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A LIMITING STRATEGY FOR THE BACK AND FORTH
ERROR COMPENSATION AND CORRECTION METHOD
FOR SOLVING ADVECTION EQUATIONS

LILI HU, YAO LI, AND YINGJIE LIU

ABSTRACT. We further study the properties of the back and forth error com-
pensation and correction (BFECC) method for advection equations such as
those related to the level set method and for solving Hamilton-Jacobi equa-
tions on unstructured meshes. In particular, we develop a new limiting strat-
egy which requires another backward advection in time so that overshoots/
undershoots on the new time level get exposed when they are transformed
back to compare with the solution on the old time level. This new technique
is very simple to implement even for unstructured meshes and is able to elim-
inate artifacts induced by jump discontinuities in derivatives of the solution
as well as by jump discontinuities in the solution itself (even if the solution
has large gradients in the vicinities of a jump). Typically, a formal second
order method for solving a time dependent Hamilton-Jacobi equation requires
quadratic interpolation in space. A BFECC method on the other hand only
requires linear interpolation in each step, thus is local and easy to implement
even for unstructured meshes.

1. INTRODUCTION

The BFECC method was proposed in [10] as a convenient method to achieve
better computational accuracy for the level set advection [24]. The idea is that
when a solution is advected forward and then backward for a time step, the differ-
ence between two copies of the solution at the initial time level provides information
about the numerical error of the underlying scheme. This information can be used
to compensate the solution before a third advection forward in time, resulting in
more accurate numerical solution at the next time level. For the linear advection
equation on rectangular meshes, this procedure has been shown in [12] to improve
the order of accuracy of an odd order scheme by one (in both space and time) and
also to stabilize the scheme if its amplification factor is less than 2 with some reason-
able conditions. The BFECC method coupled with an underlying semi-Lagrangian
scheme has been studied for various fluid and level set interface advections, e.g., in
[TTLI5HI8], and for the Lattice Boltzmann method on quad-tree grids [5]. Without
the CFL restriction, this combination is easy to implement on various meshes. A
generalized MacCormack scheme without CFL restriction is developed and applied
to fluid simulations in [26], in which the error information from the forward and
backward advections is applied directly to the previously obtained solution at the
next time level. These advection equations belong to the class of Hamilton-Jacobi
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equations. The numerical monotone Hamiltonian along with a high order ENO
approach have been developed for Hamilton-Jacobi equations in [25]. See [1] for
a Lax-Friedrichs-type numerical monotone Hamiltonian on 2D triangular meshes
and [30] for incorporating a high order WENO reconstruction. High order central
schemes for solving Hamilton-Jacobi equations have been proposed e.g. in [4L0OL2T],
and some recent development can be found in [3[19,20]. A conservative scheme
developed for solving a conservation law typically uses an r-th degree polynomial
interpolation to achieve (r + 1)-th formal order of accuracy. When the scheme is
modified for solving a Hamilton-Jacobi equation, however, (r+1)-th degree polyno-
mial interpolation is usually needed to achieve (r + 1)-th formal order of accuracy.
For example, a second order nonoscillatory scheme for solving a Hamilton-Jacobi
equation may need a quadratic interpolation. On the other hand, when BFECC
is applied to a first order scheme using only local linear interpolation, it can im-
prove both its temporal and spatial order of accuracy to second order. This is
very convenient for unstructured meshes since a linear interpolation only uses in-
formation from adjacent grid points. However, to have this convenience, nonlinear
limiting techniques based on using redundant high order information may not be
applied here easily, such as those in the MUSCL [23] and ENO [14] schemes. In
[12], a limiting technique is introduced which is based on using a locally constant
advection velocity to compute the back-and-forth error wherever a singularity in
the velocity field is detected. This technique works only if the solution is at least
Lipschitz continuous, such as a level set function. A simple limiting technique is
used in [26] for the BFECC and the modified unconditional stable MacCormack
scheme by essentially regulating the solution at a grid point within extrema on
neighboring grid points. Another limiting technique for BFECC can be found in
[13]. In this paper we introduce a new limiting strategy for BFECC based on the
following consideration. Assuming the solution U™ at the time ¢, is accurate and
we have computed the solution U™+! at the time t,,1, it’s very difficult to detect
where the new solution U™*! has overshoots/undershoots since we don’t know the
exact solution. However, if we can approximately advect U"t! backward in time
to the time level ¢,, then we have an accurate solution U™ to compare with. This
idea works like an easy extension to the strategy used in BFECC.

2. PRELIMINARY: BACK AND FORTH ERROR COMPENSATION AND CORRECTION
(BFECC)

Consider the convection equation on R¥:

ou

Let £ be a numerical scheme that updates the numerical solution from the time
tn t0 tnt1, tn < tpy1. Let L£* be the numerical scheme that updates the numerical
solution from the time t,11 to t,, by applying £ to the time-reversed equation of

@

ou
(2) E—a'vuf().

Let U™ be the numerical solution given at the time ¢,,, then the BFECC algorithm
can be described as follows [10].
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(1) Forward advection.
Untt = Lun.

(2) Backward advection.
rrn _ L*ﬁn+1'

(3) Forward advection again using modified solution at the time t,.
Untl = £(U™ + e), where eV) = L(U™ — um).

Here we call e the back-and-forth error. Since the forward advection and back-
ward advection use the same scheme (note that £* is £ applied to the time-reversed
equation), we assume that they introduce a similar amount of error. Therefore
e = %(U n — U™ provides an estimate of the error which is going to be sub-
tracted from the solution during the forward advection. Consider a rectangular
mesh on RN with the mesh size h and grid point x;j = jh for any multi-index j.
Let UJ?I be the numerical solution at x; and time ¢, and let k = t,,;1 — ¢, be the
time step size. Assume k = 6h for some fixed constant € during mesh refinement.
Let a be a constant vector in RY. We assume a linear scheme £ can be written in
the form of

(3) Un+1 Z C 2+37

[71<t

where [ is a positive integer and C; is a real constant depending only on a, the
multi-index j and the constant = k/h. We will view scheme (@) as

(4) Utz ZC’U (x4 jh), for any z € RY,

i<t

for convenience in the following Fourier analysis, where U™ (z) is a continuous func-
tion with compact support in R¥.

Let p, denote the Fourier symbol of the numerical scheme £, and let p,+ denote
the Fourier symbol of £*. For example, the operator £ could be the upwind scheme,
Lax-Friedrichs scheme, (unstable) center difference scheme, CIR scheme [6] or some
other schemes. In addition, we assume pg~ = pz, the complex conjugate of p,
(which is true for essentially all commonly used first order linear schemes [12]).

It has been proved in [12] that the BFECC algorithm creates a stable scheme
if the amplification factor |pg| of £ satisfies |pz| < 2. Furthermore, if the order of
accuracy of the scheme L is r for some positive odd integer r, then the order of
accuracy after applying BFECC is r + 1.

Take a look at U™ = £*£U" in the BFECC algorithm. If U" = U™ we call £
time-reversible. We have the following results for a time-reversible linear scheme.

Lemma 2.1. A linear scheme L is time-reversible if and only if |pg| = 1.

Proof. Let U™ = £(U™) and U™ = £*(U™*'). Applying the Fourier transform

to the two equations and using the assumption pz- = pz, we have U™ = |p.|2U".
The proof is complete. |

Theorem 2.2. If a linear scheme L is time-reversible and is at least first order
accurate, then L is at least second order accurate.

The proof follows that of [22].
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Proof. Let U"*! = LU"™. Applying the Fourier transform to the differential equa-
tion u; = —a - \yu we have
i = —a- i,

where £ is the Fourier dual variable. Therefore

~ —a-&ki . 1 2 3\

W(tni1) =€ W(ty) ={1—a-&ki— §(a -Ek)T + O(|€k]°) Yalty,).
Since L is first order accurate, we can write [22]

pe=1—a-&ki+ bk* + O(|¢k|?),

where b is real since the coefficients in the linear scheme £ (Bl), @) are real and
independent of k or h. Since |pz| = 1 according to Lemma 2T we have

1= |pcl> =1+ (a-&k)? + 20k + O(|¢K|?).
Therefore

The proof is complete. O

It is interesting to see what will happen if we apply BFECC to a linear scheme
L recursively. Let

(5) L= LI+ (- £°0),

the scheme obtained by applying BFECC to scheme £ where I is the identity
operator, and let

1
(6) Lk-‘rl = Ek[l_‘_ i(I_EZ‘Ck)]? for k = 172a35' e

It is easy to see that the Fourier symbols of Ly, satisty pz, = pzy for k=1,2,3,---
by induction (because we assume L satisfies this property to begin with). We have
the following theorem.

Theorem 2.3. If a linear scheme L satisfies |pz| € (0,4/3) U (v/3,2], then
m oz, =1.
Proof. Since

3 1
(7) |p£k+1‘ = ‘p£k||§ - §|p£k|2|7

it’s easy to see that if [pz, | < 2, then |pg,,,| < 1, and |pg,.,| = 0 if and only if
\pe.| = 0or V3; |pz,.,| = 1if and only if [pz,| = 1 or 2. The fixed points of the
iteration () are 0 and 1. Therefore if [pz| € (0,v/3) U (v/3,2], then |pz,| € (0, 1].
Since 1 > z|3 — 12%| > z for 2 € (0,1), we conclude by induction that 1 >
|pisi] > |pc,| for kB =1,2,3,---if [pg | € (0,1). Therefore |p., | must converge as
k — oo and its limit must be 1 by passing to the limit of equation (). The proof
is complete. O

Recalling Lemma 2] we can see that applying BFECC iteratively approaches
a time-reversible scheme.
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3. ELIMINATING SPURIOUS OSCILLATIONS

When the solution is not smooth, a nonlinear limiting technique is usually re-
quired for second order (or higher order) schemes to remove spurious oscillations
from the numerical solution.

Let £ be a linear scheme and let e = L(U™ — £*£U™) be the back-and-forth
error where U™ is the numerical solution at the time ¢,. If we replace £ with
L}, the k-th iteration of the BFECC procedure as defined in Section [2, we expect
the back-and-forth error () to decrease with increasing k wherever the solution is
locally sufficiently smooth because of Theorem 23 However, this is not practical
due to the complexity of even computing £3£,U™ (with & = 1 in (@)). In fact,
L1U" is supposed to be more accurate than LU™ in approximating the solution at
the time level t,,11 provided the solution is smooth. If we transform £,U" back
to the time level t,, with £* instead of £}, a larger error of approximately e(!) is
also introduced. Therefore, with the error correction, £*£,U" 4 ¢V should be an
accurate approximation of £7£,U" with smaller cost. We define another error at
the time level t,, as e = U™ — (L*£,U" 4 ¢()) and have the following theorem.

Theorem 3.1. Let £ be a linear scheme, eV = (U™ — L*LU™) and e =
U™ — (L*LU™ + eW) where L, is the scheme obtained by applying BFECC to L,
then e?) = () — £*Le(),

Proof. We have

e = yr—LrLur—eW
= U"— L L3-S 0)un — e
(8) = U"—L'LU™ — LLIE(U™ — £ LU™)] — e

2e() — £xLe(M) — 1)
= e —crLe®,

The proof is complete. O
Now we are able to estimate the size of e relative to e(®).

Corollary 3.2. Let L be a linear scheme with its amplification factor |ps| < V2,
then ||e®|| < ||leM)|| where || - || denotes the L?-norm.

Proof. From Theorem [3.I] we obtain, via Fourier transform,
6@ = (1 - |pe[2)e.
With Parseval’s identity, the proof is complete. O

Therefore on average |e(?)| is no more than |e(!)] as we expect. However in the
nonsmooth area of the solution, |e(®)| could be larger than |e(M|. In fact, at a grid
point where e(? is greater than e(!), there could be overshoots of the numerical
solution caused by large values of e!) at adjacent grid points. To see this, let’s
suppose

(9) (Lo Le®) () =3 csell),

jel
where the set ¢ + I contains all grid point indices involved in the computation of
L*LeM) at z;, in particular, i € i + I. Suppose L is consistent, monotone and
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at least first order accurate. Then it’s easy to see by using the Taylor expansion
around z; that

(a) 0<¢; <1, for all jelI
(10) (b) Yjer¢j=1: and

(c) Eje[,j;éojcj =0.
Theorem 3.3. Suppose the linear scheme L is consistent, monotone and at least
JjeT}, and (L*LeM)(2;)

first order accurate. If |e( )| is a maximum among {|el+]|
is of the same sign as e , then
o] < [eM)].

1)

—

Proof. Without loss of generality, suppose e;”” > 0. Since Zje I cjegr)j is a convex

1)

average of e;;

and egl) is the local maximum, we have
1

Seill <

Jjel
Also, since (L*LeM)(x;) = dier cjegi)j > 0 from (@) and the assumption of the
theorem, we conclude that

e = (£7LeW) (@) < eV

Recalling Theorem [B.1] the proof is complete. a

Therefore a local maximum in |e(?)| that is large enough will result in a smaller
e at the same location. However, since

61(2) (E*Ee(l)) Z cje z+j>
jerl
a el(.}r)j with much larger absolute value than that of egl) tends to cause |el(.2)\ > |el(»1) |

Therefore wherever |e§2)| > |e§1)| is detected, we limit its adjacent back-and-forth

€] )

error e;; to no larger than e; " in their absolute values.

Remark. Let r be the order of accuracy of the scheme L. Even if this limiting
procedure is applied accidentally in the smooth area of the solution, it’s only going
to create an O(h"*2) local error which will not change the order of accuracy after

applying the BFECC algorithm, as long as the modified value él(i)j (after applying

the limiting procedure) is a convex average of egj and el(.l). In fact,

~§2j eg_lgj = (1- 0)65_1’_)» + 961(-1) — el(_li_)j, for some 6 € [0, 1]
1 1
(11) = 9(61(- ) —eH)j)
_ O(hH_Q),

since e) = O(h™*1) (it is proportional to the local error of scheme L).

3.1. Limiting algorithm. Let £ be a linear scheme and U" the numerical solution
given at the time ¢,,, then the BFECC algorithm coupled with the limiting technique
can be implemented as follows.

(1) Forward advection.
untl = cun.
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(2) Backward advection.
Un = LUt

(3) Forward advection again using modified solution at the time t,.
Vil = £(U + W), where e = LU — 0™).

(4) Backward advection to define a comparative error ¢,
e® =Um — (LH(VH) 4 M),

(5) Limiting.
Define a copy of eV, 1) = (1) At every grid point z; such that |ez(-2)\ >
|e§1)|, perform the limiting at adjacent grid points so that &P =

J
minmod(ez(»l), é;l))7 for every grid point j adjacent to grid point i, j # i.

(6) Forward advection with modified solution at the time ¢,.
Untl = L(U™ 4 &W).

Here
min(z,y), if z,y >0,
minmod(z,y) = { max(z,y), if z,y <O,
0, otherwise.

It is a commonly used limiter function that returns a convex average of x and y.
This procedure is very easy to implement because basically it calls a subroutine
(scheme £) 5 times. Note that the limiting procedure modifies ) only in the
vicinities of singularities of the solution, and the backward advection step in Step 4
can be applied selectively. This could reduce the complexity to about 4 times that of
scheme L by first using a low cost detector (e.g. in [12]) to find the nonsmooth area
of the solution. One could further reduce the cost by applying the last advection
step in the nonsmooth area only.

4. NUMERICAL RESULTS

The performance of BFECC with the limiting algorithm is demonstrated by the
following numerical examples.

4.1. 1-D linear equation. Consider the following 1-D linear equation

(12) Ou(x,t) . ou(zx,t)

=0, (z,t)€[0,2] x [0,20]

ot ox
2 4
13 0) =1, €z,
(13) ur0)=1,  well]
u(z,0) =0, otherwise,

with periodic boundary conditions. The solution of equation (I2)) at the final time
T = 20 is identical to the initial solution. We compare the performance of CIR,
CIR4+BFECC and CIR+BFECC+limiting algorithms for the present 1-D linear
equation with varying CFL numbers.

Figure [I] presents the numerical solutions with CFL = 0.8. Note that the CIR
scheme with CFL number less than 1 is the same as the upwind scheme. Our limit-
ing algorithm eliminates the spurious oscillations that appear in the CIR+BFECC
algorithm. Also, the shape of the square wave is well-preserved by the CIR+BFECC
+limiting algorithm at 7" = 20. By contrast, very strong numerical smearing exists
in the CIR method.
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FIGURE 1. 1-D linear equation with CFL = 0.8, square wave initial
condition. h = 0.02, T' = 20.
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FI1GURE 2. 1-D linear equation with CFL = 5.8, square wave initial
condition, h = 0.02, T' = 20.
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Pyramid, CIR, CIR+BFECC and CIR+BFECC+Limite
2 T T T T

~/..I-§'\..,_ I I —-CIR only
S CIR+BFECC

—CIR+BFECC+Limited
== Analytic Solution

FiGURE 3. 1-D linear equation with CFL = 0.8, pyramid initial
condition, h = 0.02, T" = 20.

The numerical results with CFL number 5.8 are shown in Figure 2l The shape
of the square wave is better preserved by all three methods because there are less
computational steps. The spurious oscillations in the CIR+BFECC algorithm are
again eliminated by the limiting procedure, while strong numerical diffusion is still
appearing in the CIR scheme.

Numerical solutions of equation (I2) with different initial conditions are pre-
sented in the following. For the pyramid initial condition, we mean the following
function defined on the interval [0, 2]:

u(z,0) =2(1 — |z — 1);

and the curved square wave initial condition is the cubic function defined on the
interval [0, 2] as follows:

58 _202-2)3 ze[2d)
—J 26 13 J 33
u(z,0) { 0, otherwise .

In Figure Bl we compare the results of three different methods (CIR, CIR+BFECC
and CIR+BFECC+Limiting) for equation (I2)) with the pyramid initial condition.
The results with the curved square wave initial condition are shown in Figure Ml
Clearly, the limiting procedure removes all the artifacts generated by CIR+BFECC
while retaining its higher resolution.

4.2. 1-D linear problem with nonzero forcing. We also consider the following
problem with a nonzero forcing term

Oou(z,t)  Ou(z,t) 1
% T e 3 (z,t) €[0,2] x [0,20]

u(z,0) =2(1 — |z —1J),

(14)

with periodic boundary conditions. The initial solution is still the “pyramid” func-
tion. In Figures [l and [6 numerical solutions of equation (4] are demonstrated.



1272 LILI HU, YAO LI, AND YINGJIE LIU

Rightfacing step, CIR, CIR+BFECC and CIR+BFECC+Limiter

—--CIR only

------- CIR+BFECC
—CIR+BFECC+Limited
-=Analytic Solution

FIGURE 4. 1-D linear equation with CFL = 0.8, curved square
wave initial condition, h = 0.02, T' = 20.

Pyramid, CIR, CIR+BFECC and CIR+BFECC+Limiter, CFL number = 0.8

u+u =1
t x
12
' l ' ' /‘/‘1"\""\‘;-. ' l --CIR only
118 / G CIR+BFECC
’ —CIR+BFECC+Limited
X ~= Analytic Solution

FIGURE 5. 1-D linear equation with nonzero right-hand side, CFL
= 0.8 , pyramid initial condition, h = 0.02, T" = 20.

The CFL numbers used are 0.8 and 5.8 respectively. It is clear that the limiting
algorithm performs well for this problem.

4.3. 2-D linear problem. We study a 2-D rotation of a “cubic stair” on the
domain [0, 100] x [0, 100]:

[ 64000(2 — (5 +2)?), (2.y) € [5,45] x [5,45),
uo (2, y) = { 0, otherwise .

Consider the equation
9¢

(15) 5 T V=0
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Pyramid, CIR, CIR+BFECC and CIR+BFE$)/(2:+Limiter, CFL number = 5.8
u+u =
t X

—-CIR only

------ CIR+BFECC
—CIR+BFECC+Limited
—'= Analytic Solution

106

104

102

FIGURE 6. 1-D linear equation with nonzero right-hand side, CFL
= 5.8 , pyramid initial condition, h = 0.02, T' = 20.

N 2D Linear problem, CIR Scheme only

2D Linear profem, CIR Scheme + BFECC + imter

FIGURE 7. 2-D linear equation at ¢ = 157. Uniform triangular
mesh with h = 1.0 and C'FL = 3.0. Top left: CIR only; Top right:
CIR + BFECC; Bottom: CIR + BFECC + Limiting.
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2D-Burger equation, Monotone Scheme Only

FIGURE 8. 2-D nonlinear Hamilton-Jacobi equation at t = 0.15,
Uniform triangular mesh with A = 0.1. Top left: L-F only; Top
right: L-F + BFECC; Bottom: L-F + BFECC + Limiter.

with the initial condition ¢(z,y,0) = up(z,y), where
T T

17(96731)=(314(50—y),314

Equation (IT) describes the linear rotation around the center (50, 50) with the
shape of ug(z,y) preserved.

We solve equation () numerically by using the CIR scheme only, CIR+BFECC
and CIR4+BFECC+Limiting on a triangular mesh. The numerical results are
demonstrated in Figure [l It is easy to see that the CIR scheme alone has sig-
nificant numerical diffusion while CIR+BFECC causes some overshoots near the
edge of the “cubic stair” due to the discontinuity of the solution. With the lim-
iting algorithm, the spurious oscillations are eliminated without introducing extra
numerical diffusion.

(50 — x)).

4.4. 2-D nonlinear Hamilton-Jacobi equations. The following 2-D nonlinear
Hamilton-Jacobi equation (see e.g. [25]) is commonly used in numerical tests:
e+ oy +1)°
16 o+ PEOE g ey ea2 22
m(r+vy
6.0 = —cos("EE)

2
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This equation is computed on a triangular mesh by applying BFECC and limiting
to a first order scheme with a Lax-Friedrichs-type monotone Hamiltonian. For
more details of the first order scheme with monotone Hamiltonian (L-F for short)
developed by Abgrall, see [1I]. The results are shown in Figure Bl We can see
that BFECC without limiting is adequate for this problem and we find almost no
difference when the limiting procedure is turned on.

In addition, we tested the order of accuracy of L-F + BFECC + Limiting. The
L?-accuracy and L>®-accuracy of this 2-D nonlinear Hamilton-Jacobi equation are
demonstrated in Table [Il Table 2 Table Bl and Table[d We can see from the data
that the limiting technique improves the accuracy at T' = 0.15 when singularities
of the solution have formed. At T = 0.015 when the solution is still smooth,
the limiting procedure slightly reduces the L*°-accuracy of the numerical solution
compared to the one without limiting.

TABLE 1. Numerical accuracy of L-F + BFECC + limiting. CFL
number = 0.1; T'=0.15

number of points || L? error | order | L® error | order
41 x 41 0.262 N/A 0.0451 N/A

81 x 81 0.0550 | 2.25 0.0135 1.73

161 x 161 0.0200 1.46 | 0.00536 1.33

TABLE 2. Numerical accuracy of L-F + BFECC. CFL number

=0.1;T=0.15
number of points || L? error | order | L* error | order
41 x 41 0.366 N/A 0.0649 N/A
81 x 81 0.101 1.86 0.0210 1.62
161 x 161 0.0370 1.45 | 0.00797 | 1.39

TABLE 3. Numerical accuracy of L-F + BFECC+limiting. CFL
number = 0.1; 7= 0.015

number of points || L? error | order | L* error | order
41 x 41 0.289 N/A 0.0157 N/A

81 x 81 0.0976 1.57 | 0.00531 1.56

161 x 161 0.00631 | 3.95 | 0.00126 | 2.08

TABLE 4. Numerical accuracy of L-F + BFECC. CFL number

=0.1; T =0.015
number of points || L? error order || L™ error order
41 x 41 0.288 N/A 0.0153 N/A
81 x 81 0.0968 1.57 0.00512  1.57
161 x 161 0.00638  3.92 || 0.000851  2.59




1276 LILI HU, YAO LI, AND YINGJIE LIU

2D-Riemann problem, Monotone Scheme only 2D-Riemann problem, Monotone Scheme + BFECC

FIGURE 9. 2-D Riemann problem, Uniform triangular mesh with
h = 0.05. Top left: L-F only; Top right: L-F + BFECC; Bottom:
L-F + BFECC + Limiter.

4.5. 2-D-Riemann problem. We also test our algorithm in the following 2-D
Riemann Problem (see [25]).

(17) ¢t+82n(¢m+¢y) = 0,
o(z,y,0) = 7(ly| - |z]).

We compute the equation on a triangular mesh from ¢ = 0 to ¢t = 1 by applying
BFECC and limiting to the first order scheme with monotone Hamiltonian [IJ.
The numerical results at time ¢ = 1 are shown in Figure Again we observe
that BFECC without limiting is adequate for this problem and we find almost no
difference when the limiting procedure is turned on.

4.6. Bubble merging problem. We study the merging of 4 bubbles (circles)
centered at (40, 60), (60, 60), (40, 40), (60,40) with radius 9, 7, 10, 8 respectively and
expanding with constant normal velocity 0.2. The time evolution of these merging
bubbles can be described by the level set method [24] with the level set function ¢
(¢ < 0 inside each circle) satisfying the following equation:

(18) o+ O.QE V¢ =0.

IVl
We compute the equation on a triangular mesh by applying BFECC and limiting
to the first order scheme with monotone Hamiltonian [I]. The numerical results
are compared in Figure[I0l The top two bubbles (centered at (40,60) and (60, 60))
should have merged at the time T" = 11. This is correctly captured with the limiting
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FiGure 10. Expanding circles of radii 9,7,10 and 8 with normal
velocity 0.2. Uniform triangular mesh with A = 1, At = 0.4. Left:
Lax-Friedrichs-type monotone Hamiltonian scheme (L-F); Middle:
L-F 4+ BFECC; Right: L-F + BFECC + Limiter. T =9, 11, 18,
26 from top to bottom.

procedure. With BFECC and no limiting, the merging of the two bubbles has been
delayed at T'= 11. At the time T = 26, we can see that the smallest drop in the
graph (bottom right) is kept when BFECC is used with the limiting, almost as well
as without the limiting procedure (bottom middle graph).

4.7. Shrinking square problem. We consider the following problem: A square
centered at (0,0) with side length 10 shrinks with the normal speed 0.2. Therefore
at time 7" = 10 one should expect a 6 x 6 square. This problem can be described by
equation ([[3), which is the same as the bubble merging problem from the previous
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Shvinking Square, Monotane Scheme Only Shrinking Square ~ Monatone Sct

Shinking Square - Mor

FiGURE 11. Shrinking square problem, Uniform triangular mesh
with 101 x 101 mesh points. Top left: Monotone scheme (L-F)
only; Top right: L-F + BFECC; Bottom: L-F + BFECC + Lim-
iting.

subsection. The initial condition is an indicator function of [—5, 5] x [—5,5] C R%:

Vo B
(19) Ot 0250 Vo =0,

(20) ¢(:an70) =1, (ac,y) € [_55] X [_575]a
¢($,y70) =0, (m,y) ¢ [_575] X [_57 5]‘

Our computations are based on the same first order Lax-Friderichs-type scheme
with monotone Hamiltonian (L-F for short) as in Section 4.4. Equation (I9) is
computed on the triangular mesh. Numerical results obtained from three schemes,
L-F scheme only, L-F scheme + BFECC and L-F scheme + BFECC + limiting, are
compared in Figure[IIl It can be observed that the L-F scheme leads to significant
numerical diffusion. Such numerical diffusion can be reduced by BFECC. However,
strong undershoots are generated by BFECC for this problem. With the help of the
limiting algorithm, higher accuracy of BFECC can be preserved, while numerical
artifacts are essentially eliminated.
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