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ZEROS OF THE DILOGARITHM

CORMAC O’SULLIVAN

Abstract. We show that the dilogarithm has at most one zero on each branch,
that each zero is close to a root of unity, and that they may be found to any
precision with Newton’s method. This work is motivated by applications to
the asymptotics of coefficients in partial fraction decompositions considered by
Rademacher. We also survey what is known about zeros of polylogarithms in
general.

1. Introduction

In the recent resolution of an old conjecture of Rademacher, described below
in Section 1.2, the location of a particular zero, w0, of the dilogarithm played an
important role. It has been known since [LR00] that the only zero of the dilogarithm
on its principal branch is at 0. The zero w0 is on the next branch. Zeros on further
branches were also needed in [O’Sa], and in this paper we locate all zeros on every
branch.

The dilogarithm is initially defined as

(1.1) Li2(z) :=
∞∑

n=1

zn

n2
for |z| � 1

(see for example [Max03,Zag07]), with an analytic continuation given by

(1.2) −
∫ z

0

log(1− u)
du

u
.

The principal branch of the logarithm has −π < arg z � π with a branch cut
(−∞, 0]. From (1.2), the corresponding principal branch of the dilogarithm has
branch points at 1, ∞ and branch cut [1,∞). Crossing this branch cut from below,
it is easy to show that the dilogarithm increases by 2πi log(z) over its principal
value. On this new sheet there is now an additional branch point at 0 coming from
the logarithm. In general, the dilogarithm is a multi-valued holomorphic function
with branch points at 1, ∞ and off the principal branch another branch point at 0.
For clarity, the notation Li2(z) and log(z) will mean the principal branches of these
functions from this point. We also note that Li2(z) may be expressed as a 3F2 hy-
pergeometric function (see [AAR99, Sect. 2.6]), with Li2(z)/z = 3F2(1, 1, 1; 2, 2; z).
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1.1. Main results. On any branch it follows (see for example [LR00,Max03]), that
the dilogarithm must take the form

φA,B(z) := Li2(z) + 4π2A+ 2πiB log (z) (A,B ∈ Z, z ∈ C)

and so we want to know when φA,B(z) = 0.

Theorem 1.1. For A, B ∈ Z, the function φA,B(z) has no zeros in C unless

(i) B = 0 and A � 0 or
(ii) −|B|/2 < A � |B|/2.

If (i) or (ii) holds, then φA,B(z) has exactly one zero and it is simple.

On the principal branch we will see, as noted earlier, that Li2(z) = φ0,0(z) has
just the zero at z = 0.

Theorem 1.2. For A ∈ Z�1, if φA,0(ρ) = 0, then

ρ = − exp
(
π
√
8A− 1/3

)
+O

(
1/
√
A
)
.

With the initial value − exp
(
π
√
8A− 1/3

)
, Newton’s method applied to φA,0 pro-

duces a sequence converging quadratically to ρ.

Note that by conjugation, φA,B(ρ) = 0 if and only if φA,−B(ρ) = 0. So for B �= 0
we may assume B � 1 without loss of generality. The second Bernoulli polynomial
is defined as B2(x) := x2 − x+ 1/6 and Clausen’s integral is

(1.3) Cl2(θ) := −
∫ θ

0

log |2 sin(x/2)| dx,

both shown in Figure 1.

Theorem 1.3. Let A and B be integers satisfying −B/2 < A � B/2 and suppose
φA,B(ρ) = 0. The sequence c0, c1, · · · defined as
(1.4)

c0 :=

{
exp(2πiA/B) if A �= 0

exp(πi/(12B)) if A = 0,
cn+1 := cn − φA,B(cn)

φ′
A,B(cn)

for n � 0,

converges quadratically to ρ. Using c1, we have

(1.5) ρ = e2πiA/B

(
1 +

−Cl2(2πA/B) + iπ2B2(|A|/B)

2πB

)
+O

(
1 + logB

B2

)

for an absolute implied constant.

The above three theorems are proved in Sections 3 – 7 after some preliminary
results are reviewed in Section 2. The dilogarithm is the case s = 2 of the poly-
logarithm Lis(z). We put our results in context in Section 8 by describing what is
known about the zeros of Lis(z) for a general fixed s ∈ C. It turns out that for
Re(s) � 0 very much is known, at least for zeros on the principal branch, due to
work of Le Roy, Frobenius, Reisz, Peyerimhoff, Sobolev, Gawronski and Stadtmüller
among others.
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1.2. Rademacher’s conjecture. We briefly describe here the work that led to
our study of dilogarithm zeros. Rademacher conjectured in [Rad73, p. 302] that
the coefficients Chk�(N) in the partial fraction decomposition

(1.6)
N∏
j=1

1

1− qj
=

C011(N)

q − 1
+ · · ·+ Chk�(N)

(q − e2πih/k)�
+ · · ·+ C01N (N)

(q − 1)N

converge as N → ∞ to the corresponding partial fraction coefficients of the infi-
nite product

∏∞
j=1 1/(1− qj). Rademacher had previously given a partial fraction

decomposition of this infinite product using his famous exact formula for the parti-
tion function p(n), of which it is the generating function; see [Rad73, pp. 292–302].

Of course,
∏N

j=1 1/(1 − qj) is the generating function for pN (n), the number of
partitions of n into at most N parts.

Sills and Zeilberger in [SZ13] obtained numerical evidence that the conjecture was
not correct, and in [O’S15] the true asymptotic behavior of C011(N) was conjectured
to be

(1.7) C011(N) = Re

[
(−2z0e

−πiz0)
w−N

0

N2

]
+O

(
|w0|−N

N3

)

for w0 the dilogarithm zero satisfying φ0,−1(w0) = 0 and z0 given by w0 = 1−e2πiz0

for 1/2 < Re(z0) < 3/2. With Theorem 1.3 we find

w0 ≈ 0.91619781620686260140− 0.18245889720714117505i,

z0 ≈ 1.18147496973270876764 + 0.25552764641754743773i.

Then |w0| < 1 (see the conjugate of w0 in Figure 3), and (1.7) implies that C011(N)
oscillates with exponentially growing amplitude and diverges. Slightly weaker forms
of (1.7), enough to disprove Rademacher’s conjecture, were independently shown
in [DG14] and [O’Sa] with different proofs, but both employing the saddle-point
method. The formulation of the main term in (1.7) is a little different in [DG14].

The proof in [O’Sa] is based on breaking up C011(N) into manageable compo-
nents that are similar to Sylvester waves. Let w(A,B) denote the zero of φA,B

when it exists. The appearance of the dilogarithm zero w0 = w(0,−1) in [O’Sa],
as well as w(0,−2) and w(1,−3), comes from estimating the following sums, (1.8),
(1.9) and (1.10), which correspond to some of the largest components of C011(N).
Set

Qhk1(N) := 2πi Res
z=h/k

e2πiz

(1− e2πi1z)(1− e2πi2z) · · · (1− e2πiNz)

and

z1 := 2 + log
(
1− w(0,−2)

)
/(2πi), z3 := 3 + log

(
1− w(1,−3)

)
/(2πi).
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Then it is proved in [O’Sa,O’Sb] that

2Re
∑

N/2<k�N

Q1k1(N) = Re

[
2z0e

−πiz0
w(0,−1)−N

N2

]
+O

(
|w(0,−1)|−N

N3

)
,(1.8)

2Re
∑

N/3<k�N/2

Q1k1(N) = Re

[
−3z1

2
e−πiz1

w(0,−2)−N

N2

]
+O

(
|w(0,−2)|−N

N3

)
,

(1.9)

2Re
∑

N/2<k�N, k odd

Q2k1(N) = Re

[
−z3

4
e−πiz3

w(1,−3)−N

N2

]
+O

(
|w(1,−3)|−N

N3

)
.

(1.10)

In fact these are special cases of the results in [O’Sa, O’Sb]. See Sections 1 and
6 of [O’Sa] for a more detailed account. In forthcoming work we also show that
w0 = w(0,−1) similarly controls the asymptotics of the first Sylvester waves.

2. Some properties of the dilogarithm

We have seen that φA,B(z) is defined as a single-valued function on C. Away
from the cuts (−∞, 0] and [1,∞) it is holomorphic with

(2.1) zφ′
A,B(z) = − log(1− z) + 2πiB for z �∈ (−∞, 0] ∪ [1,∞).

We will also use (2.1) for z ∈ C− [1,∞) when B = 0. For x ∈ (−∞, 0), as usual,

(2.2) lim
y→0+

log(x+ iy) = log(x), lim
y→0−

log(x+ iy) = log(x)− 2πi.

Similarly, for x ∈ [1,∞),

(2.3) lim
y→0+

Li2(x+ iy) = Li2(x) + 2πi log(x), lim
y→0−

Li2(x+ iy) = Li2(x).

Thus we see that if z makes a full rotation in the positive direction about 0, then
φA,B → φA+B,B. A full rotation in the negative direction about 1 means φA,B →
φA,B+1. We have the natural matrix representations⎛

⎝A
B
1

⎞
⎠ −→

⎛
⎝1 1 0
0 1 0
0 0 1

⎞
⎠
⎛
⎝A
B
1

⎞
⎠ =

⎛
⎝A+B

B
1

⎞
⎠ ,(2.4)

⎛
⎝A
B
1

⎞
⎠ −→

⎛
⎝1 0 0
0 1 1
0 0 1

⎞
⎠
⎛
⎝A
B
1

⎞
⎠ =

⎛
⎝ A
B + 1

1

⎞
⎠(2.5)

and the 3 × 3 matrices in (2.4), (2.5) generate the well-known monodromy group
of the dilogarithm. This is the non-abelian Heisenberg group

H3(Z) :=

⎧⎨
⎩
⎛
⎝1 x z
0 1 y
0 0 1

⎞
⎠
∣∣∣∣∣∣ x, y, z ∈ Z

⎫⎬
⎭

as described in [Vep08, p. 244], for example.
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For all z ∈ C, except for the given restrictions, the dilogarithm satisfies the
functional equations

Li2(1/z) = −Li2(z)− Li2(1)−
1

2
log2(−z), z �∈ [0, 1),(2.6)

Li2(1− z) = −Li2(z) + Li2(1)− log(z) log(1− z), z �= 0, 1.(2.7)

Note that Li2(1) = ζ(2) = π2/6. Equations (2.6) and (2.7) are shown in [Max03,
Sect. 3], for example, for z �∈ [0,∞) and z �∈ (−∞, 0] ∪ [1,∞) respectively. Then
use (2.2), (2.3) to obtain (2.6) and (2.7). For the excluded z values, (2.6) becomes

Li2(1/x)− 2πi log(x) = −Li2(x)− Li2(1)−
1

2
log2(−x), x ∈ (0, 1).

Recall B2(x) = x2 − x + 1/6 and Cl2(θ) from (1.3). As in [Max03, Sect. 8] we
have

Re(Li2(e
2πix)) =

∞∑
n=1

cos(2πnx)

n2
= π2B2(x− 	x
) (x ∈ R),(2.8)

Im(Li2(e
2πix)) =

∞∑
n=1

sin(2πnx)

n2
= Cl2(2πx) (x ∈ R).(2.9)

1/2−1/2 1 3/2 x1/6

1

−1

Cl2(2πx)

π2B2(x x )

Figure 1. Real and imaginary parts of Li2(e
2πix)

The function Cl2(θ) is odd, has period 2π and satisfies 2Cl2(θ)− 2Cl2(π− θ) =
Cl2(2θ). Then

(2.10) Cl′2(θ) = − log |2 sin(θ/2)|, Cl′′2(θ) = −1

2
cot(θ/2)

and |Cl2(θ)| has its maximum at θ = π/3, for example, with maximum value

(2.11) κ :=

∞∑
n=1

sin(πn/3)

n2
≈ 1.0149416.

From [Rad73, (11.1)],

(2.12) cot(z) =
1

z
−

∞∑
n=1

22n|B2n|
(2n)!

z2n−1 (0 < |z| < π)

for B2n the Bernoulli number. Integrating (2.12) twice we find

(2.13) Cl2(θ) = θ − θ log |θ|+
∞∑

n=1

|B2n|
2n(2n+ 1)!

θ2n+1 (−2π < θ < 2π),
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and as in [O’Sa, Lemma 3.7] it follows from (2.13) that

(2.14) |Cl2(θ)| � |θ| − |θ| log |θ|+ |θ|3/54 (−π < θ < π).

3. Zeros of φA,0

In this section we locate the zeros of φA,0(z) = Li2(z) + 4π2A.

Lemma 3.1. We have ImLi2(z) = 0 if and only if z ∈ (−∞, 1].

Proof. We first note that Li2(z) = Li2(z) is true for |z| � 1 by (1.1), so it must be
true for all z in C− [1,∞) by analytic continuation. It follows that

2iImLi2(z) = Li2(z)− Li2(z) = Li2(z)− Li2(z) (z ∈ C− [1,∞))

and hence

(3.1) ImLi2(z) = 0 for z ∈ (−∞, 1].

With (3.1) and (2.6) we can see that

(3.2) ImLi2(z) = −π log z �= 0 for z ∈ (1,∞).

Write z ∈ C as z = reiθ for r � 0 and −π < θ � π. From (1.2) we have that

d

dr
Li2(re

iθ) = −1

r
log(1− reiθ)

and so

(3.3)
d

dr
ImLi2(re

iθ) = −Im

(
1

r
log(1− reiθ)

)
= −1

r
arg(1− reiθ).

Hence ImLi2(re
iθ) is a strictly increasing function of r for 0 < θ < π and strictly

decreasing for −π < θ < 0. Since ImLi2(0) = 0 it follows that ImLi2(z) �= 0 for
z ∈ C− R. Combining this with (3.1), (3.2) completes the proof. �

Proposition 3.2. Let A ∈ Z. Then φA,0(z) has one zero if A � 0 and no zeros
otherwise.

Proof. With Lemma 3.1, we see the only possible solutions to φA,0(z) = 0 have
z = x ∈ (−∞, 1]. We know Li2(x) is continuous on (−∞, 1] and it is real-valued
for these x by (3.1). We have

(3.4)
d

dx
Li2(x) = − 1

x
log(1− x) > 0 for x ∈ (−∞, 1)

so that Li2(x) is strictly increasing. If φA,0(x) = 0, then

π2/6 = Li2(1) � Li2(x) = −4π2A,

implying that φA,0 has no zeros for A < 0. For A = 0 there is the necessarily unique
zero at x = 0.

Now we assume A � 1. Then

(3.5) φA,0(−x) = 0 =⇒ −x ∈ (−∞,−1) since Li2(−1) = −π2/12.

From the functional equation (2.6) we see that

(3.6) Li2(−x) = −π2

6
− 1

2
log2(x)− Li2

(
− 1

x

)
(x > 0).
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Note that

(3.7) |Li2(z)| �
∞∑

n=1

|z|n
n2

� |z|
∞∑

n=1

1

n2
= |z|π

2

6
(|z| � 1)

and so (3.6) and (3.7) imply that, for x � 1,

(3.8) Li2(−x) = −π2

6
− 1

2
log2(x) + ε

with ε ∈ R satisfying |ε| � π2/(6x). Therefore Li2(−x) → −∞ as −x → −∞ and
Li2(−x) = −4π2A has a single solution, as required. �

Proposition 3.3. For A ∈ Z�1, if φA,0(ρ) = 0, then∣∣∣ρ+ exp
(
π
√
8A− 1/3

)∣∣∣ < 1/
√
A.

Proof. It follows from (3.8) that

(3.9) ρ = − exp
(
π
√
8A− 1/3 + ε′

)
for |ε′| = 2|ε|

π2
� 1

3|ρ| .

We have −1/3 � ε′ � 1/3 by (3.5) and therefore

ρ � − exp
(
π
√
8A− 2/3

)
,

which in turn implies

|ε′| � exp
(
−π
√
8A− 2/3

)
/3.

Next write

exp
(
π
√
8A− 1/3 + ε′

)
= exp

(
π
√
8A− 1/3 (1 + u)1/2

)
with u = ε′/(8A−1/3). If u ∈ C satisfies |u| � 1/2, say, we have the simple bounds

(1 + u)1/2 = 1 + w =⇒ |w| � |u|,(3.10)

exp(u) = 1 + w =⇒ |w| � 2|u|.(3.11)

Hence

exp
(
π
√
8A− 1/3 (1 + u)

1/2
)
= exp

(
π
√
8A− 1/3 (1 + w)

)
= exp

(
π
√
8A− 1/3

)
exp

(
w · π

√
8A− 1/3

)
= exp

(
π
√
8A− 1/3

)
(1 + w′)

for |w′| � 2|w · π
√
8A− 1/3| � 2|u · π

√
8A− 1/3| using (3.10) and (3.11). Then

the error has the bounds∣∣∣w′ exp
(
π
√
8A− 1/3

)∣∣∣ � 2π

3
√
8A− 1/3

exp
(
π
√
8A− 1/3− π

√
8A− 2/3

)

� 2π

3
√
8A− 1/3

exp
(
π
√
8− 1/3− π

√
8− 2/3

)
<

1√
A

as required, where we used that
√
x+ c −

√
x is a decreasing function of x for

x+ c, x � 0. �
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4. Newton’s method for φA,0

Proposition 4.1. Let z and c be two points in C with Re(z), Re(c) � 1 − s for
s > 0. Then ∣∣Li2(z)− Li2(c)− (z − c) Li′2(c)

∣∣ � |z − c|2 1

2s
.

Proof. We need to bound the remainder term in the Taylor expansion of Li2(z) at
c,

Li2(z) = Li2(c) + (z − c) Li′2(c) +
(z − c)2

2πi

∫
C

Li2(w)

(w − c)2(w − z)
dw,

where C is the circular path of radius T centered at 1 that avoids the branch cut
[1,∞) as shown in Figure 2.

z

c

C

Figure 2. The path of integration C

The path C makes a small circle of radius ε about 1 that is connected to a path
from 1+ε to 1+T just above the cut and a path from 1+T to 1+ε just below the
cut. Letting the horizontal paths meet the branch cut, we find the values of Li2(w)
with (2.3). Use (2.6) and (2.7) to see that the growth of Li2(z) is logarithmic on
the circles of radius T and ε so that as T → ∞ and ε → 0 their contributions to∫
C

go to zero. Therefore

1

2πi

∫
C

Li2(w)

(w − c)2(w − z)
dw =

∫ ∞

0

log(t+ 1)

(t+ 1− c)2(t+ 1− z)
dt.

Since |t+1− c|, |t+1− z| � t+ s and | log(t+1)| � t, the proposition follows from∣∣∣∣
∫ ∞

0

log(t+ 1)

(t+ 1− c)2(t+ 1− z)
dt

∣∣∣∣ �
∫ ∞

0

t

(t+ s)3
dt =

1

2s
. �

Write DA := exp
(
π
√
8A− 1/3

)
and c∗ := c− φA,0(c)/φ

′
A,0(c).

Lemma 4.2. Let A ∈ Z�1. Suppose ρ and c are in the interval
[
−DA − 1/

√
A,

−DA + 1/
√
A
]
and φA,0(ρ) = 0. Then

(4.1) |ρ− c∗| < |ρ− c|2

2π
√
A

.



ZEROS OF THE DILOGARITHM 2975

Proof. Let z = ρ and s = DA in Proposition 4.1 to get

(4.2)
∣∣φA,0(ρ)− φA,0(c)− (ρ− c)φ′

A,0(c)
∣∣ � |ρ− c|2 1

2DA
.

Now c · φ′
A,0(c) = − log(1− c) as in (2.1), and dividing (4.2) by φ′

A,0(c) finds

|ρ− c∗| � |ρ− c|2 |c|
2DA| log(1− c)| � |ρ− c|2 DA + 1/

√
A

2DA · π
√
8A− 1/3

<
|ρ− c|2

2π
√
A

. �

Let c0 := −DA = − exp(π
√
8A− 1/3) and cn+1 := cn − φA,0(c)/φ

′
A,0(c) for

n � 0.

Proposition 4.3. Suppose A ∈ Z�1 and ρ satisfies φA,0(ρ) = 0. Then the sequence
c0, c1, · · · above converges to ρ with

|ρ− cn| � 2π
√
A · (2πA)−2n .

Proof. With Proposition 3.3 we know that ρ is in the interval [−DA − 1/
√
A,

−DA + 1/
√
A]. Lemma 4.2 implies that for any c ∈ [−DA − 1/

√
A,−DA + 1/

√
A]

we have |ρ − c∗| < |ρ − c| so that c∗ remains in the interval. In this way, starting
with c0, we may keep applying Lemma 4.2 to each term in the sequence. We find

|ρ− cn|
2π

√
A

<

(
|ρ− cn−1|
2π

√
A

)2

<

(
|ρ− cn−2|
2π

√
A

)4

< · · · <
(
|ρ− c0|
2π

√
A

)2n

and |ρ− c0| � 1/
√
A completes the proof. �

For example, with A = 1 the sequence produced by Proposition 4.3 has initial
value c0 ≈ −5994.97063 and the next term c1 ≈ −5995.08558. Taking more terms,
we find φ1,0(ρ) = 0 for ρ ≈ −5995.08558, which is correct to the precision shown
and already given by c1.

With the results in Sections 3 and 4 we have proved Theorem 1.2 and the B = 0
case of Theorem 1.1. We prove the simplicity of all zeros in Proposition 7.4.

5. Zeros of φA,B

Lemma 5.1. For A ∈ Z, B ∈ Z�1 and x ∈ R we have φA,B(x) �= 0.

Proof. For x > 1, the imaginary part of φA,B(x) equals π(−1 + 2B) log x �= 0 by
(3.2). For 0 � x � 1 the imaginary part of φA,B(x) equals 2πB log x by (3.1). This
is zero only if x = 1, but then

φA,B(1) = Li2(1) + 4π2A+ 2πiB log (1) = π2(1/6 + 4A) �= 0.

For the remaining case of x < 0 we have log x = log |x|+ πi so that the imaginary
part of φA,B(x) equals 2πB log |x|. This is zero only if x = −1, but then

φA,B(−1) = Li2(−1) + 4π2A− 2π2B = π2(−1/12 + 4A− 2B) �= 0. �
So we look for solutions to φA,B(z) = 0 with z ∈ C−R. The main idea to locate

these zeros is to consider the vanishing of the real and imaginary parts of φA,B(z)
separately. We will see that ImφA,B(z) = 0 makes a curve near the unit circle and

ReφA,B(z) = 0 makes a curve close to the ray from the origin through e2πiA/B

when A is small enough.
For B ∈ Z�1 fixed, write the imaginary part of

(5.1) φA,B(re
iθ) = Li2(re

iθ) + 4π2A+ 2πiB log
(
reiθ

)
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as the function

(5.2) Iθ(r) := ImLi2(re
iθ) + 2πB log r.

As in (3.3),

∂I

∂r
=

1

r

(
2πB − arg(1− reiθ)

)
,(5.3)

∂I

∂θ
= − log |1− reiθ|.(5.4)

Lemma 5.2. Fix B ∈ Z�1. For each θ with 0 < |θ| < π there exists a unique r > 0
so that Iθ(r) = 0.

Proof. With (5.3) we have ∂I
∂r > 0 so that Iθ is a strictly increasing function of r.

It is easy to see that limr→0 Iθ(r) = −∞. With (2.6),

Li2(re
iθ) = −Li2

(
1

r
e−iθ

)
− π2

6
− 1

2
log2

(
1

r
ei(π−θ)

)

= −Li2

(
1

r
e−iθ

)
− π2

6
− 1

2

(
− log r + i(sgn θ · π − θ)

)2
and hence

(5.5) Iθ(r) = −ImLi2

(
1

r
e−iθ

)
+ (2πB + sgn θ · π − θ) log r.

It follows that limr→∞ Iθ(r) = ∞ and so exactly one r makes Iθ(r) = 0. �

Figure 3. The polar rectangle R0,1 containing the zero w(0, 1) ≈
0.916 + 0.182i

We may therefore define a function g(θ) = gB(θ), with domain (−π, 0) ∪ (0, π),
equalling the unique r such that Iθ(r) = 0. This lets us parameterize the curve
where ImφA,B(z) = 0 for z ∈ C − R as (g(θ), θ) in polar coordinates. Recall
κ ≈ 1.015 defined in (2.11).
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Proposition 5.3. The function g(θ) is smooth and satisfies

1 <g(θ) < exp

(
κ

π(2B − 1)

)
for θ ∈ (−π, 0),(5.6)

exp

(
−κ

π(2B)

)
<g(θ) < 1 for θ ∈ (0, π).(5.7)

Proof. For any θ0 in the domain of g, set r0 = g(θ0). Then (r0, θ0) is a solution to
Iθ(r) = 0. By the implicit function theorem, r satisfying Iθ(r) = 0 is a function of
θ in a neighborhood of θ0 provided

(5.8)
∂I

∂r

∣∣∣∣
(r,θ)=(r0,θ0)

�= 0.

As we have already seen with (5.3), the left side of (5.8) is always > 0. Thus,
the implicit function theorem confirms that r is a function of θ and that g is
differentiable as many times as I is. Hence g is a smooth function of θ. By implicit
differentiation we have, for example, using (5.3), (5.4),

(5.9) g′(θ) = −∂I

∂θ

/∂I

∂r
= r

log |1− reiθ|
2πB − arg(1− reiθ)

for r = g(θ).

Next we prove the bounds (5.6), (5.7). For r = 1 we have Iθ(1) = Cl2(θ). Since
we have seen that Iθ is a strictly increasing function of r it follows that (see Figures
1 and 3)

θ ∈ (−π, 0) =⇒ Cl2(θ) < 0 =⇒ g(θ) > 1,(5.10)

θ ∈ (0, π) =⇒ Cl2(θ) > 0 =⇒ g(θ) < 1,(5.11)

giving the lower bound in (5.6) and the upper bound in (5.7).
For θ ∈ (−π, 0), Iθ(r) = 0 implies that r > 1 by (5.10) and, employing (5.5),

(2πB − π − θ) log r = ImLi2

(
1

r
e−iθ

)
< ImLi2

(
1e−iθ

)
� κ

since ImLi2
(
te−iθ

)
is increasing in t as we saw after (3.3). The upper bound in

(5.6) follows. For θ ∈ (0, π), Iθ(r) = 0 implies that r < 1 by (5.11) and so

2πB log r = −ImLi2(re
iθ) > −ImLi2(1e

iθ) � −κ.

This gives the lower bound in (5.7) and completes the proof. �

With Proposition 5.3, we may restrict our attention to r in the interval (0.8, 2)
since

0.85 ≈ exp

(
−κ

2π

)
< r < exp

(κ
π

)
≈ 1.38

corresponding to (5.6), (5.7) with B = 1.
For A, B fixed, write the real part of (5.1) as the function

(5.12) Rr(θ) := ReLi2(re
iθ) + 4π2A− 2πBθ.

We see with (2.3) that Rr(θ) is a continuous function of θ ∈ [−π, π]. It is always
smooth for θ ∈ (−π, 0) ∪ (0, π), but it is not differentiable at θ = 0 when r � 1.
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Similarly to (5.3), (5.4) we have

∂R

∂θ
= −2πB + arg(1− reiθ),(5.13)

∂R

∂r
= −1

r
log |1− reiθ|.(5.14)

Lemma 5.4. Fix B ∈ Z�1 and r in the interval (0.8, 2).

• If −B/2 < A � B/2, then there exists a unique θ ∈ (−π, 0)∪ (0, π) so that
Rr(θ) = 0.

• Otherwise, if A � −B/2 or B/2 < A, then there is no solution to Rr(θ) =
0 with θ ∈ (−π, 0) ∪ (0, π).

Proof. With (5.13) we have ∂R
∂θ < 0 for θ ∈ (−π, 0) ∪ (0, π) so that Rr is a strictly

decreasing function of θ. Therefore

Rr(π) < Rr(θ) < Rr(−π) for − π < θ < π

where

Rr(π) = ReLi2(−r) + 4π2A− 2π2B,(5.15)

Rr(−π) = ReLi2(−r) + 4π2A+ 2π2B.(5.16)

Hence, for r > 0 fixed, Rr(θ) = 0 has a solution θ if and only if Rr(π) < 0 and
Rr(−π) > 0. With (5.15), (5.16) these conditions are equivalent to

(5.17) −B

2
< A+

ReLi2(−r)

4π2
<

B

2
.

Note that ReLi2(x) is increasing by (3.4) so that

−1.44 ≈ ReLi2(−2) < ReLi2(−r) < ReLi2(−0.8) ≈ −0.68,

and the result follows. �
For A, B ∈ Z with −B/2 < A � B/2, we may therefore define a function

h(r) = hA,B(r), with domain (0.8, 2), equalling the unique θ ∈ (−π, 0) ∪ (0, π)
such that Rr(θ) = 0. Then (r, h(r)) parameterizes a part of the curve defined by
ReφA,B(z) = 0.

Proposition 5.5. For r ∈ (0.8, 2) the function h(r) = hA,B(r) is smooth and
satisfies

(5.18)
π

B

(
2A− 1

8

)
< hA,B(r) <

π

B

(
2A+

1

8

)
(−B/2 < A < B/2).

For A = 0 we have the improvement on (5.18):

(5.19)
π

24B
< h0,B(r) <

π

8B

and for A = B/2 with B even:

(5.20) π − π

8B
< hB/2,B(r) < π.

Proof. For any r0 in the domain of h, set θ0 = h(r0). Then (r0, θ0) is a solution to
Rr(θ) = 0. By the implicit function theorem, θ satisfying Rr(θ) = 0 is a function
of r in a neighborhood of r0 since

(5.21)
∂R

∂θ

∣∣∣∣
(r,θ)=(r0,θ0)

< 0
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by (5.13). The theorem also says that h is differentiable as many times as R is.
Hence h is a smooth function of r. By implicit differentiation we have, for example,
using (5.13), (5.14),

(5.22) h′(r) = −∂R

∂r

/∂R

∂θ
= −1

r

log |1− reiθ|
2πB − arg(1− reiθ)

for θ = h(r).

The bounds (5.18), (5.19) and (5.20) follow from (5.12) and estimates for
ReLi2(re

iθ), which we work out next. First we note that ReLi2(re
iθ) is contin-

uous for r � 0 and −π � θ � π. As in Lemma 3.1 we can show ReLi2(re
−iθ) =

ReLi2(re
iθ). Also ReLi2(re

iθ) is strictly decreasing as a function of θ when 0 �
θ � π, and as a function of r it is increasing for r < 2 cos θ and decreasing for
r > 2 cos θ.

The maximum value of Re Li2(re
iθ) occurs at (r, θ) = (2, 0) and equals π2/4.

Since ReLi2(−2) > −π2/4 it follows that

(5.23) |ReLi2(reiθ)| < π2/4 (r < 2).

Then (5.18) is implied by (5.12) and (5.23). For A = 0 this means − π
8B < h0,B(r) <

π
8B . However, for r ∈ (0.8, 2) and −π/8 < θ < π/8 we have ReLi2(re

iθ) >

ReLi2(0.8e
−iπ/8) > π2/12. This gives the improved lower bound in (5.19). Fi-

nally, (5.20) is a consequence of

(5.24) ReLi2(re
iθ) < 0 for r > 0, |θ| � π/2.

The bound (5.24) is true since ReLi2(re
iπ/2) is decreasing from the value 0 at

r = 0. �

Let B ∈ Z�1. For each A ∈ Z satisfying −B/2 < A � B/2, based on the bounds
in Propositions 5.3 and 5.5, define the following polar rectangles:

RA,B :=
{
(r, θ)

∣∣∣ r1 � r � r2, θ1 � θ � θ2

}
where

r1 = r1(A,B) :=

{
1 for −B/2 < A < 0

exp(−κ/(2πB)) for 0 � A � B/2

r2 = r2(A,B) :=

{
exp(κ/(π(2B − 1))) for −B/2 < A < 0

1 for 0 � A � B/2

θ1 = θ1(A,B) :=

{
π(2A− 1/8)/B for A �= 0

π/(24B) for A = 0

θ2 = θ2(A,B) :=

{
π(2A+ 1/8)/B for A �= B/2

π for A = B/2.

For example, see Figure 3 for R0,1.

Theorem 5.6. For A ∈ Z and B ∈ Z�1, we have solutions to φA,B(z) = 0 if
and only if −B/2 < A � B/2. For such a pair A,B the solution z is unique and
contained in the interior of the polar rectangle RA,B.
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Proof. Let r1, r2, θ1, θ2 be defined as above, giving the boundaries of RA,B. With
Propositions 5.3 and 5.5 we have seen that there exist continuously differentiable
functions g, h with

(5.25) g : [θ1, θ2] → (r1, r2), h : [r1, r2] → (θ1, θ2)

and

(5.26) g′(θ) = r · log |1− reiθ|
2πB − arg(1− reiθ)

, h′(r) = −1

r
· log |1− reiθ|
2πB − arg(1− reiθ)

.

Solutions to φA,B(z) = 0 must be points in the intersection

(5.27) (g(θ), θ)θ1�θ�θ2 ∩ (r, h(r))r1�r�r2 .

The denominators 2πB − arg(1 − reiθ) in (5.26) are positive and bounded below
by π(2B − 1). We have log |1 − reiθ| = 0 if and only if r = 2 cos θ, and it is
straightforward to show that the curve r = 2 cos θ intersects RA,B if and only if
A = ±B/6.

Suppose first that −B/6 < A < B/6. Then we have log |1 − reiθ| < 0 for all
(r, θ) ∈ RA,B, and therefore h′(r) > 0 and g′(θ) < 0 for all r and θ in the domains
(5.25). By the inverse function theorem, g has an inverse, g−1(r), a strictly decreas-
ing continuously differentiable function on [g(θ1), g(θ2)]. Set f(θ) to be the differ-
ence h(r) − g−1(r). Then f is continuous and strictly increasing on [g(θ1), g(θ2)]
with f(g(θ1)) < 0 and f(g(θ2)) > 0. By the intermediate value theorem, there is a
unique r∗ so that f(r∗) = 0. Set θ∗ = h(r∗). Then (r∗, θ∗) is the unique element
of (5.27) and it lies in the interior of RA,B.

The cases with A < −B/6 or A > B/6 are handled very similarly to the above,
the only difference being that now g′(θ) > 0 and h′(r) < 0.

For the last case we have A = ±B/6. With (5.26) we may easily show that
|g′(θ)|, |h′(r)| < 1. Since h′ may be zero, it does not necessarily have an inverse.
Consider RA,B as a rectangle in the r θ plane and rotate it about the origin, say,
by an angle of π/4. The curves corresponding to the rotated curves (r, h(r)) and
(g(θ), θ) may now be expressed as graphs of functions (of positive and negative
slope, respectively) and our previous argument applies. �

Theorem 5.6 establishes the B �= 0 case of Theorem 1.1 (except for simplicity)
and shows that when φA,B has a zero it is close to e2πiA/B. In the next section, we
find each zero more precisely.

6. Newton’s method for φA,B

Proposition 6.1. Let L be a line in C that is a distance r > 0 from the origin.
Suppose z and c are two points in the half plane that is bounded by L and does not
contain the origin. If the ray (−∞, 0] intersects this half plane, we also assume z
and c are on the same side of (−∞, 0]. With these assumptions∣∣∣∣log(z)− log(c)− z − c

c

∣∣∣∣ � |z − c|2 1

2r2
.

Proof. As in Proposition 4.1, express log(z) with the first two terms of its Taylor
expansion at c to get

log(z) = log(c) + log′(c)(z − c) +
(z − c)2

2πi

∫
C

log(w)

(w − c)2(w − z)
dw
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with C a positively oriented circular curve of radius T containing z and c, similar
to Figure 2 but this time avoiding the branch cut (−∞, 0]. Let the horizontal paths
above and below the cut coincide. The values of log on these paths differ by 2πi, as
in (2.2). We now rotate these horizontal paths away from z and c (using values of
the continued log that keep the difference on the two paths as 2πi) until they are
perpendicular to L, not intersecting it. To keep track of the angle, suppose these
paths now pass through α with |α| = 1. Letting T → ∞ and ε → 0 we find

(6.1)
1

2πi

∫
C

log(w)

(w − c)2(w − z)
dw = −

∫ ∞

0

α

(αt− c)2(αt− z)
dt.

Since |αt− c|, |αt− z| � t+ r, the right side of (6.1) is bounded in absolute value
by
∫∞
0

(t+ r)−3 dt = 1/(2r2) as required. �

Define

M(s) :=

(
2 log(4/3)

s
+ 8π

)
1

(4s+ 1)2
+ 3.

Proposition 6.2. Let L be a line in C that is a distance s > 0 from the point 1.
Suppose z and c are two points in the half plane that is bounded by L and does not
contain 1. If the ray [1,∞) intersects this half plane, we assume z and c are on the
same side of [1,∞). With these assumptions∣∣Li2(z)− Li2(c)− (z − c) Li′2(c)

∣∣ � |z − c|2M(s).

Proof. As in Propositions 4.1 and 6.1 we must bound the remainder term in

Li2(z) = Li2(c) + (z − c) Li′2(c) +
(z − c)2

2πi

∫
C

Li2(w)

(w − c)2(w − z)
dw

where C is the circular path of radius T containing z and c in Figure 2. Let the
paths above and below the branch cut [1,∞) coincide; the difference between values
of Li2(w) with w coming from above and below the branch cut is 2πi log(w) by (2.3).
Similarly to Proposition 6.1, we rotate these horizontal paths away from z and c
until they are perpendicular to L, using values of the continued dilogarithm that
keep the difference at a point w on the two paths as 2πi log(w). Suppose these
paths now pass through 1 + α with |α| = 1. Letting T → ∞ and ε → 0 we find

1

2πi

∫
C

Li2(w)

(w − c)2(w − z)
dw =

∫ ∞

0

α log(αt+ 1)

(αt+ 1− c)2(αt+ 1− z)
dt.

Then |αt+ 1− c|, |αt+ 1− z| � t+ s imply

(6.2)

∣∣∣∣
∫ ∞

0

α log(αt+ 1)

(αt+ 1− c)2(αt+ 1− z)
dt

∣∣∣∣ �
∫ ∞

0

| log(αt+ 1)|
(t+ s)3

dt.

With the straightforward inequality

(6.3) |log(z + 1)| � 1

Y
log

(
1

1− Y

)
· |z| (|z| � Y < 1)

we have | log(αt+ 1)| � 4 log(4/3) · t for |t| � 1/4. Also

(6.4) | log(αt+ 1)| � |Im log(αt+ 1)|+ |Re log(αt+ 1)| � π + log(t+ 1),
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so the right side of (6.2) is bounded by

(6.5)

∫ 1/4

0

4 log(4/3)t

(t+ s)3
dt+

∫ ∞

1/4

π

(t+ s)3
dt+

∫ ∞

1/4

log(t+ 1)

(t+ s)3
dt

� 2 log(4/3)

s(4s+ 1)2
+

8π

(4s+ 1)2
+

∫ ∞

1/4

log(t+ 1)

t3
dt.

The last integral on the right of (6.5) equals 2 + 15
2 log(5)− 16 log(2) < 3. �

Let A, B be integers with −B/2 < A � B/2. We know that φA,B(ρ) = 0 for
some unique ρ ∈ RA,B. Let R′

A,B be a convex version of RA,B with the boundary

arc of radius r1(A,B) replaced by a straight line between the corners. Let c be any
point in R′

A,B. Then

(6.6) |c · φ′
A,B(c)| = | − log(1− c) + 2πiB| � π(2B − 1)

and in particular φ′
A,B(c) �= 0, so that c∗ := c− φA,B(c)/φ

′
A,B(c) makes sense.

Theorem 6.3. Let A, B be integers with −B/2 < A � B/2. If ρ, c ∈ R′
A,B with

φA,B(ρ) = 0, then

(6.7) |ρ− c∗| < B|ρ− c|2 ×
{
0.76 if A �= 0

2.51 if A = 0.

Proof. Suppose all points in R′
A,B are at least a distance r from 0 and s from 1.

Then Propositions 6.1 and 6.2 imply

(6.8)
∣∣φA,B(ρ)− φA,B(c)− (z − c)φ′

A,B(c)
∣∣ � |ρ− c|2

(
πB/r2 +M(s)

)
.

Combining (6.8) with (6.6) shows that

(6.9) |ρ− c∗| � |ρ− c|2 ·B ·N(A,B)

for

(6.10) N(A,B) := r2(A,B)
πB/r2 +M(s)

πB(2B − 1)

since |c| � r2(A,B). Looking at the easier cases with A �= 0 and B � 2 first, it is
routine to show that

(6.11) r2(A,B) < 6/5, r > 9/10, s > 2/B.

With these numbers, for A �= 0,

(6.12) N(A,B) <
6

5π(2B − 1)

(
100π

81
+

[
log

(
4

3

)
+

8π

B

](
B

B + 8

)2

+
3

B

)
.

Then N(A, 2) < 0.76, N(A, 3) < 0.43, N(A, 4) < 0.30, and if we replace B
B+8 by 1

in (6.12) we see that N(A,B) < 0.42 for all B � 5. This proves the theorem for
A �= 0.

To treat the cases with A = 0 we need to rework Proposition 6.2 a little. The set
R′

0,B has all its points at least sin(π/(24B) > 1/(8B) vertically above R. Taking

α = −i in Proposition 6.2 means we need to bound | log(−it+1)| = | log(it+1)| in
(6.2).

Lemma 6.4. We have | log(it+ 1)| � t for all t � 0.
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Proof. Let θ = arg(it+ 1), and our desired inequality is equivalent to

g(θ) := tan2 θ − θ2 − log2(cos θ) � 0 (0 � θ < π/2).

With [Rad73, (11.3)] write

tan θ =
1

θ

∞∑
n=2

anθ
n for an =

{
2n(2n − 1)|Bn|/n! > 0 if n is even

0 if n is odd.

This expansion is valid for |θ| < π/2. Therefore

(6.13) tan2 θ =
1

θ2

∞∑
n=4

θn
n∑

j=0

ajan−j .

Since log(cos θ) =
∑∞

n=2
an

n+1θ
n we find

(6.14) log2(cos θ) =
∞∑

n=4

θn
n∑

j=0

ajan−j

(j + 1)(n− j + 1)
.

Comparing (6.13) and (6.14) shows that

tan2 θ � 5 log2(cos θ)

θ2

and so

g(θ) � −θ2 +

(
5

θ2
− 1

)
log2(cos θ).

Since log2(cos θ) = θ4/4 + · · · it follows that g(θ) � 0 for 0 � θ � 1. When
1 � θ < π/2 it is straightforward to verify that g(θ) � 0 since g′(θ) > 0 in this
range. �

Now the remainder term in (6.2) is

(6.15)

∫ ∞

0

| log(−it+ 1)|
(t+ s)3

dt �
∫ ∞

0

t

(t+ s)3
dt =

1

2s
.

The quantities we need for R′
0,B satisfy

(6.16) r2(0, B) = 1, r > 9/10, s > 1/(8B).

Then (6.9) is true with M(s) in (6.10) replaced by 1/(2s) from (6.15). We obtain

(6.17) N(0, B) <

(
100π

81
+ 4

)
1

π(2B − 1)

so that N(0, B) � N(0, 1) < 2.51 for B � 1. This completes the proof of Theorem
6.3. �

Theorem 6.5. Let A and B be integers satisfying −B/2 < A � B/2. Let ρ be the
unique zero of φA,B. Then the sequence c0, c1, · · · in (1.4) converges to ρ with

(6.18) |ρ− cn| < 1.25(0.95)2
n

.

Proof. Suppose first that A �= 0. The distance between any two points in R′
A,B

may be shown to be less than 6/(5B). It then follows from Theorem 6.3 that for
any c ∈ R′

A,B we have |ρ − c∗| < |ρ − c| so that c∗ remains in R′
A,B . We have

c0 ∈ R′
A,B, and repeated applications of Theorem 6.3 show that

0.8B|ρ− cn| <
(
0.8B|ρ− cn−1|

)2
<
(
0.8B|ρ− cn−2|

)4
< · · · <

(
0.8B|ρ− c0|

)2n
.
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The inequality (6.18) now follows using |ρ− c0| < 6/(5B).
The case with A = 0 is proved similarly. Use that the distance between any two

points in R′
0,B is less than 1/(3B). �

7. Further results

Lemma 7.1. We have

log(1− eiθ) = −Cl′2(θ) +
i

2

(
θ − π

θ

|θ|

)
(0 < |θ| < π).

Proof. We may write 1 − eiθ = −eiθ/22i sin(θ/2) = ei(θ−π)/22 sin(θ/2). Taking
logs with appropriate branches and using Cl′2(θ) = − log |2 sin(θ/2)| from (2.10)
completes the proof. �

Lemma 7.2. For 0 < |θ| � π,∣∣Cl′2(θ)∣∣ � log

(
max

{
2,

π

3|θ|

})
.

Proof. When π/3 � |θ| � π we have 1 � |2 sin(θ/2)| � 2 so that | log |2 sin(θ/2)|| �
log 2. When 0 < |θ| < π/3 we have |2 sin(θ/2)| < 1, and using the inequality
| sinx| � 3|x|/π for |x| � π/6 implies∣∣log |2 sin(θ/2)|∣∣ = log

(
1

|2 sin(θ/2)|

)
� log

π

3|θ| . �

Theorem 7.3. Let A and B be integers satisfying −B/2 < A � B/2 and suppose
φA,B(ρ) = 0. Then

(7.1) ρ = e2πiA/B

(
1 +

−Cl2(2πA/B) + iπ2B2(|A|/B)

2πB

)
+O

(
1 + logB

B2

)
.

Proof. Let c0 and c1 be as in Theorem 6.5. With (6.12) and (6.17) it is easy to see
that B · N(A,B) is bounded by an absolute constant. Also |ρ − c0| < 6/(5B), as
we have seen in the proof of Theorem 6.5, so that (6.9) implies

(7.2) |ρ− c1| = O
(
B−2

)
.

Now for A �= 0,

φA,B(c0) = −Li2(e
2πiA/B) = π2B2(|A|/B) + iCl2(2πA/B)

with (2.8) and (2.9). Also

c0φ
′
A,B(c0) = 2πiB− log(1−e2πiA/B) = 2πiB+Cl′2(2πA/B)+2πi

(
− A

2B
+

A

4|A|

)
using Lemma 7.1. Therefore

(7.3) − φA,B(c0)

c0φ′
A,B(c0)

=
−Cl2(2πA/B) + iπ2B2(|A|/B)

2πB

1

1 +X

for

X :=
1

B

(
− A

2B
+

A

4|A|

)
+

Cl′2(2πA/B)

2πiB
.

We have

(7.4)
∣∣Cl′2(2πA/B)

∣∣ � log(2B)
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in an easy corollary to Lemma 7.2. Use (7.4) to see that

(7.5) |X| � π/2 + log(2B)

2πB
� 1

2
=⇒

∣∣∣∣ 1

1 +X
− 1

∣∣∣∣ � 2|X| � π + 2 log(2B)

2πB
,

and hence (7.3) and (7.5) together imply

(7.6) 1− φA,B(c0)

c0φ′
A,B(c0)

= 1 +
−Cl2(2πA/B) + iπ2B2(|A|/B)

2πB
+O

(
1 + logB

B2

)
.

Multiplying both sides of (7.6) by c0 and using (7.2) completes the proof of (7.1).
In the case A = 0, our goal (7.1) becomes ρ = 1+πi/(12B)+O

(
(1+logB)/B2

)
.

Similarly to (7.6) we find

1− φ0,B(c0)

c0φ′
0,B(c0)

= 1 +O

(
1 + logB

B2

)

by using (2.14). Multiplying by c0 then shows that

(7.7) c1 = eπi/(12B) +O

(
1 + logB

B2

)
.

Finally, (7.7) and (7.2) prove (7.1). �

Theorems 6.5 and 7.3 above establish Theorem 1.3. The following result com-
pletes the last part of the proof of Theorem 1.1.

Proposition 7.4. For A and B ∈ Z, all zeros of φA,B(z) are simple.

Proof. The zero of Li2(z) = φ0,0(z) at z = 0 is clearly simple by (1.1). For B = 0
and A � 1, we have by (2.1) and Proposition 3.3 that

ρ · φ′
A,0(ρ) = − log(1− ρ) < −π

√
8A− 1/3 < 0,

which shows that ρ is simple. For −B/2 < A � B/2, if φ′
A,B(ρ) = 0, then 2πiB =

log(1− ρ) by (2.1). But this is impossible since −π < Im log(1− ρ) � π. �

Another way to verify the simplicity of the zeros of φA,B(z), as well as their
existence and uniqueness, is with the argument principle. Let C be the contour
shown in Figure 2, but also avoiding the branch cut (−∞, 0] if B �= 0. Then for
A, B ∈ Z,

ΨC(A,B) :=
1

2πi

∫
C

φ′
A,B(z)

φA,B(z)
dz

counts the number of zeros of φA,B(z) in the interior of C with multiplicity. Letting
the horizontal paths coincide, the large radii of C go to infinity and the small radii
go to zero, we define Ψ(A,B) which counts all the zeros of φA,B(z). With (2.2) and
(2.3) we obtain
(7.8)

2πiΨ(A,B) =

∫ ∞

1

(
φ′
A,B+1(z)

φA,B+1(z)
−

φ′
A,B(z)

φA,B(z)

)
dz+

∫ 0

−∞

(
φ′
A,B(z)

φA,B(z)
−

φ′
A+B,B(z)

φA+B,B(z)

)
dz.

Note that Ψ(A,B) correctly counts the zeros of φA,B(z) when B = 0; in that case
there is no branch cut at (−∞, 0] to avoid and the second integral in (7.8) is zero.
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Theorem 1.1 implies

(7.9) Ψ(A,B) =

⎧⎪⎨
⎪⎩
1 if B = 0, A � 0

1 if − |B|/2 < A � |B|/2
0 otherwise

with the right side of (7.9) indicating a single simple zero with 1 and no zero with
0. Checking formula (7.9) numerically, we confirm that it is true for |A|, |B| � 50.
Perhaps (7.9) can be proved directly from (7.8).

8. Zeros of polylogarithms

The dilogarithm Li2(z) is a special case of the polylogarithm, also known as
Jonquière’s function [Jon89],

Lis(z) :=

∞∑
n=1

zn

ns
for |z| < 1, s ∈ C.

As a function of z, it has an analytic continuation to all of C and in general will be
multi-valued with branch points at 0, 1 and ∞; see for example Sections 4 and 11
of [Vep08]. It satisfies

(8.1) z
d

dz
Lis(z) = Lis−1(z).

8.1. Zeros of Lis(z) for Re(s) > 0. Here we discuss what is known about the
zeros of Lis(z) for s ∈ C with Re(s) > 0.

Theorem 8.1 (Le Roy [LR00]). For r > 0, Lir(z) has exactly one zero for z ∈
C− [1,∞). It is at z = 0 and is simple.

Proof. We use Jonquière’s representation [Jon89],

(8.2) Lis(z) =
z

Γ(s)

∫ ∞

0

ts−1

et − z
dt (Re(s) > 0, z ∈ C− [1,∞)).

Then for s = r > 0 and z = x+ iy, the imaginary part of Lir(z)/z is

y

Γ(r)

∫ ∞

0

tr−1

(et − x)2 + y2
dt

and therefore non-zero for y �= 0. For y = 0 we have z = x < 0 and so, clearly,
Lir(x)/x > 0. We have shown that Lir(z)/z is finite and non-zero for z ∈ C− [1,∞)
as required. �

For s = 2 we have a clear picture of the zeros of Li2(z) with Theorems 1.1 –
1.3. When s = 1 we have the simple case Li1(z) = − log(1− z). Clearly Li1(0) = 0
gives the only zero on the principal branch and Li1(z) is non-zero on every other
branch. Going in the other direction, if we let Li3(z) denote the trilogarithm on its
principal branch, it may be shown (see [Vep08, p. 246]) that on any branch it has
the form

(8.3) Li3(z) + 4π3iA+ 2π2B log(z)− πiC log2(z) (A,B,C ∈ Z).

By studying when the real and imaginary parts of (8.3) vanish, as in Section 5, it
should be possible to approximately determine the zeros. Looking at some cases,
it seems there may be up to two zeros on each branch and these zeros are close to
the unit circle.
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For general s with Re(s) > 0, the only result on the zeros of Lis(z) seems to be
that they are finite in number [Gaw79] for z on the principal branch. Vepštas gives
an efficient method to compute polylogarithms in [Vep08] and displays the zeros of
Li1/2+80i(z), Li1/2+15i(z) and Li6/5+14i(z) in the phase plots [Vep08, Figs. 8-10].
In these cases the zeros lie near the unit circle. If sn is a zero of the Riemann zeta
function ζ(s), then Lisn(z) has zeros at z = ±1. As s moves continuously near
sn the corresponding z zeros of Lis(z) show interesting behavior moving near ±1.
This connection is explored in [FK75].

For another example, Figure 4 shows the zeros of Lis(z) for s = 10 + 44i. The
zeros were found numerically by combining a phase plot with Newton’s method.
The spiraling curve that these zeros are making seems to be of a similar form to
(8.20). It would be interesting to identify it exactly.

Figure 4. The zeros of Lis(z) for s = 10 + 44i

8.2. Zeros of Lis(z) for Re(s) � 0. Much more is known about the zeros of Lis(z)
for Re(s) � 0. We look at the case when s is an integer first. Applying (8.1) to
Li1(z) shows Li0(z) = z/(1− z), a rational function. For −m ∈ Z�0 write

(8.4) Li−m(z) =
z ·Am(z)

(1− z)m+1
.

Then (8.1) implies

(8.5) Am+1(z) = (1− z)m+2 d

dz

(
z ·Am(z)

(1− z)m+1

)
.

We may therefore recursively define the functions Am by

(8.6) A0(z) := 1, Am+1(z) :=
(
1+mz

)
Am(z)+z(1−z)A′

m(z) (m ∈ Z�0).

Hence Am(z) is a polynomial and for m ∈ Z�1 it has degree m − 1. These are
the Eulerian polynomials, introduced by Euler in connection with evaluating the
Riemann zeta function at negative integers. For example

A1(z) = 1, A2(z) = 1 + z, A3(z) = 1 + 4z + z2, A4(z) = 1 + 11z + 11z2 + z3.

The coefficient of zk in Am(z) has a combinatorial interpretation as the number of
permutations of {1, 2, . . . ,m} with k ascents; see [GKP94, Sect. 6.2]. Frobenius
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also showed in [Fro10] that

Am(z) =

m∑
k=0

k!

{
m

k

}
(z − 1)m−k (m ∈ Z�0)

with the Stirling number
{
m
k

}
indicating the number of partitions of m elements

into k non-empty subsets.
We have

zm−1Am(1/z) = Am(z) (m ∈ Z�1),(8.7)

which is equivalent to

(−1)m+1 Li−m(1/z) = Li−m(z) (m ∈ Z�1),(8.8)

and (8.8) may be easily established using (8.1) and induction.
Thus by (8.4), Li−m(z) is a rational function and its zeros are at z = 0 along

with the zeros of the Eulerian polynomial Am(z). Frobenius showed in [Fro10] that
the zeros of Am(z) are always distinct and negative. For completeness, we give
a short proof that also shows their interlacing property. This proof is based on
[Pey66, Thm. 4] in a special case; see also [Bón12, Thm. 1.34] for a slightly weaker
result.

Theorem 8.2. For m ∈ Z�1 the Eulerian polynomial Am(z) has m − 1 distinct
zeros. If Am(ρ) = 0, then ρ < 0 and Am(1/ρ) = 0. Also, exactly one zero of Am(z)
lies between each pair of consecutive zeros of Am+1(z).

Proof. Suppose for our induction hypothesis that Am(z) has m−1 distinct negative
zeros. Note that by (8.6), z = 1 is not a zero of Am+1(z). Therefore, by (8.5), the
zeros of Am+1(z) must be the zeros of the derivative of

(8.9) z ·Am(z) · (1− z)−m−1.

By Rolle’s Theorem, this derivative has zeros between the zeros of Am(z) as well as
one between the greatest zero of Am(z) and 0. Since (8.9) goes to 0 as z → −∞, the
derivative is also zero at a value less than the least zero of Am(z). This accounts
for all m zeros of Am+1(z) and completes the induction. That the zeros come in
reciprocal pairs follows from (8.7). �

In [Pey66, Thm. 4], the above theorem is extended to all negative real numbers:

Theorem 8.3 ([Pey66, Thm. 4]). For r < 0, Lir(z) has −	r
 simple zeros for
z ∈ C− [1,∞) and they are all � 0.

Sobolev, in [Sob77], seems to have been the first to locate the zeros of Am(z)
for m large, with an explicit form for the error given in [Sir78]. We give this result
next along with the proof, since [Sob77, Sir78] give only brief summaries. Further
results on these zeros appear in [Sob78,Sob79a,Sob79b].

Theorem 8.4. Fix M > 1. Suppose m is large enough that

K :=

(
1 +

1

4

√
9π2 + log2 M

)(
π2 + log2 M

9π2 + log2 M

)(m+1)/2

� 1/3.
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Label the zeros of Am(z) as λm−1 < λm−2 < · · · < λ1 < 0. Then for each j with
−M � λj � −1/M we have

λj = − exp

(
−π cot

(
π(2j + 1 + εj)

2(m+ 1)

))
for |εj | � 2K/3.

Proof. Lipschitz’s formula (an application of Poisson summation) gives

(8.10)
π1−s

Γ(1− s)

∞∑
n=1

eπnz

ns
=
∑
k∈Z

(2ki− z)s−1 (Re(z), Re(s) < 0)

in a special case; see [Rad73, Sect. 37]. With z = i + t and s = −m in (8.10) we
obtain

(8.11)
π1+m

m!
Li−m(−eπt) = 2Re

∞∑
k=1

1

((2k − 1)i− t)m+1
(m ∈ Z�1).

Equation (8.11) is now valid for all t ∈ R, because of the convergence of the right
side of (8.11), and clearly both sides of (8.11) are smooth functions of t. For m
large, the term with k = 1 on the right side of (8.11) is largest. Let Rm(t) be the
rest of the series. Then

(8.12) Li−m(−eπt) = 0 ⇐⇒ 2Re
1

(i− t)m+1
+Rm(t) = 0

where

|Rm(t)| �
∞∑
k=2

2

((2k − 1)2 + t2)(m+1)/2

� 2

(9 + t2)(m+1)/2
+

∫ ∞

2

2dx

((2x− 1)2 + t2)(m+1)/2
.

This last integral is∫ ∞

3

du

(u2 + t2)(m+1)/2
� 1

(9 + t2)(m−1)/2

∫ ∞

3

du

u2 + t2

� 1

(9 + t2)(m−1)/2

∫ ∞

0

du

u2 + 9 + t2
=

π

2(9 + t2)m/2
,

and we have shown that

(8.13) |Rm(t)| � 1

(9 + t2)(m+1)/2

(
2 +

π

2

√
9 + t2

)
.

Next write

it+ 1 =
√
1 + t2 · eiπθ with t = tan(πθ) for − π

2
< θ <

π

2
to get

2Re
1

(i− t)m+1
=

2 cos
(
π(m+ 1)(θ + 1/2)

)
(1 + t2)(m+1)/2

.

Let

R∗
m(t) :=

1

2
(1 + t2)(m+1)/2Rm(t),

and (8.12) implies that Li−m(−eπ tan(πθ)) = 0 if and only if

(8.14) cos
(
π(m+ 1)(θ + 1/2)

)
+R∗

m(tan(πθ)) = 0.
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The values of t we are interested in have −M � −eπt � −1/M , which is equivalent
to π|t| � logM , and we see from (8.13) that |R∗

m(t)| � K � 1/3 for these values of
t. The corresponding range of θ is −X � θ � X for

X :=
1

π
arctan

(
logM

π

)
, 0 < X <

π

2
.

So now we study the left side of (8.14) for −X � θ � X. Write θ uniquely as

(8.15) θ =
2j −m+ ε

2(m+ 1)
for j ∈ Z, −1 < ε � 1,

and all the zeros of cos
(
π(m+ 1)(θ + 1/2)

)
occur for j ∈ Z and ε = 0 since

(8.16) cos
(
π(m+ 1)(θ + 1/2)

)
= (−1)j+1 sin(πε/2).

Lemma 8.5. If Li−m(−eπ tan(πθ)) = 0 for −X � θ � X, then θ is of the form
(8.15) for some j ∈ Z and ε satisfying |ε| � 2K/3.

Proof. With (8.16) and (8.14)∣∣sin(πε/2)∣∣ = ∣∣∣cos(π(m+ 1)(θ + 1/2)
)∣∣∣ = ∣∣R∗

m(tan(πθ))
∣∣ � K.

Recalling that
∣∣sin(πx)∣∣ � 3|x| for |x| � 1/6 gives the desired inequality for ε. �

Set θj := 2j−m
2(m+1) for j ∈ Z. We see now that, for −X � θ � X, the left side of

(8.14) is possibly zero only for θ in intervals of the form
[
θj − K

3(m+1) , θj +
K

3(m+1)

]
.

It is also clear from Lemma 8.5 and (8.16) that outside these intervals the left side
of (8.14) alternates > 0 and < 0. Therefore there is at least one zero in each such
interval.

The next lemma shows there is at most one zero for θ in each of these intervals;
this point was not addressed in [Sob77,Sir78].

Lemma 8.6. The left side of (8.14) is strictly increasing or decreasing for −X �
θ � X when θ is in the interval

[
θj − K

3(m+1) , θj +
K

3(m+1)

]
.

Proof. A short computation, using cos2(πθ) = 1 + t2, shows that d
dθ of the left of

(8.14) may be expressed as
(8.17)

π(m+ 1)

[
− sin

(
π(m+ 1)(θ + 1/2)

)
+

t

(1 + t2)2
R∗

m(t) +
1

(1 + t2)2
R∗

m+1(t)

]
.

Write θ in the form (8.15) with |ε| � 2K/3. Since∣∣∣sin(π(m+ 1)(θ + 1/2)
)∣∣∣ = ∣∣cos(πε/2)∣∣,∣∣∣∣ t

(1 + t2)2
R∗

m(t) +
1

(1 + t2)2
R∗

m+1(t)

∣∣∣∣ < 2K

we see that (8.17) is non-zero if | cos(πε/2)| > 2K and this is equivalent to 1 −
sin2(πε/2) > 4K2. With | sin(x)| � |x| we see that | sin(πε/2)| � πK/3 for |ε| �
2K/3. Hence

(8.18) K2 < 1/(4 + π2/32)

implies (8.17) is non-zero. Inequality (8.18) is true by our assumption K � 1/3. �
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We have therefore shown that every zero λ of Li−m(z), for −M � λ � −1/M ,
is of the form

λ = − exp

(
π tan

(
π
2j −m+ ε

2(m+ 1)

))

= − exp

(
−π cot

(
π
2j + 1 + ε

2(m+ 1)

))
with |ε| � 2K/3(8.19)

and also that there is exactly one zero of the form (8.19) when the interval[
θj − K

3(m+1) , θj + K
3(m+1)

]
is contained in (−X,X). It only remains to match

(8.19) with the ordering of the zeros λm−1 < · · · < λ1. (Recall from Theorem 8.2
that λm−j = 1/λj .) If m is even, then j = m/2 in (8.19) gives the zero of Li−m(z)
closest to z = −1. In fact z = λm/2 = −1 is the middle zero in this case. Also
j = m/2 − 1 in (8.19) gives the next zero to the right and j = m/2 + 1 the next
to the left. Hence λj is given by (8.19). Similarly for m odd. This completes the
proof of Theorem 8.4. �

The above theorem is also essentially equivalent to [GS84, Thm. 4], and we have
used their ordering of the zeros since it generalizes to other s values more readily.
As an example, take M = 1000 and m = 10, giving K ≈ 0.034. The leftmost
two zeros of A10(z) are λ9 ≈ −963.85, λ8 ≈ −37.54 and all zeros are between −M

and −1/M . By comparison, the values of − exp
(
−π cot

(
π 2j+1

2(m+1)

))
for j = 9, 8

are −971.78,−37.55. We have |εj | < 0.0032 for 1 � j � 9 and this is less than
2K/3 ≈ 0.023.

Figure 5. The zeros of Lis(z) for s = −10− 44i

Gawronski and Stadtmüller in [GS84] generalize Theorems 8.4 and 8.3 to the
zeros of Lis(z) for s ∈ C with Re(s) < 0. The required computations become much
more elaborate in this general case. Though the work in [GS84] is independent of
[Sob77], it is based on the same essential idea. Starting with (8.10), replace z with
z + i and ignore the terms with k �= 0, 1 to show that

π1−s

Γ(1− s)
Lis(−eπz) ≈ 1

(i− z)1−s
+

1

(−i− z)1−s
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where the error may be explicitly bounded. Therefore

Lis(−eπz) = 0 ⇐⇒ 1 +

(
i− z

−i− z

)1−s

≈ 0

⇐⇒ i− z

−i− z
≈ exp

(
πi(2j + 1)

1− s

)
(j ∈ Z)

⇐⇒ z ≈ − cot

(
π(2j + 1)

2(1− s)

)
(j ∈ Z),

and we expect the zeros of Lis(z) to approximately take the form

(8.20) − exp

(
−π cot

(
π(2j + 1)

2(1− s)

))
.

Due to branch considerations, (8.20) will correspond to zeros of Lis(z) only for
certain integers j � 0; see [GS84, Lemma 2, Thm. 2].

Figure 5 shows the zeros of Lis(z) for s = −10 − 44i, found numerically. They
are indistinguishable, at the scale of the figure, from the points 0 and (8.20) for
j = 0, 1, · · · , 139. This s satisfies s = (1 + v)(1 + 4i)− 1 for v = 10. If we change s
by increasing v, then the number of zeros of Lis(z) increases, all getting closer to
the spiral shown in Figure 5 and filling it more densely. See [GS84, Thm. 2] for
precise statements.

It should be possible to extend the results in [GS84] to all branches. We have
seen that Li2(z) has infinitely many zeros if we include those of every branch, while
Li1(z) has only one zero. A natural question arises: for any fixed s ∈ C, how many
zeros does Lis(z) have on all branches?
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