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A GLOBAL APPROACH TO THE REFINEMENT
OF MANIFOLD DATA

NIRA DYN AND NIR SHARON

ABSTRACT. A refinement of manifold data is a computational process, which
produces a denser set of discrete data from a given one. Such refinements are
closely related to multiresolution representations of manifold data by pyramid
transforms, and approximation of manifold-valued functions by repeated re-
finements schemes. Most refinement methods compute each refined element
separately, independently of the computations of the other elements. Here
we propose a global method which computes all the refined elements simul-
taneously, using geodesic averages. We analyse repeated refinements schemes
based on this global approach, and derive conditions guaranteeing strong con-
vergence.

1. INTRODUCTION

In recent years many modern sensing devices produce data on manifolds or data
that is modelled as points on a manifold. An example of such data is orientations
of a rigid body as a function of time, which can be regarded as data sampled from
a function mapping a real interval to the Lie group of orthogonal matrices [29].
The classical methods for the approximation of a function from its samples, such
as polynomial or spline interpolation, are linear, and there is no guarantee that
such approximations always produce manifold values, due to the non-linearity of
manifolds. Therefore, alternative methods are required.

Contrary to the development of classical approximation methods and numerical
analysis methods for real-valued functions, the development in the case of manifold-
valued functions, which is rather recent, was mainly concerned in its first stages
with advanced numerical and approximation processes. Examples of such processes
are geometric integration of ODE on manifolds (see e.g. [19]), subdivision schemes
on manifolds (see e.g. [34L37]) and wavelet-type approximations on manifolds (see
e.g. [I729]).

Subdivision schemes were created originally to design geometrical models [3123].
Later, they were recognized as methods for approximation [5l[11]. The important
advantage of these schemes is their simplicity and locality. They are defined by
repeatedly refining sequences of points, applying in each refinement step simple
and local arithmetic averaging. This enables the extension of subdivision schemes
to more abstract settings, such as matrices [32] and sets [9].

For manifold valued data, Wallner and Dyn [36] introduced the concept of adapt-
ing linear subdivision schemes to manifold data and, in particular, for Lie group
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data. That paper initiated a new path of research on subdivision schemes for man-
ifold data, e.g., [32,[34]. Adaptation of a linear subdivision scheme can be done
in several ways, for example, by rewriting the refinement rules as repeated binary
averages, and then replacing each binary average by a geodesic average; see e.g.,
[32,36].

Averages play a significant role in the methods for the adaptation of linear sub-
division schemes to manifold data. A natural choice of an average of two points
on a geodesically complete manifold is the midpoint of the geodesic curve be-
tween the two points. In some cases, the geodesic curve is known explicitly (e.g.,
[T4,[16][18.25]), while in general it can be calculated numerically; e.g., [4L15]221126].

The weighted geodesic average is induced by the geodesic curve, and acts as a
generalization of the weighted arithmetic average (1 —t)a + tb in Euclidean spaces.
For a weight ¢ € [0,1], it is the point on the geodesic curve, connecting the two
averaged points, which divides this curve segment in the ratio ﬁ Furthermore,
on several manifolds, the geodesic average can also be extended to weights outside
[0, 1], that is, extrapolating the geodesic curve of two points beyond these points;
e.g., [20]. The geodesic average is also well defined on more general spaces known
as geodesic metric spaces; e.g., [I]. Thus, in such spaces our adaptation method is
also valid.

We present here a method for the adaptation of linear subdivision schemes
to manifold data based on the idea of replacing weighted arithmetic averages by
weighted geodesic averages in a generalized Lane-Riesenfeld algorithm [23]. The re-
finement step in this proposed generalization consists of an elementary refinement
of doubling the data, followed by several rounds of averaging. In each round of
averaging the data is replaced by the same weighted average of all pairs of adjacent
points in the data. Such an adaptation is discussed shortly in [8l[36]. We term such
a refinement step “global refinement”.

Many results, concerning the convergence and smoothness of adapted subdivi-
sion schemes, are presented in the literature of the past few years; e.g., [34,[36,[37].
Most of these results are based on proximity conditions. A proximity condition
bounds the distance between the operation of an adapted refinement step to the
operation of its linear counterpart in terms of the maximal distance between adja-
cent data points. Such proximity conditions hold, since a manifold is locally close
to a Euclidean space. Thus, the convergence results are often valid only for “dense
enough data”, which is, in general, a condition that is hard to quantify and depends
on properties of the manifold (such as curvature).

Recently, progress in the convergence analysis is established in several papers
which address the question of convergence from any initial data. Such a result
is presented in [I3] for adapted subdivision schemes to data in Hadamard spaces.
Results for data on the manifold of positive definite matrices are derived in [32].
For the case of interpolatory subdivision schemes there are also results for several
different metric spaces; e.g., [20,21135].

Here we prove convergence from all initial data, of the above adapted generalized
Lane-Riesenfeld algorithm, when the weighted average in each round corresponds to
a weight in [0, 1], and we give conditions for such convergence when some averages
have weights outside [0, 1]. In addition, we extend the above construction to a wider
class of linear schemes, by introducing weighted trinary averages based on geodesic
weighted averages, and give sufficient conditions for convergence from all initial
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data. In all of these cases, and for manifolds with globally bounded curvature, the
convergence guarantees that the limits are C'!, based on the proximity analysis in
[36].
Three important observations on our adaptation method:
(1) Tt extends the class of linear schemes for which an adapted scheme is known
to be convergent from all initial data.
(2) It is well defined and convergent from all data in a wide class of geodesic
metric spaces.
(3) It leads to computationally feasible subdivision schemes.

The convergence analysis introduced in this paper supplies a new tool for the
analysis of linear schemes. In particular, this analysis guarantees the convergence of
any linear scheme with a symbol which is a Hurwitz polynomial, up to multiplication
by a monomial. The question of whether this method can improve our ability to
determine the convergence of linear subdivision schemes is beyond the scope of this
paper and is still under investigation.

The paper is organized as follows. We start in Section [2] by providing a short
survey of the required background, including a summary on the Lane-Riesenfeld
algorithm and a short review on geodesics and manifolds. We conclude Section
with a short discussion on a sufficient condition for the convergence of adapted
subdivision schemes. Section [3introduces our generalization of the Lane-Riesenfeld
algorithm. Then, we give conditions for the convergence of an adapted scheme based
on this algorithm, from any initial manifold data, where the corresponding linear
scheme has a factorizable symbol over the reals. In Section [d] we further extend the
algorithm to the adaptation of general linear schemes, and conclude the paper by
the convergence analysis of these schemes.

2. PRELIMINARIES

2.1. Subdivision schemes and the Lane-Riesenfeld algorithm. Linear, uni-
variate subdivision schemes are defined on numbers (the functional setting) , and
are extended to vectors by operating on each component separately. In the func-
tional setting, these schemes are approximation operators, when the data is sampled
uniformly from a continuous function f. We denote the sampled data f; = f(ih),
i €Z,h>0,byf=/{fi}icz. Any subdivision scheme consists of refinement rules
that map f to a new sequence S(f) associated with the values at ih/2, i € Z.

Let us denote by S a refinement rule, defined by a finitely supported mask
a:Z—R, as

(1) S(F); =Y aj aifi.

i€Z
A (stationary) subdivision scheme with a refinement rule S is a repeated application
of () and is also denoted by S.

A subdivision § is termed convergent if the sequence of piecewise linear inter-
polants to the data (i2~%, S¥(f);) converges uniformly (see e.g. [7]). By definition,
the limit is a continuous function.

The Lane-Reisenfeld (L-R) algorithm is a classical algorithm, which executes
the refinement rules of a B-spline subdivision scheme [23]. This algorithm replaces
each step of refinement by an elementary refinement (doubling all the data points)
followed by several stages of averaging. In each stage of averaging, the data points
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are replaced by the mid-points of all pairs of consecutive data points. As a result,
the refinement is done simultaneously to all data points. We term this refinement a
global refinement, contrary to the direct evaluation of (I), where each refined point
is calculated independently of the other refined points. The refinement step of the
L-R algorithm is presented in Algorithm [T

Algorithm 1. The refinement step of the Lane-Reisenfeld algorithm

Require: The data to be refined f = {f;};cz. The degree of the B-spline m.
Ensure: The refined data S (f).
11 240 < Di
2: G2i4+1,0 < Di
3: for j =1tom do
4: forieZdo
5: Gij — 5(qij-1+ Gis1j-1)
6
7
8

end for
: end for
c return {q; m fiez

An important tool in the analysis of convergence and smoothness of subdivision
schemes is the symbol, defined as the z-transform of the mask a, that is, a(z) =
Y iz a;z'. For example, the symbol of the B-spline subdivision scheme of degree
mis a(z) = (14 2)™+1 /2™ A necessary condition for convergence is a(1) = 2 and
a(—1) = 0 implying that the subdivision scheme is invariant to a translation of the
data [7l Proposition 2.1]. With the symbol a(z) the refinement rules () can be
written algebraically as

(2) D 807 =a(2)) 27,

jez jez

where the equality is in the sense of equal coefficients corresponding to the same
power of z. The L-R algorithm is an interpretation of (2)) with the symbols of the
B-spline subdivision schemes. For explanation see Section B3] and, in particular,
(@ap.

Over the years, several generalizations of the L-R algorithm have been proposed.
In [2] any step of the subdivision consists of a refinement step of a fixed converging
subdivision scheme, followed by a fixed number of “smoothing rounds” based on
another subdivision scheme (e.g., applying the insertion rule of an interpolatory
scheme to each point). In [I0BT] non-linear averages of numbers replace the arith-
metic (linear) averages. A generalization based on a geodesic average goes back
to [27,28] where a corner-cutting subdivision scheme based on geodesic averages is
presented and analysed. In [9] the L-R algorithm is adapted to compact sets based
on the metric average which is a geodesic average in the metric space of compact
sets with the Hausdorff metric.

In this paper we discuss the adaptation of subdivision schemes from numbers
to manifold data. To distinguish between sequences of numbers (or vectors) to
sequences on a manifold, we denote by f = {f;};cz and p = {p; }icz a sequence of
Euclidean data and manifold, respectively.
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2.2. On manifolds and geodesics. A geodesic (or a geodesic curve) is a funda-
mental notion in differential geometry. This notion is an extension of the shortest
arc on a surface, joining two arbitrary points p; and ps on the surface. On a plane,
the geodesic is simply the line segment connecting p; and po, described by

(3) (1 —t)py +tpa, te][0,1].

This line can also be characterized by its zero curvature and its endpoints. For a
manifold, this property is generalized by having zero geodesic curvature (or constant
velocity derived from the first fundamental form). In Riemannian manifolds, the
geodesic curve is defined as the solution to the geodesic Euler-Lagrange equations.
It turns out that any shortest path between two points is a geodesic curve.

In connected Riemannian manifolds, the Hopf~Rinow theorem guarantees that
geodesic curves connecting any two points are globally well defined and smooth; see
e.g., [6]. Such manifolds are also known as geodesically complete or simply complete
Riemannian manifolds. For such manifolds, one can derive the uniqueness of the
geodesic curve connecting any two points, in case one point is outside the cut locus
of the other. Henceforth, we will use the term geodesic curve for such shortest path
curves.

The geodesic curve is of great importance in our adaptation procedures. A
natural question is its availability in different manifolds. Indeed, in many cases,
the geodesic curve is known explicitly. Here are several examples: on a sphere (e.g.,
[14]), on an ellipsoid (e.g., [16]), on the cone of positive definite matrices (e.g., [18]),
in the Lie group of orthogonal matrices of the same determinant (e.g., [33, Chapter
3]), in the Heisenberg groups (e.g., [25]). Alternatively, geodesics can be calculated
numerically. This can be done by directly solving the Euler-Lagrange equations
(e.g., [I8]), by fast marching methods (e.g., [22]), by exploiting heat kernel based
methods (e.g., [4]), or other hyper-surface techniques (e.g., [20]), just to name a
few.

An important property of the geodesic curve is the metric property. Let M be
a complete Riemannian manifold with associated metric d. Then, for any pi,ps €
M the geodesic curve connecting p; and po, that is, My(p1,p2), t € [0,1], with
My (p1,p2) = p1 and My(p1,p2) = po, satisfies

(4) d(My(p1,p2),p2) = (1 = t)d(p1,p2), te€[0,1].

Since d is a metric, we also have the compliment formula d(pi, Mi(p1,p2)) =
td(p1,p2). In this paper, we consider data p such that the geodesic curve between
any two adjacent data points in p is well defined, and term such data “admissible”.
Then, the geodesic curve M; is used as a weighted ¢ mean, that is, the manifold
analogue of the arithmetic mean ([B)). In some cases, we may need M; to be defined
for values of ¢ outside [0, 1], but close to it. Therefore, we must assume that the
geodesic curve is well defined for these “extrapolation” values. In these cases the
metric property () is modified, replacing 1 — ¢ by |1 — ¢|.

There are some non-linear spaces, other than Riemannian manifolds, where the
geodesic curve connecting any two points is unique. These are the geodesic metric
spaces; see e.g., [I]. In such spaces, the differential structure is missing and a
geodesic curve is defined as the path satisfying (). Clearly, this definition agrees
with the geodesic curve on Riemannian manifolds. Note that, in general, we do not
need the uniqueness of the geodesic curve, but a canonical way to choose it; see

e.g., [9].



380 NIRA DYN AND NIR SHARON

2.3. Sufficient conditions for convergence of manifold-valued subdivision
schemes. The convergence of manifold-valued subdivision schemes can be defined
intrinsically. For that, we defined for any data sequence p, a piecewise geodesic
interpolant I(p), connecting any pair of consecutive points in p by their geodesic
curve. The manifold-valued subdivision scheme S is convergent, if the sequence
I(S*(p)), k € Z,, converges uniformly relative to the metric of the manifold (see
[12).

The analysis of adapted subdivision schemes in many papers is based on the
method of proximity, introduced in [36]. This analysis uses conditions that indicate
the proximity of the adapted refinement rule Stoits corresponding linear refinement
rule §. The simplest proximity condition is

6)  d(SE).80)) <c(6p)’, dp) =suwd(pipin), e € Ry

In [36] it is proved that if S is a refinement rule of a convergent scheme that
generates C'! limits, then condition () implies (with additional mild assumptions
on the refinement rule S) that for é(p) small enough, the adapted subdivision
scheme S. , applied to the initial data p, converges to a C' limit.

The weakness of the proximity method is that convergence is only guaranteed
for “close enough” data points. This requirement is typically not easy to quantify
and it depends on the manifold and its curvature.

For a linear subdivision schemes a contractivity factor u, namely,

(6) 5 (S(p)) < ué(p), pe(0,1),

implies the convergence of the scheme from any initial data; see e.g. [7].

For non-linear subdivision schemes and, in particular, for schemes adapted to
manifold data, contractivity is not sufficient for convergence, and an additional
condition is required; see [12].

Definition 2.1 (Displacement-safe). Let S be a subdivision scheme adapted to
manifold data. We say that S is “displacement-safe” if

(7) d(g(P)2i> (p)i) < CH(p), i€Z,
for any sequence of manifold data p, where C is a constant independent of p.

In [12], the following is proved.

Theorem 2.2. Let S be a displacement-safe subdivision scheme for manifold data
with a contractivity factor p < 1. Then, S is convergent for any input manifold
data.

Remark 2.3. Two concluding remarks:

(1) Note that interpolatory schemes satisfy (@) with C' = 0 by definition and
thus are displacement-safe.

(2) In [36] it is proved that any adaptation of (Il based on repeated geodesic
averages satisfies (B), under mild assumptions on the manifold, such as
manifolds with globally bounded curvature. This observation implies that
for p with §(p) < 1, (@) is also satisfied. Thus, for such schemes, it is enough
to show that the scheme has a contractivity factor to obtain convergence
for any initial data and to conclude that the limit is C*.
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3. ADAPTATION OF GENERALIZED L-R ALGORITHMS

We present an adaptation method of generalized L-R algorithms, based on ge-
odesic averages. This method is already introduced in [8,86]. Nevertheless, the
convergence result stated there is the one that follows from proximity conditions,
which applies only for 6(p) small enough. First, we discuss in detail our adaptation
and then analyze the resulting schemes, charactering classes of schemes for which
convergence from any initial data is guaranteed.

3.1. The algorithm of global refinement. Consider a linear subdivision scheme
S of the form (), with a symbol a(2) = >~z q; zJ. The factorization of the symbol
plays an important role in the analysis of convergence and smoothness of linear
subdivision schemes [7], and is also significant in our adaptation.

We start with a class of convergent linear subdivision schemes having symbols
which can be factorized into real linear factors. Recall that a necessary condition
for convergence is that a(—1) = 0 and a(1) = 2 [7, Proposition 2.1]. Thus, we can
write

1+ o712 1+ a2

(8) a(z) = 27°(1 4 2) ol T

)

where —afl,...,—a’l are the non-zero roots of the symbol and s is an inte-

m

ger. Note that 1 cannot be a root of a symbol since a(1) = 2. Thus, o; # —1,
j=1,...,m, and (8) is well defined. We further define oy to be the minimizer of

1 a;
9 - J
o) w1,
among Qy, . .., Qy,. LThe reason will become clear later.

The relation between the factorization () and the global refinement is based on
@). For the symbol ) we get from (@) that the linear scheme can be interpreted
as

Y enS(£);27 =2 T, F22 (1 +2) E)es fj22j>
(10) =z (H:iz 114135 (11-:(25) ZjeZ (ijZj n fj22j+1)

_ sl TTM l4a fitonfi—1y, 25—1 2j
= o, M s ((%afl)zj + fjz J).

By this interpretation, the factor 1 4 z indicates an initial elementary refinement

step in which the data is duplicated. Then, each of the factors 11102_27
J

implies a step of averaging, in which the current data is replaced by the weighted

averages with weights ﬁ, li—g on its pairs of adjacent points. A zero root of the
J J

j=1...,m,

symbol merely changes the value of s. This value determines the shift of indices
required to be applied, at the end of each refinement step. Note that for a; = 1,
i =1,...,m, this interpretation becomes the L-R algorithm. Thus, we consider the
global refinement step corresponding to (8) a generalized L-R algorithm.

The adaptation of the global refinement, based on geodesic averages, is summa-
rized in Algorithm

Note that for data sampled from a geodesic curve, all points generated by Algo-
rithm 2, are on this geodesic curve.
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Algorithm 2. Global refinement step

Require: The values s and ay, . .., a,y, of the symbol (8.
The data to be refined by S, p = {p; }icz-
Ensure: The refined data S (p).

1 24,0 < Di

20 q2i41,0 < Pi

3: for j =1 to m do {Go over each term in the factorization of the symbol}
4: forieZdo

5: Qij M%(Qi,j—l; Git1,j-1)

6: end for ’

7. end for

8: for i € Z do {A final shifting}

9: S (p)i—s-i-l < Qi,m-

10: end for
11: return S(p)

3.2. Analysis of schemes corresponding to factorizable symbols over the
reals. For our first result, we restrict the discussion to the case where the symbol
[®) has a full set of real negative roots, namely a; > 0,i=1,...,m.

Theorem 3.1. Let S be a linear subdivision scheme with the symbol (8), such that
aj >0, 5 =1,...,m. Then, the adapted scheme based on the global refinement

step of Algorithm 2 has a contractivity factor p = max{ﬁ, Trat-

Proof. Following Algorithm [l we get that after the initial stage of Line [[] and Line
we have that

d(q2i,0, 2i+1,0) = 0, d(q2i-1,0,q2i,0) < 6(p), i€ Z.
After the first iteration of the loop of Line [8l we have (see (I0))

42i,1 = 42,0, q2i+1,1 = Mlil (q2i+1,0; (I2i+2,0), 1€ 2.
aq

By the metric property (),

1
d(qa; , 42i =—9 , d(qo;— ,q2; < 1) s , € 7.
(92,15 q2i+1,1) 1+ (p) (92i-1,0, 42i,0) 1+ (p), i
Thus, for g™ = {gi1}iez, 6(a!t) < pd(p) with pu = max{ﬁ, Trart- The next
iterations, j = 2,...,m, retain the maximal bound of ud(p), since for j > 1,

A5, Git1,5) < d(Gijy dit1,5—1) + A(Qit1,5-1-Git1,5)

o
< J = .
S 1o(p) + pd(p) = po(p) O

1+Olj

Note that the contractivity factor of Theorem B satisfies 1 > 1 since T
ﬁ €(0,1) and {4 —|—ﬁ =1, with p = 1 for oy = 1.

The L-R algorithm satisfies the conditions of Theorem Bl Indeed, this theorem
is a generalization of a similar result in [9, Lemma 4.1] for the adapted L-R algorithm
to compact sets.

Next, we show that the adapted subdivision schemes corresponding to symbols

having a full set of real negative roots, are displacement-safe.
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Theorem 3.2. Let S be as in Theorem [B1 Denote by S the adapted scheme based
on the global refinement of Algorithm 2l Then, S is displacement-safe.

Proof. The proof shows by induction that d(S(p)a:, pi) < Knd(p), @ € Z. Denote
by S; the linear subdivision scheme with a symbol obtained from the symbol of S by
retaining the first j factors, 1 < j < m, so that the adapted scheme of Sj, g‘j, uses
only j iterations of the loop of Line Blin Algorithm 2l Obviously S = S,,,. We use
induction on j. For j = 1, after the initial steps of Lines[Mand 2] Algorithm Plinserts
new points on the geodesic curves, connecting adjacent data points. Therefore, it
is clear that we have d(gl(p)gi, pi) < d(p), namely we get the constant K; = 1 for
the case 7 = 1. The induction step assumes

A(S;(p)aipi) < K;6(p), i€,

for a given j, 1 < j < m — 1, with a constant Kj;, which depends on j and is
independent of p. Then, using the triangle inequality we get

A(Sj11(P)2i, i) < d(Sj+1(P)2is S;(P)2i) + d(Sj(P)2i, pi)-
While by the metric property ) (see Line Bl in Algorithn [2))

(11) d(Sj41(P)2i, Sj(P)2:) < 8(S;(P)).
Since Theorem [3.1] implies that
~ ]_ a1
. < —
(12) 8(8(p)) < pd(p),  po=max{y—— -

we can choose K11 = 1+ K and the proof follows. The shift, defined by s in (§)
and done in Line @ of Algorithm [2] does not affect the above bound, since s is the
same for all S;. ]

‘We conclude

Corollary 3.3. Let S be a linear subdivision scheme with the symbol [8), such that
a; >0,5=1,...,m. Then, the adapted scheme based on the global refinement of
Algorithm Bl converges for all admissible input data on the manifold.

The second case analyzed here corresponds to symbols of the form (&) with
several positive roots. Positive roots mean negative weights in the averages, namely
extrapolating averages in Line [ of Algorithm

Theorem 3.4. Let S be a linear convergent subdivision scheme with symbol a(z)
of the form [8), such that a(z) has at least one negative root in addition to the root
—1. Define

i max(i )
= min max{—, ———1},
i ;>0 1+a; 1404
i€{l,...,m}

and renumerate the factors in ([8) such that p; is attained at . If

(13) p=p [J&) <1,
i=2
where
1, 0<a,
£la) = 1+21J%a , —1l<a<O,

142/, a<-1,
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then the adapted scheme based on global refinement has a contractivity factor p,
and it converges from any admissible initial data on the manifold.

Proof. The proof basically modifies the proofs of Theorem [3.1] and Theorem
By assumption the set {ai >0:1€{1,... ,m}} is not empty, and therefore p; < 1.
Similarly to the proof of Theorem [3.1] the application of an averaging step in Line
of Algorithm ] corresponding to «; > 0, does not expand the bound on the
distances between consecutive points in the data. On the other hand, an averaging
step corresponding to a; < 0 expands the bound.

To obtain the expanding factor note that after the j-th step in Line [l of Algo-
rithm 2l we can bound the distance between consecutive points by

(14) (i, dit15) < A, Gij—1) + d(Gij—1, Giv1—1) + d(Giv1,-1, Givr5)-
Defining p; = 1 Hg=2§(ai), Jj=2,...,m, we obtain from (4]

(15) d(Gijs @iv1,5) < E(oj)pj—10(p).

This together with assumption (I3]) shows that u = p,, is a contractivity factor of
the adapted scheme.

To complete the convergence proof, we observe that since p; > %, assumption
(@3) implies that &(a;) < 2,4 =1,...,m. Modifying the proof of Theorem B.2] we
get in its notation that () is replaced by

d(Sj+1(P)2i, Sj(p)ai) < 26(S;(p))-

Using the same inductive argument, and the bound (3], we get

A(Sji1(P)2ipi) < d(Sj1(P)2irSj(P)2i) + d(S;(p)2is i)
< 26(8;(p)) + K;0(p) < (215 + K;)8(p).

Thus, in this case K11 = 2u; + K;. By (13) p; < p < 1, and since ay > 0 implies
K, =1, we finally arrive at K,, = 1+ 2m.

We conclude that the adapted scheme obtained from S by global refinement
is displacement-safe and has a contractivity factor p given in ([I3]). Therefore, it
converges by Theorem O

A

Remark 3.5. Two remarks for Section

(1) Asis proved in TheoremsB.land 3.2 the adaptation of Algorithm 2lleads to
converging subdivision schemes when applied to linear subdivision schemes
with positive mask coefficients, such that their symbols have a full set
of negative roots. Theorem [3.4] extends the convergence to schemes with
symbols having few positive roots in addition to at least two negative ones,
which may correspond to masks with some negative coefficients.

(2) Negative coefficients necessarily appear in the masks of smooth interpola-
tory schemes. However, the adaptation based on global refinement is inap-
propriate for interpolatory subdivision schemes, since the adapted schemes
are not interpolatory any more. The commutativity of multiplication of
numbers guarantees that for numbers the local refinement and the global
refinement coincide.

In the next section we show that the global refinement can be interpreted as
local refinements, based on a “pyramid averaging”.
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3.3. Interpretation of the global refinement as local refinement. Most
known adaptation methods of convergent linear subdivision schemes to manifold
data are based on first rewriting the average (Il) in terms of repeated binary av-
erages, and then replacing the linear averages by some manifold averages; see e.g.
[B4.[361[37]. We term the so obtained refinement rules “local refinement”.

Next we show that global refinement can be interpreted as local refinement based
on geodesic averages. This observation together with [2 of Remark 2.3 leads to the
conclusion that the convergence of schemes adapted by global refinement guarantees
C! limits.

We now describe how the global refinement can be interpreted as local refine-
ment. For i even, S (p), in Algorithm [2] can be calculated by a series of repeated
averaging operating on p;, pit1, ..., pi+| = |. First we replace p; by

. . m
MO(peapZ+1)7Ma?_1*_1 (p£7p€+1)7 éZZ,...,’L—F L?J .

We take from this sequence the first m points, to form the initial level for a “pyramid
averaging” of m — 1 levels. In the j-th level of the pyramid averaging any pair
of adjacent points is replaced by its geodesic average with weight a?ﬁj—l’ j =
1,...,m—1. Thus at the j-th level there are m — j points. S (p), is the only value
obtained at level m — 1 of the pyramid averaging.

For i odd, S (p), in Algorithm 2] can be calculated similarly, starting the same

pyramid averaging from a different sequence. This sequence is obtained from
Di,Dit1;- - -, Pitr[z] by first replacing py by M% (pe, pet1)s M1(pespey1), € =14, ...,
i+ [%] — 1, and then taking the first m points. For illustrations and explanation
of the pyramid averaging notion see [30].

The global refinement calculates only once each geodesic average of adjacent
points in the data, while the same average appears in the calculation of several
points by local refinement. Thus, the global refinement is more efficient in terms of
computational operations as compared to its local refinement interpretation. Note
that it is possible to define a scheme adapted by local refinement which uses the
same number of geodesic averages as the global refinement [12].

4. ADAPTATION BASED ON GLOBAL REFINEMENT-—THE GENERAL CASE

We extend the global refinement algorithm to converging linear schemes with
general symbols. Then, instead of () such symbols, which are real polynomials,
can be factorized into m; real linear factors (in addition to 1+ z) and my quadratic
real factors, with m; 4+ 2mo = m. Any complex root of the symbol corresponds to
a real quadratic irreducible factor over the reals of the form

(16) 1+ az 1—|—az_1+2Re(a)z+|a\2z2
l+a 1+ 1+ 2Re(a) +|a)?

where a and Re(«) is the real part of . The average associated with such a factor
has, in the sense of the global refinement algorithm, the following weights:
(17)
1 2 Re(a) af?
= 29 Wa = 2 w3 = P
1+ 2Re(a) + |of 1+ 2Re(a) +|a] 1+ 2Re(a) +|a]

wi
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Note that wy + wq + w3 = 1. Instead of (§]) we have in this case the factorization

mi

(18) a(z) =27%(1+ 2) H

=1

mi+msa

H 1+ 2Re(o)z +|oy)? 22
1+ 2Re() +|a;|?

1+ o2
1—|—OLZ‘

i=mi+1
Note that for any complex « € C\ R

(19) 14+ 2Re(a) + |al® = |1 + af* > 0.

Therefore, (7)) implies that w; and w3 are always positive.

4.1. The general algorithm of global refinement. For an irreducible quadratic
factor in (I8)) one is required to average 3 points on the manifold at once. Motivated
by the pyramid averaging of Section B3] we define such an average and term it a
three pyramad.

Definition 4.1. For three points p1, p2, p3 with corresponding weights wy, ws, w3,
the “three pyramid” is

P ((p1,p2:p3), (w1, w2, w3)) = M, (M, (ps, p2), My, (p2,p1)) ,
where the following constraints must hold:
(1) tyr = wy.
(2) (1 =t1)r+t2(l —r) = wo.
(3) (1 =t2)(1 —r)=ws.
Remark 4.2. Two remarks on Definition F.T}
(1) For numbers fi, fa, f5 the three pyramid coincides with wy f1 +wa fo +ws fs.

(2) The three constraints of Definition Il are not independent. Since we always
assume that wi +ws 4wz = 1, the sum of the three constraints always holds.

The global refinement of Algorithm [2] uses uniform averaging in each level. The
following lemma shows that this is not possible for symbols with complex roots.

Lemma 4.3. There is no three pyramid of Definition 1] for the weights [IT) with
t1 = to. However, such a three pyramid exists with t1 > to.

Proof. For the first claim of the lemma, we rewrite the constraints of Defini-
tion 1] with ¢ = ¢; = ¢3. The case t = 0 is impossible since by ([I7) and
(@) w; > 0. Therefore, substitution of 7 = “* into the third constraint yields
t? + (w3 — wy — 1)t + wy = 0, which has no real solution for the weights of (IT).
To prove the second claim, one can choose r = —1— for the weights in (7).

I+]af
This yields a three pyramid with

wi la| +1 o1 ws _ 1+2Re(a) —|af
r— 1+2Re(a) + a2’ 7 1—7  1+2Re(a)+|a®
Note that for a non-real «, |a| > | Re(r)|, and thus in view of (I9)

2(Jaf = Re(a))

> 11 2Re(a) +laf

(20) t=

(21) ty — O

The proof of Lemma 3] suggests a choice for the parameters of the three pyra-
mid, for calculating the average of 3 points at once. This choice, as is shown in
Section [4.2] is designed to minimize the bound on the distance between averages of
two adjacent triplets of points.
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The adaptation of the global refinement algorithm corresponding to the symbol
([I8), based on geodesic averages and three pyramid averages, is summarized in
Algorithm [B] which replaces Algorithm Bl for symbols having complex roots.

Algorithm 3. Global refinement step — the general case

Require: The coefficients a1, ..., Qm, +m, of the symbol ([I8) and the value s.
Assume o is defined as in Theorem [3.4]
The data to be refined by S, p = {p; }icz-

Ensure: The refined data S (p).

P 4240 < Pi

2 G2i4+1,0 < Di

3: for j = 1 to m; do {Go over each term corresponding to a real root of the

symbol}
4. forieZdo
Gij < M _2; (Gij—1,Gi+1,j-1)

—

5: a;
1+aj
6: end for
7. end for
8: for j = mj+1 to m; +msy do {Go over each term corresponding to a complex

root of the symbol}

9: forieZdo
1

10: wy e ——
1+2Re(ocj)+|aj‘

11: wy  ——Reley)
1+2Re(ocj)+|o¢j‘

: 3 < )

1+2Re(ocj)+|aj‘

13: gij < P ((Qi,jfla Qit1,j—1,Gi+2,j—1); (W1, W, ’w3))

14: end for

15: end for

16: for i € Z do {A final shifting}
172 S(P)i_gr1 & Tiym-

18: end for

19: return S(p)

4.2. Optimal choice of parameters in the three pyramid. To optimally
bound the distance

(22) d(P ((P1,p2,p3)7 (w1, w27w3)) P ((P2,p3,p4)7 (w1, wz,w?,)) )

we start by setting r € (0,1). The reasons for this choice are presented in details
in Appendix [AJl For the other parameters, we first prove the following lemma.

Lemma 4.4. Consider the three pyramid of Definition EI] for the weights (1)
with r € (0,1). Then, t; > to.

Proof. By the constraints of Definition A1l f(r) = t; —to = =2 4+ %2 — 1. We

show that min,¢o,1) f(r) > 0. Indeed, f'(r) = =5+ + (1:"—%2, which implies a single
minimum point of f(r) at r* = \/@T\{JT/@ = Hja\' By I) we have that f(r*) > 0,

and since 7* is a minimum point, f(r) > f(r*) > 0. O
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Theorem 4.5. Consider the three pyramid of Definition 1] with the weights (1)
and r € (0,1). Then, for p1,p2, ps, pa with 6(p) = maxi<;<s d(Pi+1,D:),

(23) d(P ((p1,p2,p3), (w1, w2, w3)) , P ((p2, p3, pa), (w1, w2, w3)))
< (2(t1 — t2) + 1) 6(p).

Proof. Figure[llaccompanies the proof. There M; and M correspond to My, (p2,p1)
and My, (ps,p2), respectively, while M; and My correspond to My, (p3,p2) and
My, (pa, p3), respectively. P and P there correspond to P ((pl,pg,pg), (w1, wa, w3))
and P ((pg,pg,p4), (w1, wa, ’LU3)), respectively.

We first apply the metric property (@) and the triangle inequality to get (see the
schematic illustration in Figure [Tal)

(24) d (M, (p3,p2), My, (p2,p1)) < d(My, (p3,p2), p2) + d(p2, My, (p2, 1))
= (1 —ta)d(p2, p3) + t1d(p1, p2).

Note that t; = 5+ > 0 and that 1 —#; = {22 > 0. Similarly we get

d(M, (p3,p2),p2) = (1 —t1)d(p2, p3),

and since 1 — ¢ > 1 — t; by Lemma 4] we conclude that My, (ps,p2) is closer to
po than M, (ps3, p2) (see Figure [Ih)). Observing that these two averages lie on the
geodesic curve connecting p, and p3, we conclude that
(25)

d(My, (ps, p2), My, (p3,p2)) = ((1 — t2) — (1 — t1)) d(p2, p3) = (t1 — t2)d(p2, p3).

To prove ([23) we sum the following three bounds, on the lengths of the three
parts of the path connecting P to P via M, and M, in Figure [Id

d(P ((p1,p2,p3), (w1, wa,w3)) , My, (p3,p2)) < (1—r)(t1+ (1 —1t2))d(p),
d(My,(p3,p2), My, (p3,p2)) < (t1 —t2)0(p),
d(My, (p3,p2), P ((p2, p3, pa), (w1, wz,w3))) < 7(t1 + (1 —t2))d(p).

The first and third bounds are obtained from Definition fIl by @) and ([24), the
second bound is (25]). O

Remark 4.6. Two important conclusions, related to the parameters of the three
pyramid:

(1) Theorem[Himplies that in order to reduce the expansion factor in (23]) cor-
responding to a three pyramid the function f(r), from the proof of Lemma
[44] has to be minimized. Thus, the parameters ¢; and to of (20) and

r= %\al are preferred.

(2) For the parameters in the first part of the remark, we deduce from Lemma
44 that the bound in ([23)) is bigger than one. This means that the bound
d(p) on the distances between adjacent points is not preserved after apply-
ing the three pyramid.

Note that in the linear case, any averaging step corresponding to a complex root
does not expand the distance between consecutive points as long as the weights
(@) are positive, that is, the real part of « is positive.
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tl l-tl

t,
t: =~
NS AN
P1 P2 P3 P2 P3

(a) My = My (p2,p1) and (b) M; = My, (ps,p2)
My = M, (p3,p2) and Mg = My, (p3,p2)

(¢) P = P((pl,pg,pg),(wl,wg,wg)) and

P =P ((p2,p3,p4), (w1, w2, w3)).

Figure 1. Tllustration for the proof of Theorem The curved
lines (arcs) symbolically represent geodesic curves connecting two
points. In @ and @ the bright arrows describe the relative dis-
tances compared to each of the corresponding geodesics.
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4.3. Analysis of convergence. First, we consider the case of symbols of the form
([I8) having several complex roots and then discuss in detail the case of a single
complex root.

In case of positive roots, which is analysed in Theorem B.4] we show an initial
contractivity factor induced by «y > 0, associated with the negative root, followed
by a series of expanding factors £(«;) for «; < 0, associated with the positive roots.
Equipped with Theorem [£.5] the analysis of the convergence of the schemes adapted
by Algorithm [l is essentially the same.

Corollary 4.7. Let S be a linear subdivision scheme with symbol a(z) of the form
@), with my,ma > 1 and maxi<;<m, &; > 0. Define

. { Q; }
= min max 5 )
i ;>0 14+, 1+
ie{l,....m1}

and renumerate the linear factors in [I8)) such that py is attained at ay. If

(26)

where

mi+ma

p=m J[ &)<,
=2

1, 0< Qg
1+21$gi , —1<a; <0,
f(az) T V149l
+ Ttoy | a; < _17

2(loi|—Re(ai)) )
142 (SR E) . e R,
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then the adapted scheme based on global refinement has a contractivity factor p,
and it converges from any initial admissible data on the manifold.

The proof is in the spirit of the proof of Theorem [3.4] and is based on Theorem [£.5]
and the choice ([20) of the parameters. Note that similar arguments (as mentioned
in the proof of Theorem [34]) also confirm that the proof of Theorem holds in
the case of complex roots, with K; 1 = % + K. Thus, the full proof is omitted.

A similar sufficient condition for the convergence of the adapted scheme with
refinement step as in Algorithm [3] is

1

Corollary 4.8. In the notation of Corollary BT, if
9 2(IOZz| — Re(az))
1+ 2Re(a;) +]oy|”
1 14 "
< M—H{(a]) 5 i:m1+1,m1+2,...,m1—|—m2,
17
j=2

then, the adapted scheme is convergent for all admissible input data.

We provide an additional perspective to the above analysis by assuming only one
irreducible quadratic factor with all real linear factors corresponding to negative
roots. In such a scenario, we can describe exactly the domain in the complex plane
from which a single complex « leads to a convergent adapted scheme. This can be
extended to several complex roots using the same approach as in Corollary .8

Theorem 4.9. Let S be a linear subdivision scheme, with a symbol of the form
[IR), adapted by Algorithm Bl such that m; > 1, ma =1 and o; > 0, 1 < i < mjy.
Then, the adapted scheme converges from all admissible input data whenever qum, 41
is outside the domain Q) given by

Q= {T€i¢ | p1(d) <7 < p2(0), v<P< 27r—v} U {ei“,e_i“}.

Here 0 <v = arccos(i’jf;ll) < arccos(3), and the curves py and py are
—(14m) 2 —(14m) 2m
2(¢p) = ————=cos(¢) + F —————=cos(¢) + -1,
pr2(?) L= @) I —m I —m (@) 1—m

where py is the initial contractivity factor py = maxlgigml{ﬁ, ﬁ_a}

The proof is given in Appendix

First, note that €2 is symmetric relative to the real axis. To further illustrate €
and the complemented domain of convergence C\{2 we refer the reader to Figure
Bl where the domain of convergence for a single irreducible factor and an initial
contractivity factor p = % is presented. This value of y implies that —1 has mul-
tiplicity as a root of the symbol, which is typical to C' schemes. The convergence
domain includes all the complex plane but 2, and one can clearly notice the domain
’arg(a)| < v around the positive real axis (between the dashed lines), where there
is no restriction on the modulus of the complex a,, +1.

Remark 4.10. An interesting class of manifolds is the Hadamard manifolds which
are globally non-positively curved metric spaces; see e.g., [I]. On a Hadamard
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10

Figure 2. The domain of convergence C\{2 for the case of a single
irreducible real quadratic factor and an initial contractivity factor
= %. The dashed lines are arg(a) = Fuv.

manifold, any two points p; and po, and their connecting geodesic M;(p1,p2), t €
[0, 1], satisfy for any point ¢ on the manifold

d?(q, My(p1,p2)) < (1 —t)d*(q,p1) + td*(gq, p2) — t(1 — t)d*(p1, p2).

Such manifolds are also called (global) CAT(0)-spaces and NPC spaces. Con-
trary to general manifolds, where geodesics are merely locally the shortest path, in
Hadamard manifolds the geodesics are unique and global.

In Hadamard manifolds, one can establish superior bounds on distances as (22)),
between averages of more than two points. For example, in [24], a class of “weak
contractivity” averages is introduced. Distances of the form ([22)), based on such av-
erages, are bounded by §(p). Thus, in Hadamard manifolds, irreducible quadratic
factors can be replaced by weak contractivity averages in the global refinement
algorithm. With this modification, the contractivity factor is independent of the
number of such factors and the convergence of schemes based on the global refine-
ment is guaranteed for any symbol with all roots having negative real parts and at
least one negative root in addition to —1. Note that all such symbols have positive
coefficients.

APPENDIX A. SUPPLEMENTS FOR SECTION [

A.1l. Why to choose 0 < r < 1 in a three pyramid? The main argument for
choosing 0 < r < 1 in a three pyramid is to avoid the use of high extrapolation
values in the averages of the three pyramid. Namely, we wish to minimize the use
of averaging parameters that are much bigger than one or much smaller than zero.

To simplify the discussion, we focus on the left part of the complex domain,
namely consider complex roots with negative real parts, that is, a; such that
Re(aj) >0, j =mq +1,...,m1 + mg, in (I8).

Proposition A.1. Consider a three pyramid, corresponding to a complex o with

Re(a;) > 0, with the parameters t1,ts given by Q) for r = ﬁ € (0,1). Then:

(1) ¢t1 > 0 and t2 < 1. Moreover, at least one of t1,t2 is in (0,1).
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(2) In case t; & (0,1), then 0 < t; < 112 ~ 1.207.
(3) In case ty & (0,1), then —0.207 ~ 152 < ¢, < 1.

Proof. For the first claim, we note that by (20) ¢; > 0 (since r > 0 and w; > 0),
and to < 1. For the rest of the first claim, we consider two cases. When ‘aj‘ >1,

1+2R€(O[j)+‘04]“2 > 1+’Olj’2 > 1+|aj|,
and ¢; < 1 by (@0). On the other hand, when || < 1, we have that
1+2Re(o;) — || > 1+ 2Re(a;) — 1> 0,

and it follows from (20)) that to > 0.

For the second claim, denote o = pe'®, which leads to t; =g(p, 0) = mpi:w.
Then, a standard analysis using differentiation shows no extreme points for g inside
the domain Re(a;) > 0. On the boundary of this half plane, that is § = &7, there
are two maximum points at p = v/2 — 1, yielding the bound on #;. The third claim
is proved similarly. One finds that 1 — ¢ has the same maximal values as t;. [

Proposition[A T shows that choosing the parameters (20) with r = ﬁ €(0,1)
guarantees at most one extrapolating average, with a weight just slightly outside
(0,1), namely in (—0.207,1.207). For r ¢ (0, 1) this is not the case.

Recall the general expressions of the parameters t; = =1 and 1 —t; = %2,
These expressions reveal that if » ¢ (0, 1) both ¢; and t2 cannot be in (0,1). To get
t; € (0,1) and ¢5 bigger than 1 but close to it, r has to be sufficiently large, while
to get t2 € (0,1) and ¢; < 0 but close to 0, » must be negative with |r| sufficiently
large. Moreover, if r & (0, 1) but close to (0,1) either ¢; or t3 become unbounded.
To further demonstrate this, we present a simple example.

Example A.2. We illustrate the extreme extrapolation values required for the

case of r € (0, 1) by calculating the parameters of the three pyramid for the special

case a; = 1+ %z € C. Note that for this root, when using r = ﬁ = 0.4721, the
J

corresponding parameters are t1 ~ 0.4984, t5 ~ 0.4428. Furthermore, for the case
of a single quadratic factor, as done in Theorem [£.9] the scheme has a contractivity
factor for any pq < 0.9.

On the other hand, allowing small r values of extrapolation results in high,
undesired extrapolation values of t3 (when r > 1) or of ¢t; (when r < 0). This is
demonstrated in Tables [Tal and [[b where as r gets closer to (0, 1), either 1 or to
get further away from (0,1).

Table 1. The parameters of the three pyramid for a; =1 + %z

(a) Caseof 7 > 1 (b) Case of r < 0

r | t1 | to r | t1 | to
1.5 | 0.1569 | 1.5882 -0.5 | -0.4706 | 0.8039
1.4 0.1681 | 1.7353 -0.4 | -0.5882 | 0.7899
1.3 | 0.1810 | 1.9804 -0.3 | -0.7843 | 0.7738
1.2 1 0.1961 | 2.4706 -0.2 | -1.1765 | 0.7549
1.1 0.2139 | 3.9412 -0.1 | -2.3529 | 0.7326
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Note that another outcome of high extrapolation values of r is that the conver-
gence domain, C\Q of Theorem 9] becomes more restrictive than the one obtained
for r € (0,1). The proof for this claim can be easily understood but involves many
technical details and thus is omitted.

A.2. Proof of Theorem As in Corollary 7 it is sufficient to ensure a
contractivity factor. Recall that o; > 0,4 = 1,...,my. Accordingly, we have that
by reaching Line [0 of Algorithm Bl we retain the bound u16(p) on the distance
between adjacent points. Using Theorem we get that a sufficient condition for
having a contractivity factor is

1
2ty —tg) +1 < —.

M1
Substituting 1) and a,,, 11 = pe’® we get the sufficient condition for contractivity
(27) 0% —2(y(1 = cos(8)) — cos(6))p+1 >0,
with 5 = AL

For a fixed 6, consider the left-hand side of ([27]) as a parabola in p and denote it
by h(p). Then, h'(p) = 2p — 2(y(1 — cos(#)) — cos(#)). The derivative implies that
the minimum, as a function of p, is obtained at

5 = (1 — cos(6)) — cos(8),
for a fixed 6.

We divide the analysis into two different cases and start with the case that
@7) holds for any p > 0. Since the parabola h(p) has a minimum and satisfies
h(0) = 1, there are two scenarios: the first is p* < 0 and the second is p* > 0 and
h(p*) =1 — (p*)? > 0, namely 0 < p* < 1. Therefore, a combined condition for
the two scenarios is simply p* < 1, or cos(f) > 24=L  Thus, the argument of the

1+pq
cosine must satisfy 6 € (—v,v), where v = arccos(?’l*fﬁ;l), with 1 < |%| <1,

since % < w1 < 1. This is the domain where we have a contractivity factor for all
p-

The second case is when the parabola h(p) has two positive roots. In this case
we have a non-negative discriminant, that is (y(1 — cos(6)) — cos(6))? — 1 > 0, or
equivalently (1 — cos()) — cos(f) > 1 (the case (1 — cos(f)) — cos(f) < —1 was
already treated above, since in this case p* < 0). The equality corresponds to the
case § = +v namely to a vanishing discriminant. In this case h(p) = (p — 1)?
and (27) holds for p # 1. Otherwise, we have contractivity when p is bigger
than the large root or smaller than the small root of h(p). The roots are curves,
parameterized by ¢ € (v, 2w — v), as appears in the statement of the theorem.
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