A has no zero
rows. (Such rows can be detected and eliminated in a trivial preprocessing step.)
We assume for purposes of analysis — though not for purposes of deriving and
specifying the algorithms — that the rows of A are normalized:

(1.2) ‖ai‖2 = 1, i = 1, 2, . . . ,m.
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This assumption does not add significantly to the cost of implementation: We
could simply normalize each ai the first time it is encountered by the algorithm.
Normalization simplifies the analysis in the appendix considerably, and in most
cases will improve the conditioning of the problem, leading to faster convergence.
However, in the description of algorithms in the main body of the paper, we do
not assume (1.2), and include factors ‖ai‖2 as needed. Our randomized algorithms
generate the same sequence of iterates whether or not normalization is carried out
(provided, of course, that a corresponding scaling is applied to b).

The randomized Kaczmarz (RK) algorithm is an algorithm for solving (1.1) that
requires only O(n) storage and has a linear (geometric) rate of convergence. In some
situations, it is even more efficient than the conjugate gradient (CG) method, which
is the most popular iterative algorithm for solving large linear systems. At each
iteration, the RK algorithm randomly selects a row i ∈ {1, 2, . . . ,m} of the linear
system and does an orthogonal projection of the current estimate vector onto the
hyperplane:

(1.3) xk+1 = xk − (aTi xk − bi)

‖ai‖2
ai.

The RK update (1.3) is equivalent to one step of coordinate descent applied to the
dual problem

min
y

1

2
‖AT y‖2 − bT y,

(specifically, a negative gradient step in the ith component of y with steplength
1/‖ai‖22), where the primal variables x and duals y are related through x = AT y;
see [8]. We denote by i(k) the index selected at iteration k, and note that xk

depends on all the indices selected up to iteration k, namely, i(0), i(1), . . . , i(k− 1).
The RK method overcomes two drawbacks of the original Kaczmarz algorithm

[7]. First, the original algorithm selects rows of A cyclically (not randomly) and
may converge very slowly when the data order is poor, for example, when many
neighboring rows are identical. Second, it is difficult to analyze the convergence
rate for the original Kaczmarz algorithm, whereas the expected convergence rate
of RK can be proved in a few lines.

By applying an acceleration scheme due to Nesterov to the standard RK algo-
rithm, we obtain an accelerated randomized Kaczmarz algorithm (ARK) in Sec-
tion 3 and show (Section 5) that its linear convergence is faster than the original
method when the linear system has poor conditioning, as measured by the mini-
mum nonzero eigenvalue of ATA. The cost per iteration of both RK and ARK is
O(n) if the matrix A is dense. If A is sparse, however, the calculus changes. The
cost of an iteration of RK is proportional to the number of nonzeros in ai, whereas
the cost of each ARK iteration is still O(n) in general. We therefore propose in
Section 4 a scheme called SARK in which the ARK updates are cached, to preserve
sparsity in the intermediate vectors. (In the absence of numerical error, the iterates
generated by ARK and SARK are identical.) The average cost per iteration of

SARK is O(
√
δn), where δ is the fraction of nonzero elements in A. In Section 5.2,

we compare the theoretical performance of RK, ARK, and SARK for different
values of the sparsity ratio δ and the minimal eigenvalue λmin, thus giving guidance
about how to choose between these algorithms under various scenarios. We illus-
trate the computational performance of the algorithm on some random problems
in Section 6.
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1.1. Notation. We summarize notations used in the remainder of the paper.

- λmin and λmax are defined to be the minimum and maximum nonzero eigen-
values ATA, respectively.

- ‖X‖ is the spectral norm of the matrix, while ‖X‖F denotes the Frobenius
norm.

- X+ is the Moore-Penrose pseudoinverse of X. Denoting the compact sin-
gular value decomposition of X ∈ R

m×n as X = UΣV T where U and V are
orthonormal matrices (that is, UTU = I and V TV = I) and Σ is nonsingu-
lar and diagonal, we have X+ = V Σ−1UT . Note that λmin = 1/‖(ATA)+‖.

- Given a positive semidefinite matrix M , ‖X‖M is defined as
√

trace(XTMX).
- Define Pc,d(x) as the orthogonal projection of x onto the hyperplane given
by cTx = d, that is,

Pc,d(x) = x− c

‖c‖2 (c
Tx− d).

- PA,b(x) denotes the (Euclidean-norm) projection of x onto the solution set
of Ax = b.

- ej ∈ R
n, j = 1, 2, . . . , n, denotes the jth Euclidean basis vector — a vector

of n zeros except for 1 in position j.

2. Related work

The Kaczmarz algorithm was proposed by Kaczmarz [7], who used the cyclic
projection procedure to solve consistent linear systems Ax = b. He proved the
convergence to the unique solution if A is a square nonsingular matrix. The cyclic
ordering of the iterates made it difficult to obtain iteration-based convergence re-
sults, but Galantai [3] proved a linear convergence rate in terms of cycles. Since the
1980s, the Kaczmarz algorithm has found an important application area in Alge-
braic Reconstruction Techniques (ART) for image reconstruction; see for example
[4] and [5].

Censor et al. [1] proposed a component averaging method to solve (1.1): Parallel-
project the current x onto all hyperplanes and apply an average scheme on all
projections to obtain the next iterate x. This method is essentially a gradient
descent method for solving 1

2‖Ax− b‖2, and can thus handle inconsistent systems.
Strohmer and Vershynin [14] studied the behavior of RK in the case of a consis-

tent system Ax = b in which A has full column rank (making the solution unique).
They proved the linear convergence rate for RK in expectation. Needell [9] also
assumed full column rank, but dropped the assumption of consistency, showing
that the RK algorithm converges linearly to a ball of fixed radius centered at the
solution. The radius is proportional to the distance of b from the image space of
A. Eldar and Needell [2] presented a modified version of the randomized Kaczmarz
method which at each iteration selects the optimal projection from a randomly
chosen set. This technique improves the convergence rate but requires more com-
putation cost in each iteration.

Leventhal and Lewis [8] extended the RK algorithm for consistent linear equal-
ities Ax = b to the more general setting of consistent linear inequalities and equal-
ities: AIx ≥ bI , AEx = bE . The basic idea is quite similar to the RK algorithm:
iteratively update xk+1 by projecting xk onto the randomly selected hyperplane or
half space. The linear convergence rate was proven to be 1 − 1/(L2‖A‖2F ), where
L is the Hoffman constant [6] for the system AIx ≥ bI , AEx = bE .
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Zouzias and Freris [16] considered the case of possibly inconsistent (1.1). They
proposed a randomized extended Kaczmarz algorithm by first projecting b orthog-
onally onto the image space of A to obtain b⊥, then orthogonally projecting the
initial point x0 onto the hyperplane Ax = b⊥. Essentially, the RK algorithm is ap-
plied twice. The convergence rate is proven to be 1−λmin/‖A‖2F , which is the same
as the RK algorithm for consistent linear systems. This method can be considered
as a randomized variant of the extended Kaczmarz method proposed by Popa [13].

3. Algorithm

In this section, we review the randomized Kaczmarz algorithm (RK, Algo-
rithm 1) and propose an accelerated variant called ARK (Algorithm 2). Finally,
we describe an equivalent version of ARK that can be implemented with fewer
operations (Algorithm 3).

Each iteration of RK randomly selects a hyperplane aTi x = bi, for some i ∈
{1, 2, . . . ,m}, and obtains xk+1 by orthogonally projecting xk onto this hyperplane.
As shown at the start of Section 5, this algorithm guarantees linear convergence in
the expectation sense.

Algorithm 1. Randomized Kaczmarz: xK+1 = RK(A, b, x0,K)

1: Initialize k ← 0;
2: while k ≤ K do
3: Choose i = i(k) from {1, 2, 3, . . . ,m} with equal probability;
4: Set xk+1 ← Pai,bi(xk), that is, xk+1 = xk − ai(a

T
i xk − bi)/‖ai‖2;

5: k ← k + 1;
6: end while

We note again that Step 4 does not change if we omit the normalization step,
that is, if ‖ai‖ �= 1. However, when the rows are not normalized, our RK algorithm
becomes inconsistent with the versions described in [8, 14], which select the index
i in Step 3 with probability ‖ai‖22/‖A‖2F . We could simulate the effects of non-
normalized rows by defining a matrix Ā in which row ai is replaced by ‖ai‖2 copies
of the normalized rows ai/‖ai‖. Our Algorithm 1 applied to this virtual matrix
Ā would then be equivalent to Algorithm 1 of [14] applied to A, with the same
convergence results as in that paper (see (5.1), with ‖A‖2F replacing m in the
denominator of the rate constant). Analysis of the accelerated algorithm to be
discussed below could also be performed without the assumption of normalization,
but the situation becomes considerably more complicated in this case. In particular,
several subtle issues related to allowable scalings of A (not dealt with in existing
analyses of accelerated methods) must be addressed. We believe that any additional
generality to be gained by dropping our assumptions of normalization and uniform
probabilities is minor, and would be obscured by the additional complication in the
analysis.

The ARK algorithm applies Nesterov’s accelerated procedure [10] — more fa-
miliar in the context of gradient descent for optimization — to the standard RK al-
gorithm. When applied to minx f(x), gradient descent sets xk+1 ← xk−θk∇f(xk),
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where ∇f is the objective gradient and θk is the stepsize. Nesterov’s accelerated
procedure introduces the sequences {yk} and {vk} and defines the following iterative
scheme:

yk ← αkvk + (1− αk)xk,

xk+1 ← yk − θk∇f(yk),

vk+1 ← βkvk + (1− βk)yk − γk∇f(yk).

With appropriate choices of αk, βk, and γk, this procedure yields better convergence
rates than standard gradient descent.

If we treat the projection operation of step 4 in Algorithm 1 analogously to
the gradient descent step, we can obtain an accelerated version of the RK algo-
rithm. This accelerated randomized Kaczmarz (ARK) procedure is detailed in
Algorithm 2. The scalars αk, βk, and γk in Algorithm 2 are independent of the
vector sequences {xk}, {yk}, and {vk}, and can be calculated offline.

Algorithm 2. Accelerated Randomized Kaczmarz: xK+1 = ARK(A, b, λ, x0,K)

1: Check that λ ∈ [0, λmin];
2: Initialize v0 ← x0, γ−1 ← 0, k ← 0;
3: while k ≤ K do
4: Choose γk to be the larger root of

(3.1) γ2
k − γk

m
=

(
1− γkλ

m

)
γ2
k−1;

5: Set αk and βk as follows:

(3.2) αk ← m− γkλ

γk(m2 − λ)
,

(3.3) βk ← 1− γkλ

m
;

6: Set yk ← αkvk + (1− αk)xk;
7: Choose i = i(k) from {1, 2, 3, . . . ,m} with equal probability;
8: Set xk+1 ← Pai,bi(yk), that is, xk+1 ← yk − ai(a

T
i yk − bi)/‖ai‖2;

9: Set vk+1 ← βkvk + (1− βk)yk − γkai(a
T
i yk − bi)/‖ai‖2;

10: k ← k + 1;
11: end while

We now describe the complexity of these methods for the case of dense A. We
make the standing assumption that the quantities ‖ai‖2, i = 1, 2, . . . ,m are precom-
puted via an initial pass through the matrix. The main computation in Algorithm 1
is in step 4, which requires about 4n operations per iteration. The cost per iteration
of Algorithm 2 is about 11n, incurred in steps 6, 8, and 9.

Although Algorithm 2 is useful for purposes of convergence analysis of the ac-
celerated Kaczmarz algorithm, we describe an equivalent implementation in Algo-
rithm 3 that has a lower cost per iteration. Denoting

gk := ai(a
T
i yk − bi)/‖ai‖2,
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we have xk+1 = yk − gk. Substituting for vk from step 6 into step 9, we obtain

vk+1 = βkvk + (1− βk)yk − γkgk

=

(
βk

αk
+ 1− βk

)
yk − βk

1− αk

αk
xk − γkgk.

By substituting for vk+1 in step 6 of Algorithm 2, for iterate k + 1, we obtain

yk+1 = αk+1vk+1 + (1− αk+1)xk+1

= αk+1

(
βk

αk
+ 1− βk

)
yk − αk+1βk

1− αk

αk
xk

− αk+1γkgk + (1− αk+1)(yk − gk)

=

[
1+αk+1βk

(
1− αk

αk

)]
yk − αk+1βk

1− αk

αk
xk

− (1− αk+1 + αk+1γk) gk.(3.4)

From (3.2) and (3.3), we have

−βk

(
1− αk

αk

)
=

m− γkλ

m

(
1− γk(m

2 − λ)

m− γkλ

)

=
m− γkλ

m
− γk(m

2 − λ)

m
= 1−mγk.

Thus, by substituting into (3.4), we obtain

yk+1 = (1−mγk)αk+1xk + (1− αk+1 +mαk+1γk)yk − (1− αk+1 + αk+1γk)gk.

By making these substitutions into Algorithm 2, we obtain the equivalent im-
plementation of Algorithm 3.

Algorithm 3. Efficient ARK: xK+1 = ARK(A, b, λ, x0,K)

1: Check that λ ∈ [0, λmin];
2: Initialize y0 = x0, γ−1 = 0, k = 0.
3: Generate the sequences {γk : k = 0, 1, . . . ,K+1} and {αk : k = 0, 1, . . . ,K+1}

as in (3.1) and (3.2);
4: while k ≤ K do
5: Choose i = i(k) from {1, 2, 3, . . . ,m} with equal probability;
6: Set sk ← (aTi yk − bi)/‖ai‖2;
7: Set gk ← skai;
8: Set g′k ← (1− αk+1 + αk+1γk) skai;
9: Set y′k+1 ← (1−mγk)αk+1xk + (1− αk+1 +mαk+1γk)yk;

10: Set yk+1 ← y′k+1 − g′k;
11: Set xk+1 ← yk − gk;
12: k ← k + 1;
13: end while

The main computations are in step 6 to step 11 which have operation counts
of about 2n, n, n, 3n, n, and n, respectively, giving a total of 9n. If parallel
computation is possible, then steps 6, 7, and 8 can be performed simultaneously
with step 9 (in time complexity about 3n) while steps 10 and 11 can be performed
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simultaneously (in time about n). In this setting, the total complexity can be
reduced to about 4n — a count identical to the RK algorithm.

4. Efficient implementation for sparse data

This section considers the case in which the data matrix A is sparse, with a
fraction of δ nonzeros (with 0 < δ 
 1) and seeks an efficient implementation of
Algorithm 3 for this case. We assume that the nonzeros are not concentrated in
certain rows of A, that is, the sparsity of each row aTi is also approximately δ.

Note that the ARK approach starts at a significant disadvantage in the sparse
setting. While sparsity can be exploited easily in RK — the average number of
operations for each iteration of Algorithm 1 is approximately 4δn — the operation
counts of the ARK algorithms remain at O(n), since the vectors xk, yk, and vk
are dense in general. (Algorithm 3 has a count of approximately 3n + 6δn per
iteration.) We now seek a modification of Algorithm 3 that “caches” the updates
in order to maintain some sparsity in the update vectors, thus reducing the average
complexity of each ARK iteration.

We start by writing the main updating steps in Algorithm 3 as follows:

sk = (aTi(k)yk − bi(k))/‖ai(k)‖2,(4.1a)

xk+1 = yk − skai(k),(4.1b)

yk+1 = Pkxk +Qkyk −Rkskai(k),(4.1c)

where

Pk = αk+1(1−mγk),(4.2a)

Qk = 1− αk+1 +mαk+1γk,(4.2b)

Rk = 1− αk+1 + αk+1γk.(4.2c)

Since updating xk+1 and yk+1 is quite expensive, we only update them once on
each cycle (that is, once per T iterations). We see by recursive application of
(4.1) that each iterate xk+t, yk+t for t ≥ 1 can be expressed as a linear combi-
nation of xk and yk, plus one other vector. The successive updates from rows
ai(k), ai(k+1), . . . , ai(k+t) can be “cached” in vectors zt and wt, so that xk+t and
yk+t can be written as follows:

xk+t =ρtxk + τtyk + zt,(4.3a)

yk+t =σtxk + νtyk + wt,(4.3b)

where ρt, τt, σt, and νt are scalars. Rather than forming xk+t and yk+t explicitly,
we could instead update the quantities ρt, τt, σt, νt, zt, and wt at each iteration.
The advantage of doing so is that, provided t is not too large, the vectors zt and wt

are not dense, so the cost of updating this implicit representation is usually lower
than the explicit version. At some point, when t grows too large, the vectors zt
and wt “fill in” enough that the advantages of implicit representation are lost. At
this point — after T steps, say — we can store the latest vectors xk+T and yk+T

explicitly, and start a new cycle of T iterations.
We now obtain the update formulae for the quantities ρt, τt, σt, νt, zt, and wt.

At the starting point of a cycle, we set t = 0 and

ρ0 = 1, τ0 = 0, σ0 = 0, ν0 = 1, z0 = w0 = 0,
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so that (4.3) holds for t = 0. In the step from iteration t to iteration (t + 1) of a
cycle, we have

xk+t+1 = yk+t − sk+tai(k+t) = σtxk + νtyk + wt − sk+tai(k+t),

implying that

ρt+1 = σt,

τt+1 = νt,

zt+1 = wt − sk+tai(k+t).

Similarly, from

yk+t+1 = Pk+txk+t +Qk+tyk+t − Rk+tsk+tai(k+t)

= Pk+t(ρtxk + τtyk + zt) +Qk+t(σtxk + νtyk + wt)−Rk+tsk+tai(k+t)

= (Pk+tρt +Qk+tσt)xk + (Pk+tτt +Qk+tνt)yk

+ (Pk+tzt +Qk+twt −Rk+tsk+tai(k+t)),

we have

σt+1 = Pk+tρt +Qk+tσt,

νt+1 = Pk+tτt +Qk+tνt,

wt+1 = Pk+tzt +Qk+twt −Rk+tsk+tai(k+t).

The scalar sk+t can be computed from

sk+t = (aTi(k+t)yk+t − bi(k+t))/‖ai(k+t)‖2

= [aTi(k+t)(σtxk + νtyk + wt)− bi(k+t)]/‖ai(k+t)‖2

= [σta
T
i(k+t)xk + νta

T
i(k+t)yk + aTi(k+t)wt − bi(k+t)]/‖ai(k+t)‖2.(4.4)

We show this approach in full detail, for cycles of fixed length T , in Algorithm 4.
Note that wt and zt have nonzeros in locations where any of the vectors

ai(k), ai(k+1), . . . , ai(k+t−1) contain nonzeros. Thus, assuming that these vectors
do not overlap significantly, and that each of them has about δn nonzeros, we can
estimate that wt and zt have about tδn nonzeros, in the same locations as each
other. The major costs at each iteration are as follows:

- sk+t costs about 6δn operations when evaluated according to (4.4), since
ai(k+t) has about δn nonzeros.

- zt+1 costs about 2δn operations, for the same reason.
- wt+1 costs about 3tδn + 2δn operations, since zt and wt both have about
δnt nonzeros, in the same locations, and ai(k+t) has about δn nonzeros.

The cost of updating xk and yk in Step 15 is about 3n + Tδn each. Therefore,
over a complete cycle of T iterations, we expect an approximate operation count of

T−1∑
t=1

(3tδn+ 10δn) + 6n+ 2Tδn ≈ 1.5(T − 1)Tδn+ 6n+ 12Tδn,

giving an approximate average cost per iteration of

1.5(T − 1)δn+
6n

T
+ 12δn.

This count is minimized by setting T = T ∗ = 2/
√
δ; for this value we obtain an

average count per iteration of 6
√
δn+10.5δn. This is still worse than the iteration
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Algorithm 4. Efficient ARK for Sparse A: xK+1 = SARK(A, b, λ, x0, T,K)

1: Check that λ ∈ [0, λmin];
2: Initialize y0 = x0, γ−1 = 0, k = 0;
3: Generate the sequences

Pk = αk+1(1−mγk), k = 0, 1, . . . ,K,

Qk = 1− αk+1 +mαk+1γk, k = 0, 1, . . . ,K,

Rk = 1− αk+1 + αk+1γk, k = 0, 1, . . . ,K;

4: while k ≤ K do
5: Set t ← 0, x̄ ← xk, ȳ ← yk, ρ0 ← 1, τ0 ← 0, σ0 ← 0, ν0 ← 1, zk ← 0,

wk ← 0;
6: while t < T do
7: if k + t ≥ K then
8: break;
9: end if

10: Choose i = i(k) from {1, 2, 3, . . . ,m} with equal probability;
11: Set

sk+t = (aTi (σtx̄+ νtȳ + wt)− bi)/‖ai‖2,
ρt+1 = σt,

τt+1 = νt,

σt+1 = Pk+tρt +Qk+tσt,

νt+1 = Pk+tτt +Qk+tνt,

zt+1 = wt − sk+tai,

wt+1 = Pk+tzt +Qk+twt −Rk+tsk+tai;

12: Set t ← t+ 1;
13: end while
14: Set k ← k + T ;
15: Set

xk = ρtx̄+ τtȳ + zt,

yk = σtx̄+ νtȳ + wt;

16: end while

cost for RK (which is O(δn)) but much better than that of ARK (which is O(n)).
We show in the next section that the total number of iterations required by ARK

to achieve a prescribed accuracy is lower than for RK, in general, which makes
Algorithm 4 competitive in some regimes.

5. Convergence rate

In this section, we study the convergence behavior of Algorithms 1, 3, and 4, esti-
mating, in particular, the total number of operations required to achieve a specified
level of accuracy. We also compare the approach with the conjugate gradient (CG)
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algorithm, applied to the “normal equations” system ATAx = AT b. To simplify
the comparisons, we assume throughout that (1.2) holds, so that ‖A‖2F = m.

The convergence of RK (Algorithm 1) is studied in [8, 14]1 It is shown that

(5.1) E(‖xk+1 − PA,b(xk+1)‖2) ≤
(
1− λmin

m

)k+1

‖x0 − PA,b(x0)‖2,

where the expectation is taken over the indices i(0), i(1), i(2), . . . selected at each
iteration.

For ARK, we have the following result. The proof can be found in the appen-
dix. It is quite technical, and follows to some extent the framework developed by
Nesterov [11] for the accelerated coordinate descent method.

Theorem 5.1. Apply ARK to the problem (1.1) with λ ∈ [0, λmin], and define

σ1 = 1 +
√
λ

2m and σ2 = 1−
√
λ

2m . Then we have for any k ≥ 0 that

(5.2) E(‖vk+1 − x∗‖2(ATA)+) ≤
4‖x0 − x∗‖2(ATA)+

(σk+1
1 + σk+1

2 )2

and

(5.3) E(‖xk+1 − x∗‖2) ≤
4λ‖x0 − x∗‖2(ATA)+

(σk+1
1 − σk+1

2 )2
,

where x∗ := PA,b(x0) = x0 +A+(b−Ax0).

Essentially, Theorem 5.1 ensures that the ARK algorithm converges in expec-
tation to the projection of the initial point x0 onto the affine space defined by
Ax = b.

Theorem 5.1 shows that when λ > 0, the ARK algorithm converges at a linear
rate. If the value of λ = 0, we can obtain a sublinear rate. By taking limits as
λ → 0+ in (5.3), we have

lim
λ→0+

4λ‖x0 − x∗‖2(ATA)+

(σk+1
1 − σk+1

2 )2

= lim
λ→0+

4λ‖x0 − x∗‖2(ATA)+((
1 + (k+1)

√
λ

2m + o(
√
λ)

)
−

(
1− (k+1)

√
λ

2m + o(
√
λ)

))2

= lim
λ→0+

4λ‖x0 − x∗‖2(ATA)+(
(k+1)

√
λ

m + o(
√
λ)

)2

=
4m2‖x0 − x∗‖2(ATA)+

(k + 1)2
.(5.4)

Next, we compare convergence rates of RK, ARK, and CG. We assume further
that λ is set to its optimal value λmin in ARK. Since all algorithms converge rapidly
when λmin(A

TA) is large, we are particularly interested in the case in which λmin

is small, that is, the linear system is ill-conditioned.

1In [14], it is required that A has full column rank, but this requirement is removed in [8,
Theorem 4.3], where the Hoffman constant L is equivalent to 1/

√
λmin.
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Table 1. Operation and iteration counts to achieve expected ac-
curacy ε for randomized Kaczmarz variants.

Approx Operations per Iteration Approx Iterations

RK (Algorithm 1) 4δn | log ε|(m/λmin)

ARK (Algorithm 3) 3n+ 6δn | log ε|(m/
√
λ)

SARK (Algorithm 4) 6
√
δn+ 10.5δn | log ε|(m/

√
λ)

5.1. Comparison between RK and ARK for dense A. The right-hand side of
the bound (5.1) decreases by a factor of 1 − λ/m at each iteration. For ARK, we
have that σk

2 → 0, so the decrease of the right-hand side is governed mainly by the
behavior of the σ1 term in the denominator. Asymptotically, we have a decrease
factor per iteration of approximately

(5.5) σ−2
1 =

(
1 +

√
λ

2m

)−2

≈ 1−
√
λ

m
.

We conclude that for small values of λ, the ARK approach will have significantly
faster linear convergence. Even if we measure convergence rate per operation, ARK

is still faster in general, since in the implementation of Algorithm 3, it requires only
twice as many operations per iteration as RK.

5.2. Comparison among RK, ARK, and SARK for sparse A. When the
coefficient matrix A is sparse, the comparisons change, because each iteration of
RK costs less than each iteration of either ARK or SARK. On the other hand,
fewer iterations of ARK are required to reduce the expected error below a specified
tolerance. From (5.1), we deduce that the number N of iterations needed to reduce
E(‖xN − PA,b(xN )‖2) below a target threshold ε is O((m/λmin)| log ε|). We have
from (5.3) and (5.5) (and ignoring a log λ term) that the number of iterations N

of ARK and SARK needed to reduce E(‖xk − x∗‖2) below ε is O((m/
√
λ)| log ε|).

Assuming approximately δn nonzeros in each row of each row of A, we summarize
the operation and iteration counts for RK, ARK, and SARK in Table 1.

From the data in Table 1, and assuming that λ is set to its optimal value λmin

in the ARK and SARK algorithms, we conclude the following for the relative
performance of these three approaches for various values of δ and λmin.

- RK will be approximately the best option if

λ ≥ max

⎧⎨
⎩
(

4δ

3 + 6δ

)2

,

(
4
√
δ

6 + 10.5
√
δ

)2
⎫⎬
⎭ ;

- SARK will be approximately best if

λ ≤
(

4
√
δ

6 + 10.5
√
δ

)2

and δ ≤ 0.1;

- ARK will be approximately best, otherwise.
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We illustrate these claims in Figure 1. Note that our comparison is based on
approximate and worst-case analyses, which is why we claim only “approximate”
superiority for each set of values in question. We can confidently say, however, RK

will be superior for larger values of λmin, while ARK favors small λmin and large
δ, and SARK is superior to ARK for small values of δ. For small fixed values of
λmin, RK will be superior for small values of δ, then SARK will be superior for
intermediate δ values, and ARK superior for larger δ values.

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

SARK ARK

RK

δ

λ m
in

Figure 1. Illustration of the regions of the (δ, λmin) space for
which RK, ARK, and SARK are approximately superior (that is,
λmin in the graph). The white (yellow, red) area indicates that
SARK (RK, ARK) is approximately best for the given combina-
tion of values.

5.3. Comparison among RK, SARK, and CG. Next, we compare RK and
ARK with conjugate gradient (CG) applied to the normal-equations system
ATAx = AT b. CG is a deterministic algorithm that requires matrix-vector multi-
plications with the entire data matrix A and its transpose at every iteration, while
RK and ARK are randomized algorithms for which each iteration requires access to
just one row of A, but which require many more iterations than CG in general. CG

does not require estimates of parameters such as λmin (though we show in the next
section that estimation of this parameter can be incorporated into RK algorithms
efficiently). Because the CG and RK approaches have very different convergence
properties, and because their data access requirements are quite different, there are
situations in which one or another of them will have an advantage. Here we do a
simple comparison between CG and the RK methods based only on convergence
rate as a function of operation count, and put aside the issues of suitability of one
class or the other to various contexts and various computational platforms.
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The asymptotic convergence rate for CG is

(5.6) ‖Axk+1 − b‖2 ≤
(√

λmax −
√
λmin√

λmax +
√
λmin

)2(k+1)

‖Ax0 − b‖2.

(See, for example, formula (5.36) in [12].) The decrease factor per iteration is thus
approximately

(5.7) 1− 4

√
λmin√
λmax

.

If A has sparsity δ, the cost of the main operation of CG — multiplication by ATA
— is about 4δmn operations. This is the approximate cost of m iterations of RK

and about (2/3)
√
δm iterations of SARK. Thus, for a roughly equivalent number

of operations, assuming again that λ = λmin, we obtain the following approximate
decrease factors for RK and SARK:

RK :

(
1− λmin

m

)m

≈ 1− λmin,(5.8a)

ARK :

(
1−

√
λmin

m

)(2/3)
√
δm

≈ 1− 2

3

√
δ
√
λmin.(5.8b)

By comparing (5.7) and (5.8a), we see that RK may be competitive with CG if√
λminλmax (the geometrically averaged eigenvalue of ATA) is significantly larger

than 1. From (5.7) and (5.8b), we see that SARK may be competitive with CG if
δλmax is significantly great than 1.

We note, however, that the asymptotic rate (5.6) forCG is somewhat pessimistic.
In practice, performance of CG depends on the distribution of the eigenvalues of
ATA. Rapid convergence is often seen on early iterations, as the largest eigenvalues
are “resolved,” but the method often settles into a steady linear rate on later
iterations.

6. Computational results

In this section, we study the computational behavior of RK, ARK, SARK, and
CG on a variety of test problems. We start by comparing RK and ARK for dense
A, then compare RK, ARK, and SARK for sparse A. Finally, we compare the
randomized algorithms (RK and ARK) to the deterministic algorithm CG.

Since we need to supply the parameter λ to ARK, we introduce three ways of
setting this parameter:

- ARK(λmin): set λ = λmin. This choice gives the theoretically best conver-
gence rate, and should be used if λmin is known.

- ARK(0): set λ = 0. This choice requires no additional knowledge of A and
guarantees convergence, though at a sublinear rate (see (5.4)).

- ARK(auto): λ determined automatically. Run RK for K2 iterations and
record xK1+1 and xK2+1, where K2 = K

10� and K1 = max(1,K2 − 10m).

From (5.1), we can say roughly that E(‖Axk − b‖2) ∼ (1 − λmin/m)k, so
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by setting k = K1 and k = K2, we deduce that λmin could be estimated by
the formula

m

[
1−

(
‖AxK2

− b‖
‖AxK1

− b‖

) 2
K2−K1

]
.

We find that a more conservative estimate of λmin works better in practice,
in which we replace the exponent 2/(K2 − K2) by 0.5/(K2 − K1) in our
experiments. If the entire matrix A cannot be obtained at one time, one
could estimate ‖Ax− b‖2 by using a sample of the rows of Ax− b.

We measure performance by plotting residual error ‖Ax−b‖ against the number
of iterations and the number of operations. The initial point x0 = 0 is used in all
algorithms.

6.1. Comparison between RK and ARK for dense data. Synthetic data for
these tests is generated as follows: All elements of the data matrix A ∈ R

m×n and
the optimal solution x∗ ∈ R

n are chosen to be i.i.d. N (0, 1). The length of all
rows in A is normalized to 1. The right-hand side b is set to b = Ax∗. We run all
algorithms 20 times (with 20 different sample sequences) and report the averaged
performance.

Figures 2 and 3 show residual errors for RK and ARK with different values
of λ. Figure 2 focuses on small problems while Figure 3 shows larger cases. In
the graphs in the left column, the horizontal axis is iteration number, while in
the right column, the horizontal axis is operation count, which is our proxy for
computation cost. Operation count is obtained by scaling the number of iterations
by our estimate of the average number of floating-point operations per iteration
(see Table 1). From these figures, we observe the following.

- ARK(λmin) and ARK(auto) converge much faster than RK (in both iter-
ations and operations), except for very well conditioned problems.

- After the initial phase in which λmin is estimated, ARK(auto) converges
at about the same rate as ARK(λmin).

- ARK(0) is not competitive with the other variants of ARK, but is com-
petitive with RK on ill conditioned problems.

6.2. Comparison among RK, ARK, and SARK for sparse data. We compare
RK, ARK(auto), and SARK on sparse data. Each element of A is set to 0 with the
probability 1− δ, so that the proportion of nonzero entries in A is approximately δ.
The nonzero entries are chosen to be i.i.d. Gaussian N (0, 1), then the zeros rows
are removed from A and the nonzero rows are normalized. The optimal solution x∗

and right-hand side b are generated as in the dense case.
Figure 4 fixes m = 1000 and n = 950, and chooses δ = 0.8, 0.08, and 0.01 for

different levels of sparsity. For this small value of λmin (about .0006 in all three
cases), ARK/SARK outperforms RK with respect to number of iterations, as we
see in the graphs in the left column of Figure 4. For the highest density (δ = 0.8;
top right graph), both ARK and SARK take fewer operations than RK, and ARK

is more efficient than SARK. For moderate sparsity δ = 0.08 (middle right), ARK

is dominated by RK in operation count, while SARK is the best option of the
three. For the most sparse case (δ = 0.01; bottom right), RK dominates both
ARK and SARK in the number of operations. These observations are consistent
with our analysis of Section 5.2.
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Figure 2. Comparison among RK, ARK(λmin), ARK(0), and
ARK(auto) on the dense data for m = 100 and n = 50, 80, 100.
The graphs on the left (right) column plot iterations (operations)
against residual error, averaged over 20 trials. The left graphs show
a reference baseline sequence {(1− λmin/m)k : k = 0, 1, . . . }.



168 JI LIU AND STEPHEN J. WRIGHT

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10 4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m=1000, n=300, λ min (ATA)=0.72504

Iterations

||A
x−

b|
|

 

 

baseline
RK
ARK(λ

min
)

ARK(0)
ARK(auto)

1 2 3 4 5 6

x 10 7

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m=1000, n=300, λ min(ATA)=0.72504

# of Operations

||A
x−

b|
|

 

 

RK
ARK(λ

min
)

ARK(0)
ARK(auto)

1 2 3 4 5 6 7 8

x 10 4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m=1000, n=500, λmin(ATA)=0.17913

Iterations

||A
x−

b|
|

 

 

baseline
RK
ARK(λ

min
)

ARK(0)
ARK(auto)

2 4 6 8 10 12 14 16

x 10
7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

m=1000, n=500, λ min(ATA)=0.17913

# of Operations

||A
x−

b|
|

 

 

RK
ARK(λ

min
)

ARK(0)
ARK(auto)

1 2 3 4 5 6 7 8 9 10

x 10
5

10 −8

10 −6

10 −4

10 −2

10 0

m=1000, n=800, λ min(ATA)=0.014027

Iterations

||A
x−

b|
|

 

 

baseline
RK
ARK(λ

min
)

ARK(0)
ARK(auto)

0.5 1 1.5 2 2.5 3

x 10 9

10
−8

10
−6

10
−4

10
−2

10
0

m=1000, n=800, λ min(ATA)=0.014027

# of Operations

||A
x−

b|
|

 

 

RK
ARK(λ

min
)

ARK(0)
ARK(auto)

Figure 3. Comparison among RK, ARK(λmin), ARK(0), and
ARK(auto) on dense data for m = 1000 and n = 300, 500, 800.
The graphs on the left (right) plot iterations (operations) against
residual error, averaged over 20 trials. A reference baseline showing
{(1− λmin/m)k : k = 0, 1, . . . } is shown in the left plots.
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Figure 4. Comparison among RK, ARK(0), and SARK(auto)
on sparse data with m = 1000, n = 950, and δ = 0.01, 0.08,
and 0.8. The graphs on the left (right) column plot iterations
(operations) against residual errors, averaged over 20 trials.
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6.3. Comparison among RK, ARK, and CG. A comparison between CG and
RK was made in [14], where A is chosen to be Gaussian (elements are i.i.d. from
N(0, 1/n)) with m � n. Problems of this type are particularly advantageous
for RK. From random matrix theory [15], we have for these matrices that λmin ≈
(
√
m/n−1)2 and λmax ≈ (

√
m/n+1)2, so that whenm � n, we have

√
λminλmax �

1. The convergence rates observed in [14] are thus consistent with our analysis of
Section 5.3. We do not consider the case m � n further here, because λmin is large
in this setting, so all algorithms converge rapidly. We focus instead on cases in
which m = n and A is ill-conditioned.

For a given choice of λmin, we see from Section 5.3 that CG favors a smaller
maximum eigenvalue, while RK and ARK favor a smaller geometric average eigen-
value. We control the distribution of eigenvalues of ATA by generating our test
matrices as follows. First, find the SVD UΛV T of a random n×n Gaussian matrix.
Next, define an n × n diagonal matrix Λ̃ by Λ̃ii = i−α, i = 1, 2, . . . , n, for some
parameter α > 0, and compute U Λ̃V T . Finally, normalize the rows of this matrix
to obtain A. We generate x∗ and b in the same way as in Section 6.1. The rows of
A are normalized, so trace (ATA) = n and the average eigenvalue of ATA is 1. The
parameter α controls the distribution of eigenvalues of ATA; as α increases, λmax

tends to grow while λmin shrinks.
We choose three values of α — 0.5, 0.75, and 0.9 — and fix n = 500 in Figure 5.

Each row of plots in Figure 5 corresponds to a particular value of α, increasing from
top to bottom. The left column plots the number of iterations of each method, but
since the complexity of CG per iteration is O(n2) while that of other algorithms
is O(n), we do a rough calibration by making each iteration of CG occupy n units
on the horizontal axes of the graphs in this column. We note that CG converges
rapidly in its early iterations but then slows. This behavior is consistent with the
analysis of CG, which shows that the asymptotic rate (5.7) is somewhat pessimistic,
and that early iterations tend to behave in a manner dictated by the distribution of
eigenvalues of ATA rather than the ratio of the extreme eigenvalues. Rapid initial
convergence is enabled by the fact that each iteration of CG does a sweep over the
entire matrix, giving it a global view of the data which is lacking in the randomized
approaches. By contrast with CG the convergence of randomized algorithms is
consistent and stable, and well predicted by the analysis.

As the value of α increases (that is, as we move from the top row of plots to the
bottom row in Figure 5), we observe the following changes.

- λmin becomes smaller, λmax becomes larger, and
√
λminλmax becomes

smaller, as α increases.
- The asymptotic convergence rate of CG, after resolution of the leading
eigenspaces, becomes slower as α increases.

- The performance of RK becomes worse compared to CG as α grows. This
observation is consistent with our analysis in Section 5.3, which predicts
poorer performance as

√
λminλmax decreases.

- The performance of ARK (including ARK(λ) and ARK(auto)) is compa-
rable to CG. CG decreases faster in the beginning but ARK is better at
achieving high precision. An effective hybrid strategy might be to run CG

in early iterations and turn to RK or ARK in later iterations.
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Figure 5. Comparison amomg CG, RK, ARK(λmin), ARK(0),
and ARK(auto) on dense data. The figures on the left (right)
plot residual against iterations (operations). A reference baseline
sequence of {(1− λmin/m)k : k = 0, 1, 2, . . . } is shown in the left
plots.
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Appendix A. Proof of Theorem 5.1

In proving Theorem 5.1, we refer to the particular implementation in Algorithm 2
of ARK. We assume throughout that ‖ai‖2 = 1 for i = 1, 2, . . . ,m.

We start with two useful technical lemmas.

Lemma A.1. For any y ∈ R
n, we have

(A.1) Ei

(∥∥ai(aTi y − bi)
∥∥2

(ATA)+

)
≤ 1

m
‖Ay − b‖2,

where the random variable i follows the uniform distribution over the set
{1, 2, . . . ,m}.

Proof. Define the compact singular value decomposition of A as A = UΣV T , where
UTU = I, V TV = I, and Σ is positive diagonal, so that (ATA)+ = V Σ−2V T . De-
noting UT = [u1 u2 . . . um], it is easy to show that ‖ui‖2 ≤ 1 for all i = 1, 2, . . . ,m.
Using Ei to denote expectation with respect to the index i, we have

Ei

(∥∥ai(aTi y − bi)
∥∥2

(ATA)+

)

=
1

m

m∑
i=1

〈(ATA)+ai(a
T
i y − bi), ai(a

T
i y − bi)〉

=
1

m
trace

[
(ATA)+

m∑
i=1

ai(a
T
i y − bi)

2aTi

]

=
1

m
trace

[
(ATA)+ATdiag (Ay − b)2A

]
=

1

m
trace

[
V Σ−1UTdiag (Ay − b)2UΣV T

]
=

1

m
trace

[
UTdiag (Ay − b)2U

]
=

1

m
‖diag (Ay − b)U‖2F [4pt]

=
1

m

m∑
i=1

(aTi y − b)2‖ui‖2

≤ 1

m
‖Ay − b‖2. �

Lemma A.2. For any solution x∗ to (1.1) and any y ∈ R
n, we have

(A.2) Ei(‖Pai,bi(y)− x∗‖2) = ‖y − x∗‖2 − 1

m
‖Ay − b‖2,

where the random variable i follows the uniform distribution over the set
{1, 2, . . . ,m}.



AN ACCELERATED RANDOMIZED KACZMARZ ALGORITHM 173

Proof. We have

Ei(‖Pai,bi(y)− x∗‖2)

= Ei

(∥∥y − ai(a
T
i y − bi)− x∗∥∥2

)
= ‖y − x∗‖2 + Ei

(
‖aTi y − bi‖2

)
− 2

〈
y − x∗, Ei

(
ai(a

T
i y − bi)

)〉
= ‖y − x∗‖2 + 1

m
‖Ay − b‖2 − 2

m
〈A(y − x∗), Ay − b〉

= ‖y − x∗‖2 − 1

m
‖Ay − b‖2,

where the last equality uses Ax∗ = b. �

The proof of Theorem 5.1 below essentially follows the proof for accelerated
coordinate descent algorithm in [11] to construct the key inequality (A.12).

Proof. From Algorithm 2 one can verify that if the sequence {xk, yk, vk} is gen-
erated from ARK(A, b, λ, x0,K), then the sequence generated from ARK(A, b −
Ax0, λ, 0,K) must be {xk − x0, yk − x0, vk − x0}. Thus, solving Ax = b is equiv-
alent to solving Ax = b − Ax0 from initial point 0. It therefore suffices to study
convergence from the zero initial point.

Recall from (3.1) that γk is the larger root of the following convex quadratic
function:

t(γ) := γ2 − γ

m
(1− λγ2

k−1)− γ2
k−1.

Since λ ≤ λmin ≤ m, and using γ−1 = 0, we can note the following, from a simple
recursive argument:

t(0) = −γ2
k−1 ≤ 0, t(1/m) = γ2

k−1(λ/m
2 − 1) ≤ 0,

and thus γk ≥ 1/m for all k ≥ 0. We can also verify that if γk−1 ≤ 1/
√
λ, we have

t(γk−1) = −(γk−1/m)(1− λγ2
k−1) ≤ 0

t

(
1√
λ

)
=

1

λ
− 1

m
√
λ
(1− λγ2

k−1)− γ2
k−1

=
1

λ
− 1

m
√
λ
+ γ2

k−1

(√
λ

m
− 1

)

≥ 1

λ
− 1

m
√
λ
+

1

λ

(√
λ

m
− 1

)
= 0,

which together imply that

γk ∈
[
γk−1,

1√
λ

]
.

It follows from these bounds (together with the initialization γ−1 = 0) that {γk}∞k=0

is an increasing sequence, bounded below by 1/m and above by 1/
√
λ. It follows

from these bounds and from λ ≤ m that αk and βk both lie in the interval [0, 1] for
all k.

Recalling that x0 = 0, we have x∗ = A+b. It can be verified that xk, yk, vk, and
x∗ are all in R(AT ). We observe some useful relationships among the scalars in the
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algorithm. We have from (3.1) and (3.2) that

(A.3)
1− αk

αk
=

m2γk −m

m− γkλ
=

m

γk

mγ2
k − γk

m− γkλ
=

mγ2
k−1

γk
.

From (3.1) and (3.3), we have

(A.4) γ2
k − γk

m
− βkγ

2
k−1 = 0.

Defining

(A.5) rk := ‖vk − x∗‖(ATA)+ ,

we consider the following expansion of r2k+1.

r2k+1 = ‖vk+1 − x∗‖2(ATA)+

=
∥∥βkvk + (1− βk)yk − γkai(a

T
i yk − bi)− x∗∥∥2

(ATA)+

= ‖βkvk + (1− βk)yk − x∗‖2(ATA)+ + γ2
k

∥∥ai(aTi yk − bi)
∥∥2

(ATA)+

− 2γk
〈
βkvk + (1− βk)yk − x∗, (ATA)+ai(a

T
i yk − bi)

〉
= ‖βkvk + (1− βk)yk − x∗‖2(ATA)+ + γ2

k

∥∥ai(aTi yk − bi)
∥∥2

(ATA)+

− 2γk

〈
βk

(
1

αk
yk − 1− αk

αk
xk

)
+ (1− βk)yk − x∗,

(ATA)+ai(a
T
i yk − bi)

〉

=‖βkvk + (1− βk)yk − x∗‖2(ATA)+ + γ2
k

∥∥ai(aTi yk − bi)
∥∥2
(ATA)+

+ 2γk

〈
x∗ − yk +

1− αk

αk
βk(xk − yk), (ATA)+ai(a

T
i yk − bi)

〉
.(A.6)

Denote by i(k) the index randomly generated at iteration k, and let I(k) denote all
random indices seen at or before iteration k, that is,

I(k) := {i(k), i(k − 1), . . . , i(0)}.

Note that xk+1, yk+1, and vk+1 are determined by I(k). In the remainder of
the proof, we use Ei(k)|I(k−1)(·) to denote the expectation of a random variable
with respect to the index i(k), conditioned on I(k − 1). Note that EI(k)(·) =
EI(k−1)(Ei(k)|I(k−1)(·)). When the context is clear, we use i in place of i(k).

We consider the three terms in (A.6) in turn. From the convexity of ‖.‖2(ATA)+

and the definition of βk, the first item can be bounded as follows:

‖βkvk + (1− βk)yk − x∗‖2(ATA)+

≤ βk‖vk − x∗‖2(ATA)+ + (1− βk)‖yk − x∗‖2(ATA)+

= βk‖vk − x∗‖2(ATA)+ +
γkλ

m
‖yk − x∗‖2(ATA)+

≤ βk‖vk − x∗‖2(ATA)+ +
γk
m

‖yk − x∗‖2,(A.7)

where the last inequality is a consequence of λ ≤ λmin and the fact that yk and
x∗ are in R(AT ). Using Lemmas A.1 and A.2, the second item in (A.6) can be
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bounded in the expectation sense as follows:

Ei(k)|I(k−1)

(∥∥ai(aTi yk − bi)
∥∥2

(ATA)+

)
≤ 1

m
‖Ayk − b‖2 = ‖yk − x∗‖2 − Ei(k)|I(k−1)(‖xk+1 − x∗‖2).(A.8)

For the third term in (A.6), we have by taking an expectation that

Ei(k)|I(k−1)

〈
x∗ − yk +

1− αk

αk
βk(xk − yk), (ATA)+

(
ai(a

T
i yk − bi)

)〉

=

〈
x∗ − yk +

1− αk

αk
βk(xk − yk), (ATA)+Ei(k)|I(k−1)

(
ai(a

T
i yk − bi)

)〉

=
1

m

〈
x∗ − yk +

1− αk

αk
βk(xk − yk), (ATA)+

∑
i

ai(a
T
i yk − bi)

〉

=
1

m

〈
x∗ − yk +

1− αk

αk
βk(xk − yk), (ATA)+ATA(yk − x∗)

〉

≤ 1

m

〈
x∗ − yk +

1− αk

αk
βk(xk − yk), yk − x∗

〉

=
1

m

(
−‖yk − x∗‖2 + 1− αk

αk
βk 〈xk − yk, yk − x∗〉

)

=
1

m

(
−‖yk − x∗‖2 + 1− αk

2αk
βk

(
‖xk − x∗‖2 − ‖yk − x∗‖2 − ‖xk − yk‖2

))

=
1

m

(
−
(
1 +

1− αk

2αk
βk

)
‖yk − x∗‖2 + 1− αk

2αk
βk

(
‖xk − x∗‖2 − ‖xk − yk‖2

))

= −
(

1

m
+

βkγ
2
k−1

2γk

)
‖yk − x∗‖2 + βkγ

2
k−1

2γk

(
‖xk − x∗‖2 − ‖xk − yk‖2

)
(from (A.3))

≤ −
(

1

m
+

βkγ
2
k−1

2γk

)
‖yk − x∗‖2 + βkγ

2
k−1

2γk
‖xk − x∗‖2.(A.9)

By substituting (A.7), (A.8), and (A.9) into (A.6), we obtain

Ei(k)|I(k−1)(r
2
k+1)

≤ βk‖vk − x∗‖2(AT A)+ +
γk
m

‖yk − x∗‖2

+ γ2
k(‖yk − x∗‖2 − Ei(k)|I(k−1)(‖xk+1 − x∗‖2))

−
(
2γk
m

+ βkγ
2
k−1

)
‖yk − x∗‖2 + βkγ

2
k−1‖xk − x∗‖2

≤ βk‖vk − x∗‖2(AT A)+ − γ2
kEi(k)|I(k−1)(‖xk+1 − x∗‖2) + βkγ

2
k−1‖xk − x∗‖2

+
(
γ2
k − γk

m
− βkγ

2
k−1

)
‖yk − x∗‖2

= βk‖vk − x∗‖2(AT A)+ − γ2
kEi(k)|I(k−1)(‖xk+1 − x∗‖2) + βkγ

2
k−1‖xk − x∗‖2,(A.10)

where the final equality is a consequence of (A.4).
We now define two scalar sequences {Ak} and {Bk} as follows:

(A.11) Ak ≥ 0, Bk ≥ 0, B0 �= 0, B2
k+1 =

B2
k

βk
, A2

k+1 = γ2
kB

2
k+1.

We set A0 = 0 (to be consistent with the definition (A.11) and the fact that
γ−1 = 0 in Algorithm 2) and note that Bk+1 ≥ Bk, since βk ∈ (0, 1]. Since from
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(A.11) together with (3.1) and (3.3), we have

A2
k+1 =

B2
kγ

2
k

βk
=

γ2
kA

2
k

βkγ2
k−1

=
A2

kγ
2
k

γ2
k − γk/m

,

we obtain that {Ak} is also an increasing sequence.
Multiplying the last inequality (A.10) by B2

k+1, and using the definition of rk
(A.5) along with (A.11) (in particular, the identitiesB2

k+1γ
2
k = A2

k+1, B
2
k+1βk = B2

k,

and B2
k+1βkγ

2
k−1 = A2

k), we obtain

B2
k+1Ei(k)|I(k−1)(r

2
k+1) +A2

k+1Ei(k)|I(k−1)(‖xk+1 − x∗‖2)
≤ B2

kr
2
k +A2

k‖xk − x∗‖2.(A.12)

It follows that

EI(k)(B
2
k+1r

2
k+1 +A2

k+1(‖xk+1 − x∗‖2))
= EI(k−1)(B

2
k+1Ei(k)|I(k−1)(r

2
k+1) +A2

k+1Ei(k)|I(k−1)(‖xk+1 − x∗‖2))
≤ EI(k−1)(B

2
kr

2
k +A2

k‖xk − x∗‖2).

By applying this inequality recursively, we obtain

EI(k)(B
2
k+1r

2
k+1 +A2

k+1(‖xk+1 − x∗‖2)) ≤ EI(0)(B
2
1r

2
1 +A2

1‖x1 − x∗‖2)
≤ B2

0r
2
0 +A2

0‖x0 − x∗‖2 = B2
0r

2
0,

where we dropped the last term because A0 = 0. It follows from this bound that

(A.13) E(r2k+1) ≤
B2

0

B2
k+1

r20 and E(‖xk+1 − x∗‖2) ≤ B2
0

A2
k+1

r20.

We now need to estimate the growth of two sequences {Ak} and {Bk}. Here
we follow the proof for the accelerated coordinate descent algorithm of [11], but
spelling out some details skipped in that paper. We have

B2
k = B2

k+1βk =

(
1− λ

m
γk

)
B2

k+1 =

(
1− λAk+1

mBk+1

)
B2

k+1,

which implies that

λ

m
Ak+1Bk+1 = B2

k+1 −B2
k = (Bk +Bk+1)(Bk+1 −Bk),

so by recalling that Bk+1 ≥ Bk, we obtain

(A.14) Bk+1 ≥ Bk +
λ

2m
Ak.

We have

A2
k+1

B2
k+1

− Ak+1

Bk+1m
= γ2

k − γk
m

(from (A.11))

= (1− γkλ

m
)γ2

k−1 (from (3.1))

=
βkA

2
k

B2
k

=
A2

k

B2
k+1

(from (3.3) and (A.11)),
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so we obtain by multiplying both sides of this expression by B2
k+1 and using Ak+1 ≥

Ak that

1

m
Ak+1Bk+1 = A2

k+1 −A2
k = (Ak+1 +Ak)(Ak+1 − Ak) ≤ 2Ak+1(Ak+1 −Ak)

and therefore

(A.15) Ak+1 ≥ Ak +
Bk+1

2m
≥ Ak +

Bk

2m
.

By combining the inequalities (A.14) and (A.15) and applying a recursive argument,
we can estimate Ak+1 and Bk+1 as follows:[

Ak+1

Bk+1

]
≥

[
1 1

2m
λ
2m 1

]k+1 [
A0

B0

]
.

The Jordan decomposition of the matrix in this expression is[
1 1

2m
λ
2m 1

]
=

[
1 1√
λ −

√
λ

]−1 [
σ1 0
0 σ2

] [
1 1√
λ −

√
λ

]
,

with

σ1 = 1 +

√
λ

2m
, σ2 = 1−

√
λ

2m
.

Thus we have[
1 1

2m
λ
2m 1

]k+1

=
1

2

[
1 1√

λ

1 − 1√
λ

][
σk+1
1 0

0 σk+1
2

] [
1 1√
λ −

√
λ

]

=
1

2

[
σk+1
1 + σk+1

2 (σk+1
1 − σk+1

2 )/
√
λ

(σk+1
1 − σk+1

2 )
√
λ σk+1

1 + σk+1
2

]

which implies Ak+1 ≥ B0(σ
k+1
1 − σk+1

2 )/(2
√
λ) and Bk+1 ≥ (σk+1

1 + σk+1
2 )B0/2.

By combining these bounds with (A.13), we obtain

E(r2k+1) = E(‖vk+1 − x∗‖2(ATA)+) ≤
B2

0

B2
k+1

r20 ≤
4‖x0 − x∗‖2(ATA)+

(σk+1
1 + σk+1

2 )2
,

E(‖xk+1 − x∗‖2) ≤ B2
0

A2
k+1

r20 ≤
4λ‖x0 − x∗‖2(ATA)+

(σk+1
1 − σk+1

2 )2
,

completing the proof. �
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